freebsd-skq/sys/dev/isp/isp_freebsd.c
1999-03-25 22:52:45 +00:00

1103 lines
29 KiB
C

/* $Id: isp_freebsd.c,v 1.13 1999/03/17 05:04:38 mjacob Exp $ */
/* release_03_25_99 */
/*
* Platform (FreeBSD) dependent common attachment code for Qlogic adapters.
*
*---------------------------------------
* Copyright (c) 1997, 1998 by Matthew Jacob
* NASA/Ames Research Center
* All rights reserved.
*---------------------------------------
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice immediately at the beginning of the file, without modification,
* this list of conditions, and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <dev/isp/isp_freebsd.h>
#if __FreeBSD_version >= 300004
static void isp_cam_async __P((void *, u_int32_t, struct cam_path *, void *));
static void isp_poll __P((struct cam_sim *));
static void isp_action __P((struct cam_sim *, union ccb *));
void
isp_attach(struct ispsoftc *isp)
{
struct ccb_setasync csa;
struct cam_devq *devq;
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(MAXISPREQUEST);
if (devq == NULL) {
return;
}
/*
* Construct our SIM entry
*/
isp->isp_sim = cam_sim_alloc(isp_action, isp_poll, "isp", isp,
isp->isp_unit, 1, MAXISPREQUEST, devq);
if (isp->isp_sim == NULL) {
cam_simq_free(devq);
return;
}
if (xpt_bus_register(isp->isp_sim, 0) != CAM_SUCCESS) {
cam_sim_free(isp->isp_sim, TRUE);
return;
}
if (xpt_create_path(&isp->isp_path, NULL, cam_sim_path(isp->isp_sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(isp->isp_sim));
cam_sim_free(isp->isp_sim, TRUE);
return;
}
xpt_setup_ccb(&csa.ccb_h, isp->isp_path, 5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = isp_cam_async;
csa.callback_arg = isp->isp_sim;
xpt_action((union ccb *)&csa);
/*
* Set base transfer capabilities for Fibre Channel.
* Technically not correct because we don't know
* what media we're running on top of- but we'll
* look good if we always say 100MB/s.
*/
if (isp->isp_type & ISP_HA_FC) {
isp->isp_sim->base_transfer_speed = 100000;
}
if (isp->isp_state == ISP_INITSTATE)
isp->isp_state = ISP_RUNSTATE;
}
static void
isp_cam_async(void *cbarg, u_int32_t code, struct cam_path *path, void *arg)
{
struct cam_sim *sim;
struct ispsoftc *isp;
sim = (struct cam_sim *)cbarg;
isp = (struct ispsoftc *) cam_sim_softc(sim);
switch (code) {
case AC_LOST_DEVICE:
if (isp->isp_type & ISP_HA_SCSI) {
u_int16_t oflags, nflags;
sdparam *sdp = isp->isp_param;
int s, tgt = xpt_path_target_id(path);
nflags = DPARM_SAFE_DFLT;
if (isp->isp_fwrev >= ISP_FW_REV(7, 55)) {
nflags |= DPARM_NARROW | DPARM_ASYNC;
}
oflags = sdp->isp_devparam[tgt].dev_flags;
sdp->isp_devparam[tgt].dev_flags = nflags;
sdp->isp_devparam[tgt].dev_update = 1;
s = splcam();
(void) isp_control(isp, ISPCTL_UPDATE_PARAMS, NULL);
(void) splx(s);
sdp->isp_devparam[tgt].dev_flags = oflags;
}
break;
default:
break;
}
}
static void
isp_poll(struct cam_sim *sim)
{
isp_intr((struct ispsoftc *) cam_sim_softc(sim));
}
static void
isp_action(struct cam_sim *sim, union ccb *ccb)
{
int s, tgt, error;
struct ispsoftc *isp;
struct ccb_trans_settings *cts;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("isp_action\n"));
isp = (struct ispsoftc *)cam_sim_softc(sim);
ccb->ccb_h.sim_priv.entries[0].field = 0;
ccb->ccb_h.sim_priv.entries[1].ptr = isp;
/*
* This should only happen for Fibre Channel adapters.
* We want to pass through all but XPT_SCSI_IO (e.g.,
* path inquiry) but fail if we can't get good Fibre
* Channel link status.
*/
if (ccb->ccb_h.func_code == XPT_SCSI_IO &&
isp->isp_state != ISP_RUNSTATE) {
s = splcam();
DISABLE_INTS(isp);
isp_init(isp);
if (isp->isp_state != ISP_INITSTATE) {
(void) splx(s);
/*
* Lie. Say it was a selection timeout.
*/
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
xpt_done(ccb);
return;
}
isp->isp_state = ISP_RUNSTATE;
ENABLE_INTS(isp);
(void) splx(s);
}
IDPRINTF(4, ("%s: isp_action code %x\n", isp->isp_name,
ccb->ccb_h.func_code));
switch (ccb->ccb_h.func_code) {
case XPT_SCSI_IO: /* Execute the requested I/O operation */
/*
* Do a couple of preliminary checks...
*/
if ((ccb->ccb_h.flags & CAM_CDB_POINTER) != 0) {
if ((ccb->ccb_h.flags & CAM_CDB_PHYS) != 0) {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
if (isp->isp_type & ISP_HA_SCSI) {
if (ccb->ccb_h.target_id > (MAX_TARGETS-1)) {
ccb->ccb_h.status = CAM_PATH_INVALID;
} else if (isp->isp_fwrev >= ISP_FW_REV(7, 55)) {
/*
* Too much breakage.
*/
#if 0
if (ccb->ccb_h.target_lun > 31) {
ccb->ccb_h.status = CAM_PATH_INVALID;
}
#else
if (ccb->ccb_h.target_lun > 7) {
ccb->ccb_h.status = CAM_PATH_INVALID;
}
#endif
} else if (ccb->ccb_h.target_lun > 7) {
ccb->ccb_h.status = CAM_PATH_INVALID;
}
} else {
if (ccb->ccb_h.target_id > (MAX_FC_TARG-1)) {
ccb->ccb_h.status = CAM_PATH_INVALID;
#ifdef SCCLUN
} else if (ccb->ccb_h.target_lun > 15) {
ccb->ccb_h.status = CAM_PATH_INVALID;
#else
} else if (ccb->ccb_h.target_lun > 65535) {
ccb->ccb_h.status = CAM_PATH_INVALID;
#endif
}
}
if (ccb->ccb_h.status == CAM_PATH_INVALID) {
printf("%s: invalid tgt/lun (%d.%d) in XPT_SCSI_IO\n",
isp->isp_name, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun);
xpt_done(ccb);
break;
}
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_INFO,
("cdb[0]=0x%x dlen%d\n",
(ccb->ccb_h.flags & CAM_CDB_POINTER)?
ccb->csio.cdb_io.cdb_ptr[0]:
ccb->csio.cdb_io.cdb_bytes[0], ccb->csio.dxfer_len));
s = splcam();
DISABLE_INTS(isp);
switch (ispscsicmd((ISP_SCSI_XFER_T *) ccb)) {
case CMD_QUEUED:
ccb->ccb_h.status |= CAM_SIM_QUEUED;
break;
case CMD_EAGAIN:
if (!(isp->isp_osinfo.simqfrozen & SIMQFRZ_RESOURCE)) {
xpt_freeze_simq(sim, 1);
isp->isp_osinfo.simqfrozen |= SIMQFRZ_RESOURCE;
}
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
xpt_done(ccb);
break;
case CMD_COMPLETE:
/*
* Just make sure that we didn't get it returned
* as completed, but with the request still in
* progress. In theory, 'cannot happen'.
*/
if ((ccb->ccb_h.status & CAM_STATUS_MASK) ==
CAM_REQ_INPROG) {
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_REQ_CMP_ERR;
}
xpt_done(ccb);
break;
}
ENABLE_INTS(isp);
splx(s);
break;
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_RESET_DEV: /* BDR the specified SCSI device */
tgt = ccb->ccb_h.target_id;
s = splcam();
error =
isp_control(isp, ISPCTL_RESET_DEV, (void *)(intptr_t) tgt);
(void) splx(s);
if (error) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
} else {
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
break;
case XPT_ABORT: /* Abort the specified CCB */
s = splcam();
error = isp_control(isp, ISPCTL_ABORT_CMD, ccb);
(void) splx(s);
if (error) {
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
} else {
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS: /* Nexus Settings */
cts = &ccb->cts;
tgt = cts->ccb_h.target_id;
s = splcam();
if (isp->isp_type & ISP_HA_FC) {
; /* nothing to change */
} else {
sdparam *sdp = isp->isp_param;
u_int16_t *dptr;
#if 0
if (cts->flags & CCB_TRANS_CURRENT_SETTINGS)
dptr = &sdp->isp_devparam[tgt].cur_dflags;
else
dptr = &sdp->isp_devparam[tgt].dev_flags;
#else
/*
* We always update (internally) from dev_flags
* so any request to change settings just gets
* vectored to that location.
*/
dptr = &sdp->isp_devparam[tgt].dev_flags;
#endif
/*
* Note that these operations affect the
* the goal flags (dev_flags)- not
* the current state flags. Then we mark
* things so that the next operation to
* this HBA will cause the update to occur.
*/
if (cts->valid & CCB_TRANS_DISC_VALID) {
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0) {
*dptr |= DPARM_DISC;
} else {
*dptr &= ~DPARM_DISC;
}
}
if (cts->valid & CCB_TRANS_TQ_VALID) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0) {
*dptr |= DPARM_TQING;
} else {
*dptr &= ~DPARM_TQING;
}
}
if (cts->valid & CCB_TRANS_BUS_WIDTH_VALID) {
switch (cts->bus_width) {
case MSG_EXT_WDTR_BUS_16_BIT:
*dptr |= DPARM_WIDE;
break;
default:
*dptr &= ~DPARM_WIDE;
}
}
/*
* Any SYNC RATE of nonzero and SYNC_OFFSET
* of nonzero will cause us to go to the
* selected (from NVRAM) maximum value for
* this device. At a later point, we'll
* allow finer control.
*/
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) &&
(cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) &&
(cts->sync_offset > 0)) {
*dptr |= DPARM_SYNC;
} else {
*dptr &= ~DPARM_SYNC;
}
IDPRINTF(3, ("%s: %d set %s period 0x%x offset 0x%x"
" flags 0x%x\n", isp->isp_name, tgt,
(cts->flags & CCB_TRANS_CURRENT_SETTINGS)?
"current" : "user",
sdp->isp_devparam[tgt].sync_period,
sdp->isp_devparam[tgt].sync_offset,
sdp->isp_devparam[tgt].dev_flags));
s = splcam();
sdp->isp_devparam[tgt].dev_update = 1;
isp->isp_update = 1;
(void) isp_control(isp, ISPCTL_UPDATE_PARAMS, NULL);
(void) splx(s);
}
(void) splx(s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_GET_TRAN_SETTINGS:
cts = &ccb->cts;
tgt = cts->ccb_h.target_id;
if (isp->isp_type & ISP_HA_FC) {
/*
* a lot of normal SCSI things don't make sense.
*/
cts->flags = CCB_TRANS_TAG_ENB | CCB_TRANS_DISC_ENB;
cts->valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
/*
* How do you measure the width of a high
* speed serial bus? Well, in bytes.
*
* Offset and period make no sense, though, so we set
* (above) a 'base' transfer speed to be gigabit.
*/
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
} else {
sdparam *sdp = isp->isp_param;
u_int16_t dval, pval, oval;
if (cts->flags & CCB_TRANS_CURRENT_SETTINGS) {
dval = sdp->isp_devparam[tgt].cur_dflags;
oval = sdp->isp_devparam[tgt].cur_offset;
pval = sdp->isp_devparam[tgt].cur_period;
} else {
dval = sdp->isp_devparam[tgt].dev_flags;
oval = sdp->isp_devparam[tgt].sync_offset;
pval = sdp->isp_devparam[tgt].sync_period;
}
s = splcam();
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
if (dval & DPARM_DISC) {
cts->flags |= CCB_TRANS_DISC_ENB;
}
if (dval & DPARM_TQING) {
cts->flags |= CCB_TRANS_TAG_ENB;
}
if (dval & DPARM_WIDE) {
cts->bus_width = MSG_EXT_WDTR_BUS_16_BIT;
} else {
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
}
cts->valid = CCB_TRANS_BUS_WIDTH_VALID |
CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
if ((dval & DPARM_SYNC) && oval != 0) {
cts->sync_period = pval;
cts->sync_offset = oval;
cts->valid |=
CCB_TRANS_SYNC_RATE_VALID |
CCB_TRANS_SYNC_OFFSET_VALID;
}
splx(s);
IDPRINTF(3, ("%s: %d get %s period 0x%x offset 0x%x"
" flags 0x%x\n", isp->isp_name, tgt,
(cts->flags & CCB_TRANS_CURRENT_SETTINGS)?
"current" : "user", pval, oval, dval));
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
case XPT_CALC_GEOMETRY:
{
struct ccb_calc_geometry *ccg;
u_int32_t secs_per_cylinder;
u_int32_t size_mb;
ccg = &ccb->ccg;
if (ccg->block_size == 0) {
printf("%s: %d.%d XPT_CALC_GEOMETRY block size 0?\n",
isp->isp_name, ccg->ccb_h.target_id,
ccg->ccb_h.target_lun);
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
size_mb = ccg->volume_size /((1024L * 1024L) / ccg->block_size);
if (size_mb > 1024) {
ccg->heads = 255;
ccg->secs_per_track = 63;
} else {
ccg->heads = 64;
ccg->secs_per_track = 32;
}
secs_per_cylinder = ccg->heads * ccg->secs_per_track;
ccg->cylinders = ccg->volume_size / secs_per_cylinder;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified bus */
s = splcam();
error = isp_control(isp, ISPCTL_RESET_BUS, NULL);
(void) splx(s);
if (error)
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
else {
if (isp->isp_path != NULL)
xpt_async(AC_BUS_RESET, isp->isp_path, NULL);
ccb->ccb_h.status = CAM_REQ_CMP;
}
xpt_done(ccb);
break;
case XPT_TERM_IO: /* Terminate the I/O process */
/* Does this need to be implemented? */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1;
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE|PI_WIDE_16;
cpi->target_sprt = 0;
cpi->hba_eng_cnt = 0;
if (IS_FC(isp)) {
cpi->hba_misc = PIM_NOBUSRESET;
cpi->max_target = MAX_FC_TARG-1;
cpi->initiator_id =
((fcparam *)isp->isp_param)->isp_loopid;
#ifdef SCCLUN
cpi->max_lun = (1 << 16) - 1;
#else
cpi->max_lun = (1 << 4) - 1;
#endif
} else {
cpi->hba_misc = 0;
cpi->initiator_id =
((sdparam *)isp->isp_param)->isp_initiator_id;
cpi->max_target = MAX_TARGETS-1;
if (isp->isp_fwrev >= ISP_FW_REV(7, 55)) {
#if 0
/*
* Too much breakage.
*/
cpi->max_lun = (1 << 5) - 1;
#else
cpi->max_lun = (1 << 3) - 1;
#endif
} else {
cpi->max_lun = (1 << 3) - 1;
}
}
cpi->bus_id = cam_sim_bus(sim);
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Qlogic", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
#define ISPDDB (CAM_DEBUG_INFO|CAM_DEBUG_TRACE|CAM_DEBUG_CDB)
void
isp_done(struct ccb_scsiio *sccb)
{
struct ispsoftc *isp = XS_ISP(sccb);
if (XS_NOERR(sccb))
XS_SETERR(sccb, CAM_REQ_CMP);
sccb->ccb_h.status &= ~CAM_STATUS_MASK;
sccb->ccb_h.status |= sccb->ccb_h.spriv_field0;
if ((sccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_CMP &&
(sccb->scsi_status != SCSI_STATUS_OK)) {
sccb->ccb_h.status &= ~CAM_STATUS_MASK;
sccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
}
if ((sccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
if ((sccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
IDPRINTF(3, ("%s: freeze devq %d.%d ccbstat 0x%x\n",
isp->isp_name, sccb->ccb_h.target_id,
sccb->ccb_h.target_lun, sccb->ccb_h.status));
xpt_freeze_devq(sccb->ccb_h.path, 1);
sccb->ccb_h.status |= CAM_DEV_QFRZN;
}
}
if (isp->isp_osinfo.simqfrozen & SIMQFRZ_RESOURCE) {
isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_RESOURCE;
sccb->ccb_h.status |= CAM_RELEASE_SIMQ;
xpt_release_simq(isp->isp_sim, 1);
}
sccb->ccb_h.status &= ~CAM_SIM_QUEUED;
if (CAM_DEBUGGED(sccb->ccb_h.path, ISPDDB) &&
(sccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
xpt_print_path(sccb->ccb_h.path);
printf("cam completion status 0x%x\n", sccb->ccb_h.status);
}
xpt_done((union ccb *) sccb);
}
int
isp_async(isp, cmd, arg)
struct ispsoftc *isp;
ispasync_t cmd;
void *arg;
{
int rv = 0;
switch (cmd) {
case ISPASYNC_NEW_TGT_PARAMS:
if (isp->isp_type & ISP_HA_SCSI) {
int flags, tgt;
sdparam *sdp = isp->isp_param;
struct ccb_trans_settings neg;
struct cam_path *tmppath;
tgt = *((int *)arg);
if (xpt_create_path(&tmppath, NULL,
cam_sim_path(isp->isp_sim), tgt,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_print_path(isp->isp_path);
printf("isp_async cannot make temp path for "
"target %d\n", tgt);
rv = -1;
break;
}
flags = sdp->isp_devparam[tgt].cur_dflags;
neg.valid = CCB_TRANS_DISC_VALID | CCB_TRANS_TQ_VALID;
if (flags & DPARM_DISC) {
neg.flags |= CCB_TRANS_DISC_ENB;
}
if (flags & DPARM_TQING) {
neg.flags |= CCB_TRANS_TAG_ENB;
}
neg.valid |= CCB_TRANS_BUS_WIDTH_VALID;
neg.bus_width = (flags & DPARM_WIDE)?
MSG_EXT_WDTR_BUS_8_BIT : MSG_EXT_WDTR_BUS_16_BIT;
neg.sync_period = sdp->isp_devparam[tgt].cur_period;
neg.sync_offset = sdp->isp_devparam[tgt].cur_offset;
if (flags & DPARM_SYNC) {
neg.valid |=
CCB_TRANS_SYNC_RATE_VALID |
CCB_TRANS_SYNC_OFFSET_VALID;
}
IDPRINTF(3, ("%s: New params tgt %d period 0x%x "
"offset 0x%x flags 0x%x\n", isp->isp_name, tgt,
neg.sync_period, neg.sync_offset, flags));
xpt_setup_ccb(&neg.ccb_h, tmppath, 1);
xpt_async(AC_TRANSFER_NEG, tmppath, &neg);
xpt_free_path(tmppath);
}
break;
case ISPASYNC_BUS_RESET:
printf("%s: SCSI bus reset detected\n", isp->isp_name);
if (isp->isp_path) {
xpt_async(AC_BUS_RESET, isp->isp_path, NULL);
}
break;
case ISPASYNC_LOOP_DOWN:
if (isp->isp_path) {
/*
* We can get multiple LOOP downs, so only count one.
*/
if (!(isp->isp_osinfo.simqfrozen & SIMQFRZ_LOOPDOWN)) {
xpt_freeze_simq(isp->isp_sim, 1);
isp->isp_osinfo.simqfrozen |= SIMQFRZ_LOOPDOWN;
printf("%s: Loop DOWN- freezing SIMQ until Loop"
" comes up\n", isp->isp_name);
}
} else {
printf("%s: Loop DOWN\n", isp->isp_name);
}
break;
case ISPASYNC_LOOP_UP:
if (isp->isp_path) {
if (isp->isp_osinfo.simqfrozen & SIMQFRZ_LOOPDOWN) {
xpt_release_simq(isp->isp_sim, 1);
isp->isp_osinfo.simqfrozen &= ~SIMQFRZ_LOOPDOWN;
if (isp->isp_osinfo.simqfrozen) {
printf("%s: Loop UP- SIMQ still "
"frozen\n", isp->isp_name);
} else {
printf("%s: Loop UP-releasing frozen "
"SIMQ\n", isp->isp_name);
}
}
} else {
printf("%s: Loop UP\n", isp->isp_name);
}
break;
case ISPASYNC_PDB_CHANGE_COMPLETE:
if (IS_FC(isp)) {
long i = (long) arg;
static char *roles[4] = {
"No", "Target", "Initiator", "Target/Initiator"
};
isp_pdb_t *pdbp = &((fcparam *)isp->isp_param)->isp_pdb[i];
if (pdbp->pdb_options == INVALID_PDB_OPTIONS) {
break;
}
printf("%s: Loop ID %d, %s role\n", isp->isp_name,
pdbp->pdb_loopid, roles[(pdbp->pdb_prli_svc3 >> 4) & 0x3]);
printf(" Node Address 0x%x WWN 0x"
"%02x%02x%02x%02x%02x%02x%02x%02x\n",
BITS2WORD(pdbp->pdb_portid_bits),
pdbp->pdb_portname[0], pdbp->pdb_portname[1],
pdbp->pdb_portname[2], pdbp->pdb_portname[3],
pdbp->pdb_portname[4], pdbp->pdb_portname[5],
pdbp->pdb_portname[6], pdbp->pdb_portname[7]);
if (pdbp->pdb_options & PDB_OPTIONS_ADISC)
printf(" Hard Address 0x%x WWN 0x"
"%02x%02x%02x%02x%02x%02x%02x%02x\n",
BITS2WORD(pdbp->pdb_hardaddr_bits),
pdbp->pdb_nodename[0], pdbp->pdb_nodename[1],
pdbp->pdb_nodename[2], pdbp->pdb_nodename[3],
pdbp->pdb_nodename[4], pdbp->pdb_nodename[5],
pdbp->pdb_nodename[6], pdbp->pdb_nodename[7]);
switch (pdbp->pdb_prli_svc3 & SVC3_ROLE_MASK) {
case SVC3_TGT_ROLE|SVC3_INI_ROLE:
printf(" Master State=%s, Slave State=%s\n",
isp2100_pdb_statename(pdbp->pdb_mstate),
isp2100_pdb_statename(pdbp->pdb_sstate));
break;
case SVC3_TGT_ROLE:
printf(" Master State=%s\n",
isp2100_pdb_statename(pdbp->pdb_mstate));
break;
case SVC3_INI_ROLE:
printf(" Slave State=%s\n",
isp2100_pdb_statename(pdbp->pdb_sstate));
break;
default:
break;
}
break;
}
case ISPASYNC_CHANGE_NOTIFY:
printf("%s: Name Server Database Changed\n", isp->isp_name);
break;
default:
break;
}
return (rv);
}
#else
static void ispminphys __P((struct buf *));
static u_int32_t isp_adapter_info __P((int));
static int ispcmd __P((ISP_SCSI_XFER_T *));
static void isp_watch __P((void *arg));
static struct scsi_adapter isp_switch = {
ispcmd, ispminphys, 0, 0, isp_adapter_info, "isp", { 0, 0 }
};
static struct scsi_device isp_dev = {
NULL, NULL, NULL, NULL, "isp", 0, { 0, 0 }
};
static int isp_poll __P((struct ispsoftc *, ISP_SCSI_XFER_T *, int));
/*
* Complete attachment of hardware, include subdevices.
*/
void
isp_attach(struct ispsoftc *isp)
{
struct scsibus_data *scbus;
scbus = scsi_alloc_bus();
if(!scbus) {
return;
}
if (isp->isp_state == ISP_INITSTATE)
isp->isp_state = ISP_RUNSTATE;
START_WATCHDOG(isp);
isp->isp_osinfo._link.adapter_unit = isp->isp_osinfo.unit;
isp->isp_osinfo._link.adapter_softc = isp;
isp->isp_osinfo._link.adapter = &isp_switch;
isp->isp_osinfo._link.device = &isp_dev;
isp->isp_osinfo._link.flags = 0;
if (isp->isp_type & ISP_HA_FC) {
isp->isp_osinfo._link.adapter_targ =
((fcparam *)isp->isp_param)->isp_loopid;
scbus->maxtarg = MAX_FC_TARG-1;
} else {
isp->isp_osinfo._link.adapter_targ =
((sdparam *)isp->isp_param)->isp_initiator_id;
scbus->maxtarg = MAX_TARGETS-1;
}
(void) isp_control(isp, ISPCTL_RESET_BUS, NULL);
/*
* Prepare the scsibus_data area for the upperlevel scsi code.
*/
scbus->adapter_link = &isp->isp_osinfo._link;
/*
* ask the adapter what subunits are present
*/
scsi_attachdevs(scbus);
}
/*
* minphys our xfers
*
* Unfortunately, the buffer pointer describes the target device- not the
* adapter device, so we can't use the pointer to find out what kind of
* adapter we are and adjust accordingly.
*/
static void
ispminphys(struct buf *bp)
{
/*
* Only the 10X0 has a 24 bit limit.
*/
if (bp->b_bcount >= (1 << 24)) {
bp->b_bcount = (1 << 24);
}
}
static u_int32_t
isp_adapter_info(int unit)
{
/*
* XXX: FIND ISP BASED UPON UNIT AND GET REAL QUEUE LIMIT FROM THAT
*/
return (2);
}
static int
ispcmd(ISP_SCSI_XFER_T *xs)
{
struct ispsoftc *isp;
int r, s;
isp = XS_ISP(xs);
s = splbio();
DISABLE_INTS(isp);
if (isp->isp_state != ISP_RUNSTATE) {
isp_init(isp);
if (isp->isp_state != ISP_INITSTATE) {
ENABLE_INTS(isp);
(void) splx(s);
XS_SETERR(xs, HBA_BOTCH);
return (CMD_COMPLETE);
}
isp_state = ISP_RUNSTATE;
}
r = ispscsicmd(xs);
ENABLE_INTS(isp);
if (r != CMD_QUEUED || (xs->flags & SCSI_NOMASK) == 0) {
(void) splx(s);
return (r);
}
/*
* If we can't use interrupts, poll on completion.
*/
if (isp_poll(isp, xs, XS_TIME(xs))) {
/*
* If no other error occurred but we didn't finish,
* something bad happened.
*/
if (XS_IS_CMD_DONE(xs) == 0) {
isp->isp_nactive--;
if (isp->isp_nactive < 0)
isp->isp_nactive = 0;
if (XS_NOERR(xs)) {
isp_lostcmd(isp, xs);
XS_SETERR(xs, HBA_BOTCH);
}
}
}
(void) splx(s);
return (CMD_COMPLETE);
}
static int
isp_poll(struct ispsoftc *isp, ISP_SCSI_XFER_T *xs, int mswait)
{
while (mswait) {
/* Try the interrupt handling routine */
(void)isp_intr((void *)isp);
/* See if the xs is now done */
if (XS_IS_CMD_DONE(xs))
return (0);
SYS_DELAY(1000); /* wait one millisecond */
mswait--;
}
return (1);
}
static void
isp_watch(void *arg)
{
int i;
struct ispsoftc *isp = arg;
ISP_SCSI_XFER_T *xs;
ISP_ILOCKVAL_DECL;
/*
* Look for completely dead commands (but not polled ones).
*/
ISP_ILOCK(isp);
for (i = 0; i < RQUEST_QUEUE_LEN; i++) {
if ((xs = (ISP_SCSI_XFER_T *) isp->isp_xflist[i]) == NULL) {
continue;
}
if (XS_TIME(xs) == 0) {
continue;
}
XS_TIME(xs) -= (WATCH_INTERVAL * 1000);
/*
* Avoid later thinking that this
* transaction is not being timed.
* Then give ourselves to watchdog
* periods of grace.
*/
if (XS_TIME(xs) == 0)
XS_TIME(xs) = 1;
else if (XS_TIME(xs) > -(2 * WATCH_INTERVAL * 1000)) {
continue;
}
if (isp_control(isp, ISPCTL_ABORT_CMD, xs)) {
printf("%s: isp_watch failed to abort command\n",
isp->isp_name);
isp_restart(isp);
break;
}
}
RESTART_WATCHDOG(isp_watch, arg);
ISP_IUNLOCK(isp);
}
int
isp_async(isp, cmd, arg)
struct ispsoftc *isp;
ispasync_t cmd;
void *arg;
{
switch (cmd) {
case ISPASYNC_NEW_TGT_PARAMS:
if (isp->isp_type & ISP_HA_SCSI) {
sdparam *sdp = isp->isp_param;
char *wt;
int mhz, flags, tgt, period;
tgt = *((int *) arg);
flags = sdp->isp_devparam[tgt].cur_dflags;
period = sdp->isp_devparam[tgt].cur_period;
if ((flags & DPARM_SYNC) && period &&
(sdp->isp_devparam[tgt].cur_offset) != 0) {
if (sdp->isp_lvdmode) {
switch (period) {
case 0xa:
mhz = 40;
break;
case 0xb:
mhz = 33;
break;
case 0xc:
mhz = 25;
break;
default:
mhz = 1000 / (period * 4);
break;
}
} else {
mhz = 1000 / (period * 4);
}
} else {
mhz = 0;
}
switch (flags & (DPARM_WIDE|DPARM_TQING)) {
case DPARM_WIDE:
wt = ", 16 bit wide\n";
break;
case DPARM_TQING:
wt = ", Tagged Queueing Enabled\n";
break;
case DPARM_WIDE|DPARM_TQING:
wt = ", 16 bit wide, Tagged Queueing Enabled\n";
break;
default:
wt = "\n";
break;
}
if (mhz) {
printf("%s: Target %d at %dMHz Max Offset %d%s",
isp->isp_name, tgt, mhz,
sdp->isp_devparam[tgt].cur_offset, wt);
} else {
printf("%s: Target %d Async Mode%s",
isp->isp_name, tgt, wt);
}
}
break;
case ISPASYNC_BUS_RESET:
printf("%s: SCSI bus reset detected\n", isp->isp_name);
break;
case ISPASYNC_LOOP_DOWN:
printf("%s: Loop DOWN\n", isp->isp_name);
break;
case ISPASYNC_LOOP_UP:
printf("%s: Loop UP\n", isp->isp_name);
break;
case ISPASYNC_PDB_CHANGE_COMPLETE:
if (isp->isp_type & ISP_HA_FC) {
int i;
static char *roles[4] = {
"No", "Target", "Initiator", "Target/Initiator"
};
for (i = 0 i < MAX_FC_TARG; i++) {
isp_pdb_t *pdbp =
&((fcparam *)isp->isp_param)->isp_pdb[i];
if (pdbp->pdb_options == INVALID_PDB_OPTIONS)
continue;
printf("%s: Loop ID %d, %s role\n",
isp->isp_name, pdbp->pdb_loopid,
roles[(pdbp->pdb_prli_svc3 >> 4) & 0x3]);
printf(" Node Address 0x%x WWN 0x"
"%02x%02x%02x%02x%02x%02x%02x%02x\n",
BITS2WORD(pdbp->pdb_portid_bits),
pdbp->pdb_portname[0], pdbp->pdb_portname[1],
pdbp->pdb_portname[2], pdbp->pdb_portname[3],
pdbp->pdb_portname[4], pdbp->pdb_portname[5],
pdbp->pdb_portname[6], pdbp->pdb_portname[7]);
if (pdbp->pdb_options & PDB_OPTIONS_ADISC)
printf(" Hard Address 0x%x WWN 0x"
"%02x%02x%02x%02x%02x%02x%02x%02x\n",
BITS2WORD(pdbp->pdb_hardaddr_bits),
pdbp->pdb_nodename[0],
pdbp->pdb_nodename[1],
pdbp->pdb_nodename[2],
pdbp->pdb_nodename[3],
pdbp->pdb_nodename[4],
pdbp->pdb_nodename[5],
pdbp->pdb_nodename[6],
pdbp->pdb_nodename[7]);
switch (pdbp->pdb_prli_svc3 & SVC3_ROLE_MASK) {
case SVC3_TGT_ROLE|SVC3_INI_ROLE:
printf(" Master State=%s, Slave State=%s\n",
isp2100_pdb_statename(pdbp->pdb_mstate),
isp2100_pdb_statename(pdbp->pdb_sstate));
break;
case SVC3_TGT_ROLE:
printf(" Master State=%s\n",
isp2100_pdb_statename(pdbp->pdb_mstate));
break;
case SVC3_INI_ROLE:
printf(" Slave State=%s\n",
isp2100_pdb_statename(pdbp->pdb_sstate));
break;
default:
break;
}
}
break;
}
case ISPASYNC_CHANGE_NOTIFY:
printf("%s: Name Server Database Changed\n", isp->isp_name);
break;
default:
break;
}
return (0);
}
#endif
/*
* Free any associated resources prior to decommissioning and
* set the card to a known state (so it doesn't wake up and kick
* us when we aren't expecting it to).
*
* Locks are held before coming here.
*/
void
isp_uninit(struct ispsoftc *isp)
{
ISP_ILOCKVAL_DECL;
ISP_ILOCK(isp);
/*
* Leave with interrupts disabled.
*/
DISABLE_INTS(isp);
/*
* Turn off the watchdog (if active).
*/
STOP_WATCHDOG(isp_watch, isp);
/*
* And out...
*/
ISP_IUNLOCK(isp);
}