freebsd-skq/sys/netinet/udp_usrreq.c
tanimura 92d8381dd5 Lock down a socket, milestone 1.
o Add a mutex (sb_mtx) to struct sockbuf. This protects the data in a
  socket buffer. The mutex in the receive buffer also protects the data
  in struct socket.

o Determine the lock strategy for each members in struct socket.

o Lock down the following members:

  - so_count
  - so_options
  - so_linger
  - so_state

o Remove *_locked() socket APIs.  Make the following socket APIs
  touching the members above now require a locked socket:

 - sodisconnect()
 - soisconnected()
 - soisconnecting()
 - soisdisconnected()
 - soisdisconnecting()
 - sofree()
 - soref()
 - sorele()
 - sorwakeup()
 - sotryfree()
 - sowakeup()
 - sowwakeup()

Reviewed by:	alfred
2002-05-20 05:41:09 +00:00

967 lines
24 KiB
C

/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
* $FreeBSD$
*/
#include "opt_ipsec.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/domain.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <netinet/ip_var.h>
#ifdef INET6
#include <netinet6/ip6_var.h>
#endif
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef IPSEC
#include <netinet6/ipsec.h>
#endif /*IPSEC*/
#include <machine/in_cksum.h>
/*
* UDP protocol implementation.
* Per RFC 768, August, 1980.
*/
#ifndef COMPAT_42
static int udpcksum = 1;
#else
static int udpcksum = 0; /* XXX */
#endif
SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_RW,
&udpcksum, 0, "");
int log_in_vain = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_RW,
&log_in_vain, 0, "Log all incoming UDP packets");
static int blackhole = 0;
SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_RW,
&blackhole, 0, "Do not send port unreachables for refused connects");
struct inpcbhead udb; /* from udp_var.h */
#define udb6 udb /* for KAME src sync over BSD*'s */
struct inpcbinfo udbinfo;
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 16
#endif
struct udpstat udpstat; /* from udp_var.h */
SYSCTL_STRUCT(_net_inet_udp, UDPCTL_STATS, stats, CTLFLAG_RW,
&udpstat, udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)");
static struct sockaddr_in udp_in = { sizeof(udp_in), AF_INET };
#ifdef INET6
struct udp_in6 {
struct sockaddr_in6 uin6_sin;
u_char uin6_init_done : 1;
} udp_in6 = {
{ sizeof(udp_in6.uin6_sin), AF_INET6 },
0
};
struct udp_ip6 {
struct ip6_hdr uip6_ip6;
u_char uip6_init_done : 1;
} udp_ip6;
#endif /* INET6 */
static void udp_append(struct inpcb *last, struct ip *ip, struct mbuf *n,
int off);
#ifdef INET6
static void ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip);
#endif
static int udp_detach(struct socket *so);
static int udp_output(struct inpcb *, struct mbuf *, struct sockaddr *,
struct mbuf *, struct thread *);
void
udp_init()
{
LIST_INIT(&udb);
udbinfo.listhead = &udb;
udbinfo.hashbase = hashinit(UDBHASHSIZE, M_PCB, &udbinfo.hashmask);
udbinfo.porthashbase = hashinit(UDBHASHSIZE, M_PCB,
&udbinfo.porthashmask);
udbinfo.ipi_zone = uma_zcreate("udpcb", sizeof(struct inpcb), NULL,
NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
uma_zone_set_max(udbinfo.ipi_zone, maxsockets);
}
void
udp_input(m, off)
register struct mbuf *m;
int off;
{
int iphlen = off;
register struct ip *ip;
register struct udphdr *uh;
register struct inpcb *inp;
struct mbuf *opts = 0;
int len;
struct ip save_ip;
struct sockaddr *append_sa;
udpstat.udps_ipackets++;
/*
* Strip IP options, if any; should skip this,
* make available to user, and use on returned packets,
* but we don't yet have a way to check the checksum
* with options still present.
*/
if (iphlen > sizeof (struct ip)) {
ip_stripoptions(m, (struct mbuf *)0);
iphlen = sizeof(struct ip);
}
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
if (m->m_len < iphlen + sizeof(struct udphdr)) {
if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == 0) {
udpstat.udps_hdrops++;
return;
}
ip = mtod(m, struct ip *);
}
uh = (struct udphdr *)((caddr_t)ip + iphlen);
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0)
goto bad;
/*
* Make mbuf data length reflect UDP length.
* If not enough data to reflect UDP length, drop.
*/
len = ntohs((u_short)uh->uh_ulen);
if (ip->ip_len != len) {
if (len > ip->ip_len || len < sizeof(struct udphdr)) {
udpstat.udps_badlen++;
goto bad;
}
m_adj(m, len - ip->ip_len);
/* ip->ip_len = len; */
}
/*
* Save a copy of the IP header in case we want restore it
* for sending an ICMP error message in response.
*/
if (!blackhole)
save_ip = *ip;
/*
* Checksum extended UDP header and data.
*/
if (uh->uh_sum) {
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
uh->uh_sum = m->m_pkthdr.csum_data;
else
uh->uh_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr, htonl((u_short)len +
m->m_pkthdr.csum_data + IPPROTO_UDP));
uh->uh_sum ^= 0xffff;
} else {
char b[9];
bcopy(((struct ipovly *)ip)->ih_x1, b, 9);
bzero(((struct ipovly *)ip)->ih_x1, 9);
((struct ipovly *)ip)->ih_len = uh->uh_ulen;
uh->uh_sum = in_cksum(m, len + sizeof (struct ip));
bcopy(b, ((struct ipovly *)ip)->ih_x1, 9);
}
if (uh->uh_sum) {
udpstat.udps_badsum++;
m_freem(m);
return;
}
} else
udpstat.udps_nosum++;
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
struct inpcb *last;
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* Construct sockaddr format source address.
*/
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
/*
* Locate pcb(s) for datagram.
* (Algorithm copied from raw_intr().)
*/
last = NULL;
#ifdef INET6
udp_in6.uin6_init_done = udp_ip6.uip6_init_done = 0;
#endif
LIST_FOREACH(inp, &udb, inp_list) {
#ifdef INET6
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_lport != uh->uh_dport)
continue;
if (inp->inp_laddr.s_addr != INADDR_ANY) {
if (inp->inp_laddr.s_addr !=
ip->ip_dst.s_addr)
continue;
}
if (inp->inp_faddr.s_addr != INADDR_ANY) {
if (inp->inp_faddr.s_addr !=
ip->ip_src.s_addr ||
inp->inp_fport != uh->uh_sport)
continue;
}
if (last != NULL) {
struct mbuf *n;
#ifdef IPSEC
/* check AH/ESP integrity. */
if (ipsec4_in_reject_so(m, last->inp_socket))
ipsecstat.in_polvio++;
/* do not inject data to pcb */
else
#endif /*IPSEC*/
if ((n = m_copy(m, 0, M_COPYALL)) != NULL)
udp_append(last, ip, n,
iphlen +
sizeof(struct udphdr));
}
last = inp;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It * assumes that an application will never
* clear these options after setting them.
*/
SOCK_LOCK(last->inp_socket);
if ((last->inp_socket->so_options&(SO_REUSEPORT|SO_REUSEADDR)) == 0) {
SOCK_UNLOCK(last->inp_socket);
break;
} else
SOCK_UNLOCK(last->inp_socket);
}
if (last == NULL) {
/*
* No matching pcb found; discard datagram.
* (No need to send an ICMP Port Unreachable
* for a broadcast or multicast datgram.)
*/
udpstat.udps_noportbcast++;
goto bad;
}
#ifdef IPSEC
/* check AH/ESP integrity. */
if (ipsec4_in_reject_so(m, last->inp_socket)) {
ipsecstat.in_polvio++;
goto bad;
}
#endif /*IPSEC*/
udp_append(last, ip, m, iphlen + sizeof(struct udphdr));
return;
}
/*
* Locate pcb for datagram.
*/
inp = in_pcblookup_hash(&udbinfo, ip->ip_src, uh->uh_sport,
ip->ip_dst, uh->uh_dport, 1, m->m_pkthdr.rcvif);
if (inp == NULL) {
if (log_in_vain) {
char buf[4*sizeof "123"];
strcpy(buf, inet_ntoa(ip->ip_dst));
log(LOG_INFO,
"Connection attempt to UDP %s:%d from %s:%d\n",
buf, ntohs(uh->uh_dport), inet_ntoa(ip->ip_src),
ntohs(uh->uh_sport));
}
udpstat.udps_noport++;
if (m->m_flags & (M_BCAST | M_MCAST)) {
udpstat.udps_noportbcast++;
goto bad;
}
if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0)
goto bad;
if (blackhole)
goto bad;
*ip = save_ip;
ip->ip_len += iphlen;
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
return;
}
#ifdef IPSEC
if (ipsec4_in_reject_so(m, inp->inp_socket)) {
ipsecstat.in_polvio++;
goto bad;
}
#endif /*IPSEC*/
/*
* Construct sockaddr format source address.
* Stuff source address and datagram in user buffer.
*/
udp_in.sin_port = uh->uh_sport;
udp_in.sin_addr = ip->ip_src;
SOCK_LOCK(inp->inp_socket);
if (inp->inp_flags & INP_CONTROLOPTS
|| inp->inp_socket->so_options & SO_TIMESTAMP) {
SOCK_UNLOCK(inp->inp_socket);
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
int savedflags;
ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip);
savedflags = inp->inp_flags;
inp->inp_flags &= ~INP_UNMAPPABLEOPTS;
ip6_savecontrol(inp, &opts, &udp_ip6.uip6_ip6, m);
inp->inp_flags = savedflags;
} else
#endif
ip_savecontrol(inp, &opts, ip, m);
} else
SOCK_UNLOCK(inp->inp_socket);
m_adj(m, iphlen + sizeof(struct udphdr));
#ifdef INET6
if (inp->inp_vflag & INP_IPV6) {
in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin);
append_sa = (struct sockaddr *)&udp_in6;
} else
#endif
append_sa = (struct sockaddr *)&udp_in;
if (sbappendaddr(&inp->inp_socket->so_rcv, append_sa, m, opts) == 0) {
udpstat.udps_fullsock++;
goto bad;
}
SOCK_LOCK(inp->inp_socket);
sorwakeup(inp->inp_socket);
SOCK_UNLOCK(inp->inp_socket);
return;
bad:
m_freem(m);
if (opts)
m_freem(opts);
return;
}
#ifdef INET6
static void
ip_2_ip6_hdr(ip6, ip)
struct ip6_hdr *ip6;
struct ip *ip;
{
bzero(ip6, sizeof(*ip6));
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_plen = ip->ip_len;
ip6->ip6_nxt = ip->ip_p;
ip6->ip6_hlim = ip->ip_ttl;
ip6->ip6_src.s6_addr32[2] = ip6->ip6_dst.s6_addr32[2] =
IPV6_ADDR_INT32_SMP;
ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr;
ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr;
}
#endif
/*
* subroutine of udp_input(), mainly for source code readability.
* caller must properly init udp_ip6 and udp_in6 beforehand.
*/
static void
udp_append(last, ip, n, off)
struct inpcb *last;
struct ip *ip;
struct mbuf *n;
int off;
{
struct sockaddr *append_sa;
struct mbuf *opts = 0;
SOCK_LOCK(last->inp_socket);
if (last->inp_flags & INP_CONTROLOPTS ||
last->inp_socket->so_options & SO_TIMESTAMP) {
SOCK_UNLOCK(last->inp_socket);
#ifdef INET6
if (last->inp_vflag & INP_IPV6) {
int savedflags;
if (udp_ip6.uip6_init_done == 0) {
ip_2_ip6_hdr(&udp_ip6.uip6_ip6, ip);
udp_ip6.uip6_init_done = 1;
}
savedflags = last->inp_flags;
last->inp_flags &= ~INP_UNMAPPABLEOPTS;
ip6_savecontrol(last, &opts, &udp_ip6.uip6_ip6, n);
last->inp_flags = savedflags;
} else
#endif
ip_savecontrol(last, &opts, ip, n);
} else
SOCK_UNLOCK(last->inp_socket);
#ifdef INET6
if (last->inp_vflag & INP_IPV6) {
if (udp_in6.uin6_init_done == 0) {
in6_sin_2_v4mapsin6(&udp_in, &udp_in6.uin6_sin);
udp_in6.uin6_init_done = 1;
}
append_sa = (struct sockaddr *)&udp_in6.uin6_sin;
} else
#endif
append_sa = (struct sockaddr *)&udp_in;
m_adj(n, off);
if (sbappendaddr(&last->inp_socket->so_rcv, append_sa, n, opts) == 0) {
m_freem(n);
if (opts)
m_freem(opts);
udpstat.udps_fullsock++;
} else {
SOCK_LOCK(last->inp_socket);
sorwakeup(last->inp_socket);
SOCK_UNLOCK(last->inp_socket);
}
}
/*
* Notify a udp user of an asynchronous error;
* just wake up so that he can collect error status.
*/
void
udp_notify(inp, errno)
register struct inpcb *inp;
int errno;
{
inp->inp_socket->so_error = errno;
SOCK_LOCK(inp->inp_socket);
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
SOCK_UNLOCK(inp->inp_socket);
}
void
udp_ctlinput(cmd, sa, vip)
int cmd;
struct sockaddr *sa;
void *vip;
{
struct ip *ip = vip;
struct udphdr *uh;
void (*notify)(struct inpcb *, int) = udp_notify;
struct in_addr faddr;
struct inpcb *inp;
int s;
faddr = ((struct sockaddr_in *)sa)->sin_addr;
if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
return;
if (PRC_IS_REDIRECT(cmd)) {
ip = 0;
notify = in_rtchange;
} else if (cmd == PRC_HOSTDEAD)
ip = 0;
else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
return;
if (ip) {
s = splnet();
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
inp = in_pcblookup_hash(&udbinfo, faddr, uh->uh_dport,
ip->ip_src, uh->uh_sport, 0, NULL);
if (inp != NULL && inp->inp_socket != NULL)
(*notify)(inp, inetctlerrmap[cmd]);
splx(s);
} else
in_pcbnotifyall(&udb, faddr, inetctlerrmap[cmd], notify);
}
static int
udp_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, n, s;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = udbinfo.ipi_count;
req->oldidx = 2 * (sizeof xig)
+ (n + n/8) * sizeof(struct xinpcb);
return 0;
}
if (req->newptr != 0)
return EPERM;
/*
* OK, now we're committed to doing something.
*/
s = splnet();
gencnt = udbinfo.ipi_gencnt;
n = udbinfo.ipi_count;
splx(s);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return error;
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == 0)
return ENOMEM;
s = splnet();
for (inp = LIST_FIRST(udbinfo.listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
if (inp->inp_gencnt <= gencnt) {
if (cr_canseesocket(req->td->td_ucred,
inp->inp_socket))
continue;
inp_list[i++] = inp;
}
}
splx(s);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
if (inp->inp_gencnt <= gencnt) {
struct xinpcb xi;
xi.xi_len = sizeof xi;
/* XXX should avoid extra copy */
bcopy(inp, &xi.xi_inp, sizeof *inp);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi.xi_socket);
error = SYSCTL_OUT(req, &xi, sizeof xi);
}
}
if (!error) {
/*
* Give the user an updated idea of our state.
* If the generation differs from what we told
* her before, she knows that something happened
* while we were processing this request, and it
* might be necessary to retry.
*/
s = splnet();
xig.xig_gen = udbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = udbinfo.ipi_count;
splx(s);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return error;
}
SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
udp_pcblist, "S,xinpcb", "List of active UDP sockets");
static int
udp_getcred(SYSCTL_HANDLER_ARGS)
{
struct xucred xuc;
struct sockaddr_in addrs[2];
struct inpcb *inp;
int error, s;
error = suser_cred(req->td->td_ucred, PRISON_ROOT);
if (error)
return (error);
error = SYSCTL_IN(req, addrs, sizeof(addrs));
if (error)
return (error);
s = splnet();
inp = in_pcblookup_hash(&udbinfo, addrs[1].sin_addr, addrs[1].sin_port,
addrs[0].sin_addr, addrs[0].sin_port, 1, NULL);
if (inp == NULL || inp->inp_socket == NULL) {
error = ENOENT;
goto out;
}
error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
if (error)
goto out;
cru2x(inp->inp_socket->so_cred, &xuc);
error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
out:
splx(s);
return (error);
}
SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred,
CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
udp_getcred, "S,xucred", "Get the xucred of a UDP connection");
static int
udp_output(inp, m, addr, control, td)
register struct inpcb *inp;
struct mbuf *m;
struct sockaddr *addr;
struct mbuf *control;
struct thread *td;
{
register struct udpiphdr *ui;
register int len = m->m_pkthdr.len;
struct in_addr laddr;
struct sockaddr_in *sin;
int s = 0, error = 0, soopts;
if (control)
m_freem(control); /* XXX */
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
error = EMSGSIZE;
goto release;
}
if (addr) {
sin = (struct sockaddr_in *)addr;
if (td && jailed(td->td_ucred))
prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr);
laddr = inp->inp_laddr;
if (inp->inp_faddr.s_addr != INADDR_ANY) {
error = EISCONN;
goto release;
}
/*
* Must block input while temporarily connected.
*/
s = splnet();
error = in_pcbconnect(inp, addr, td);
if (error) {
splx(s);
goto release;
}
} else {
if (inp->inp_faddr.s_addr == INADDR_ANY) {
error = ENOTCONN;
goto release;
}
}
/*
* Calculate data length and get a mbuf
* for UDP and IP headers.
*/
M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT);
if (m == 0) {
error = ENOBUFS;
if (addr)
splx(s);
goto release;
}
/*
* Fill in mbuf with extended UDP header
* and addresses and length put into network format.
*/
ui = mtod(m, struct udpiphdr *);
bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */
ui->ui_pr = IPPROTO_UDP;
ui->ui_src = inp->inp_laddr;
ui->ui_dst = inp->inp_faddr;
ui->ui_sport = inp->inp_lport;
ui->ui_dport = inp->inp_fport;
ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr));
/*
* Set up checksum and output datagram.
*/
if (udpcksum) {
ui->ui_sum = in_pseudo(ui->ui_src.s_addr, ui->ui_dst.s_addr,
htons((u_short)len + sizeof(struct udphdr) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = CSUM_UDP;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
} else {
ui->ui_sum = 0;
}
((struct ip *)ui)->ip_len = sizeof (struct udpiphdr) + len;
((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */
((struct ip *)ui)->ip_tos = inp->inp_ip_tos; /* XXX */
udpstat.udps_opackets++;
#ifdef IPSEC
if (ipsec_setsocket(m, inp->inp_socket) != 0) {
error = ENOBUFS;
goto release;
}
#endif /*IPSEC*/
SOCK_LOCK(inp->inp_socket);
soopts = inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST);
SOCK_UNLOCK(inp->inp_socket);
error = ip_output(m, inp->inp_options, &inp->inp_route,
soopts,
inp->inp_moptions);
if (addr) {
in_pcbdisconnect(inp);
inp->inp_laddr = laddr; /* XXX rehash? */
splx(s);
}
return (error);
release:
m_freem(m);
return (error);
}
u_long udp_sendspace = 9216; /* really max datagram size */
/* 40 1K datagrams */
SYSCTL_INT(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW,
&udp_sendspace, 0, "Maximum outgoing UDP datagram size");
u_long udp_recvspace = 40 * (1024 +
#ifdef INET6
sizeof(struct sockaddr_in6)
#else
sizeof(struct sockaddr_in)
#endif
);
SYSCTL_INT(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW,
&udp_recvspace, 0, "Maximum incoming UDP datagram size");
static int
udp_abort(struct socket *so)
{
struct inpcb *inp;
int s;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL; /* ??? possible? panic instead? */
SOCK_LOCK(so);
soisdisconnected(so);
SOCK_UNLOCK(so);
s = splnet();
in_pcbdetach(inp);
splx(s);
return 0;
}
static int
udp_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
int s, error;
inp = sotoinpcb(so);
if (inp != 0)
return EINVAL;
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error)
return error;
s = splnet();
error = in_pcballoc(so, &udbinfo, td);
splx(s);
if (error)
return error;
inp = (struct inpcb *)so->so_pcb;
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_ttl = ip_defttl;
return 0;
}
static int
udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
int s, error;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
s = splnet();
error = in_pcbbind(inp, nam, td);
splx(s);
return error;
}
static int
udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct inpcb *inp;
int s, error;
struct sockaddr_in *sin;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
if (inp->inp_faddr.s_addr != INADDR_ANY)
return EISCONN;
s = splnet();
sin = (struct sockaddr_in *)nam;
if (td && jailed(td->td_ucred))
prison_remote_ip(td->td_ucred, 0, &sin->sin_addr.s_addr);
error = in_pcbconnect(inp, nam, td);
splx(s);
if (error == 0) {
SOCK_LOCK(so);
soisconnected(so);
SOCK_UNLOCK(so);
}
return error;
}
static int
udp_detach(struct socket *so)
{
struct inpcb *inp;
int s;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
s = splnet();
in_pcbdetach(inp);
splx(s);
return 0;
}
static int
udp_disconnect(struct socket *so)
{
struct inpcb *inp;
int s;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
if (inp->inp_faddr.s_addr == INADDR_ANY)
return ENOTCONN;
s = splnet();
in_pcbdisconnect(inp);
inp->inp_laddr.s_addr = INADDR_ANY;
splx(s);
SOCK_LOCK(so);
so->so_state &= ~SS_ISCONNECTED; /* XXX */
SOCK_UNLOCK(so);
return 0;
}
static int
udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == 0) {
m_freem(m);
return EINVAL;
}
return udp_output(inp, m, addr, control, td);
}
int
udp_shutdown(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
if (inp == 0)
return EINVAL;
socantsendmore(so);
return 0;
}
struct pr_usrreqs udp_usrreqs = {
udp_abort, pru_accept_notsupp, udp_attach, udp_bind, udp_connect,
pru_connect2_notsupp, in_control, udp_detach, udp_disconnect,
pru_listen_notsupp, in_setpeeraddr, pru_rcvd_notsupp,
pru_rcvoob_notsupp, udp_send, pru_sense_null, udp_shutdown,
in_setsockaddr, sosend, soreceive, sopoll
};