tsoome 05a5c963f2 Add SHA512, skein, large blocks support for loader zfs.
Updated sha512 from illumos.
Using skein from freebsd crypto tree.
Since loader itself is using 64MB memory for heap, updated zfsboot to
use same, and this also allows to support zfs large blocks.

Note, adding additional features does increate zfsboot code, therefore
this update does increase zfsboot code to 128k, also I have ported gptldr.S
update to zfsldr.S to support 64k+ code.

With this update, boot1.efi has almost reached the current limit of the size
set for it, so one of the future patches for boot1.efi will need to
increase the limit.

Currently known missing zfs features in boot loader are edonr and gzip support.

Reviewed by:	delphij, imp
Approved by:	imp (mentor)
Obtained from:	sha256.c update and skein_zfs.c stub from illumos.
Differential Revision:	https://reviews.freebsd.org/D7418
2016-08-18 00:37:07 +00:00

326 lines
11 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* Copyright 2013 Saso Kiselkov. All rights reserved.
* Copyright 2015 Toomas Soome <tsoome@me.com>
*/
/*
* SHA-256 and SHA-512/256 hashes, as specified in FIPS 180-4, available at:
* http://csrc.nist.gov/cryptval
*
* This is a very compact implementation of SHA-256 and SHA-512/256.
* It is designed to be simple and portable, not to be fast.
*/
/*
* The literal definitions according to FIPS180-4 would be:
*
* Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
* Maj(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z)))
*
* We use logical equivalents which require one less op.
*/
#define Ch(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x, y, z) (((x) & (y)) ^ ((z) & ((x) ^ (y))))
#define ROTR(x, n) (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
/* SHA-224/256 operations */
#define BIGSIGMA0_256(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define BIGSIGMA1_256(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define SIGMA0_256(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ ((x) >> 3))
#define SIGMA1_256(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ ((x) >> 10))
/* SHA-384/512 operations */
#define BIGSIGMA0_512(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
#define BIGSIGMA1_512(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
#define SIGMA0_512(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
#define SIGMA1_512(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
/* SHA-256 round constants */
static const uint32_t SHA256_K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/* SHA-512 round constants */
static const uint64_t SHA512_K[80] = {
0x428A2F98D728AE22ULL, 0x7137449123EF65CDULL,
0xB5C0FBCFEC4D3B2FULL, 0xE9B5DBA58189DBBCULL,
0x3956C25BF348B538ULL, 0x59F111F1B605D019ULL,
0x923F82A4AF194F9BULL, 0xAB1C5ED5DA6D8118ULL,
0xD807AA98A3030242ULL, 0x12835B0145706FBEULL,
0x243185BE4EE4B28CULL, 0x550C7DC3D5FFB4E2ULL,
0x72BE5D74F27B896FULL, 0x80DEB1FE3B1696B1ULL,
0x9BDC06A725C71235ULL, 0xC19BF174CF692694ULL,
0xE49B69C19EF14AD2ULL, 0xEFBE4786384F25E3ULL,
0x0FC19DC68B8CD5B5ULL, 0x240CA1CC77AC9C65ULL,
0x2DE92C6F592B0275ULL, 0x4A7484AA6EA6E483ULL,
0x5CB0A9DCBD41FBD4ULL, 0x76F988DA831153B5ULL,
0x983E5152EE66DFABULL, 0xA831C66D2DB43210ULL,
0xB00327C898FB213FULL, 0xBF597FC7BEEF0EE4ULL,
0xC6E00BF33DA88FC2ULL, 0xD5A79147930AA725ULL,
0x06CA6351E003826FULL, 0x142929670A0E6E70ULL,
0x27B70A8546D22FFCULL, 0x2E1B21385C26C926ULL,
0x4D2C6DFC5AC42AEDULL, 0x53380D139D95B3DFULL,
0x650A73548BAF63DEULL, 0x766A0ABB3C77B2A8ULL,
0x81C2C92E47EDAEE6ULL, 0x92722C851482353BULL,
0xA2BFE8A14CF10364ULL, 0xA81A664BBC423001ULL,
0xC24B8B70D0F89791ULL, 0xC76C51A30654BE30ULL,
0xD192E819D6EF5218ULL, 0xD69906245565A910ULL,
0xF40E35855771202AULL, 0x106AA07032BBD1B8ULL,
0x19A4C116B8D2D0C8ULL, 0x1E376C085141AB53ULL,
0x2748774CDF8EEB99ULL, 0x34B0BCB5E19B48A8ULL,
0x391C0CB3C5C95A63ULL, 0x4ED8AA4AE3418ACBULL,
0x5B9CCA4F7763E373ULL, 0x682E6FF3D6B2B8A3ULL,
0x748F82EE5DEFB2FCULL, 0x78A5636F43172F60ULL,
0x84C87814A1F0AB72ULL, 0x8CC702081A6439ECULL,
0x90BEFFFA23631E28ULL, 0xA4506CEBDE82BDE9ULL,
0xBEF9A3F7B2C67915ULL, 0xC67178F2E372532BULL,
0xCA273ECEEA26619CULL, 0xD186B8C721C0C207ULL,
0xEADA7DD6CDE0EB1EULL, 0xF57D4F7FEE6ED178ULL,
0x06F067AA72176FBAULL, 0x0A637DC5A2C898A6ULL,
0x113F9804BEF90DAEULL, 0x1B710B35131C471BULL,
0x28DB77F523047D84ULL, 0x32CAAB7B40C72493ULL,
0x3C9EBE0A15C9BEBCULL, 0x431D67C49C100D4CULL,
0x4CC5D4BECB3E42B6ULL, 0x597F299CFC657E2AULL,
0x5FCB6FAB3AD6FAECULL, 0x6C44198C4A475817ULL
};
static void
SHA256Transform(uint32_t *H, const uint8_t *cp)
{
uint32_t a, b, c, d, e, f, g, h, t, T1, T2, W[64];
/* copy chunk into the first 16 words of the message schedule */
for (t = 0; t < 16; t++, cp += sizeof (uint32_t))
W[t] = (cp[0] << 24) | (cp[1] << 16) | (cp[2] << 8) | cp[3];
/* extend the first 16 words into the remaining 48 words */
for (t = 16; t < 64; t++)
W[t] = SIGMA1_256(W[t - 2]) + W[t - 7] +
SIGMA0_256(W[t - 15]) + W[t - 16];
/* init working variables to the current hash value */
a = H[0]; b = H[1]; c = H[2]; d = H[3];
e = H[4]; f = H[5]; g = H[6]; h = H[7];
/* iterate the compression function for all rounds of the hash */
for (t = 0; t < 64; t++) {
T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_K[t] + W[t];
T2 = BIGSIGMA0_256(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + T1;
d = c; c = b; b = a; a = T1 + T2;
}
/* add the compressed chunk to the current hash value */
H[0] += a; H[1] += b; H[2] += c; H[3] += d;
H[4] += e; H[5] += f; H[6] += g; H[7] += h;
}
static void
SHA512Transform(uint64_t *H, const uint8_t *cp)
{
uint64_t a, b, c, d, e, f, g, h, t, T1, T2, W[80];
/* copy chunk into the first 16 words of the message schedule */
for (t = 0; t < 16; t++, cp += sizeof (uint64_t))
W[t] = ((uint64_t)cp[0] << 56) | ((uint64_t)cp[1] << 48) |
((uint64_t)cp[2] << 40) | ((uint64_t)cp[3] << 32) |
((uint64_t)cp[4] << 24) | ((uint64_t)cp[5] << 16) |
((uint64_t)cp[6] << 8) | (uint64_t)cp[7];
/* extend the first 16 words into the remaining 64 words */
for (t = 16; t < 80; t++)
W[t] = SIGMA1_512(W[t - 2]) + W[t - 7] +
SIGMA0_512(W[t - 15]) + W[t - 16];
/* init working variables to the current hash value */
a = H[0]; b = H[1]; c = H[2]; d = H[3];
e = H[4]; f = H[5]; g = H[6]; h = H[7];
/* iterate the compression function for all rounds of the hash */
for (t = 0; t < 80; t++) {
T1 = h + BIGSIGMA1_512(e) + Ch(e, f, g) + SHA512_K[t] + W[t];
T2 = BIGSIGMA0_512(a) + Maj(a, b, c);
h = g; g = f; f = e; e = d + T1;
d = c; c = b; b = a; a = T1 + T2;
}
/* add the compressed chunk to the current hash value */
H[0] += a; H[1] += b; H[2] += c; H[3] += d;
H[4] += e; H[5] += f; H[6] += g; H[7] += h;
}
/*
* Implements the SHA-224 and SHA-256 hash algos - to select between them
* pass the appropriate initial values of 'H' and truncate the last 32 bits
* in case of SHA-224.
*/
static void
SHA256(uint32_t *H, const void *buf, uint64_t size, zio_cksum_t *zcp)
{
uint8_t pad[128];
unsigned padsize = size & 63;
unsigned i, k;
/* process all blocks up to the last one */
for (i = 0; i < size - padsize; i += 64)
SHA256Transform(H, (uint8_t *)buf + i);
/* process the last block and padding */
for (k = 0; k < padsize; k++)
pad[k] = ((uint8_t *)buf)[k+i];
for (pad[padsize++] = 0x80; (padsize & 63) != 56; padsize++)
pad[padsize] = 0;
for (i = 0; i < 8; i++)
pad[padsize++] = (size << 3) >> (56 - 8 * i);
for (i = 0; i < padsize; i += 64)
SHA256Transform(H, pad + i);
ZIO_SET_CHECKSUM(zcp,
(uint64_t)H[0] << 32 | H[1],
(uint64_t)H[2] << 32 | H[3],
(uint64_t)H[4] << 32 | H[5],
(uint64_t)H[6] << 32 | H[7]);
}
/*
* encode 64bit data in big-endian format.
*/
static void
Encode64(uint8_t *output, uint64_t *input, size_t len)
{
size_t i, j;
for (i = 0, j = 0; j < len; i++, j += 8) {
output[j] = (input[i] >> 56) & 0xff;
output[j + 1] = (input[i] >> 48) & 0xff;
output[j + 2] = (input[i] >> 40) & 0xff;
output[j + 3] = (input[i] >> 32) & 0xff;
output[j + 4] = (input[i] >> 24) & 0xff;
output[j + 5] = (input[i] >> 16) & 0xff;
output[j + 6] = (input[i] >> 8) & 0xff;
output[j + 7] = input[i] & 0xff;
}
}
/*
* Implements the SHA-384, SHA-512 and SHA-512/t hash algos - to select
* between them pass the appropriate initial values for 'H'. The output
* of this function is truncated to the first 256 bits that fit into 'zcp'.
*/
static void
SHA512(uint64_t *H, const void *buf, uint64_t size, zio_cksum_t *zcp)
{
uint64_t c64[2];
uint8_t pad[256];
unsigned padsize = size & 127;
unsigned i, k;
/* process all blocks up to the last one */
for (i = 0; i < size - padsize; i += 128)
SHA512Transform(H, (uint8_t *)buf + i);
/* process the last block and padding */
for (k = 0; k < padsize; k++)
pad[k] = ((uint8_t *)buf)[k+i];
if (padsize < 112) {
for (pad[padsize++] = 0x80; padsize < 112; padsize++)
pad[padsize] = 0;
} else {
for (pad[padsize++] = 0x80; padsize < 240; padsize++)
pad[padsize] = 0;
}
c64[0] = 0;
c64[1] = size << 3;
Encode64(pad+padsize, c64, sizeof (c64));
padsize += sizeof (c64);
for (i = 0; i < padsize; i += 128)
SHA512Transform(H, pad + i);
/* truncate the output to the first 256 bits which fit into 'zcp' */
Encode64((uint8_t *)zcp, H, sizeof (uint64_t) * 4);
}
static void
zio_checksum_SHA256(const void *buf, uint64_t size,
const void *ctx_template __unused, zio_cksum_t *zcp)
{
/* SHA-256 as per FIPS 180-4. */
uint32_t H[] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
SHA256(H, buf, size, zcp);
}
static void
zio_checksum_SHA512_native(const void *buf, uint64_t size,
const void *ctx_template __unused, zio_cksum_t *zcp)
{
/* SHA-512/256 as per FIPS 180-4. */
uint64_t H[] = {
0x22312194FC2BF72CULL, 0x9F555FA3C84C64C2ULL,
0x2393B86B6F53B151ULL, 0x963877195940EABDULL,
0x96283EE2A88EFFE3ULL, 0xBE5E1E2553863992ULL,
0x2B0199FC2C85B8AAULL, 0x0EB72DDC81C52CA2ULL
};
SHA512(H, buf, size, zcp);
}
static void
zio_checksum_SHA512_byteswap(const void *buf, uint64_t size,
const void *ctx_template, zio_cksum_t *zcp)
{
zio_cksum_t tmp;
zio_checksum_SHA512_native(buf, size, ctx_template, &tmp);
zcp->zc_word[0] = BSWAP_64(tmp.zc_word[0]);
zcp->zc_word[1] = BSWAP_64(tmp.zc_word[1]);
zcp->zc_word[2] = BSWAP_64(tmp.zc_word[2]);
zcp->zc_word[3] = BSWAP_64(tmp.zc_word[3]);
}