freebsd-skq/usr.sbin/bhyve/pci_emul.c
Alexander Motin 1b4496d043 Make PCI interupts allocation static when using bootrom (UEFI).
This makes factual interrupt routing match one shipped with UEFI firmware.
With old firmware this make legacy interrupts work reliable for functions 0
of PCI slots 3-6.  Updated UEFI image fixes problem completely.
2016-07-14 17:16:10 +00:00

2104 lines
49 KiB
C

/*-
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/linker_set.h>
#include <ctype.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strings.h>
#include <assert.h>
#include <stdbool.h>
#include <machine/vmm.h>
#include <vmmapi.h>
#include "acpi.h"
#include "bhyverun.h"
#include "inout.h"
#include "ioapic.h"
#include "mem.h"
#include "pci_emul.h"
#include "pci_irq.h"
#include "pci_lpc.h"
#define CONF1_ADDR_PORT 0x0cf8
#define CONF1_DATA_PORT 0x0cfc
#define CONF1_ENABLE 0x80000000ul
#define MAXBUSES (PCI_BUSMAX + 1)
#define MAXSLOTS (PCI_SLOTMAX + 1)
#define MAXFUNCS (PCI_FUNCMAX + 1)
struct funcinfo {
char *fi_name;
char *fi_param;
struct pci_devinst *fi_devi;
};
struct intxinfo {
int ii_count;
int ii_pirq_pin;
int ii_ioapic_irq;
};
struct slotinfo {
struct intxinfo si_intpins[4];
struct funcinfo si_funcs[MAXFUNCS];
};
struct businfo {
uint16_t iobase, iolimit; /* I/O window */
uint32_t membase32, memlimit32; /* mmio window below 4GB */
uint64_t membase64, memlimit64; /* mmio window above 4GB */
struct slotinfo slotinfo[MAXSLOTS];
};
static struct businfo *pci_businfo[MAXBUSES];
SET_DECLARE(pci_devemu_set, struct pci_devemu);
static uint64_t pci_emul_iobase;
static uint64_t pci_emul_membase32;
static uint64_t pci_emul_membase64;
#define PCI_EMUL_IOBASE 0x2000
#define PCI_EMUL_IOLIMIT 0x10000
#define PCI_EMUL_ECFG_BASE 0xE0000000 /* 3.5GB */
#define PCI_EMUL_ECFG_SIZE (MAXBUSES * 1024 * 1024) /* 1MB per bus */
SYSRES_MEM(PCI_EMUL_ECFG_BASE, PCI_EMUL_ECFG_SIZE);
#define PCI_EMUL_MEMLIMIT32 PCI_EMUL_ECFG_BASE
#define PCI_EMUL_MEMBASE64 0xD000000000UL
#define PCI_EMUL_MEMLIMIT64 0xFD00000000UL
static struct pci_devemu *pci_emul_finddev(char *name);
static void pci_lintr_route(struct pci_devinst *pi);
static void pci_lintr_update(struct pci_devinst *pi);
static void pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot,
int func, int coff, int bytes, uint32_t *val);
static __inline void
CFGWRITE(struct pci_devinst *pi, int coff, uint32_t val, int bytes)
{
if (bytes == 1)
pci_set_cfgdata8(pi, coff, val);
else if (bytes == 2)
pci_set_cfgdata16(pi, coff, val);
else
pci_set_cfgdata32(pi, coff, val);
}
static __inline uint32_t
CFGREAD(struct pci_devinst *pi, int coff, int bytes)
{
if (bytes == 1)
return (pci_get_cfgdata8(pi, coff));
else if (bytes == 2)
return (pci_get_cfgdata16(pi, coff));
else
return (pci_get_cfgdata32(pi, coff));
}
/*
* I/O access
*/
/*
* Slot options are in the form:
*
* <bus>:<slot>:<func>,<emul>[,<config>]
* <slot>[:<func>],<emul>[,<config>]
*
* slot is 0..31
* func is 0..7
* emul is a string describing the type of PCI device e.g. virtio-net
* config is an optional string, depending on the device, that can be
* used for configuration.
* Examples are:
* 1,virtio-net,tap0
* 3:0,dummy
*/
static void
pci_parse_slot_usage(char *aopt)
{
fprintf(stderr, "Invalid PCI slot info field \"%s\"\n", aopt);
}
int
pci_parse_slot(char *opt)
{
struct businfo *bi;
struct slotinfo *si;
char *emul, *config, *str, *cp;
int error, bnum, snum, fnum;
error = -1;
str = strdup(opt);
emul = config = NULL;
if ((cp = strchr(str, ',')) != NULL) {
*cp = '\0';
emul = cp + 1;
if ((cp = strchr(emul, ',')) != NULL) {
*cp = '\0';
config = cp + 1;
}
} else {
pci_parse_slot_usage(opt);
goto done;
}
/* <bus>:<slot>:<func> */
if (sscanf(str, "%d:%d:%d", &bnum, &snum, &fnum) != 3) {
bnum = 0;
/* <slot>:<func> */
if (sscanf(str, "%d:%d", &snum, &fnum) != 2) {
fnum = 0;
/* <slot> */
if (sscanf(str, "%d", &snum) != 1) {
snum = -1;
}
}
}
if (bnum < 0 || bnum >= MAXBUSES || snum < 0 || snum >= MAXSLOTS ||
fnum < 0 || fnum >= MAXFUNCS) {
pci_parse_slot_usage(opt);
goto done;
}
if (pci_businfo[bnum] == NULL)
pci_businfo[bnum] = calloc(1, sizeof(struct businfo));
bi = pci_businfo[bnum];
si = &bi->slotinfo[snum];
if (si->si_funcs[fnum].fi_name != NULL) {
fprintf(stderr, "pci slot %d:%d already occupied!\n",
snum, fnum);
goto done;
}
if (pci_emul_finddev(emul) == NULL) {
fprintf(stderr, "pci slot %d:%d: unknown device \"%s\"\n",
snum, fnum, emul);
goto done;
}
error = 0;
si->si_funcs[fnum].fi_name = emul;
si->si_funcs[fnum].fi_param = config;
done:
if (error)
free(str);
return (error);
}
static int
pci_valid_pba_offset(struct pci_devinst *pi, uint64_t offset)
{
if (offset < pi->pi_msix.pba_offset)
return (0);
if (offset >= pi->pi_msix.pba_offset + pi->pi_msix.pba_size) {
return (0);
}
return (1);
}
int
pci_emul_msix_twrite(struct pci_devinst *pi, uint64_t offset, int size,
uint64_t value)
{
int msix_entry_offset;
int tab_index;
char *dest;
/* support only 4 or 8 byte writes */
if (size != 4 && size != 8)
return (-1);
/*
* Return if table index is beyond what device supports
*/
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index >= pi->pi_msix.table_count)
return (-1);
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned writes */
if ((msix_entry_offset % size) != 0)
return (-1);
dest = (char *)(pi->pi_msix.table + tab_index);
dest += msix_entry_offset;
if (size == 4)
*((uint32_t *)dest) = value;
else
*((uint64_t *)dest) = value;
return (0);
}
uint64_t
pci_emul_msix_tread(struct pci_devinst *pi, uint64_t offset, int size)
{
char *dest;
int msix_entry_offset;
int tab_index;
uint64_t retval = ~0;
/*
* The PCI standard only allows 4 and 8 byte accesses to the MSI-X
* table but we also allow 1 byte access to accommodate reads from
* ddb.
*/
if (size != 1 && size != 4 && size != 8)
return (retval);
msix_entry_offset = offset % MSIX_TABLE_ENTRY_SIZE;
/* support only aligned reads */
if ((msix_entry_offset % size) != 0) {
return (retval);
}
tab_index = offset / MSIX_TABLE_ENTRY_SIZE;
if (tab_index < pi->pi_msix.table_count) {
/* valid MSI-X Table access */
dest = (char *)(pi->pi_msix.table + tab_index);
dest += msix_entry_offset;
if (size == 1)
retval = *((uint8_t *)dest);
else if (size == 4)
retval = *((uint32_t *)dest);
else
retval = *((uint64_t *)dest);
} else if (pci_valid_pba_offset(pi, offset)) {
/* return 0 for PBA access */
retval = 0;
}
return (retval);
}
int
pci_msix_table_bar(struct pci_devinst *pi)
{
if (pi->pi_msix.table != NULL)
return (pi->pi_msix.table_bar);
else
return (-1);
}
int
pci_msix_pba_bar(struct pci_devinst *pi)
{
if (pi->pi_msix.table != NULL)
return (pi->pi_msix.pba_bar);
else
return (-1);
}
static int
pci_emul_io_handler(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
struct pci_devinst *pdi = arg;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int i;
for (i = 0; i <= PCI_BARMAX; i++) {
if (pdi->pi_bar[i].type == PCIBAR_IO &&
port >= pdi->pi_bar[i].addr &&
port + bytes <= pdi->pi_bar[i].addr + pdi->pi_bar[i].size) {
offset = port - pdi->pi_bar[i].addr;
if (in)
*eax = (*pe->pe_barread)(ctx, vcpu, pdi, i,
offset, bytes);
else
(*pe->pe_barwrite)(ctx, vcpu, pdi, i, offset,
bytes, *eax);
return (0);
}
}
return (-1);
}
static int
pci_emul_mem_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
struct pci_devinst *pdi = arg1;
struct pci_devemu *pe = pdi->pi_d;
uint64_t offset;
int bidx = (int) arg2;
assert(bidx <= PCI_BARMAX);
assert(pdi->pi_bar[bidx].type == PCIBAR_MEM32 ||
pdi->pi_bar[bidx].type == PCIBAR_MEM64);
assert(addr >= pdi->pi_bar[bidx].addr &&
addr + size <= pdi->pi_bar[bidx].addr + pdi->pi_bar[bidx].size);
offset = addr - pdi->pi_bar[bidx].addr;
if (dir == MEM_F_WRITE) {
if (size == 8) {
(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
4, *val & 0xffffffff);
(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset + 4,
4, *val >> 32);
} else {
(*pe->pe_barwrite)(ctx, vcpu, pdi, bidx, offset,
size, *val);
}
} else {
if (size == 8) {
*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
offset, 4);
*val |= (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
offset + 4, 4) << 32;
} else {
*val = (*pe->pe_barread)(ctx, vcpu, pdi, bidx,
offset, size);
}
}
return (0);
}
static int
pci_emul_alloc_resource(uint64_t *baseptr, uint64_t limit, uint64_t size,
uint64_t *addr)
{
uint64_t base;
assert((size & (size - 1)) == 0); /* must be a power of 2 */
base = roundup2(*baseptr, size);
if (base + size <= limit) {
*addr = base;
*baseptr = base + size;
return (0);
} else
return (-1);
}
int
pci_emul_alloc_bar(struct pci_devinst *pdi, int idx, enum pcibar_type type,
uint64_t size)
{
return (pci_emul_alloc_pbar(pdi, idx, 0, type, size));
}
/*
* Register (or unregister) the MMIO or I/O region associated with the BAR
* register 'idx' of an emulated pci device.
*/
static void
modify_bar_registration(struct pci_devinst *pi, int idx, int registration)
{
int error;
struct inout_port iop;
struct mem_range mr;
switch (pi->pi_bar[idx].type) {
case PCIBAR_IO:
bzero(&iop, sizeof(struct inout_port));
iop.name = pi->pi_name;
iop.port = pi->pi_bar[idx].addr;
iop.size = pi->pi_bar[idx].size;
if (registration) {
iop.flags = IOPORT_F_INOUT;
iop.handler = pci_emul_io_handler;
iop.arg = pi;
error = register_inout(&iop);
} else
error = unregister_inout(&iop);
break;
case PCIBAR_MEM32:
case PCIBAR_MEM64:
bzero(&mr, sizeof(struct mem_range));
mr.name = pi->pi_name;
mr.base = pi->pi_bar[idx].addr;
mr.size = pi->pi_bar[idx].size;
if (registration) {
mr.flags = MEM_F_RW;
mr.handler = pci_emul_mem_handler;
mr.arg1 = pi;
mr.arg2 = idx;
error = register_mem(&mr);
} else
error = unregister_mem(&mr);
break;
default:
error = EINVAL;
break;
}
assert(error == 0);
}
static void
unregister_bar(struct pci_devinst *pi, int idx)
{
modify_bar_registration(pi, idx, 0);
}
static void
register_bar(struct pci_devinst *pi, int idx)
{
modify_bar_registration(pi, idx, 1);
}
/* Are we decoding i/o port accesses for the emulated pci device? */
static int
porten(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (cmd & PCIM_CMD_PORTEN);
}
/* Are we decoding memory accesses for the emulated pci device? */
static int
memen(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (cmd & PCIM_CMD_MEMEN);
}
/*
* Update the MMIO or I/O address that is decoded by the BAR register.
*
* If the pci device has enabled the address space decoding then intercept
* the address range decoded by the BAR register.
*/
static void
update_bar_address(struct pci_devinst *pi, uint64_t addr, int idx, int type)
{
int decode;
if (pi->pi_bar[idx].type == PCIBAR_IO)
decode = porten(pi);
else
decode = memen(pi);
if (decode)
unregister_bar(pi, idx);
switch (type) {
case PCIBAR_IO:
case PCIBAR_MEM32:
pi->pi_bar[idx].addr = addr;
break;
case PCIBAR_MEM64:
pi->pi_bar[idx].addr &= ~0xffffffffUL;
pi->pi_bar[idx].addr |= addr;
break;
case PCIBAR_MEMHI64:
pi->pi_bar[idx].addr &= 0xffffffff;
pi->pi_bar[idx].addr |= addr;
break;
default:
assert(0);
}
if (decode)
register_bar(pi, idx);
}
int
pci_emul_alloc_pbar(struct pci_devinst *pdi, int idx, uint64_t hostbase,
enum pcibar_type type, uint64_t size)
{
int error;
uint64_t *baseptr, limit, addr, mask, lobits, bar;
assert(idx >= 0 && idx <= PCI_BARMAX);
if ((size & (size - 1)) != 0)
size = 1UL << flsl(size); /* round up to a power of 2 */
/* Enforce minimum BAR sizes required by the PCI standard */
if (type == PCIBAR_IO) {
if (size < 4)
size = 4;
} else {
if (size < 16)
size = 16;
}
switch (type) {
case PCIBAR_NONE:
baseptr = NULL;
addr = mask = lobits = 0;
break;
case PCIBAR_IO:
baseptr = &pci_emul_iobase;
limit = PCI_EMUL_IOLIMIT;
mask = PCIM_BAR_IO_BASE;
lobits = PCIM_BAR_IO_SPACE;
break;
case PCIBAR_MEM64:
/*
* XXX
* Some drivers do not work well if the 64-bit BAR is allocated
* above 4GB. Allow for this by allocating small requests under
* 4GB unless then allocation size is larger than some arbitrary
* number (32MB currently).
*/
if (size > 32 * 1024 * 1024) {
/*
* XXX special case for device requiring peer-peer DMA
*/
if (size == 0x100000000UL)
baseptr = &hostbase;
else
baseptr = &pci_emul_membase64;
limit = PCI_EMUL_MEMLIMIT64;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
break;
} else {
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64;
}
break;
case PCIBAR_MEM32:
baseptr = &pci_emul_membase32;
limit = PCI_EMUL_MEMLIMIT32;
mask = PCIM_BAR_MEM_BASE;
lobits = PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
break;
default:
printf("pci_emul_alloc_base: invalid bar type %d\n", type);
assert(0);
}
if (baseptr != NULL) {
error = pci_emul_alloc_resource(baseptr, limit, size, &addr);
if (error != 0)
return (error);
}
pdi->pi_bar[idx].type = type;
pdi->pi_bar[idx].addr = addr;
pdi->pi_bar[idx].size = size;
/* Initialize the BAR register in config space */
bar = (addr & mask) | lobits;
pci_set_cfgdata32(pdi, PCIR_BAR(idx), bar);
if (type == PCIBAR_MEM64) {
assert(idx + 1 <= PCI_BARMAX);
pdi->pi_bar[idx + 1].type = PCIBAR_MEMHI64;
pci_set_cfgdata32(pdi, PCIR_BAR(idx + 1), bar >> 32);
}
register_bar(pdi, idx);
return (0);
}
#define CAP_START_OFFSET 0x40
static int
pci_emul_add_capability(struct pci_devinst *pi, u_char *capdata, int caplen)
{
int i, capoff, reallen;
uint16_t sts;
assert(caplen > 0);
reallen = roundup2(caplen, 4); /* dword aligned */
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) == 0)
capoff = CAP_START_OFFSET;
else
capoff = pi->pi_capend + 1;
/* Check if we have enough space */
if (capoff + reallen > PCI_REGMAX + 1)
return (-1);
/* Set the previous capability pointer */
if ((sts & PCIM_STATUS_CAPPRESENT) == 0) {
pci_set_cfgdata8(pi, PCIR_CAP_PTR, capoff);
pci_set_cfgdata16(pi, PCIR_STATUS, sts|PCIM_STATUS_CAPPRESENT);
} else
pci_set_cfgdata8(pi, pi->pi_prevcap + 1, capoff);
/* Copy the capability */
for (i = 0; i < caplen; i++)
pci_set_cfgdata8(pi, capoff + i, capdata[i]);
/* Set the next capability pointer */
pci_set_cfgdata8(pi, capoff + 1, 0);
pi->pi_prevcap = capoff;
pi->pi_capend = capoff + reallen - 1;
return (0);
}
static struct pci_devemu *
pci_emul_finddev(char *name)
{
struct pci_devemu **pdpp, *pdp;
SET_FOREACH(pdpp, pci_devemu_set) {
pdp = *pdpp;
if (!strcmp(pdp->pe_emu, name)) {
return (pdp);
}
}
return (NULL);
}
static int
pci_emul_init(struct vmctx *ctx, struct pci_devemu *pde, int bus, int slot,
int func, struct funcinfo *fi)
{
struct pci_devinst *pdi;
int err;
pdi = calloc(1, sizeof(struct pci_devinst));
pdi->pi_vmctx = ctx;
pdi->pi_bus = bus;
pdi->pi_slot = slot;
pdi->pi_func = func;
pthread_mutex_init(&pdi->pi_lintr.lock, NULL);
pdi->pi_lintr.pin = 0;
pdi->pi_lintr.state = IDLE;
pdi->pi_lintr.pirq_pin = 0;
pdi->pi_lintr.ioapic_irq = 0;
pdi->pi_d = pde;
snprintf(pdi->pi_name, PI_NAMESZ, "%s-pci-%d", pde->pe_emu, slot);
/* Disable legacy interrupts */
pci_set_cfgdata8(pdi, PCIR_INTLINE, 255);
pci_set_cfgdata8(pdi, PCIR_INTPIN, 0);
pci_set_cfgdata8(pdi, PCIR_COMMAND,
PCIM_CMD_PORTEN | PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
err = (*pde->pe_init)(ctx, pdi, fi->fi_param);
if (err == 0)
fi->fi_devi = pdi;
else
free(pdi);
return (err);
}
void
pci_populate_msicap(struct msicap *msicap, int msgnum, int nextptr)
{
int mmc;
/* Number of msi messages must be a power of 2 between 1 and 32 */
assert((msgnum & (msgnum - 1)) == 0 && msgnum >= 1 && msgnum <= 32);
mmc = ffs(msgnum) - 1;
bzero(msicap, sizeof(struct msicap));
msicap->capid = PCIY_MSI;
msicap->nextptr = nextptr;
msicap->msgctrl = PCIM_MSICTRL_64BIT | (mmc << 1);
}
int
pci_emul_add_msicap(struct pci_devinst *pi, int msgnum)
{
struct msicap msicap;
pci_populate_msicap(&msicap, msgnum, 0);
return (pci_emul_add_capability(pi, (u_char *)&msicap, sizeof(msicap)));
}
static void
pci_populate_msixcap(struct msixcap *msixcap, int msgnum, int barnum,
uint32_t msix_tab_size)
{
assert(msix_tab_size % 4096 == 0);
bzero(msixcap, sizeof(struct msixcap));
msixcap->capid = PCIY_MSIX;
/*
* Message Control Register, all fields set to
* zero except for the Table Size.
* Note: Table size N is encoded as N-1
*/
msixcap->msgctrl = msgnum - 1;
/*
* MSI-X BAR setup:
* - MSI-X table start at offset 0
* - PBA table starts at a 4K aligned offset after the MSI-X table
*/
msixcap->table_info = barnum & PCIM_MSIX_BIR_MASK;
msixcap->pba_info = msix_tab_size | (barnum & PCIM_MSIX_BIR_MASK);
}
static void
pci_msix_table_init(struct pci_devinst *pi, int table_entries)
{
int i, table_size;
assert(table_entries > 0);
assert(table_entries <= MAX_MSIX_TABLE_ENTRIES);
table_size = table_entries * MSIX_TABLE_ENTRY_SIZE;
pi->pi_msix.table = calloc(1, table_size);
/* set mask bit of vector control register */
for (i = 0; i < table_entries; i++)
pi->pi_msix.table[i].vector_control |= PCIM_MSIX_VCTRL_MASK;
}
int
pci_emul_add_msixcap(struct pci_devinst *pi, int msgnum, int barnum)
{
uint32_t tab_size;
struct msixcap msixcap;
assert(msgnum >= 1 && msgnum <= MAX_MSIX_TABLE_ENTRIES);
assert(barnum >= 0 && barnum <= PCIR_MAX_BAR_0);
tab_size = msgnum * MSIX_TABLE_ENTRY_SIZE;
/* Align table size to nearest 4K */
tab_size = roundup2(tab_size, 4096);
pi->pi_msix.table_bar = barnum;
pi->pi_msix.pba_bar = barnum;
pi->pi_msix.table_offset = 0;
pi->pi_msix.table_count = msgnum;
pi->pi_msix.pba_offset = tab_size;
pi->pi_msix.pba_size = PBA_SIZE(msgnum);
pci_msix_table_init(pi, msgnum);
pci_populate_msixcap(&msixcap, msgnum, barnum, tab_size);
/* allocate memory for MSI-X Table and PBA */
pci_emul_alloc_bar(pi, barnum, PCIBAR_MEM32,
tab_size + pi->pi_msix.pba_size);
return (pci_emul_add_capability(pi, (u_char *)&msixcap,
sizeof(msixcap)));
}
void
msixcap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask;
int off;
off = offset - capoff;
/* Message Control Register */
if (off == 2 && bytes == 2) {
rwmask = PCIM_MSIXCTRL_MSIX_ENABLE | PCIM_MSIXCTRL_FUNCTION_MASK;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
pi->pi_msix.enabled = val & PCIM_MSIXCTRL_MSIX_ENABLE;
pi->pi_msix.function_mask = val & PCIM_MSIXCTRL_FUNCTION_MASK;
pci_lintr_update(pi);
}
CFGWRITE(pi, offset, val, bytes);
}
void
msicap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
uint16_t msgctrl, rwmask, msgdata, mme;
uint32_t addrlo;
/*
* If guest is writing to the message control register make sure
* we do not overwrite read-only fields.
*/
if ((offset - capoff) == 2 && bytes == 2) {
rwmask = PCIM_MSICTRL_MME_MASK | PCIM_MSICTRL_MSI_ENABLE;
msgctrl = pci_get_cfgdata16(pi, offset);
msgctrl &= ~rwmask;
msgctrl |= val & rwmask;
val = msgctrl;
addrlo = pci_get_cfgdata32(pi, capoff + 4);
if (msgctrl & PCIM_MSICTRL_64BIT)
msgdata = pci_get_cfgdata16(pi, capoff + 12);
else
msgdata = pci_get_cfgdata16(pi, capoff + 8);
mme = msgctrl & PCIM_MSICTRL_MME_MASK;
pi->pi_msi.enabled = msgctrl & PCIM_MSICTRL_MSI_ENABLE ? 1 : 0;
if (pi->pi_msi.enabled) {
pi->pi_msi.addr = addrlo;
pi->pi_msi.msg_data = msgdata;
pi->pi_msi.maxmsgnum = 1 << (mme >> 4);
} else {
pi->pi_msi.maxmsgnum = 0;
}
pci_lintr_update(pi);
}
CFGWRITE(pi, offset, val, bytes);
}
void
pciecap_cfgwrite(struct pci_devinst *pi, int capoff, int offset,
int bytes, uint32_t val)
{
/* XXX don't write to the readonly parts */
CFGWRITE(pi, offset, val, bytes);
}
#define PCIECAP_VERSION 0x2
int
pci_emul_add_pciecap(struct pci_devinst *pi, int type)
{
int err;
struct pciecap pciecap;
if (type != PCIEM_TYPE_ROOT_PORT)
return (-1);
bzero(&pciecap, sizeof(pciecap));
pciecap.capid = PCIY_EXPRESS;
pciecap.pcie_capabilities = PCIECAP_VERSION | PCIEM_TYPE_ROOT_PORT;
pciecap.link_capabilities = 0x411; /* gen1, x1 */
pciecap.link_status = 0x11; /* gen1, x1 */
err = pci_emul_add_capability(pi, (u_char *)&pciecap, sizeof(pciecap));
return (err);
}
/*
* This function assumes that 'coff' is in the capabilities region of the
* config space.
*/
static void
pci_emul_capwrite(struct pci_devinst *pi, int offset, int bytes, uint32_t val)
{
int capid;
uint8_t capoff, nextoff;
/* Do not allow un-aligned writes */
if ((offset & (bytes - 1)) != 0)
return;
/* Find the capability that we want to update */
capoff = CAP_START_OFFSET;
while (1) {
nextoff = pci_get_cfgdata8(pi, capoff + 1);
if (nextoff == 0)
break;
if (offset >= capoff && offset < nextoff)
break;
capoff = nextoff;
}
assert(offset >= capoff);
/*
* Capability ID and Next Capability Pointer are readonly.
* However, some o/s's do 4-byte writes that include these.
* For this case, trim the write back to 2 bytes and adjust
* the data.
*/
if (offset == capoff || offset == capoff + 1) {
if (offset == capoff && bytes == 4) {
bytes = 2;
offset += 2;
val >>= 16;
} else
return;
}
capid = pci_get_cfgdata8(pi, capoff);
switch (capid) {
case PCIY_MSI:
msicap_cfgwrite(pi, capoff, offset, bytes, val);
break;
case PCIY_MSIX:
msixcap_cfgwrite(pi, capoff, offset, bytes, val);
break;
case PCIY_EXPRESS:
pciecap_cfgwrite(pi, capoff, offset, bytes, val);
break;
default:
break;
}
}
static int
pci_emul_iscap(struct pci_devinst *pi, int offset)
{
uint16_t sts;
sts = pci_get_cfgdata16(pi, PCIR_STATUS);
if ((sts & PCIM_STATUS_CAPPRESENT) != 0) {
if (offset >= CAP_START_OFFSET && offset <= pi->pi_capend)
return (1);
}
return (0);
}
static int
pci_emul_fallback_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int size, uint64_t *val, void *arg1, long arg2)
{
/*
* Ignore writes; return 0xff's for reads. The mem read code
* will take care of truncating to the correct size.
*/
if (dir == MEM_F_READ) {
*val = 0xffffffffffffffff;
}
return (0);
}
static int
pci_emul_ecfg_handler(struct vmctx *ctx, int vcpu, int dir, uint64_t addr,
int bytes, uint64_t *val, void *arg1, long arg2)
{
int bus, slot, func, coff, in;
coff = addr & 0xfff;
func = (addr >> 12) & 0x7;
slot = (addr >> 15) & 0x1f;
bus = (addr >> 20) & 0xff;
in = (dir == MEM_F_READ);
if (in)
*val = ~0UL;
pci_cfgrw(ctx, vcpu, in, bus, slot, func, coff, bytes, (uint32_t *)val);
return (0);
}
uint64_t
pci_ecfg_base(void)
{
return (PCI_EMUL_ECFG_BASE);
}
#define BUSIO_ROUNDUP 32
#define BUSMEM_ROUNDUP (1024 * 1024)
int
init_pci(struct vmctx *ctx)
{
struct mem_range mr;
struct pci_devemu *pde;
struct businfo *bi;
struct slotinfo *si;
struct funcinfo *fi;
size_t lowmem;
int bus, slot, func;
int error;
pci_emul_iobase = PCI_EMUL_IOBASE;
pci_emul_membase32 = vm_get_lowmem_limit(ctx);
pci_emul_membase64 = PCI_EMUL_MEMBASE64;
for (bus = 0; bus < MAXBUSES; bus++) {
if ((bi = pci_businfo[bus]) == NULL)
continue;
/*
* Keep track of the i/o and memory resources allocated to
* this bus.
*/
bi->iobase = pci_emul_iobase;
bi->membase32 = pci_emul_membase32;
bi->membase64 = pci_emul_membase64;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_name == NULL)
continue;
pde = pci_emul_finddev(fi->fi_name);
assert(pde != NULL);
error = pci_emul_init(ctx, pde, bus, slot,
func, fi);
if (error)
return (error);
}
}
/*
* Add some slop to the I/O and memory resources decoded by
* this bus to give a guest some flexibility if it wants to
* reprogram the BARs.
*/
pci_emul_iobase += BUSIO_ROUNDUP;
pci_emul_iobase = roundup2(pci_emul_iobase, BUSIO_ROUNDUP);
bi->iolimit = pci_emul_iobase;
pci_emul_membase32 += BUSMEM_ROUNDUP;
pci_emul_membase32 = roundup2(pci_emul_membase32,
BUSMEM_ROUNDUP);
bi->memlimit32 = pci_emul_membase32;
pci_emul_membase64 += BUSMEM_ROUNDUP;
pci_emul_membase64 = roundup2(pci_emul_membase64,
BUSMEM_ROUNDUP);
bi->memlimit64 = pci_emul_membase64;
}
/*
* PCI backends are initialized before routing INTx interrupts
* so that LPC devices are able to reserve ISA IRQs before
* routing PIRQ pins.
*/
for (bus = 0; bus < MAXBUSES; bus++) {
if ((bi = pci_businfo[bus]) == NULL)
continue;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
fi = &si->si_funcs[func];
if (fi->fi_devi == NULL)
continue;
pci_lintr_route(fi->fi_devi);
}
}
}
lpc_pirq_routed();
/*
* The guest physical memory map looks like the following:
* [0, lowmem) guest system memory
* [lowmem, lowmem_limit) memory hole (may be absent)
* [lowmem_limit, 0xE0000000) PCI hole (32-bit BAR allocation)
* [0xE0000000, 0xF0000000) PCI extended config window
* [0xF0000000, 4GB) LAPIC, IOAPIC, HPET, firmware
* [4GB, 4GB + highmem)
*/
/*
* Accesses to memory addresses that are not allocated to system
* memory or PCI devices return 0xff's.
*/
lowmem = vm_get_lowmem_size(ctx);
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI hole";
mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
mr.base = lowmem;
mr.size = (4ULL * 1024 * 1024 * 1024) - lowmem;
mr.handler = pci_emul_fallback_handler;
error = register_mem_fallback(&mr);
assert(error == 0);
/* PCI extended config space */
bzero(&mr, sizeof(struct mem_range));
mr.name = "PCI ECFG";
mr.flags = MEM_F_RW | MEM_F_IMMUTABLE;
mr.base = PCI_EMUL_ECFG_BASE;
mr.size = PCI_EMUL_ECFG_SIZE;
mr.handler = pci_emul_ecfg_handler;
error = register_mem(&mr);
assert(error == 0);
return (0);
}
static void
pci_apic_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
void *arg)
{
dsdt_line(" Package ()");
dsdt_line(" {");
dsdt_line(" 0x%X,", slot << 16 | 0xffff);
dsdt_line(" 0x%02X,", pin - 1);
dsdt_line(" Zero,");
dsdt_line(" 0x%X", ioapic_irq);
dsdt_line(" },");
}
static void
pci_pirq_prt_entry(int bus, int slot, int pin, int pirq_pin, int ioapic_irq,
void *arg)
{
char *name;
name = lpc_pirq_name(pirq_pin);
if (name == NULL)
return;
dsdt_line(" Package ()");
dsdt_line(" {");
dsdt_line(" 0x%X,", slot << 16 | 0xffff);
dsdt_line(" 0x%02X,", pin - 1);
dsdt_line(" %s,", name);
dsdt_line(" 0x00");
dsdt_line(" },");
free(name);
}
/*
* A bhyve virtual machine has a flat PCI hierarchy with a root port
* corresponding to each PCI bus.
*/
static void
pci_bus_write_dsdt(int bus)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_devinst *pi;
int count, func, slot;
/*
* If there are no devices on this 'bus' then just return.
*/
if ((bi = pci_businfo[bus]) == NULL) {
/*
* Bus 0 is special because it decodes the I/O ports used
* for PCI config space access even if there are no devices
* on it.
*/
if (bus != 0)
return;
}
dsdt_line(" Device (PC%02X)", bus);
dsdt_line(" {");
dsdt_line(" Name (_HID, EisaId (\"PNP0A03\"))");
dsdt_line(" Name (_ADR, Zero)");
dsdt_line(" Method (_BBN, 0, NotSerialized)");
dsdt_line(" {");
dsdt_line(" Return (0x%08X)", bus);
dsdt_line(" }");
dsdt_line(" Name (_CRS, ResourceTemplate ()");
dsdt_line(" {");
dsdt_line(" WordBusNumber (ResourceProducer, MinFixed, "
"MaxFixed, PosDecode,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x%04X, // Range Minimum", bus);
dsdt_line(" 0x%04X, // Range Maximum", bus);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x0001, // Length");
dsdt_line(" ,, )");
if (bus == 0) {
dsdt_indent(3);
dsdt_fixed_ioport(0xCF8, 8);
dsdt_unindent(3);
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x0000, // Range Minimum");
dsdt_line(" 0x0CF7, // Range Maximum");
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x0CF8, // Length");
dsdt_line(" ,, , TypeStatic)");
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x0D00, // Range Minimum");
dsdt_line(" 0x%04X, // Range Maximum",
PCI_EMUL_IOBASE - 1);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x%04X, // Length",
PCI_EMUL_IOBASE - 0x0D00);
dsdt_line(" ,, , TypeStatic)");
if (bi == NULL) {
dsdt_line(" })");
goto done;
}
}
assert(bi != NULL);
/* i/o window */
dsdt_line(" WordIO (ResourceProducer, MinFixed, MaxFixed, "
"PosDecode, EntireRange,");
dsdt_line(" 0x0000, // Granularity");
dsdt_line(" 0x%04X, // Range Minimum", bi->iobase);
dsdt_line(" 0x%04X, // Range Maximum",
bi->iolimit - 1);
dsdt_line(" 0x0000, // Translation Offset");
dsdt_line(" 0x%04X, // Length",
bi->iolimit - bi->iobase);
dsdt_line(" ,, , TypeStatic)");
/* mmio window (32-bit) */
dsdt_line(" DWordMemory (ResourceProducer, PosDecode, "
"MinFixed, MaxFixed, NonCacheable, ReadWrite,");
dsdt_line(" 0x00000000, // Granularity");
dsdt_line(" 0x%08X, // Range Minimum\n", bi->membase32);
dsdt_line(" 0x%08X, // Range Maximum\n",
bi->memlimit32 - 1);
dsdt_line(" 0x00000000, // Translation Offset");
dsdt_line(" 0x%08X, // Length\n",
bi->memlimit32 - bi->membase32);
dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
/* mmio window (64-bit) */
dsdt_line(" QWordMemory (ResourceProducer, PosDecode, "
"MinFixed, MaxFixed, NonCacheable, ReadWrite,");
dsdt_line(" 0x0000000000000000, // Granularity");
dsdt_line(" 0x%016lX, // Range Minimum\n", bi->membase64);
dsdt_line(" 0x%016lX, // Range Maximum\n",
bi->memlimit64 - 1);
dsdt_line(" 0x0000000000000000, // Translation Offset");
dsdt_line(" 0x%016lX, // Length\n",
bi->memlimit64 - bi->membase64);
dsdt_line(" ,, , AddressRangeMemory, TypeStatic)");
dsdt_line(" })");
count = pci_count_lintr(bus);
if (count != 0) {
dsdt_indent(2);
dsdt_line("Name (PPRT, Package ()");
dsdt_line("{");
pci_walk_lintr(bus, pci_pirq_prt_entry, NULL);
dsdt_line("})");
dsdt_line("Name (APRT, Package ()");
dsdt_line("{");
pci_walk_lintr(bus, pci_apic_prt_entry, NULL);
dsdt_line("})");
dsdt_line("Method (_PRT, 0, NotSerialized)");
dsdt_line("{");
dsdt_line(" If (PICM)");
dsdt_line(" {");
dsdt_line(" Return (APRT)");
dsdt_line(" }");
dsdt_line(" Else");
dsdt_line(" {");
dsdt_line(" Return (PPRT)");
dsdt_line(" }");
dsdt_line("}");
dsdt_unindent(2);
}
dsdt_indent(2);
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (func = 0; func < MAXFUNCS; func++) {
pi = si->si_funcs[func].fi_devi;
if (pi != NULL && pi->pi_d->pe_write_dsdt != NULL)
pi->pi_d->pe_write_dsdt(pi);
}
}
dsdt_unindent(2);
done:
dsdt_line(" }");
}
void
pci_write_dsdt(void)
{
int bus;
dsdt_indent(1);
dsdt_line("Name (PICM, 0x00)");
dsdt_line("Method (_PIC, 1, NotSerialized)");
dsdt_line("{");
dsdt_line(" Store (Arg0, PICM)");
dsdt_line("}");
dsdt_line("");
dsdt_line("Scope (_SB)");
dsdt_line("{");
for (bus = 0; bus < MAXBUSES; bus++)
pci_bus_write_dsdt(bus);
dsdt_line("}");
dsdt_unindent(1);
}
int
pci_bus_configured(int bus)
{
assert(bus >= 0 && bus < MAXBUSES);
return (pci_businfo[bus] != NULL);
}
int
pci_msi_enabled(struct pci_devinst *pi)
{
return (pi->pi_msi.enabled);
}
int
pci_msi_maxmsgnum(struct pci_devinst *pi)
{
if (pi->pi_msi.enabled)
return (pi->pi_msi.maxmsgnum);
else
return (0);
}
int
pci_msix_enabled(struct pci_devinst *pi)
{
return (pi->pi_msix.enabled && !pi->pi_msi.enabled);
}
void
pci_generate_msix(struct pci_devinst *pi, int index)
{
struct msix_table_entry *mte;
if (!pci_msix_enabled(pi))
return;
if (pi->pi_msix.function_mask)
return;
if (index >= pi->pi_msix.table_count)
return;
mte = &pi->pi_msix.table[index];
if ((mte->vector_control & PCIM_MSIX_VCTRL_MASK) == 0) {
/* XXX Set PBA bit if interrupt is disabled */
vm_lapic_msi(pi->pi_vmctx, mte->addr, mte->msg_data);
}
}
void
pci_generate_msi(struct pci_devinst *pi, int index)
{
if (pci_msi_enabled(pi) && index < pci_msi_maxmsgnum(pi)) {
vm_lapic_msi(pi->pi_vmctx, pi->pi_msi.addr,
pi->pi_msi.msg_data + index);
}
}
static bool
pci_lintr_permitted(struct pci_devinst *pi)
{
uint16_t cmd;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND);
return (!(pi->pi_msi.enabled || pi->pi_msix.enabled ||
(cmd & PCIM_CMD_INTxDIS)));
}
void
pci_lintr_request(struct pci_devinst *pi)
{
struct businfo *bi;
struct slotinfo *si;
int bestpin, bestcount, pin;
bi = pci_businfo[pi->pi_bus];
assert(bi != NULL);
/*
* Just allocate a pin from our slot. The pin will be
* assigned IRQs later when interrupts are routed.
*/
si = &bi->slotinfo[pi->pi_slot];
bestpin = 0;
bestcount = si->si_intpins[0].ii_count;
for (pin = 1; pin < 4; pin++) {
if (si->si_intpins[pin].ii_count < bestcount) {
bestpin = pin;
bestcount = si->si_intpins[pin].ii_count;
}
}
si->si_intpins[bestpin].ii_count++;
pi->pi_lintr.pin = bestpin + 1;
pci_set_cfgdata8(pi, PCIR_INTPIN, bestpin + 1);
}
static void
pci_lintr_route(struct pci_devinst *pi)
{
struct businfo *bi;
struct intxinfo *ii;
if (pi->pi_lintr.pin == 0)
return;
bi = pci_businfo[pi->pi_bus];
assert(bi != NULL);
ii = &bi->slotinfo[pi->pi_slot].si_intpins[pi->pi_lintr.pin - 1];
/*
* Attempt to allocate an I/O APIC pin for this intpin if one
* is not yet assigned.
*/
if (ii->ii_ioapic_irq == 0)
ii->ii_ioapic_irq = ioapic_pci_alloc_irq(pi);
assert(ii->ii_ioapic_irq > 0);
/*
* Attempt to allocate a PIRQ pin for this intpin if one is
* not yet assigned.
*/
if (ii->ii_pirq_pin == 0)
ii->ii_pirq_pin = pirq_alloc_pin(pi);
assert(ii->ii_pirq_pin > 0);
pi->pi_lintr.ioapic_irq = ii->ii_ioapic_irq;
pi->pi_lintr.pirq_pin = ii->ii_pirq_pin;
pci_set_cfgdata8(pi, PCIR_INTLINE, pirq_irq(ii->ii_pirq_pin));
}
void
pci_lintr_assert(struct pci_devinst *pi)
{
assert(pi->pi_lintr.pin > 0);
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == IDLE) {
if (pci_lintr_permitted(pi)) {
pi->pi_lintr.state = ASSERTED;
pci_irq_assert(pi);
} else
pi->pi_lintr.state = PENDING;
}
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
void
pci_lintr_deassert(struct pci_devinst *pi)
{
assert(pi->pi_lintr.pin > 0);
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == ASSERTED) {
pi->pi_lintr.state = IDLE;
pci_irq_deassert(pi);
} else if (pi->pi_lintr.state == PENDING)
pi->pi_lintr.state = IDLE;
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
static void
pci_lintr_update(struct pci_devinst *pi)
{
pthread_mutex_lock(&pi->pi_lintr.lock);
if (pi->pi_lintr.state == ASSERTED && !pci_lintr_permitted(pi)) {
pci_irq_deassert(pi);
pi->pi_lintr.state = PENDING;
} else if (pi->pi_lintr.state == PENDING && pci_lintr_permitted(pi)) {
pi->pi_lintr.state = ASSERTED;
pci_irq_assert(pi);
}
pthread_mutex_unlock(&pi->pi_lintr.lock);
}
int
pci_count_lintr(int bus)
{
int count, slot, pin;
struct slotinfo *slotinfo;
count = 0;
if (pci_businfo[bus] != NULL) {
for (slot = 0; slot < MAXSLOTS; slot++) {
slotinfo = &pci_businfo[bus]->slotinfo[slot];
for (pin = 0; pin < 4; pin++) {
if (slotinfo->si_intpins[pin].ii_count != 0)
count++;
}
}
}
return (count);
}
void
pci_walk_lintr(int bus, pci_lintr_cb cb, void *arg)
{
struct businfo *bi;
struct slotinfo *si;
struct intxinfo *ii;
int slot, pin;
if ((bi = pci_businfo[bus]) == NULL)
return;
for (slot = 0; slot < MAXSLOTS; slot++) {
si = &bi->slotinfo[slot];
for (pin = 0; pin < 4; pin++) {
ii = &si->si_intpins[pin];
if (ii->ii_count != 0)
cb(bus, slot, pin + 1, ii->ii_pirq_pin,
ii->ii_ioapic_irq, arg);
}
}
}
/*
* Return 1 if the emulated device in 'slot' is a multi-function device.
* Return 0 otherwise.
*/
static int
pci_emul_is_mfdev(int bus, int slot)
{
struct businfo *bi;
struct slotinfo *si;
int f, numfuncs;
numfuncs = 0;
if ((bi = pci_businfo[bus]) != NULL) {
si = &bi->slotinfo[slot];
for (f = 0; f < MAXFUNCS; f++) {
if (si->si_funcs[f].fi_devi != NULL) {
numfuncs++;
}
}
}
return (numfuncs > 1);
}
/*
* Ensure that the PCIM_MFDEV bit is properly set (or unset) depending on
* whether or not is a multi-function being emulated in the pci 'slot'.
*/
static void
pci_emul_hdrtype_fixup(int bus, int slot, int off, int bytes, uint32_t *rv)
{
int mfdev;
if (off <= PCIR_HDRTYPE && off + bytes > PCIR_HDRTYPE) {
mfdev = pci_emul_is_mfdev(bus, slot);
switch (bytes) {
case 1:
case 2:
*rv &= ~PCIM_MFDEV;
if (mfdev) {
*rv |= PCIM_MFDEV;
}
break;
case 4:
*rv &= ~(PCIM_MFDEV << 16);
if (mfdev) {
*rv |= (PCIM_MFDEV << 16);
}
break;
}
}
}
static void
pci_emul_cmdsts_write(struct pci_devinst *pi, int coff, uint32_t new, int bytes)
{
int i, rshift;
uint32_t cmd, cmd2, changed, old, readonly;
cmd = pci_get_cfgdata16(pi, PCIR_COMMAND); /* stash old value */
/*
* From PCI Local Bus Specification 3.0 sections 6.2.2 and 6.2.3.
*
* XXX Bits 8, 11, 12, 13, 14 and 15 in the status register are
* 'write 1 to clear'. However these bits are not set to '1' by
* any device emulation so it is simpler to treat them as readonly.
*/
rshift = (coff & 0x3) * 8;
readonly = 0xFFFFF880 >> rshift;
old = CFGREAD(pi, coff, bytes);
new &= ~readonly;
new |= (old & readonly);
CFGWRITE(pi, coff, new, bytes); /* update config */
cmd2 = pci_get_cfgdata16(pi, PCIR_COMMAND); /* get updated value */
changed = cmd ^ cmd2;
/*
* If the MMIO or I/O address space decoding has changed then
* register/unregister all BARs that decode that address space.
*/
for (i = 0; i <= PCI_BARMAX; i++) {
switch (pi->pi_bar[i].type) {
case PCIBAR_NONE:
case PCIBAR_MEMHI64:
break;
case PCIBAR_IO:
/* I/O address space decoding changed? */
if (changed & PCIM_CMD_PORTEN) {
if (porten(pi))
register_bar(pi, i);
else
unregister_bar(pi, i);
}
break;
case PCIBAR_MEM32:
case PCIBAR_MEM64:
/* MMIO address space decoding changed? */
if (changed & PCIM_CMD_MEMEN) {
if (memen(pi))
register_bar(pi, i);
else
unregister_bar(pi, i);
}
break;
default:
assert(0);
}
}
/*
* If INTx has been unmasked and is pending, assert the
* interrupt.
*/
pci_lintr_update(pi);
}
static void
pci_cfgrw(struct vmctx *ctx, int vcpu, int in, int bus, int slot, int func,
int coff, int bytes, uint32_t *eax)
{
struct businfo *bi;
struct slotinfo *si;
struct pci_devinst *pi;
struct pci_devemu *pe;
int idx, needcfg;
uint64_t addr, bar, mask;
if ((bi = pci_businfo[bus]) != NULL) {
si = &bi->slotinfo[slot];
pi = si->si_funcs[func].fi_devi;
} else
pi = NULL;
/*
* Just return if there is no device at this slot:func or if the
* the guest is doing an un-aligned access.
*/
if (pi == NULL || (bytes != 1 && bytes != 2 && bytes != 4) ||
(coff & (bytes - 1)) != 0) {
if (in)
*eax = 0xffffffff;
return;
}
/*
* Ignore all writes beyond the standard config space and return all
* ones on reads.
*/
if (coff >= PCI_REGMAX + 1) {
if (in) {
*eax = 0xffffffff;
/*
* Extended capabilities begin at offset 256 in config
* space. Absence of extended capabilities is signaled
* with all 0s in the extended capability header at
* offset 256.
*/
if (coff <= PCI_REGMAX + 4)
*eax = 0x00000000;
}
return;
}
pe = pi->pi_d;
/*
* Config read
*/
if (in) {
/* Let the device emulation override the default handler */
if (pe->pe_cfgread != NULL) {
needcfg = pe->pe_cfgread(ctx, vcpu, pi, coff, bytes,
eax);
} else {
needcfg = 1;
}
if (needcfg)
*eax = CFGREAD(pi, coff, bytes);
pci_emul_hdrtype_fixup(bus, slot, coff, bytes, eax);
} else {
/* Let the device emulation override the default handler */
if (pe->pe_cfgwrite != NULL &&
(*pe->pe_cfgwrite)(ctx, vcpu, pi, coff, bytes, *eax) == 0)
return;
/*
* Special handling for write to BAR registers
*/
if (coff >= PCIR_BAR(0) && coff < PCIR_BAR(PCI_BARMAX + 1)) {
/*
* Ignore writes to BAR registers that are not
* 4-byte aligned.
*/
if (bytes != 4 || (coff & 0x3) != 0)
return;
idx = (coff - PCIR_BAR(0)) / 4;
mask = ~(pi->pi_bar[idx].size - 1);
switch (pi->pi_bar[idx].type) {
case PCIBAR_NONE:
pi->pi_bar[idx].addr = bar = 0;
break;
case PCIBAR_IO:
addr = *eax & mask;
addr &= 0xffff;
bar = addr | PCIM_BAR_IO_SPACE;
/*
* Register the new BAR value for interception
*/
if (addr != pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_IO);
}
break;
case PCIBAR_MEM32:
addr = bar = *eax & mask;
bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_32;
if (addr != pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_MEM32);
}
break;
case PCIBAR_MEM64:
addr = bar = *eax & mask;
bar |= PCIM_BAR_MEM_SPACE | PCIM_BAR_MEM_64 |
PCIM_BAR_MEM_PREFETCH;
if (addr != (uint32_t)pi->pi_bar[idx].addr) {
update_bar_address(pi, addr, idx,
PCIBAR_MEM64);
}
break;
case PCIBAR_MEMHI64:
mask = ~(pi->pi_bar[idx - 1].size - 1);
addr = ((uint64_t)*eax << 32) & mask;
bar = addr >> 32;
if (bar != pi->pi_bar[idx - 1].addr >> 32) {
update_bar_address(pi, addr, idx - 1,
PCIBAR_MEMHI64);
}
break;
default:
assert(0);
}
pci_set_cfgdata32(pi, coff, bar);
} else if (pci_emul_iscap(pi, coff)) {
pci_emul_capwrite(pi, coff, bytes, *eax);
} else if (coff >= PCIR_COMMAND && coff < PCIR_REVID) {
pci_emul_cmdsts_write(pi, coff, *eax, bytes);
} else {
CFGWRITE(pi, coff, *eax, bytes);
}
}
}
static int cfgenable, cfgbus, cfgslot, cfgfunc, cfgoff;
static int
pci_emul_cfgaddr(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
uint32_t x;
if (bytes != 4) {
if (in)
*eax = (bytes == 2) ? 0xffff : 0xff;
return (0);
}
if (in) {
x = (cfgbus << 16) | (cfgslot << 11) | (cfgfunc << 8) | cfgoff;
if (cfgenable)
x |= CONF1_ENABLE;
*eax = x;
} else {
x = *eax;
cfgenable = (x & CONF1_ENABLE) == CONF1_ENABLE;
cfgoff = x & PCI_REGMAX;
cfgfunc = (x >> 8) & PCI_FUNCMAX;
cfgslot = (x >> 11) & PCI_SLOTMAX;
cfgbus = (x >> 16) & PCI_BUSMAX;
}
return (0);
}
INOUT_PORT(pci_cfgaddr, CONF1_ADDR_PORT, IOPORT_F_INOUT, pci_emul_cfgaddr);
static int
pci_emul_cfgdata(struct vmctx *ctx, int vcpu, int in, int port, int bytes,
uint32_t *eax, void *arg)
{
int coff;
assert(bytes == 1 || bytes == 2 || bytes == 4);
coff = cfgoff + (port - CONF1_DATA_PORT);
if (cfgenable) {
pci_cfgrw(ctx, vcpu, in, cfgbus, cfgslot, cfgfunc, coff, bytes,
eax);
} else {
/* Ignore accesses to cfgdata if not enabled by cfgaddr */
if (in)
*eax = 0xffffffff;
}
return (0);
}
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+0, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+1, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+2, IOPORT_F_INOUT, pci_emul_cfgdata);
INOUT_PORT(pci_cfgdata, CONF1_DATA_PORT+3, IOPORT_F_INOUT, pci_emul_cfgdata);
#define PCI_EMUL_TEST
#ifdef PCI_EMUL_TEST
/*
* Define a dummy test device
*/
#define DIOSZ 8
#define DMEMSZ 4096
struct pci_emul_dsoftc {
uint8_t ioregs[DIOSZ];
uint8_t memregs[2][DMEMSZ];
};
#define PCI_EMUL_MSI_MSGS 4
#define PCI_EMUL_MSIX_MSGS 16
static int
pci_emul_dinit(struct vmctx *ctx, struct pci_devinst *pi, char *opts)
{
int error;
struct pci_emul_dsoftc *sc;
sc = calloc(1, sizeof(struct pci_emul_dsoftc));
pi->pi_arg = sc;
pci_set_cfgdata16(pi, PCIR_DEVICE, 0x0001);
pci_set_cfgdata16(pi, PCIR_VENDOR, 0x10DD);
pci_set_cfgdata8(pi, PCIR_CLASS, 0x02);
error = pci_emul_add_msicap(pi, PCI_EMUL_MSI_MSGS);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 0, PCIBAR_IO, DIOSZ);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 1, PCIBAR_MEM32, DMEMSZ);
assert(error == 0);
error = pci_emul_alloc_bar(pi, 2, PCIBAR_MEM32, DMEMSZ);
assert(error == 0);
return (0);
}
static void
pci_emul_diow(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size, uint64_t value)
{
int i;
struct pci_emul_dsoftc *sc = pi->pi_arg;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("diow: iow too large, offset %ld size %d\n",
offset, size);
return;
}
if (size == 1) {
sc->ioregs[offset] = value & 0xff;
} else if (size == 2) {
*(uint16_t *)&sc->ioregs[offset] = value & 0xffff;
} else if (size == 4) {
*(uint32_t *)&sc->ioregs[offset] = value;
} else {
printf("diow: iow unknown size %d\n", size);
}
/*
* Special magic value to generate an interrupt
*/
if (offset == 4 && size == 4 && pci_msi_enabled(pi))
pci_generate_msi(pi, value % pci_msi_maxmsgnum(pi));
if (value == 0xabcdef) {
for (i = 0; i < pci_msi_maxmsgnum(pi); i++)
pci_generate_msi(pi, i);
}
}
if (baridx == 1 || baridx == 2) {
if (offset + size > DMEMSZ) {
printf("diow: memw too large, offset %ld size %d\n",
offset, size);
return;
}
i = baridx - 1; /* 'memregs' index */
if (size == 1) {
sc->memregs[i][offset] = value;
} else if (size == 2) {
*(uint16_t *)&sc->memregs[i][offset] = value;
} else if (size == 4) {
*(uint32_t *)&sc->memregs[i][offset] = value;
} else if (size == 8) {
*(uint64_t *)&sc->memregs[i][offset] = value;
} else {
printf("diow: memw unknown size %d\n", size);
}
/*
* magic interrupt ??
*/
}
if (baridx > 2 || baridx < 0) {
printf("diow: unknown bar idx %d\n", baridx);
}
}
static uint64_t
pci_emul_dior(struct vmctx *ctx, int vcpu, struct pci_devinst *pi, int baridx,
uint64_t offset, int size)
{
struct pci_emul_dsoftc *sc = pi->pi_arg;
uint32_t value;
int i;
if (baridx == 0) {
if (offset + size > DIOSZ) {
printf("dior: ior too large, offset %ld size %d\n",
offset, size);
return (0);
}
value = 0;
if (size == 1) {
value = sc->ioregs[offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->ioregs[offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->ioregs[offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx == 1 || baridx == 2) {
if (offset + size > DMEMSZ) {
printf("dior: memr too large, offset %ld size %d\n",
offset, size);
return (0);
}
i = baridx - 1; /* 'memregs' index */
if (size == 1) {
value = sc->memregs[i][offset];
} else if (size == 2) {
value = *(uint16_t *) &sc->memregs[i][offset];
} else if (size == 4) {
value = *(uint32_t *) &sc->memregs[i][offset];
} else if (size == 8) {
value = *(uint64_t *) &sc->memregs[i][offset];
} else {
printf("dior: ior unknown size %d\n", size);
}
}
if (baridx > 2 || baridx < 0) {
printf("dior: unknown bar idx %d\n", baridx);
return (0);
}
return (value);
}
struct pci_devemu pci_dummy = {
.pe_emu = "dummy",
.pe_init = pci_emul_dinit,
.pe_barwrite = pci_emul_diow,
.pe_barread = pci_emul_dior
};
PCI_EMUL_SET(pci_dummy);
#endif /* PCI_EMUL_TEST */