a69aaa7721
malloc(9) flags in sys/dev.
1904 lines
49 KiB
C
1904 lines
49 KiB
C
/*-
|
|
* Copyright (c) 2008-2010 Nikolay Denev <ndenev@gmail.com>
|
|
* Copyright (c) 2007-2008 Alexander Pohoyda <alexander.pohoyda@gmx.net>
|
|
* Copyright (c) 1997, 1998, 1999
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS''
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL AUTHORS OR
|
|
* THE VOICES IN THEIR HEADS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* SiS 190/191 PCI Ethernet NIC driver.
|
|
*
|
|
* Adapted to SiS 190 NIC by Alexander Pohoyda based on the original
|
|
* SiS 900 driver by Bill Paul, using SiS 190/191 Solaris driver by
|
|
* Masayuki Murayama and SiS 190/191 GNU/Linux driver by K.M. Liu
|
|
* <kmliu@sis.com>. Thanks to Pyun YongHyeon <pyunyh@gmail.com> for
|
|
* review and very useful comments.
|
|
*
|
|
* Adapted to SiS 191 NIC by Nikolay Denev with further ideas from the
|
|
* Linux and Solaris drivers.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/in_cksum.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/sge/if_sgereg.h>
|
|
|
|
MODULE_DEPEND(sge, pci, 1, 1, 1);
|
|
MODULE_DEPEND(sge, ether, 1, 1, 1);
|
|
MODULE_DEPEND(sge, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus0" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static struct sge_type sge_devs[] = {
|
|
{ SIS_VENDORID, SIS_DEVICEID_190, "SiS190 Fast Ethernet" },
|
|
{ SIS_VENDORID, SIS_DEVICEID_191, "SiS191 Fast/Gigabit Ethernet" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int sge_probe(device_t);
|
|
static int sge_attach(device_t);
|
|
static int sge_detach(device_t);
|
|
static int sge_shutdown(device_t);
|
|
static int sge_suspend(device_t);
|
|
static int sge_resume(device_t);
|
|
|
|
static int sge_miibus_readreg(device_t, int, int);
|
|
static int sge_miibus_writereg(device_t, int, int, int);
|
|
static void sge_miibus_statchg(device_t);
|
|
|
|
static int sge_newbuf(struct sge_softc *, int);
|
|
static int sge_encap(struct sge_softc *, struct mbuf **);
|
|
static __inline void
|
|
sge_discard_rxbuf(struct sge_softc *, int);
|
|
static void sge_rxeof(struct sge_softc *);
|
|
static void sge_txeof(struct sge_softc *);
|
|
static void sge_intr(void *);
|
|
static void sge_tick(void *);
|
|
static void sge_start(struct ifnet *);
|
|
static void sge_start_locked(struct ifnet *);
|
|
static int sge_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void sge_init(void *);
|
|
static void sge_init_locked(struct sge_softc *);
|
|
static void sge_stop(struct sge_softc *);
|
|
static void sge_watchdog(struct sge_softc *);
|
|
static int sge_ifmedia_upd(struct ifnet *);
|
|
static void sge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
static int sge_get_mac_addr_apc(struct sge_softc *, uint8_t *);
|
|
static int sge_get_mac_addr_eeprom(struct sge_softc *, uint8_t *);
|
|
static uint16_t sge_read_eeprom(struct sge_softc *, int);
|
|
|
|
static void sge_rxfilter(struct sge_softc *);
|
|
static void sge_setvlan(struct sge_softc *);
|
|
static void sge_reset(struct sge_softc *);
|
|
static int sge_list_rx_init(struct sge_softc *);
|
|
static int sge_list_rx_free(struct sge_softc *);
|
|
static int sge_list_tx_init(struct sge_softc *);
|
|
static int sge_list_tx_free(struct sge_softc *);
|
|
|
|
static int sge_dma_alloc(struct sge_softc *);
|
|
static void sge_dma_free(struct sge_softc *);
|
|
static void sge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
|
|
|
|
static device_method_t sge_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, sge_probe),
|
|
DEVMETHOD(device_attach, sge_attach),
|
|
DEVMETHOD(device_detach, sge_detach),
|
|
DEVMETHOD(device_suspend, sge_suspend),
|
|
DEVMETHOD(device_resume, sge_resume),
|
|
DEVMETHOD(device_shutdown, sge_shutdown),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, sge_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, sge_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, sge_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t sge_driver = {
|
|
"sge", sge_methods, sizeof(struct sge_softc)
|
|
};
|
|
|
|
static devclass_t sge_devclass;
|
|
|
|
DRIVER_MODULE(sge, pci, sge_driver, sge_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, sge, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
/*
|
|
* Register space access macros.
|
|
*/
|
|
#define CSR_WRITE_4(sc, reg, val) bus_write_4(sc->sge_res, reg, val)
|
|
#define CSR_WRITE_2(sc, reg, val) bus_write_2(sc->sge_res, reg, val)
|
|
#define CSR_WRITE_1(cs, reg, val) bus_write_1(sc->sge_res, reg, val)
|
|
|
|
#define CSR_READ_4(sc, reg) bus_read_4(sc->sge_res, reg)
|
|
#define CSR_READ_2(sc, reg) bus_read_2(sc->sge_res, reg)
|
|
#define CSR_READ_1(sc, reg) bus_read_1(sc->sge_res, reg)
|
|
|
|
/* Define to show Tx/Rx error status. */
|
|
#undef SGE_SHOW_ERRORS
|
|
|
|
#define SGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
static void
|
|
sge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
bus_addr_t *p;
|
|
|
|
if (error != 0)
|
|
return;
|
|
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
|
|
p = arg;
|
|
*p = segs->ds_addr;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
static uint16_t
|
|
sge_read_eeprom(struct sge_softc *sc, int offset)
|
|
{
|
|
uint32_t val;
|
|
int i;
|
|
|
|
KASSERT(offset <= EI_OFFSET, ("EEPROM offset too big"));
|
|
CSR_WRITE_4(sc, ROMInterface,
|
|
EI_REQ | EI_OP_RD | (offset << EI_OFFSET_SHIFT));
|
|
DELAY(500);
|
|
for (i = 0; i < SGE_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, ROMInterface);
|
|
if ((val & EI_REQ) == 0)
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
if (i == SGE_TIMEOUT) {
|
|
device_printf(sc->sge_dev,
|
|
"EEPROM read timeout : 0x%08x\n", val);
|
|
return (0xffff);
|
|
}
|
|
|
|
return ((val & EI_DATA) >> EI_DATA_SHIFT);
|
|
}
|
|
|
|
static int
|
|
sge_get_mac_addr_eeprom(struct sge_softc *sc, uint8_t *dest)
|
|
{
|
|
uint16_t val;
|
|
int i;
|
|
|
|
val = sge_read_eeprom(sc, EEPROMSignature);
|
|
if (val == 0xffff || val == 0) {
|
|
device_printf(sc->sge_dev,
|
|
"invalid EEPROM signature : 0x%04x\n", val);
|
|
return (EINVAL);
|
|
}
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; i += 2) {
|
|
val = sge_read_eeprom(sc, EEPROMMACAddr + i / 2);
|
|
dest[i + 0] = (uint8_t)val;
|
|
dest[i + 1] = (uint8_t)(val >> 8);
|
|
}
|
|
|
|
if ((sge_read_eeprom(sc, EEPROMInfo) & 0x80) != 0)
|
|
sc->sge_flags |= SGE_FLAG_RGMII;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* For SiS96x, APC CMOS RAM is used to store ethernet address.
|
|
* APC CMOS RAM is accessed through ISA bridge.
|
|
*/
|
|
static int
|
|
sge_get_mac_addr_apc(struct sge_softc *sc, uint8_t *dest)
|
|
{
|
|
#if defined(__amd64__) || defined(__i386__)
|
|
devclass_t pci;
|
|
device_t bus, dev = NULL;
|
|
device_t *kids;
|
|
struct apc_tbl {
|
|
uint16_t vid;
|
|
uint16_t did;
|
|
} *tp, apc_tbls[] = {
|
|
{ SIS_VENDORID, 0x0965 },
|
|
{ SIS_VENDORID, 0x0966 },
|
|
{ SIS_VENDORID, 0x0968 }
|
|
};
|
|
uint8_t reg;
|
|
int busnum, cnt, i, j, numkids;
|
|
|
|
cnt = sizeof(apc_tbls) / sizeof(apc_tbls[0]);
|
|
pci = devclass_find("pci");
|
|
for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
|
|
bus = devclass_get_device(pci, busnum);
|
|
if (!bus)
|
|
continue;
|
|
if (device_get_children(bus, &kids, &numkids) != 0)
|
|
continue;
|
|
for (i = 0; i < numkids; i++) {
|
|
dev = kids[i];
|
|
if (pci_get_class(dev) == PCIC_BRIDGE &&
|
|
pci_get_subclass(dev) == PCIS_BRIDGE_ISA) {
|
|
tp = apc_tbls;
|
|
for (j = 0; j < cnt; j++) {
|
|
if (pci_get_vendor(dev) == tp->vid &&
|
|
pci_get_device(dev) == tp->did) {
|
|
free(kids, M_TEMP);
|
|
goto apc_found;
|
|
}
|
|
tp++;
|
|
}
|
|
}
|
|
}
|
|
free(kids, M_TEMP);
|
|
}
|
|
device_printf(sc->sge_dev, "couldn't find PCI-ISA bridge\n");
|
|
return (EINVAL);
|
|
apc_found:
|
|
/* Enable port 0x78 and 0x79 to access APC registers. */
|
|
reg = pci_read_config(dev, 0x48, 1);
|
|
pci_write_config(dev, 0x48, reg & ~0x02, 1);
|
|
DELAY(50);
|
|
pci_read_config(dev, 0x48, 1);
|
|
/* Read stored ethernet address. */
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
outb(0x78, 0x09 + i);
|
|
dest[i] = inb(0x79);
|
|
}
|
|
outb(0x78, 0x12);
|
|
if ((inb(0x79) & 0x80) != 0)
|
|
sc->sge_flags |= SGE_FLAG_RGMII;
|
|
/* Restore access to APC registers. */
|
|
pci_write_config(dev, 0x48, reg, 1);
|
|
|
|
return (0);
|
|
#else
|
|
return (EINVAL);
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
sge_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct sge_softc *sc;
|
|
uint32_t val;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
|
|
(reg << GMI_REG_SHIFT) | GMI_OP_RD | GMI_REQ);
|
|
DELAY(10);
|
|
for (i = 0; i < SGE_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, GMIIControl);
|
|
if ((val & GMI_REQ) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == SGE_TIMEOUT) {
|
|
device_printf(sc->sge_dev, "PHY read timeout : %d\n", reg);
|
|
return (0);
|
|
}
|
|
return ((val & GMI_DATA) >> GMI_DATA_SHIFT);
|
|
}
|
|
|
|
static int
|
|
sge_miibus_writereg(device_t dev, int phy, int reg, int data)
|
|
{
|
|
struct sge_softc *sc;
|
|
uint32_t val;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
CSR_WRITE_4(sc, GMIIControl, (phy << GMI_PHY_SHIFT) |
|
|
(reg << GMI_REG_SHIFT) | (data << GMI_DATA_SHIFT) |
|
|
GMI_OP_WR | GMI_REQ);
|
|
DELAY(10);
|
|
for (i = 0; i < SGE_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, GMIIControl);
|
|
if ((val & GMI_REQ) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == SGE_TIMEOUT)
|
|
device_printf(sc->sge_dev, "PHY write timeout : %d\n", reg);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sge_miibus_statchg(device_t dev)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
uint32_t ctl, speed;
|
|
|
|
sc = device_get_softc(dev);
|
|
mii = device_get_softc(sc->sge_miibus);
|
|
ifp = sc->sge_ifp;
|
|
if (mii == NULL || ifp == NULL ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
speed = 0;
|
|
sc->sge_flags &= ~SGE_FLAG_LINK;
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
sc->sge_flags |= SGE_FLAG_LINK;
|
|
speed = SC_SPEED_10;
|
|
break;
|
|
case IFM_100_TX:
|
|
sc->sge_flags |= SGE_FLAG_LINK;
|
|
speed = SC_SPEED_100;
|
|
break;
|
|
case IFM_1000_T:
|
|
if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0) {
|
|
sc->sge_flags |= SGE_FLAG_LINK;
|
|
speed = SC_SPEED_1000;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
if ((sc->sge_flags & SGE_FLAG_LINK) == 0)
|
|
return;
|
|
/* Reprogram MAC to resolved speed/duplex/flow-control parameters. */
|
|
ctl = CSR_READ_4(sc, StationControl);
|
|
ctl &= ~(0x0f000000 | SC_FDX | SC_SPEED_MASK);
|
|
if (speed == SC_SPEED_1000) {
|
|
ctl |= 0x07000000;
|
|
sc->sge_flags |= SGE_FLAG_SPEED_1000;
|
|
} else {
|
|
ctl |= 0x04000000;
|
|
sc->sge_flags &= ~SGE_FLAG_SPEED_1000;
|
|
}
|
|
#ifdef notyet
|
|
if ((sc->sge_flags & SGE_FLAG_GMII) != 0)
|
|
ctl |= 0x03000000;
|
|
#endif
|
|
ctl |= speed;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
ctl |= SC_FDX;
|
|
sc->sge_flags |= SGE_FLAG_FDX;
|
|
} else
|
|
sc->sge_flags &= ~SGE_FLAG_FDX;
|
|
CSR_WRITE_4(sc, StationControl, ctl);
|
|
if ((sc->sge_flags & SGE_FLAG_RGMII) != 0) {
|
|
CSR_WRITE_4(sc, RGMIIDelay, 0x0441);
|
|
CSR_WRITE_4(sc, RGMIIDelay, 0x0440);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sge_rxfilter(struct sge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
uint32_t crc, hashes[2];
|
|
uint16_t rxfilt;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sge_ifp;
|
|
rxfilt = CSR_READ_2(sc, RxMacControl);
|
|
rxfilt &= ~(AcceptBroadcast | AcceptAllPhys | AcceptMulticast);
|
|
rxfilt |= AcceptMyPhys;
|
|
if ((ifp->if_flags & IFF_BROADCAST) != 0)
|
|
rxfilt |= AcceptBroadcast;
|
|
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
rxfilt |= AcceptAllPhys;
|
|
rxfilt |= AcceptMulticast;
|
|
hashes[0] = 0xFFFFFFFF;
|
|
hashes[1] = 0xFFFFFFFF;
|
|
} else {
|
|
rxfilt |= AcceptMulticast;
|
|
hashes[0] = hashes[1] = 0;
|
|
/* Now program new ones. */
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
hashes[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
}
|
|
CSR_WRITE_2(sc, RxMacControl, rxfilt);
|
|
CSR_WRITE_4(sc, RxHashTable, hashes[0]);
|
|
CSR_WRITE_4(sc, RxHashTable2, hashes[1]);
|
|
}
|
|
|
|
static void
|
|
sge_setvlan(struct sge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint16_t rxfilt;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sge_ifp;
|
|
if ((ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) == 0)
|
|
return;
|
|
rxfilt = CSR_READ_2(sc, RxMacControl);
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
|
|
rxfilt |= RXMAC_STRIP_VLAN;
|
|
else
|
|
rxfilt &= ~RXMAC_STRIP_VLAN;
|
|
CSR_WRITE_2(sc, RxMacControl, rxfilt);
|
|
}
|
|
|
|
static void
|
|
sge_reset(struct sge_softc *sc)
|
|
{
|
|
|
|
CSR_WRITE_4(sc, IntrMask, 0);
|
|
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
|
|
|
|
/* Soft reset. */
|
|
CSR_WRITE_4(sc, IntrControl, 0x8000);
|
|
CSR_READ_4(sc, IntrControl);
|
|
DELAY(100);
|
|
CSR_WRITE_4(sc, IntrControl, 0);
|
|
/* Stop MAC. */
|
|
CSR_WRITE_4(sc, TX_CTL, 0x1a00);
|
|
CSR_WRITE_4(sc, RX_CTL, 0x1a00);
|
|
|
|
CSR_WRITE_4(sc, IntrMask, 0);
|
|
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
|
|
|
|
CSR_WRITE_4(sc, GMIIControl, 0);
|
|
}
|
|
|
|
/*
|
|
* Probe for an SiS chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
sge_probe(device_t dev)
|
|
{
|
|
struct sge_type *t;
|
|
|
|
t = sge_devs;
|
|
while (t->sge_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->sge_vid) &&
|
|
(pci_get_device(dev) == t->sge_did)) {
|
|
device_set_desc(dev, t->sge_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
sge_attach(device_t dev)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
int error = 0, rid;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->sge_dev = dev;
|
|
|
|
mtx_init(&sc->sge_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
callout_init_mtx(&sc->sge_stat_ch, &sc->sge_mtx, 0);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
/* Allocate resources. */
|
|
sc->sge_res_id = PCIR_BAR(0);
|
|
sc->sge_res_type = SYS_RES_MEMORY;
|
|
sc->sge_res = bus_alloc_resource_any(dev, sc->sge_res_type,
|
|
&sc->sge_res_id, RF_ACTIVE);
|
|
if (sc->sge_res == NULL) {
|
|
device_printf(dev, "couldn't allocate resource\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
rid = 0;
|
|
sc->sge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
if (sc->sge_irq == NULL) {
|
|
device_printf(dev, "couldn't allocate IRQ resources\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
sc->sge_rev = pci_get_revid(dev);
|
|
if (pci_get_device(dev) == SIS_DEVICEID_190)
|
|
sc->sge_flags |= SGE_FLAG_FASTETHER | SGE_FLAG_SIS190;
|
|
/* Reset the adapter. */
|
|
sge_reset(sc);
|
|
|
|
/* Get MAC address from the EEPROM. */
|
|
if ((pci_read_config(dev, 0x73, 1) & 0x01) != 0)
|
|
sge_get_mac_addr_apc(sc, eaddr);
|
|
else
|
|
sge_get_mac_addr_eeprom(sc, eaddr);
|
|
|
|
if ((error = sge_dma_alloc(sc)) != 0)
|
|
goto fail;
|
|
|
|
ifp = sc->sge_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "cannot allocate ifnet structure.\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = sge_ioctl;
|
|
ifp->if_start = sge_start;
|
|
ifp->if_init = sge_init;
|
|
ifp->if_snd.ifq_drv_maxlen = SGE_TX_RING_CNT - 1;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM | IFCAP_TSO4;
|
|
ifp->if_hwassist = SGE_CSUM_FEATURES | CSUM_TSO;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
/*
|
|
* Do MII setup.
|
|
*/
|
|
error = mii_attach(dev, &sc->sge_miibus, ifp, sge_ifmedia_upd,
|
|
sge_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (error != 0) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* VLAN setup. */
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM |
|
|
IFCAP_VLAN_HWTSO | IFCAP_VLAN_MTU;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
/* Tell the upper layer(s) we support long frames. */
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->sge_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, sge_intr, sc, &sc->sge_intrhand);
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
sge_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
sge_detach(device_t dev)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->sge_ifp;
|
|
/* These should only be active if attach succeeded. */
|
|
if (device_is_attached(dev)) {
|
|
ether_ifdetach(ifp);
|
|
SGE_LOCK(sc);
|
|
sge_stop(sc);
|
|
SGE_UNLOCK(sc);
|
|
callout_drain(&sc->sge_stat_ch);
|
|
}
|
|
if (sc->sge_miibus)
|
|
device_delete_child(dev, sc->sge_miibus);
|
|
bus_generic_detach(dev);
|
|
|
|
if (sc->sge_intrhand)
|
|
bus_teardown_intr(dev, sc->sge_irq, sc->sge_intrhand);
|
|
if (sc->sge_irq)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sge_irq);
|
|
if (sc->sge_res)
|
|
bus_release_resource(dev, sc->sge_res_type, sc->sge_res_id,
|
|
sc->sge_res);
|
|
if (ifp)
|
|
if_free(ifp);
|
|
sge_dma_free(sc);
|
|
mtx_destroy(&sc->sge_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static int
|
|
sge_shutdown(device_t dev)
|
|
{
|
|
struct sge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
SGE_LOCK(sc);
|
|
sge_stop(sc);
|
|
SGE_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sge_suspend(device_t dev)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
SGE_LOCK(sc);
|
|
ifp = sc->sge_ifp;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
sge_stop(sc);
|
|
SGE_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sge_resume(device_t dev)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
SGE_LOCK(sc);
|
|
ifp = sc->sge_ifp;
|
|
if ((ifp->if_flags & IFF_UP) != 0)
|
|
sge_init_locked(sc);
|
|
SGE_UNLOCK(sc);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sge_dma_alloc(struct sge_softc *sc)
|
|
{
|
|
struct sge_chain_data *cd;
|
|
struct sge_list_data *ld;
|
|
struct sge_rxdesc *rxd;
|
|
struct sge_txdesc *txd;
|
|
int error, i;
|
|
|
|
cd = &sc->sge_cdata;
|
|
ld = &sc->sge_ldata;
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sge_dev),
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
1, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&cd->sge_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not create parent DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* RX descriptor ring */
|
|
error = bus_dma_tag_create(cd->sge_tag,
|
|
SGE_DESC_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SGE_RX_RING_SZ, 1, /* maxsize,nsegments */
|
|
SGE_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&cd->sge_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not create Rx ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
/* Allocate DMA'able memory and load DMA map for RX ring. */
|
|
error = bus_dmamem_alloc(cd->sge_rx_tag, (void **)&ld->sge_rx_ring,
|
|
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&cd->sge_rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not allocate DMA'able memory for Rx ring.\n");
|
|
goto fail;
|
|
}
|
|
error = bus_dmamap_load(cd->sge_rx_tag, cd->sge_rx_dmamap,
|
|
ld->sge_rx_ring, SGE_RX_RING_SZ, sge_dma_map_addr,
|
|
&ld->sge_rx_paddr, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not load DMA'able memory for Rx ring.\n");
|
|
}
|
|
|
|
/* TX descriptor ring */
|
|
error = bus_dma_tag_create(cd->sge_tag,
|
|
SGE_DESC_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SGE_TX_RING_SZ, 1, /* maxsize,nsegments */
|
|
SGE_TX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockarg */
|
|
&cd->sge_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not create Rx ring DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
/* Allocate DMA'able memory and load DMA map for TX ring. */
|
|
error = bus_dmamem_alloc(cd->sge_tx_tag, (void **)&ld->sge_tx_ring,
|
|
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT,
|
|
&cd->sge_tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not allocate DMA'able memory for Tx ring.\n");
|
|
goto fail;
|
|
}
|
|
error = bus_dmamap_load(cd->sge_tx_tag, cd->sge_tx_dmamap,
|
|
ld->sge_tx_ring, SGE_TX_RING_SZ, sge_dma_map_addr,
|
|
&ld->sge_tx_paddr, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not load DMA'able memory for Rx ring.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA tag for Tx buffers. */
|
|
error = bus_dma_tag_create(cd->sge_tag, 1, 0, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, SGE_TSO_MAXSIZE, SGE_MAXTXSEGS,
|
|
SGE_TSO_MAXSEGSIZE, 0, NULL, NULL, &cd->sge_txmbuf_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not create Tx mbuf DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA tag for Rx buffers. */
|
|
error = bus_dma_tag_create(cd->sge_tag, SGE_RX_BUF_ALIGN, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
|
|
MCLBYTES, 0, NULL, NULL, &cd->sge_rxmbuf_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not create Rx mbuf DMA tag.\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < SGE_TX_RING_CNT; i++) {
|
|
txd = &cd->sge_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
txd->tx_ndesc = 0;
|
|
error = bus_dmamap_create(cd->sge_txmbuf_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not create Tx DMA map.\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create spare DMA map for Rx buffer. */
|
|
error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0, &cd->sge_rx_spare_map);
|
|
if (error != 0) {
|
|
device_printf(sc->sge_dev,
|
|
"could not create spare Rx DMA map.\n");
|
|
goto fail;
|
|
}
|
|
/* Create DMA maps for Rx buffers. */
|
|
for (i = 0; i < SGE_RX_RING_CNT; i++) {
|
|
rxd = &cd->sge_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(cd->sge_rxmbuf_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error) {
|
|
device_printf(sc->sge_dev,
|
|
"could not create Rx DMA map.\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
sge_dma_free(struct sge_softc *sc)
|
|
{
|
|
struct sge_chain_data *cd;
|
|
struct sge_list_data *ld;
|
|
struct sge_rxdesc *rxd;
|
|
struct sge_txdesc *txd;
|
|
int i;
|
|
|
|
cd = &sc->sge_cdata;
|
|
ld = &sc->sge_ldata;
|
|
/* Rx ring. */
|
|
if (cd->sge_rx_tag != NULL) {
|
|
if (cd->sge_rx_dmamap != NULL)
|
|
bus_dmamap_unload(cd->sge_rx_tag, cd->sge_rx_dmamap);
|
|
if (cd->sge_rx_dmamap != NULL && ld->sge_rx_ring != NULL)
|
|
bus_dmamem_free(cd->sge_rx_tag, ld->sge_rx_ring,
|
|
cd->sge_rx_dmamap);
|
|
ld->sge_rx_ring = NULL;
|
|
cd->sge_rx_dmamap = NULL;
|
|
bus_dma_tag_destroy(cd->sge_rx_tag);
|
|
cd->sge_rx_tag = NULL;
|
|
}
|
|
/* Tx ring. */
|
|
if (cd->sge_tx_tag != NULL) {
|
|
if (cd->sge_tx_dmamap != NULL)
|
|
bus_dmamap_unload(cd->sge_tx_tag, cd->sge_tx_dmamap);
|
|
if (cd->sge_tx_dmamap != NULL && ld->sge_tx_ring != NULL)
|
|
bus_dmamem_free(cd->sge_tx_tag, ld->sge_tx_ring,
|
|
cd->sge_tx_dmamap);
|
|
ld->sge_tx_ring = NULL;
|
|
cd->sge_tx_dmamap = NULL;
|
|
bus_dma_tag_destroy(cd->sge_tx_tag);
|
|
cd->sge_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers. */
|
|
if (cd->sge_rxmbuf_tag != NULL) {
|
|
for (i = 0; i < SGE_RX_RING_CNT; i++) {
|
|
rxd = &cd->sge_rxdesc[i];
|
|
if (rxd->rx_dmamap != NULL) {
|
|
bus_dmamap_destroy(cd->sge_rxmbuf_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (cd->sge_rx_spare_map != NULL) {
|
|
bus_dmamap_destroy(cd->sge_rxmbuf_tag,
|
|
cd->sge_rx_spare_map);
|
|
cd->sge_rx_spare_map = NULL;
|
|
}
|
|
bus_dma_tag_destroy(cd->sge_rxmbuf_tag);
|
|
cd->sge_rxmbuf_tag = NULL;
|
|
}
|
|
/* Tx buffers. */
|
|
if (cd->sge_txmbuf_tag != NULL) {
|
|
for (i = 0; i < SGE_TX_RING_CNT; i++) {
|
|
txd = &cd->sge_txdesc[i];
|
|
if (txd->tx_dmamap != NULL) {
|
|
bus_dmamap_destroy(cd->sge_txmbuf_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(cd->sge_txmbuf_tag);
|
|
cd->sge_txmbuf_tag = NULL;
|
|
}
|
|
if (cd->sge_tag != NULL)
|
|
bus_dma_tag_destroy(cd->sge_tag);
|
|
cd->sge_tag = NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize the TX descriptors.
|
|
*/
|
|
static int
|
|
sge_list_tx_init(struct sge_softc *sc)
|
|
{
|
|
struct sge_list_data *ld;
|
|
struct sge_chain_data *cd;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
ld = &sc->sge_ldata;
|
|
cd = &sc->sge_cdata;
|
|
bzero(ld->sge_tx_ring, SGE_TX_RING_SZ);
|
|
ld->sge_tx_ring[SGE_TX_RING_CNT - 1].sge_flags = htole32(RING_END);
|
|
bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
cd->sge_tx_prod = 0;
|
|
cd->sge_tx_cons = 0;
|
|
cd->sge_tx_cnt = 0;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sge_list_tx_free(struct sge_softc *sc)
|
|
{
|
|
struct sge_chain_data *cd;
|
|
struct sge_txdesc *txd;
|
|
int i;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
cd = &sc->sge_cdata;
|
|
for (i = 0; i < SGE_TX_RING_CNT; i++) {
|
|
txd = &cd->sge_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
txd->tx_ndesc = 0;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* has RING_END flag set.
|
|
*/
|
|
static int
|
|
sge_list_rx_init(struct sge_softc *sc)
|
|
{
|
|
struct sge_chain_data *cd;
|
|
int i;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
cd = &sc->sge_cdata;
|
|
cd->sge_rx_cons = 0;
|
|
bzero(sc->sge_ldata.sge_rx_ring, SGE_RX_RING_SZ);
|
|
for (i = 0; i < SGE_RX_RING_CNT; i++) {
|
|
if (sge_newbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
}
|
|
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sge_list_rx_free(struct sge_softc *sc)
|
|
{
|
|
struct sge_chain_data *cd;
|
|
struct sge_rxdesc *rxd;
|
|
int i;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
cd = &sc->sge_cdata;
|
|
for (i = 0; i < SGE_RX_RING_CNT; i++) {
|
|
rxd = &cd->sge_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(cd->sge_rxmbuf_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
*/
|
|
static int
|
|
sge_newbuf(struct sge_softc *sc, int prod)
|
|
{
|
|
struct mbuf *m;
|
|
struct sge_desc *desc;
|
|
struct sge_chain_data *cd;
|
|
struct sge_rxdesc *rxd;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int error, nsegs;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
cd = &sc->sge_cdata;
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, SGE_RX_BUF_ALIGN);
|
|
error = bus_dmamap_load_mbuf_sg(cd->sge_rxmbuf_tag,
|
|
cd->sge_rx_spare_map, m, segs, &nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return (error);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
rxd = &cd->sge_rxdesc[prod];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(cd->sge_rxmbuf_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = cd->sge_rx_spare_map;
|
|
cd->sge_rx_spare_map = map;
|
|
bus_dmamap_sync(cd->sge_rxmbuf_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
|
|
desc = &sc->sge_ldata.sge_rx_ring[prod];
|
|
desc->sge_sts_size = 0;
|
|
desc->sge_ptr = htole32(SGE_ADDR_LO(segs[0].ds_addr));
|
|
desc->sge_flags = htole32(segs[0].ds_len);
|
|
if (prod == SGE_RX_RING_CNT - 1)
|
|
desc->sge_flags |= htole32(RING_END);
|
|
desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
sge_discard_rxbuf(struct sge_softc *sc, int index)
|
|
{
|
|
struct sge_desc *desc;
|
|
|
|
desc = &sc->sge_ldata.sge_rx_ring[index];
|
|
desc->sge_sts_size = 0;
|
|
desc->sge_flags = htole32(MCLBYTES - SGE_RX_BUF_ALIGN);
|
|
if (index == SGE_RX_RING_CNT - 1)
|
|
desc->sge_flags |= htole32(RING_END);
|
|
desc->sge_cmdsts = htole32(RDC_OWN | RDC_INTR);
|
|
}
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static void
|
|
sge_rxeof(struct sge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
struct sge_chain_data *cd;
|
|
struct sge_desc *cur_rx;
|
|
uint32_t rxinfo, rxstat;
|
|
int cons, prog;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sge_ifp;
|
|
cd = &sc->sge_cdata;
|
|
|
|
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
cons = cd->sge_rx_cons;
|
|
for (prog = 0; prog < SGE_RX_RING_CNT; prog++,
|
|
SGE_INC(cons, SGE_RX_RING_CNT)) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
cur_rx = &sc->sge_ldata.sge_rx_ring[cons];
|
|
rxinfo = le32toh(cur_rx->sge_cmdsts);
|
|
if ((rxinfo & RDC_OWN) != 0)
|
|
break;
|
|
rxstat = le32toh(cur_rx->sge_sts_size);
|
|
if ((rxstat & RDS_CRCOK) == 0 || SGE_RX_ERROR(rxstat) != 0 ||
|
|
SGE_RX_NSEGS(rxstat) != 1) {
|
|
/* XXX We don't support multi-segment frames yet. */
|
|
#ifdef SGE_SHOW_ERRORS
|
|
device_printf(sc->sge_dev, "Rx error : 0x%b\n", rxstat,
|
|
RX_ERR_BITS);
|
|
#endif
|
|
sge_discard_rxbuf(sc, cons);
|
|
ifp->if_ierrors++;
|
|
continue;
|
|
}
|
|
m = cd->sge_rxdesc[cons].rx_m;
|
|
if (sge_newbuf(sc, cons) != 0) {
|
|
sge_discard_rxbuf(sc, cons);
|
|
ifp->if_iqdrops++;
|
|
continue;
|
|
}
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
|
|
if ((rxinfo & RDC_IP_CSUM) != 0 &&
|
|
(rxinfo & RDC_IP_CSUM_OK) != 0)
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_IP_CHECKED | CSUM_IP_VALID;
|
|
if (((rxinfo & RDC_TCP_CSUM) != 0 &&
|
|
(rxinfo & RDC_TCP_CSUM_OK) != 0) ||
|
|
((rxinfo & RDC_UDP_CSUM) != 0 &&
|
|
(rxinfo & RDC_UDP_CSUM_OK) != 0)) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
/* Check for VLAN tagged frame. */
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(rxstat & RDS_VLAN) != 0) {
|
|
m->m_pkthdr.ether_vtag = rxinfo & RDC_VLAN_MASK;
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
/*
|
|
* Account for 10bytes auto padding which is used
|
|
* to align IP header on 32bit boundary. Also note,
|
|
* CRC bytes is automatically removed by the
|
|
* hardware.
|
|
*/
|
|
m->m_data += SGE_RX_PAD_BYTES;
|
|
m->m_pkthdr.len = m->m_len = SGE_RX_BYTES(rxstat) -
|
|
SGE_RX_PAD_BYTES;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
ifp->if_ipackets++;
|
|
SGE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
SGE_LOCK(sc);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
bus_dmamap_sync(cd->sge_rx_tag, cd->sge_rx_dmamap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
cd->sge_rx_cons = cons;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
static void
|
|
sge_txeof(struct sge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct sge_list_data *ld;
|
|
struct sge_chain_data *cd;
|
|
struct sge_txdesc *txd;
|
|
uint32_t txstat;
|
|
int cons, nsegs, prod;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sge_ifp;
|
|
ld = &sc->sge_ldata;
|
|
cd = &sc->sge_cdata;
|
|
|
|
if (cd->sge_tx_cnt == 0)
|
|
return;
|
|
bus_dmamap_sync(cd->sge_tx_tag, cd->sge_tx_dmamap,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
cons = cd->sge_tx_cons;
|
|
prod = cd->sge_tx_prod;
|
|
for (; cons != prod;) {
|
|
txstat = le32toh(ld->sge_tx_ring[cons].sge_cmdsts);
|
|
if ((txstat & TDC_OWN) != 0)
|
|
break;
|
|
/*
|
|
* Only the first descriptor of multi-descriptor transmission
|
|
* is updated by controller. Driver should skip entire
|
|
* chained buffers for the transmitted frame. In other words
|
|
* TDC_OWN bit is valid only at the first descriptor of a
|
|
* multi-descriptor transmission.
|
|
*/
|
|
if (SGE_TX_ERROR(txstat) != 0) {
|
|
#ifdef SGE_SHOW_ERRORS
|
|
device_printf(sc->sge_dev, "Tx error : 0x%b\n",
|
|
txstat, TX_ERR_BITS);
|
|
#endif
|
|
ifp->if_oerrors++;
|
|
} else {
|
|
#ifdef notyet
|
|
ifp->if_collisions += (txstat & 0xFFFF) - 1;
|
|
#endif
|
|
ifp->if_opackets++;
|
|
}
|
|
txd = &cd->sge_txdesc[cons];
|
|
for (nsegs = 0; nsegs < txd->tx_ndesc; nsegs++) {
|
|
ld->sge_tx_ring[cons].sge_cmdsts = 0;
|
|
SGE_INC(cons, SGE_TX_RING_CNT);
|
|
}
|
|
/* Reclaim transmitted mbuf. */
|
|
KASSERT(txd->tx_m != NULL,
|
|
("%s: freeing NULL mbuf\n", __func__));
|
|
bus_dmamap_sync(cd->sge_txmbuf_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(cd->sge_txmbuf_tag, txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
cd->sge_tx_cnt -= txd->tx_ndesc;
|
|
KASSERT(cd->sge_tx_cnt >= 0,
|
|
("%s: Active Tx desc counter was garbled\n", __func__));
|
|
txd->tx_ndesc = 0;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
}
|
|
cd->sge_tx_cons = cons;
|
|
if (cd->sge_tx_cnt == 0)
|
|
sc->sge_timer = 0;
|
|
}
|
|
|
|
static void
|
|
sge_tick(void *arg)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
|
|
sc = arg;
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->sge_ifp;
|
|
mii = device_get_softc(sc->sge_miibus);
|
|
mii_tick(mii);
|
|
if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
|
|
sge_miibus_statchg(sc->sge_dev);
|
|
if ((sc->sge_flags & SGE_FLAG_LINK) != 0 &&
|
|
!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
sge_start_locked(ifp);
|
|
}
|
|
/*
|
|
* Reclaim transmitted frames here as we do not request
|
|
* Tx completion interrupt for every queued frames to
|
|
* reduce excessive interrupts.
|
|
*/
|
|
sge_txeof(sc);
|
|
sge_watchdog(sc);
|
|
callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
|
|
}
|
|
|
|
static void
|
|
sge_intr(void *arg)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint32_t status;
|
|
|
|
sc = arg;
|
|
SGE_LOCK(sc);
|
|
ifp = sc->sge_ifp;
|
|
|
|
status = CSR_READ_4(sc, IntrStatus);
|
|
if (status == 0xFFFFFFFF || (status & SGE_INTRS) == 0) {
|
|
/* Not ours. */
|
|
SGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
/* Acknowledge interrupts. */
|
|
CSR_WRITE_4(sc, IntrStatus, status);
|
|
/* Disable further interrupts. */
|
|
CSR_WRITE_4(sc, IntrMask, 0);
|
|
/*
|
|
* It seems the controller supports some kind of interrupt
|
|
* moderation mechanism but we still don't know how to
|
|
* enable that. To reduce number of generated interrupts
|
|
* under load we check pending interrupts in a loop. This
|
|
* will increase number of register access and is not correct
|
|
* way to handle interrupt moderation but there seems to be
|
|
* no other way at this time.
|
|
*/
|
|
for (;;) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
if ((status & (INTR_RX_DONE | INTR_RX_IDLE)) != 0) {
|
|
sge_rxeof(sc);
|
|
/* Wakeup Rx MAC. */
|
|
if ((status & INTR_RX_IDLE) != 0)
|
|
CSR_WRITE_4(sc, RX_CTL,
|
|
0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
|
|
}
|
|
if ((status & (INTR_TX_DONE | INTR_TX_IDLE)) != 0)
|
|
sge_txeof(sc);
|
|
status = CSR_READ_4(sc, IntrStatus);
|
|
if ((status & SGE_INTRS) == 0)
|
|
break;
|
|
/* Acknowledge interrupts. */
|
|
CSR_WRITE_4(sc, IntrStatus, status);
|
|
}
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
/* Re-enable interrupts */
|
|
CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
sge_start_locked(ifp);
|
|
}
|
|
SGE_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int
|
|
sge_encap(struct sge_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct mbuf *m;
|
|
struct sge_desc *desc;
|
|
struct sge_txdesc *txd;
|
|
bus_dma_segment_t txsegs[SGE_MAXTXSEGS];
|
|
uint32_t cflags, mss;
|
|
int error, i, nsegs, prod, si;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
si = prod = sc->sge_cdata.sge_tx_prod;
|
|
txd = &sc->sge_cdata.sge_txdesc[prod];
|
|
if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
struct tcphdr *tcp;
|
|
uint32_t ip_off, poff;
|
|
|
|
if (M_WRITABLE(*m_head) == 0) {
|
|
/* Get a writable copy. */
|
|
m = m_dup(*m_head, M_NOWAIT);
|
|
m_freem(*m_head);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
ip_off = sizeof(struct ether_header);
|
|
m = m_pullup(*m_head, ip_off);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
/* Check the existence of VLAN tag. */
|
|
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
|
|
ip_off = sizeof(struct ether_vlan_header);
|
|
m = m_pullup(m, ip_off);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
m = m_pullup(m, ip_off + sizeof(struct ip));
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m, char *) + ip_off);
|
|
poff = ip_off + (ip->ip_hl << 2);
|
|
m = m_pullup(m, poff + sizeof(struct tcphdr));
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
|
|
m = m_pullup(m, poff + (tcp->th_off << 2));
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
/*
|
|
* Reset IP checksum and recompute TCP pseudo
|
|
* checksum that NDIS specification requires.
|
|
*/
|
|
ip = (struct ip *)(mtod(m, char *) + ip_off);
|
|
ip->ip_sum = 0;
|
|
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
|
|
tcp->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
|
|
htons(IPPROTO_TCP));
|
|
*m_head = m;
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_NOWAIT, SGE_MAXTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->sge_cdata.sge_txmbuf_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nsegs, 0);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
|
|
KASSERT(nsegs != 0, ("zero segment returned"));
|
|
/* Check descriptor overrun. */
|
|
if (sc->sge_cdata.sge_tx_cnt + nsegs >= SGE_TX_RING_CNT) {
|
|
bus_dmamap_unload(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap);
|
|
return (ENOBUFS);
|
|
}
|
|
bus_dmamap_sync(sc->sge_cdata.sge_txmbuf_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
m = *m_head;
|
|
cflags = 0;
|
|
mss = 0;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
cflags |= TDC_LS;
|
|
mss = (uint32_t)m->m_pkthdr.tso_segsz;
|
|
mss <<= 16;
|
|
} else {
|
|
if (m->m_pkthdr.csum_flags & CSUM_IP)
|
|
cflags |= TDC_IP_CSUM;
|
|
if (m->m_pkthdr.csum_flags & CSUM_TCP)
|
|
cflags |= TDC_TCP_CSUM;
|
|
if (m->m_pkthdr.csum_flags & CSUM_UDP)
|
|
cflags |= TDC_UDP_CSUM;
|
|
}
|
|
for (i = 0; i < nsegs; i++) {
|
|
desc = &sc->sge_ldata.sge_tx_ring[prod];
|
|
if (i == 0) {
|
|
desc->sge_sts_size = htole32(m->m_pkthdr.len | mss);
|
|
desc->sge_cmdsts = 0;
|
|
} else {
|
|
desc->sge_sts_size = 0;
|
|
desc->sge_cmdsts = htole32(TDC_OWN);
|
|
}
|
|
desc->sge_ptr = htole32(SGE_ADDR_LO(txsegs[i].ds_addr));
|
|
desc->sge_flags = htole32(txsegs[i].ds_len);
|
|
if (prod == SGE_TX_RING_CNT - 1)
|
|
desc->sge_flags |= htole32(RING_END);
|
|
sc->sge_cdata.sge_tx_cnt++;
|
|
SGE_INC(prod, SGE_TX_RING_CNT);
|
|
}
|
|
/* Update producer index. */
|
|
sc->sge_cdata.sge_tx_prod = prod;
|
|
|
|
desc = &sc->sge_ldata.sge_tx_ring[si];
|
|
/* Configure VLAN. */
|
|
if((m->m_flags & M_VLANTAG) != 0) {
|
|
cflags |= m->m_pkthdr.ether_vtag;
|
|
desc->sge_sts_size |= htole32(TDS_INS_VLAN);
|
|
}
|
|
desc->sge_cmdsts |= htole32(TDC_DEF | TDC_CRC | TDC_PAD | cflags);
|
|
#if 1
|
|
if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
|
|
desc->sge_cmdsts |= htole32(TDC_BST);
|
|
#else
|
|
if ((sc->sge_flags & SGE_FLAG_FDX) == 0) {
|
|
desc->sge_cmdsts |= htole32(TDC_COL | TDC_CRS | TDC_BKF);
|
|
if ((sc->sge_flags & SGE_FLAG_SPEED_1000) != 0)
|
|
desc->sge_cmdsts |= htole32(TDC_EXT | TDC_BST);
|
|
}
|
|
#endif
|
|
/* Request interrupt and give ownership to controller. */
|
|
desc->sge_cmdsts |= htole32(TDC_OWN | TDC_INTR);
|
|
txd->tx_m = m;
|
|
txd->tx_ndesc = nsegs;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sge_start(struct ifnet *ifp)
|
|
{
|
|
struct sge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
SGE_LOCK(sc);
|
|
sge_start_locked(ifp);
|
|
SGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
sge_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct mbuf *m_head;
|
|
int queued = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
if ((sc->sge_flags & SGE_FLAG_LINK) == 0 ||
|
|
(ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
|
|
if (sc->sge_cdata.sge_tx_cnt > (SGE_TX_RING_CNT -
|
|
SGE_MAXTXSEGS)) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
if (sge_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
queued++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (queued > 0) {
|
|
bus_dmamap_sync(sc->sge_cdata.sge_tx_tag,
|
|
sc->sge_cdata.sge_tx_dmamap,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB | TX_CTL_POLL);
|
|
sc->sge_timer = 5;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sge_init(void *arg)
|
|
{
|
|
struct sge_softc *sc;
|
|
|
|
sc = arg;
|
|
SGE_LOCK(sc);
|
|
sge_init_locked(sc);
|
|
SGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
sge_init_locked(struct sge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
uint16_t rxfilt;
|
|
int i;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
ifp = sc->sge_ifp;
|
|
mii = device_get_softc(sc->sge_miibus);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
sge_stop(sc);
|
|
sge_reset(sc);
|
|
|
|
/* Init circular RX list. */
|
|
if (sge_list_rx_init(sc) == ENOBUFS) {
|
|
device_printf(sc->sge_dev, "no memory for Rx buffers\n");
|
|
sge_stop(sc);
|
|
return;
|
|
}
|
|
/* Init TX descriptors. */
|
|
sge_list_tx_init(sc);
|
|
/*
|
|
* Load the address of the RX and TX lists.
|
|
*/
|
|
CSR_WRITE_4(sc, TX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_tx_paddr));
|
|
CSR_WRITE_4(sc, RX_DESC, SGE_ADDR_LO(sc->sge_ldata.sge_rx_paddr));
|
|
|
|
CSR_WRITE_4(sc, TxMacControl, 0x60);
|
|
CSR_WRITE_4(sc, RxWakeOnLan, 0);
|
|
CSR_WRITE_4(sc, RxWakeOnLanData, 0);
|
|
/* Allow receiving VLAN frames. */
|
|
CSR_WRITE_2(sc, RxMPSControl, ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN +
|
|
SGE_RX_PAD_BYTES);
|
|
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
CSR_WRITE_1(sc, RxMacAddr + i, IF_LLADDR(ifp)[i]);
|
|
/* Configure RX MAC. */
|
|
rxfilt = RXMAC_STRIP_FCS | RXMAC_PAD_ENB | RXMAC_CSUM_ENB;
|
|
CSR_WRITE_2(sc, RxMacControl, rxfilt);
|
|
sge_rxfilter(sc);
|
|
sge_setvlan(sc);
|
|
|
|
/* Initialize default speed/duplex information. */
|
|
if ((sc->sge_flags & SGE_FLAG_FASTETHER) == 0)
|
|
sc->sge_flags |= SGE_FLAG_SPEED_1000;
|
|
sc->sge_flags |= SGE_FLAG_FDX;
|
|
if ((sc->sge_flags & SGE_FLAG_RGMII) != 0)
|
|
CSR_WRITE_4(sc, StationControl, 0x04008001);
|
|
else
|
|
CSR_WRITE_4(sc, StationControl, 0x04000001);
|
|
/*
|
|
* XXX Try to mitigate interrupts.
|
|
*/
|
|
CSR_WRITE_4(sc, IntrControl, 0x08880000);
|
|
#ifdef notyet
|
|
if (sc->sge_intrcontrol != 0)
|
|
CSR_WRITE_4(sc, IntrControl, sc->sge_intrcontrol);
|
|
if (sc->sge_intrtimer != 0)
|
|
CSR_WRITE_4(sc, IntrTimer, sc->sge_intrtimer);
|
|
#endif
|
|
|
|
/*
|
|
* Clear and enable interrupts.
|
|
*/
|
|
CSR_WRITE_4(sc, IntrStatus, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, IntrMask, SGE_INTRS);
|
|
|
|
/* Enable receiver and transmitter. */
|
|
CSR_WRITE_4(sc, TX_CTL, 0x1a00 | TX_CTL_ENB);
|
|
CSR_WRITE_4(sc, RX_CTL, 0x1a00 | 0x000c | RX_CTL_POLL | RX_CTL_ENB);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
sc->sge_flags &= ~SGE_FLAG_LINK;
|
|
mii_mediachg(mii);
|
|
callout_reset(&sc->sge_stat_ch, hz, sge_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
sge_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct mii_softc *miisc;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
SGE_LOCK(sc);
|
|
mii = device_get_softc(sc->sge_miibus);
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
error = mii_mediachg(mii);
|
|
SGE_UNLOCK(sc);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
sge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
SGE_LOCK(sc);
|
|
mii = device_get_softc(sc->sge_miibus);
|
|
if ((ifp->if_flags & IFF_UP) == 0) {
|
|
SGE_UNLOCK(sc);
|
|
return;
|
|
}
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
SGE_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
sge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct sge_softc *sc;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
int error = 0, mask, reinit;
|
|
|
|
sc = ifp->if_softc;
|
|
ifr = (struct ifreq *)data;
|
|
|
|
switch(command) {
|
|
case SIOCSIFFLAGS:
|
|
SGE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
((ifp->if_flags ^ sc->sge_if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI)) != 0)
|
|
sge_rxfilter(sc);
|
|
else
|
|
sge_init_locked(sc);
|
|
} else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
sge_stop(sc);
|
|
sc->sge_if_flags = ifp->if_flags;
|
|
SGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
SGE_LOCK(sc);
|
|
reinit = 0;
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist |= SGE_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~SGE_CSUM_FEATURES;
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_RXCSUM) != 0)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
|
|
if ((mask & IFCAP_TSO4) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TSO4;
|
|
if ((ifp->if_capenable & IFCAP_TSO4) != 0)
|
|
ifp->if_hwassist |= CSUM_TSO;
|
|
else
|
|
ifp->if_hwassist &= ~CSUM_TSO;
|
|
}
|
|
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
|
|
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
/*
|
|
* Due to unknown reason, toggling VLAN hardware
|
|
* tagging require interface reinitialization.
|
|
*/
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
|
|
ifp->if_capenable &=
|
|
~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
|
|
reinit = 1;
|
|
}
|
|
if (reinit > 0 && (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sge_init_locked(sc);
|
|
}
|
|
SGE_UNLOCK(sc);
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
SGE_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
sge_rxfilter(sc);
|
|
SGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->sge_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
sge_watchdog(struct sge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
if (sc->sge_timer == 0 || --sc->sge_timer > 0)
|
|
return;
|
|
|
|
ifp = sc->sge_ifp;
|
|
if ((sc->sge_flags & SGE_FLAG_LINK) == 0) {
|
|
if (1 || bootverbose)
|
|
device_printf(sc->sge_dev,
|
|
"watchdog timeout (lost link)\n");
|
|
ifp->if_oerrors++;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sge_init_locked(sc);
|
|
return;
|
|
}
|
|
device_printf(sc->sge_dev, "watchdog timeout\n");
|
|
ifp->if_oerrors++;
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sge_init_locked(sc);
|
|
if (!IFQ_DRV_IS_EMPTY(&sc->sge_ifp->if_snd))
|
|
sge_start_locked(ifp);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
sge_stop(struct sge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = sc->sge_ifp;
|
|
|
|
SGE_LOCK_ASSERT(sc);
|
|
|
|
sc->sge_timer = 0;
|
|
callout_stop(&sc->sge_stat_ch);
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
CSR_WRITE_4(sc, IntrMask, 0);
|
|
CSR_READ_4(sc, IntrMask);
|
|
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
|
|
/* Stop TX/RX MAC. */
|
|
CSR_WRITE_4(sc, TX_CTL, 0x1a00);
|
|
CSR_WRITE_4(sc, RX_CTL, 0x1a00);
|
|
/* XXX Can we assume active DMA cycles gone? */
|
|
DELAY(2000);
|
|
CSR_WRITE_4(sc, IntrMask, 0);
|
|
CSR_WRITE_4(sc, IntrStatus, 0xffffffff);
|
|
|
|
sc->sge_flags &= ~SGE_FLAG_LINK;
|
|
sge_list_rx_free(sc);
|
|
sge_list_tx_free(sc);
|
|
}
|