freebsd-skq/sys/crypto/via/padlock.h
kib 361bfae5c2 Add support for the extended FPU states on amd64, both for native
64bit and 32bit ABIs.  As a side-effect, it enables AVX on capable
CPUs.

In particular:

- Query the CPU support for XSAVE, list of the supported extensions
  and the required size of FPU save area. The hw.use_xsave tunable is
  provided for disabling XSAVE, and hw.xsave_mask may be used to
  select the enabled extensions.

- Remove the FPU save area from PCB and dynamically allocate the
  (run-time sized) user save area on the top of the kernel stack,
  right above the PCB. Reorganize the thread0 PCB initialization to
  postpone it after BSP is queried for save area size.

- The dumppcb, stoppcbs and susppcbs now do not carry the FPU state as
  well. FPU state is only useful for suspend, where it is saved in
  dynamically allocated suspfpusave area.

- Use XSAVE and XRSTOR to save/restore FPU state, if supported and
  enabled.

- Define new mcontext_t flag _MC_HASFPXSTATE, indicating that
  mcontext_t has a valid pointer to out-of-struct extended FPU
  state. Signal handlers are supplied with stack-allocated fpu
  state. The sigreturn(2) and setcontext(2) syscall honour the flag,
  allowing the signal handlers to inspect and manipilate extended
  state in the interrupted context.

- The getcontext(2) never returns extended state, since there is no
  place in the fixed-sized mcontext_t to place variable-sized save
  area. And, since mcontext_t is embedded into ucontext_t, makes it
  impossible to fix in a reasonable way.  Instead of extending
  getcontext(2) syscall, provide a sysarch(2) facility to query
  extended FPU state.

- Add ptrace(2) support for getting and setting extended state; while
  there, implement missed PT_I386_{GET,SET}XMMREGS for 32bit binaries.

- Change fpu_kern KPI to not expose struct fpu_kern_ctx layout to
  consumers, making it opaque. Internally, struct fpu_kern_ctx now
  contains a space for the extended state. Convert in-kernel consumers
  of fpu_kern KPI both on i386 and amd64.

First version of the support for AVX was submitted by Tim Bird
<tim.bird am sony com> on behalf of Sony. This version was written
from scratch.

Tested by:	pho (previous version), Yamagi Burmeister <lists yamagi org>
MFC after:	1 month
2012-01-21 17:45:27 +00:00

95 lines
3.3 KiB
C

/*-
* Copyright (c) 2005-2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _PADLOCK_H_
#define _PADLOCK_H_
#include <opencrypto/cryptodev.h>
#include <crypto/rijndael/rijndael.h>
#if defined(__i386__)
#include <machine/npx.h>
#elif defined(__amd64__)
#include <machine/fpu.h>
#endif
union padlock_cw {
uint64_t raw;
struct {
u_int round_count : 4;
u_int algorithm_type : 3;
u_int key_generation : 1;
u_int intermediate : 1;
u_int direction : 1;
u_int key_size : 2;
u_int filler0 : 20;
u_int filler1 : 32;
u_int filler2 : 32;
u_int filler3 : 32;
} __field;
};
#define cw_round_count __field.round_count
#define cw_algorithm_type __field.algorithm_type
#define cw_key_generation __field.key_generation
#define cw_intermediate __field.intermediate
#define cw_direction __field.direction
#define cw_key_size __field.key_size
#define cw_filler0 __field.filler0
#define cw_filler1 __field.filler1
#define cw_filler2 __field.filler2
#define cw_filler3 __field.filler3
struct padlock_session {
union padlock_cw ses_cw __aligned(16);
uint32_t ses_ekey[4 * (RIJNDAEL_MAXNR + 1) + 4] __aligned(16); /* 128 bit aligned */
uint32_t ses_dkey[4 * (RIJNDAEL_MAXNR + 1) + 4] __aligned(16); /* 128 bit aligned */
uint8_t ses_iv[16] __aligned(16); /* 128 bit aligned */
struct auth_hash *ses_axf;
uint8_t *ses_ictx;
uint8_t *ses_octx;
int ses_mlen;
int ses_used;
uint32_t ses_id;
TAILQ_ENTRY(padlock_session) ses_next;
struct fpu_kern_ctx *ses_fpu_ctx;
};
#define PADLOCK_ALIGN(p) (void *)(roundup2((uintptr_t)(p), 16))
int padlock_cipher_setup(struct padlock_session *ses,
struct cryptoini *encini);
int padlock_cipher_process(struct padlock_session *ses,
struct cryptodesc *enccrd, struct cryptop *crp);
int padlock_hash_setup(struct padlock_session *ses,
struct cryptoini *macini);
int padlock_hash_process(struct padlock_session *ses,
struct cryptodesc *maccrd, struct cryptop *crp);
void padlock_hash_free(struct padlock_session *ses);
#endif /* !_PADLOCK_H_ */