b3f689911f
Although the sysctls are marked with CTLFLAG_RD and the values will stay immutable, current sysctl implementation stores value pointer in void* type, which means that const qualifier is discarded anyway and some newer compilers complaint about that. We can't use de-const trick in sysctl implementation, because in that case we could miss an opposite situation where a const value is used with CTLFLAG_RW sysctl. Complaint from: gcc 4.4, clang MFC after: 2 weeks
1744 lines
48 KiB
C
1744 lines
48 KiB
C
/*-
|
|
* Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* feeder_rate: (Codename: Z Resampler), which means any effort to create
|
|
* future replacement for this resampler are simply absurd unless
|
|
* the world decide to add new alphabet after Z.
|
|
*
|
|
* FreeBSD bandlimited sinc interpolator, technically based on
|
|
* "Digital Audio Resampling" by Julius O. Smith III
|
|
* - http://ccrma.stanford.edu/~jos/resample/
|
|
*
|
|
* The Good:
|
|
* + all out fixed point integer operations, no soft-float or anything like
|
|
* that.
|
|
* + classic polyphase converters with high quality coefficient's polynomial
|
|
* interpolators.
|
|
* + fast, faster, or the fastest of its kind.
|
|
* + compile time configurable.
|
|
* + etc etc..
|
|
*
|
|
* The Bad:
|
|
* - The z, z_, and Z_ . Due to mental block (or maybe just 0x7a69), I
|
|
* couldn't think of anything simpler than that (feeder_rate_xxx is just
|
|
* too long). Expect possible clashes with other zitizens (any?).
|
|
*/
|
|
|
|
#ifdef _KERNEL
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_snd.h"
|
|
#endif
|
|
#include <dev/sound/pcm/sound.h>
|
|
#include <dev/sound/pcm/pcm.h>
|
|
#include "feeder_if.h"
|
|
|
|
#define SND_USE_FXDIV
|
|
#include "snd_fxdiv_gen.h"
|
|
|
|
SND_DECLARE_FILE("$FreeBSD$");
|
|
#endif
|
|
|
|
#include "feeder_rate_gen.h"
|
|
|
|
#if !defined(_KERNEL) && defined(SND_DIAGNOSTIC)
|
|
#undef Z_DIAGNOSTIC
|
|
#define Z_DIAGNOSTIC 1
|
|
#elif defined(_KERNEL)
|
|
#undef Z_DIAGNOSTIC
|
|
#endif
|
|
|
|
#ifndef Z_QUALITY_DEFAULT
|
|
#define Z_QUALITY_DEFAULT Z_QUALITY_LINEAR
|
|
#endif
|
|
|
|
#define Z_RESERVOIR 2048
|
|
#define Z_RESERVOIR_MAX 131072
|
|
|
|
#define Z_SINC_MAX 0x3fffff
|
|
#define Z_SINC_DOWNMAX 48 /* 384000 / 8000 */
|
|
|
|
#ifdef _KERNEL
|
|
#define Z_POLYPHASE_MAX 183040 /* 286 taps, 640 phases */
|
|
#else
|
|
#define Z_POLYPHASE_MAX 1464320 /* 286 taps, 5120 phases */
|
|
#endif
|
|
|
|
#define Z_RATE_DEFAULT 48000
|
|
|
|
#define Z_RATE_MIN FEEDRATE_RATEMIN
|
|
#define Z_RATE_MAX FEEDRATE_RATEMAX
|
|
#define Z_ROUNDHZ FEEDRATE_ROUNDHZ
|
|
#define Z_ROUNDHZ_MIN FEEDRATE_ROUNDHZ_MIN
|
|
#define Z_ROUNDHZ_MAX FEEDRATE_ROUNDHZ_MAX
|
|
|
|
#define Z_RATE_SRC FEEDRATE_SRC
|
|
#define Z_RATE_DST FEEDRATE_DST
|
|
#define Z_RATE_QUALITY FEEDRATE_QUALITY
|
|
#define Z_RATE_CHANNELS FEEDRATE_CHANNELS
|
|
|
|
#define Z_PARANOID 1
|
|
|
|
#define Z_MULTIFORMAT 1
|
|
|
|
#ifdef _KERNEL
|
|
#undef Z_USE_ALPHADRIFT
|
|
#define Z_USE_ALPHADRIFT 1
|
|
#endif
|
|
|
|
#define Z_FACTOR_MIN 1
|
|
#define Z_FACTOR_MAX Z_MASK
|
|
#define Z_FACTOR_SAFE(v) (!((v) < Z_FACTOR_MIN || (v) > Z_FACTOR_MAX))
|
|
|
|
struct z_info;
|
|
|
|
typedef void (*z_resampler_t)(struct z_info *, uint8_t *);
|
|
|
|
struct z_info {
|
|
int32_t rsrc, rdst; /* original source / destination rates */
|
|
int32_t src, dst; /* rounded source / destination rates */
|
|
int32_t channels; /* total channels */
|
|
int32_t bps; /* bytes-per-sample */
|
|
int32_t quality; /* resampling quality */
|
|
|
|
int32_t z_gx, z_gy; /* interpolation / decimation ratio */
|
|
int32_t z_alpha; /* output sample time phase / drift */
|
|
uint8_t *z_delay; /* FIR delay line / linear buffer */
|
|
int32_t *z_coeff; /* FIR coefficients */
|
|
int32_t *z_dcoeff; /* FIR coefficients differences */
|
|
int32_t *z_pcoeff; /* FIR polyphase coefficients */
|
|
int32_t z_scale; /* output scaling */
|
|
int32_t z_dx; /* input sample drift increment */
|
|
int32_t z_dy; /* output sample drift increment */
|
|
#ifdef Z_USE_ALPHADRIFT
|
|
int32_t z_alphadrift; /* alpha drift rate */
|
|
int32_t z_startdrift; /* buffer start position drift rate */
|
|
#endif
|
|
int32_t z_mask; /* delay line full length mask */
|
|
int32_t z_size; /* half width of FIR taps */
|
|
int32_t z_full; /* full size of delay line */
|
|
int32_t z_alloc; /* largest allocated full size of delay line */
|
|
int32_t z_start; /* buffer processing start position */
|
|
int32_t z_pos; /* current position for the next feed */
|
|
#ifdef Z_DIAGNOSTIC
|
|
uint32_t z_cycle; /* output cycle, purely for statistical */
|
|
#endif
|
|
int32_t z_maxfeed; /* maximum feed to avoid 32bit overflow */
|
|
|
|
z_resampler_t z_resample;
|
|
};
|
|
|
|
int feeder_rate_min = Z_RATE_MIN;
|
|
int feeder_rate_max = Z_RATE_MAX;
|
|
int feeder_rate_round = Z_ROUNDHZ;
|
|
int feeder_rate_quality = Z_QUALITY_DEFAULT;
|
|
|
|
static int feeder_rate_polyphase_max = Z_POLYPHASE_MAX;
|
|
|
|
#ifdef _KERNEL
|
|
static char feeder_rate_presets[] = FEEDER_RATE_PRESETS;
|
|
SYSCTL_STRING(_hw_snd, OID_AUTO, feeder_rate_presets, CTLFLAG_RD,
|
|
&feeder_rate_presets, 0, "compile-time rate presets");
|
|
|
|
TUNABLE_INT("hw.snd.feeder_rate_min", &feeder_rate_min);
|
|
TUNABLE_INT("hw.snd.feeder_rate_max", &feeder_rate_max);
|
|
TUNABLE_INT("hw.snd.feeder_rate_round", &feeder_rate_round);
|
|
TUNABLE_INT("hw.snd.feeder_rate_quality", &feeder_rate_quality);
|
|
|
|
TUNABLE_INT("hw.snd.feeder_rate_polyphase_max", &feeder_rate_polyphase_max);
|
|
SYSCTL_INT(_hw_snd, OID_AUTO, feeder_rate_polyphase_max, CTLFLAG_RW,
|
|
&feeder_rate_polyphase_max, 0, "maximum allowable polyphase entries");
|
|
|
|
static int
|
|
sysctl_hw_snd_feeder_rate_min(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int err, val;
|
|
|
|
val = feeder_rate_min;
|
|
err = sysctl_handle_int(oidp, &val, 0, req);
|
|
|
|
if (err != 0 || req->newptr == NULL || val == feeder_rate_min)
|
|
return (err);
|
|
|
|
if (!(Z_FACTOR_SAFE(val) && val < feeder_rate_max))
|
|
return (EINVAL);
|
|
|
|
feeder_rate_min = val;
|
|
|
|
return (0);
|
|
}
|
|
SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_min, CTLTYPE_INT | CTLFLAG_RW,
|
|
0, sizeof(int), sysctl_hw_snd_feeder_rate_min, "I",
|
|
"minimum allowable rate");
|
|
|
|
static int
|
|
sysctl_hw_snd_feeder_rate_max(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int err, val;
|
|
|
|
val = feeder_rate_max;
|
|
err = sysctl_handle_int(oidp, &val, 0, req);
|
|
|
|
if (err != 0 || req->newptr == NULL || val == feeder_rate_max)
|
|
return (err);
|
|
|
|
if (!(Z_FACTOR_SAFE(val) && val > feeder_rate_min))
|
|
return (EINVAL);
|
|
|
|
feeder_rate_max = val;
|
|
|
|
return (0);
|
|
}
|
|
SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_max, CTLTYPE_INT | CTLFLAG_RW,
|
|
0, sizeof(int), sysctl_hw_snd_feeder_rate_max, "I",
|
|
"maximum allowable rate");
|
|
|
|
static int
|
|
sysctl_hw_snd_feeder_rate_round(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
int err, val;
|
|
|
|
val = feeder_rate_round;
|
|
err = sysctl_handle_int(oidp, &val, 0, req);
|
|
|
|
if (err != 0 || req->newptr == NULL || val == feeder_rate_round)
|
|
return (err);
|
|
|
|
if (val < Z_ROUNDHZ_MIN || val > Z_ROUNDHZ_MAX)
|
|
return (EINVAL);
|
|
|
|
feeder_rate_round = val - (val % Z_ROUNDHZ);
|
|
|
|
return (0);
|
|
}
|
|
SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_round, CTLTYPE_INT | CTLFLAG_RW,
|
|
0, sizeof(int), sysctl_hw_snd_feeder_rate_round, "I",
|
|
"sample rate converter rounding threshold");
|
|
|
|
static int
|
|
sysctl_hw_snd_feeder_rate_quality(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct snddev_info *d;
|
|
struct pcm_channel *c;
|
|
struct pcm_feeder *f;
|
|
int i, err, val;
|
|
|
|
val = feeder_rate_quality;
|
|
err = sysctl_handle_int(oidp, &val, 0, req);
|
|
|
|
if (err != 0 || req->newptr == NULL || val == feeder_rate_quality)
|
|
return (err);
|
|
|
|
if (val < Z_QUALITY_MIN || val > Z_QUALITY_MAX)
|
|
return (EINVAL);
|
|
|
|
feeder_rate_quality = val;
|
|
|
|
/*
|
|
* Traverse all available channels on each device and try to
|
|
* set resampler quality if and only if it is exist as
|
|
* part of feeder chains and the channel is idle.
|
|
*/
|
|
for (i = 0; pcm_devclass != NULL &&
|
|
i < devclass_get_maxunit(pcm_devclass); i++) {
|
|
d = devclass_get_softc(pcm_devclass, i);
|
|
if (!PCM_REGISTERED(d))
|
|
continue;
|
|
PCM_LOCK(d);
|
|
PCM_WAIT(d);
|
|
PCM_ACQUIRE(d);
|
|
CHN_FOREACH(c, d, channels.pcm) {
|
|
CHN_LOCK(c);
|
|
f = chn_findfeeder(c, FEEDER_RATE);
|
|
if (f == NULL || f->data == NULL || CHN_STARTED(c)) {
|
|
CHN_UNLOCK(c);
|
|
continue;
|
|
}
|
|
(void)FEEDER_SET(f, FEEDRATE_QUALITY, val);
|
|
CHN_UNLOCK(c);
|
|
}
|
|
PCM_RELEASE(d);
|
|
PCM_UNLOCK(d);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
SYSCTL_PROC(_hw_snd, OID_AUTO, feeder_rate_quality, CTLTYPE_INT | CTLFLAG_RW,
|
|
0, sizeof(int), sysctl_hw_snd_feeder_rate_quality, "I",
|
|
"sample rate converter quality ("__XSTRING(Z_QUALITY_MIN)"=low .. "
|
|
__XSTRING(Z_QUALITY_MAX)"=high)");
|
|
#endif /* _KERNEL */
|
|
|
|
|
|
/*
|
|
* Resampler type.
|
|
*/
|
|
#define Z_IS_ZOH(i) ((i)->quality == Z_QUALITY_ZOH)
|
|
#define Z_IS_LINEAR(i) ((i)->quality == Z_QUALITY_LINEAR)
|
|
#define Z_IS_SINC(i) ((i)->quality > Z_QUALITY_LINEAR)
|
|
|
|
/*
|
|
* Macroses for accurate sample time drift calculations.
|
|
*
|
|
* gy2gx : given the amount of output, return the _exact_ required amount of
|
|
* input.
|
|
* gx2gy : given the amount of input, return the _maximum_ amount of output
|
|
* that will be generated.
|
|
* drift : given the amount of input and output, return the elapsed
|
|
* sample-time.
|
|
*/
|
|
#define _Z_GCAST(x) ((uint64_t)(x))
|
|
|
|
#if defined(__GNUCLIKE_ASM) && defined(__i386__)
|
|
/*
|
|
* This is where i386 being beaten to a pulp. Fortunately this function is
|
|
* rarely being called and if it is, it will decide the best (hopefully)
|
|
* fastest way to do the division. If we can ensure that everything is dword
|
|
* aligned, letting the compiler to call udivdi3 to do the division can be
|
|
* faster compared to this.
|
|
*
|
|
* amd64 is the clear winner here, no question about it.
|
|
*/
|
|
static __inline uint32_t
|
|
Z_DIV(uint64_t v, uint32_t d)
|
|
{
|
|
uint32_t hi, lo, quo, rem;
|
|
|
|
hi = v >> 32;
|
|
lo = v & 0xffffffff;
|
|
|
|
/*
|
|
* As much as we can, try to avoid long division like a plague.
|
|
*/
|
|
if (hi == 0)
|
|
quo = lo / d;
|
|
else
|
|
__asm("divl %2"
|
|
: "=a" (quo), "=d" (rem)
|
|
: "r" (d), "0" (lo), "1" (hi));
|
|
|
|
return (quo);
|
|
}
|
|
#else
|
|
#define Z_DIV(x, y) ((x) / (y))
|
|
#endif
|
|
|
|
#define _Z_GY2GX(i, a, v) \
|
|
Z_DIV(((_Z_GCAST((i)->z_gx) * (v)) + ((i)->z_gy - (a) - 1)), \
|
|
(i)->z_gy)
|
|
|
|
#define _Z_GX2GY(i, a, v) \
|
|
Z_DIV(((_Z_GCAST((i)->z_gy) * (v)) + (a)), (i)->z_gx)
|
|
|
|
#define _Z_DRIFT(i, x, y) \
|
|
((_Z_GCAST((i)->z_gy) * (x)) - (_Z_GCAST((i)->z_gx) * (y)))
|
|
|
|
#define z_gy2gx(i, v) _Z_GY2GX(i, (i)->z_alpha, v)
|
|
#define z_gx2gy(i, v) _Z_GX2GY(i, (i)->z_alpha, v)
|
|
#define z_drift(i, x, y) _Z_DRIFT(i, x, y)
|
|
|
|
/*
|
|
* Macroses for SINC coefficients table manipulations.. whatever.
|
|
*/
|
|
#define Z_SINC_COEFF_IDX(i) ((i)->quality - Z_QUALITY_LINEAR - 1)
|
|
|
|
#define Z_SINC_LEN(i) \
|
|
((int32_t)(((uint64_t)z_coeff_tab[Z_SINC_COEFF_IDX(i)].len << \
|
|
Z_SHIFT) / (i)->z_dy))
|
|
|
|
#define Z_SINC_BASE_LEN(i) \
|
|
((z_coeff_tab[Z_SINC_COEFF_IDX(i)].len - 1) >> (Z_DRIFT_SHIFT - 1))
|
|
|
|
/*
|
|
* Macroses for linear delay buffer operations. Alignment is not
|
|
* really necessary since we're not using true circular buffer, but it
|
|
* will help us guard against possible trespasser. To be honest,
|
|
* the linear block operations does not need guarding at all due to
|
|
* accurate drifting!
|
|
*/
|
|
#define z_align(i, v) ((v) & (i)->z_mask)
|
|
#define z_next(i, o, v) z_align(i, (o) + (v))
|
|
#define z_prev(i, o, v) z_align(i, (o) - (v))
|
|
#define z_fetched(i) (z_align(i, (i)->z_pos - (i)->z_start) - 1)
|
|
#define z_free(i) ((i)->z_full - (i)->z_pos)
|
|
|
|
/*
|
|
* Macroses for Bla Bla .. :)
|
|
*/
|
|
#define z_copy(src, dst, sz) (void)memcpy(dst, src, sz)
|
|
#define z_feed(...) FEEDER_FEED(__VA_ARGS__)
|
|
|
|
static __inline uint32_t
|
|
z_min(uint32_t x, uint32_t y)
|
|
{
|
|
|
|
return ((x < y) ? x : y);
|
|
}
|
|
|
|
static int32_t
|
|
z_gcd(int32_t x, int32_t y)
|
|
{
|
|
int32_t w;
|
|
|
|
while (y != 0) {
|
|
w = x % y;
|
|
x = y;
|
|
y = w;
|
|
}
|
|
|
|
return (x);
|
|
}
|
|
|
|
static int32_t
|
|
z_roundpow2(int32_t v)
|
|
{
|
|
int32_t i;
|
|
|
|
i = 1;
|
|
|
|
/*
|
|
* Let it overflow at will..
|
|
*/
|
|
while (i > 0 && i < v)
|
|
i <<= 1;
|
|
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* Zero Order Hold, the worst of the worst, an insult against quality,
|
|
* but super fast.
|
|
*/
|
|
static void
|
|
z_feed_zoh(struct z_info *info, uint8_t *dst)
|
|
{
|
|
#if 0
|
|
z_copy(info->z_delay +
|
|
(info->z_start * info->channels * info->bps), dst,
|
|
info->channels * info->bps);
|
|
#else
|
|
uint32_t cnt;
|
|
uint8_t *src;
|
|
|
|
cnt = info->channels * info->bps;
|
|
src = info->z_delay + (info->z_start * cnt);
|
|
|
|
/*
|
|
* This is a bit faster than doing bcopy() since we're dealing
|
|
* with possible unaligned samples.
|
|
*/
|
|
do {
|
|
*dst++ = *src++;
|
|
} while (--cnt != 0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Linear Interpolation. This at least sounds better (perceptually) and fast,
|
|
* but without any proper filtering which means aliasing still exist and
|
|
* could become worst with a right sample. Interpolation centered within
|
|
* Z_LINEAR_ONE between the present and previous sample and everything is
|
|
* done with simple 32bit scaling arithmetic.
|
|
*/
|
|
#define Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \
|
|
static void \
|
|
z_feed_linear_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
|
|
{ \
|
|
int32_t z; \
|
|
intpcm_t x, y; \
|
|
uint32_t ch; \
|
|
uint8_t *sx, *sy; \
|
|
\
|
|
z = ((uint32_t)info->z_alpha * info->z_dx) >> Z_LINEAR_UNSHIFT; \
|
|
\
|
|
sx = info->z_delay + (info->z_start * info->channels * \
|
|
PCM_##BIT##_BPS); \
|
|
sy = sx - (info->channels * PCM_##BIT##_BPS); \
|
|
\
|
|
ch = info->channels; \
|
|
\
|
|
do { \
|
|
x = _PCM_READ_##SIGN##BIT##_##ENDIAN(sx); \
|
|
y = _PCM_READ_##SIGN##BIT##_##ENDIAN(sy); \
|
|
x = Z_LINEAR_INTERPOLATE_##BIT(z, x, y); \
|
|
_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, x); \
|
|
sx += PCM_##BIT##_BPS; \
|
|
sy += PCM_##BIT##_BPS; \
|
|
dst += PCM_##BIT##_BPS; \
|
|
} while (--ch != 0); \
|
|
}
|
|
|
|
/*
|
|
* Userland clipping diagnostic check, not enabled in kernel compilation.
|
|
* While doing sinc interpolation, unrealistic samples like full scale sine
|
|
* wav will clip, but for other things this will not make any noise at all.
|
|
* Everybody should learn how to normalized perceived loudness of their own
|
|
* music/sounds/samples (hint: ReplayGain).
|
|
*/
|
|
#ifdef Z_DIAGNOSTIC
|
|
#define Z_CLIP_CHECK(v, BIT) do { \
|
|
if ((v) > PCM_S##BIT##_MAX) { \
|
|
fprintf(stderr, "Overflow: v=%jd, max=%jd\n", \
|
|
(intmax_t)(v), (intmax_t)PCM_S##BIT##_MAX); \
|
|
} else if ((v) < PCM_S##BIT##_MIN) { \
|
|
fprintf(stderr, "Underflow: v=%jd, min=%jd\n", \
|
|
(intmax_t)(v), (intmax_t)PCM_S##BIT##_MIN); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define Z_CLIP_CHECK(...)
|
|
#endif
|
|
|
|
#define Z_CLAMP(v, BIT) \
|
|
(((v) > PCM_S##BIT##_MAX) ? PCM_S##BIT##_MAX : \
|
|
(((v) < PCM_S##BIT##_MIN) ? PCM_S##BIT##_MIN : (v)))
|
|
|
|
/*
|
|
* Sine Cardinal (SINC) Interpolation. Scaling is done in 64 bit, so
|
|
* there's no point to hold the plate any longer. All samples will be
|
|
* shifted to a full 32 bit, scaled and restored during write for
|
|
* maximum dynamic range (only for downsampling).
|
|
*/
|
|
#define _Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, adv) \
|
|
c += z >> Z_SHIFT; \
|
|
z &= Z_MASK; \
|
|
coeff = Z_COEFF_INTERPOLATE(z, z_coeff[c], z_dcoeff[c]); \
|
|
x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
|
|
v += Z_NORM_##BIT((intpcm64_t)x * coeff); \
|
|
z += info->z_dy; \
|
|
p adv##= info->channels * PCM_##BIT##_BPS
|
|
|
|
/*
|
|
* XXX GCC4 optimization is such a !@#$%, need manual unrolling.
|
|
*/
|
|
#if defined(__GNUC__) && __GNUC__ >= 4
|
|
#define Z_SINC_ACCUMULATE(...) do { \
|
|
_Z_SINC_ACCUMULATE(__VA_ARGS__); \
|
|
_Z_SINC_ACCUMULATE(__VA_ARGS__); \
|
|
} while (0)
|
|
#define Z_SINC_ACCUMULATE_DECR 2
|
|
#else
|
|
#define Z_SINC_ACCUMULATE(...) do { \
|
|
_Z_SINC_ACCUMULATE(__VA_ARGS__); \
|
|
} while (0)
|
|
#define Z_SINC_ACCUMULATE_DECR 1
|
|
#endif
|
|
|
|
#define Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \
|
|
static void \
|
|
z_feed_sinc_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
|
|
{ \
|
|
intpcm64_t v; \
|
|
intpcm_t x; \
|
|
uint8_t *p; \
|
|
int32_t coeff, z, *z_coeff, *z_dcoeff; \
|
|
uint32_t c, center, ch, i; \
|
|
\
|
|
z_coeff = info->z_coeff; \
|
|
z_dcoeff = info->z_dcoeff; \
|
|
center = z_prev(info, info->z_start, info->z_size); \
|
|
ch = info->channels * PCM_##BIT##_BPS; \
|
|
dst += ch; \
|
|
\
|
|
do { \
|
|
dst -= PCM_##BIT##_BPS; \
|
|
ch -= PCM_##BIT##_BPS; \
|
|
v = 0; \
|
|
z = info->z_alpha * info->z_dx; \
|
|
c = 0; \
|
|
p = info->z_delay + (z_next(info, center, 1) * \
|
|
info->channels * PCM_##BIT##_BPS) + ch; \
|
|
for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \
|
|
Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, +); \
|
|
z = info->z_dy - (info->z_alpha * info->z_dx); \
|
|
c = 0; \
|
|
p = info->z_delay + (center * info->channels * \
|
|
PCM_##BIT##_BPS) + ch; \
|
|
for (i = info->z_size; i != 0; i -= Z_SINC_ACCUMULATE_DECR) \
|
|
Z_SINC_ACCUMULATE(SIGN, BIT, ENDIAN, -); \
|
|
if (info->z_scale != Z_ONE) \
|
|
v = Z_SCALE_##BIT(v, info->z_scale); \
|
|
else \
|
|
v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \
|
|
Z_CLIP_CHECK(v, BIT); \
|
|
_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \
|
|
} while (ch != 0); \
|
|
}
|
|
|
|
#define Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN) \
|
|
static void \
|
|
z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN(struct z_info *info, uint8_t *dst) \
|
|
{ \
|
|
intpcm64_t v; \
|
|
intpcm_t x; \
|
|
uint8_t *p; \
|
|
int32_t ch, i, start, *z_pcoeff; \
|
|
\
|
|
ch = info->channels * PCM_##BIT##_BPS; \
|
|
dst += ch; \
|
|
start = z_prev(info, info->z_start, (info->z_size << 1) - 1) * ch; \
|
|
\
|
|
do { \
|
|
dst -= PCM_##BIT##_BPS; \
|
|
ch -= PCM_##BIT##_BPS; \
|
|
v = 0; \
|
|
p = info->z_delay + start + ch; \
|
|
z_pcoeff = info->z_pcoeff + \
|
|
((info->z_alpha * info->z_size) << 1); \
|
|
for (i = info->z_size; i != 0; i--) { \
|
|
x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
|
|
v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \
|
|
z_pcoeff++; \
|
|
p += info->channels * PCM_##BIT##_BPS; \
|
|
x = _PCM_READ_##SIGN##BIT##_##ENDIAN(p); \
|
|
v += Z_NORM_##BIT((intpcm64_t)x * *z_pcoeff); \
|
|
z_pcoeff++; \
|
|
p += info->channels * PCM_##BIT##_BPS; \
|
|
} \
|
|
if (info->z_scale != Z_ONE) \
|
|
v = Z_SCALE_##BIT(v, info->z_scale); \
|
|
else \
|
|
v >>= Z_COEFF_SHIFT - Z_GUARD_BIT_##BIT; \
|
|
Z_CLIP_CHECK(v, BIT); \
|
|
_PCM_WRITE_##SIGN##BIT##_##ENDIAN(dst, Z_CLAMP(v, BIT)); \
|
|
} while (ch != 0); \
|
|
}
|
|
|
|
#define Z_DECLARE(SIGN, BIT, ENDIAN) \
|
|
Z_DECLARE_LINEAR(SIGN, BIT, ENDIAN) \
|
|
Z_DECLARE_SINC(SIGN, BIT, ENDIAN) \
|
|
Z_DECLARE_SINC_POLYPHASE(SIGN, BIT, ENDIAN)
|
|
|
|
#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
|
|
Z_DECLARE(S, 16, LE)
|
|
Z_DECLARE(S, 32, LE)
|
|
#endif
|
|
#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
|
|
Z_DECLARE(S, 16, BE)
|
|
Z_DECLARE(S, 32, BE)
|
|
#endif
|
|
#ifdef SND_FEEDER_MULTIFORMAT
|
|
Z_DECLARE(S, 8, NE)
|
|
Z_DECLARE(S, 24, LE)
|
|
Z_DECLARE(S, 24, BE)
|
|
Z_DECLARE(U, 8, NE)
|
|
Z_DECLARE(U, 16, LE)
|
|
Z_DECLARE(U, 24, LE)
|
|
Z_DECLARE(U, 32, LE)
|
|
Z_DECLARE(U, 16, BE)
|
|
Z_DECLARE(U, 24, BE)
|
|
Z_DECLARE(U, 32, BE)
|
|
#endif
|
|
|
|
enum {
|
|
Z_RESAMPLER_ZOH,
|
|
Z_RESAMPLER_LINEAR,
|
|
Z_RESAMPLER_SINC,
|
|
Z_RESAMPLER_SINC_POLYPHASE,
|
|
Z_RESAMPLER_LAST
|
|
};
|
|
|
|
#define Z_RESAMPLER_IDX(i) \
|
|
(Z_IS_SINC(i) ? Z_RESAMPLER_SINC : (i)->quality)
|
|
|
|
#define Z_RESAMPLER_ENTRY(SIGN, BIT, ENDIAN) \
|
|
{ \
|
|
AFMT_##SIGN##BIT##_##ENDIAN, \
|
|
{ \
|
|
[Z_RESAMPLER_ZOH] = z_feed_zoh, \
|
|
[Z_RESAMPLER_LINEAR] = z_feed_linear_##SIGN##BIT##ENDIAN, \
|
|
[Z_RESAMPLER_SINC] = z_feed_sinc_##SIGN##BIT##ENDIAN, \
|
|
[Z_RESAMPLER_SINC_POLYPHASE] = \
|
|
z_feed_sinc_polyphase_##SIGN##BIT##ENDIAN \
|
|
} \
|
|
}
|
|
|
|
static const struct {
|
|
uint32_t format;
|
|
z_resampler_t resampler[Z_RESAMPLER_LAST];
|
|
} z_resampler_tab[] = {
|
|
#if BYTE_ORDER == LITTLE_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
|
|
Z_RESAMPLER_ENTRY(S, 16, LE),
|
|
Z_RESAMPLER_ENTRY(S, 32, LE),
|
|
#endif
|
|
#if BYTE_ORDER == BIG_ENDIAN || defined(SND_FEEDER_MULTIFORMAT)
|
|
Z_RESAMPLER_ENTRY(S, 16, BE),
|
|
Z_RESAMPLER_ENTRY(S, 32, BE),
|
|
#endif
|
|
#ifdef SND_FEEDER_MULTIFORMAT
|
|
Z_RESAMPLER_ENTRY(S, 8, NE),
|
|
Z_RESAMPLER_ENTRY(S, 24, LE),
|
|
Z_RESAMPLER_ENTRY(S, 24, BE),
|
|
Z_RESAMPLER_ENTRY(U, 8, NE),
|
|
Z_RESAMPLER_ENTRY(U, 16, LE),
|
|
Z_RESAMPLER_ENTRY(U, 24, LE),
|
|
Z_RESAMPLER_ENTRY(U, 32, LE),
|
|
Z_RESAMPLER_ENTRY(U, 16, BE),
|
|
Z_RESAMPLER_ENTRY(U, 24, BE),
|
|
Z_RESAMPLER_ENTRY(U, 32, BE),
|
|
#endif
|
|
};
|
|
|
|
#define Z_RESAMPLER_TAB_SIZE \
|
|
((int32_t)(sizeof(z_resampler_tab) / sizeof(z_resampler_tab[0])))
|
|
|
|
static void
|
|
z_resampler_reset(struct z_info *info)
|
|
{
|
|
|
|
info->src = info->rsrc - (info->rsrc % ((feeder_rate_round > 0 &&
|
|
info->rsrc > feeder_rate_round) ? feeder_rate_round : 1));
|
|
info->dst = info->rdst - (info->rdst % ((feeder_rate_round > 0 &&
|
|
info->rdst > feeder_rate_round) ? feeder_rate_round : 1));
|
|
info->z_gx = 1;
|
|
info->z_gy = 1;
|
|
info->z_alpha = 0;
|
|
info->z_resample = NULL;
|
|
info->z_size = 1;
|
|
info->z_coeff = NULL;
|
|
info->z_dcoeff = NULL;
|
|
if (info->z_pcoeff != NULL) {
|
|
free(info->z_pcoeff, M_DEVBUF);
|
|
info->z_pcoeff = NULL;
|
|
}
|
|
info->z_scale = Z_ONE;
|
|
info->z_dx = Z_FULL_ONE;
|
|
info->z_dy = Z_FULL_ONE;
|
|
#ifdef Z_DIAGNOSTIC
|
|
info->z_cycle = 0;
|
|
#endif
|
|
if (info->quality < Z_QUALITY_MIN)
|
|
info->quality = Z_QUALITY_MIN;
|
|
else if (info->quality > Z_QUALITY_MAX)
|
|
info->quality = Z_QUALITY_MAX;
|
|
}
|
|
|
|
#ifdef Z_PARANOID
|
|
static int32_t
|
|
z_resampler_sinc_len(struct z_info *info)
|
|
{
|
|
int32_t c, z, len, lmax;
|
|
|
|
if (!Z_IS_SINC(info))
|
|
return (1);
|
|
|
|
/*
|
|
* A rather careful (or useless) way to calculate filter length.
|
|
* Z_SINC_LEN() itself is accurate enough to do its job. Extra
|
|
* sanity checking is not going to hurt though..
|
|
*/
|
|
c = 0;
|
|
z = info->z_dy;
|
|
len = 0;
|
|
lmax = z_coeff_tab[Z_SINC_COEFF_IDX(info)].len;
|
|
|
|
do {
|
|
c += z >> Z_SHIFT;
|
|
z &= Z_MASK;
|
|
z += info->z_dy;
|
|
} while (c < lmax && ++len > 0);
|
|
|
|
if (len != Z_SINC_LEN(info)) {
|
|
#ifdef _KERNEL
|
|
printf("%s(): sinc l=%d != Z_SINC_LEN=%d\n",
|
|
__func__, len, Z_SINC_LEN(info));
|
|
#else
|
|
fprintf(stderr, "%s(): sinc l=%d != Z_SINC_LEN=%d\n",
|
|
__func__, len, Z_SINC_LEN(info));
|
|
return (-1);
|
|
#endif
|
|
}
|
|
|
|
return (len);
|
|
}
|
|
#else
|
|
#define z_resampler_sinc_len(i) (Z_IS_SINC(i) ? Z_SINC_LEN(i) : 1)
|
|
#endif
|
|
|
|
#define Z_POLYPHASE_COEFF_SHIFT 0
|
|
|
|
/*
|
|
* Pick suitable polynomial interpolators based on filter oversampled ratio
|
|
* (2 ^ Z_DRIFT_SHIFT).
|
|
*/
|
|
#if !(defined(Z_COEFF_INTERP_ZOH) || defined(Z_COEFF_INTERP_LINEAR) || \
|
|
defined(Z_COEFF_INTERP_QUADRATIC) || defined(Z_COEFF_INTERP_HERMITE) || \
|
|
defined(Z_COEFF_INTER_BSPLINE) || defined(Z_COEFF_INTERP_OPT32X) || \
|
|
defined(Z_COEFF_INTERP_OPT16X) || defined(Z_COEFF_INTERP_OPT8X) || \
|
|
defined(Z_COEFF_INTERP_OPT4X) || defined(Z_COEFF_INTERP_OPT2X))
|
|
#if Z_DRIFT_SHIFT >= 6
|
|
#define Z_COEFF_INTERP_BSPLINE 1
|
|
#elif Z_DRIFT_SHIFT >= 5
|
|
#define Z_COEFF_INTERP_OPT32X 1
|
|
#elif Z_DRIFT_SHIFT == 4
|
|
#define Z_COEFF_INTERP_OPT16X 1
|
|
#elif Z_DRIFT_SHIFT == 3
|
|
#define Z_COEFF_INTERP_OPT8X 1
|
|
#elif Z_DRIFT_SHIFT == 2
|
|
#define Z_COEFF_INTERP_OPT4X 1
|
|
#elif Z_DRIFT_SHIFT == 1
|
|
#define Z_COEFF_INTERP_OPT2X 1
|
|
#else
|
|
#error "Z_DRIFT_SHIFT screwed!"
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* In classic polyphase mode, the actual coefficients for each phases need to
|
|
* be calculated based on default prototype filters. For highly oversampled
|
|
* filter, linear or quadradatic interpolator should be enough. Anything less
|
|
* than that require 'special' interpolators to reduce interpolation errors.
|
|
*
|
|
* "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio"
|
|
* by Olli Niemitalo
|
|
* - http://www.student.oulu.fi/~oniemita/dsp/deip.pdf
|
|
*
|
|
*/
|
|
static int32_t
|
|
z_coeff_interpolate(int32_t z, int32_t *z_coeff)
|
|
{
|
|
int32_t coeff;
|
|
#if defined(Z_COEFF_INTERP_ZOH)
|
|
|
|
/* 1-point, 0th-order (Zero Order Hold) */
|
|
z = z;
|
|
coeff = z_coeff[0];
|
|
#elif defined(Z_COEFF_INTERP_LINEAR)
|
|
int32_t zl0, zl1;
|
|
|
|
/* 2-point, 1st-order Linear */
|
|
zl0 = z_coeff[0];
|
|
zl1 = z_coeff[1] - z_coeff[0];
|
|
|
|
coeff = Z_RSHIFT((int64_t)zl1 * z, Z_SHIFT) + zl0;
|
|
#elif defined(Z_COEFF_INTERP_QUADRATIC)
|
|
int32_t zq0, zq1, zq2;
|
|
|
|
/* 3-point, 2nd-order Quadratic */
|
|
zq0 = z_coeff[0];
|
|
zq1 = z_coeff[1] - z_coeff[-1];
|
|
zq2 = z_coeff[1] + z_coeff[-1] - (z_coeff[0] << 1);
|
|
|
|
coeff = Z_RSHIFT((Z_RSHIFT((int64_t)zq2 * z, Z_SHIFT) +
|
|
zq1) * z, Z_SHIFT + 1) + zq0;
|
|
#elif defined(Z_COEFF_INTERP_HERMITE)
|
|
int32_t zh0, zh1, zh2, zh3;
|
|
|
|
/* 4-point, 3rd-order Hermite */
|
|
zh0 = z_coeff[0];
|
|
zh1 = z_coeff[1] - z_coeff[-1];
|
|
zh2 = (z_coeff[-1] << 1) - (z_coeff[0] * 5) + (z_coeff[1] << 2) -
|
|
z_coeff[2];
|
|
zh3 = z_coeff[2] - z_coeff[-1] + ((z_coeff[0] - z_coeff[1]) * 3);
|
|
|
|
coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zh3 * z, Z_SHIFT) +
|
|
zh2) * z, Z_SHIFT) + zh1) * z, Z_SHIFT + 1) + zh0;
|
|
#elif defined(Z_COEFF_INTERP_BSPLINE)
|
|
int32_t zb0, zb1, zb2, zb3;
|
|
|
|
/* 4-point, 3rd-order B-Spline */
|
|
zb0 = Z_RSHIFT(0x15555555LL * (((int64_t)z_coeff[0] << 2) +
|
|
z_coeff[-1] + z_coeff[1]), 30);
|
|
zb1 = z_coeff[1] - z_coeff[-1];
|
|
zb2 = z_coeff[-1] + z_coeff[1] - (z_coeff[0] << 1);
|
|
zb3 = Z_RSHIFT(0x15555555LL * (((z_coeff[0] - z_coeff[1]) * 3) +
|
|
z_coeff[2] - z_coeff[-1]), 30);
|
|
|
|
coeff = (Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((int64_t)zb3 * z, Z_SHIFT) +
|
|
zb2) * z, Z_SHIFT) + zb1) * z, Z_SHIFT) + zb0 + 1) >> 1;
|
|
#elif defined(Z_COEFF_INTERP_OPT32X)
|
|
int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
|
|
int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
|
|
|
|
/* 6-point, 5th-order Optimal 32x */
|
|
zoz = z - (Z_ONE >> 1);
|
|
zoe1 = z_coeff[1] + z_coeff[0];
|
|
zoe2 = z_coeff[2] + z_coeff[-1];
|
|
zoe3 = z_coeff[3] + z_coeff[-2];
|
|
zoo1 = z_coeff[1] - z_coeff[0];
|
|
zoo2 = z_coeff[2] - z_coeff[-1];
|
|
zoo3 = z_coeff[3] - z_coeff[-2];
|
|
|
|
zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
|
|
(0x00170c29LL * zoe3), 30);
|
|
zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
|
|
(0x008cd4dcLL * zoo3), 30);
|
|
zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
|
|
(0x0160b5d0LL * zoe3), 30);
|
|
zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
|
|
(0x01cfe914LL * zoo3), 30);
|
|
zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
|
|
(0x015508ddLL * zoe3), 30);
|
|
zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
|
|
(0x0082d81aLL * zoo3), 30);
|
|
|
|
coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
|
|
(int64_t)zoc5 * zoz, Z_SHIFT) +
|
|
zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
|
|
zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
|
|
#elif defined(Z_COEFF_INTERP_OPT16X)
|
|
int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
|
|
int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
|
|
|
|
/* 6-point, 5th-order Optimal 16x */
|
|
zoz = z - (Z_ONE >> 1);
|
|
zoe1 = z_coeff[1] + z_coeff[0];
|
|
zoe2 = z_coeff[2] + z_coeff[-1];
|
|
zoe3 = z_coeff[3] + z_coeff[-2];
|
|
zoo1 = z_coeff[1] - z_coeff[0];
|
|
zoo2 = z_coeff[2] - z_coeff[-1];
|
|
zoo3 = z_coeff[3] - z_coeff[-2];
|
|
|
|
zoc0 = Z_RSHIFT((0x1ac2260dLL * zoe1) + (0x0526cdcaLL * zoe2) +
|
|
(0x00170c29LL * zoe3), 30);
|
|
zoc1 = Z_RSHIFT((0x14f8a49aLL * zoo1) + (0x0d6d1109LL * zoo2) +
|
|
(0x008cd4dcLL * zoo3), 30);
|
|
zoc2 = Z_RSHIFT((-0x0d3e94a4LL * zoe1) + (0x0bddded4LL * zoe2) +
|
|
(0x0160b5d0LL * zoe3), 30);
|
|
zoc3 = Z_RSHIFT((-0x0de10cc4LL * zoo1) + (0x019b2a7dLL * zoo2) +
|
|
(0x01cfe914LL * zoo3), 30);
|
|
zoc4 = Z_RSHIFT((0x02aa12d7LL * zoe1) + (-0x03ff1bb3LL * zoe2) +
|
|
(0x015508ddLL * zoe3), 30);
|
|
zoc5 = Z_RSHIFT((0x051d29e5LL * zoo1) + (-0x028e7647LL * zoo2) +
|
|
(0x0082d81aLL * zoo3), 30);
|
|
|
|
coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
|
|
(int64_t)zoc5 * zoz, Z_SHIFT) +
|
|
zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
|
|
zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
|
|
#elif defined(Z_COEFF_INTERP_OPT8X)
|
|
int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
|
|
int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
|
|
|
|
/* 6-point, 5th-order Optimal 8x */
|
|
zoz = z - (Z_ONE >> 1);
|
|
zoe1 = z_coeff[1] + z_coeff[0];
|
|
zoe2 = z_coeff[2] + z_coeff[-1];
|
|
zoe3 = z_coeff[3] + z_coeff[-2];
|
|
zoo1 = z_coeff[1] - z_coeff[0];
|
|
zoo2 = z_coeff[2] - z_coeff[-1];
|
|
zoo3 = z_coeff[3] - z_coeff[-2];
|
|
|
|
zoc0 = Z_RSHIFT((0x1aa9b47dLL * zoe1) + (0x053d9944LL * zoe2) +
|
|
(0x0018b23fLL * zoe3), 30);
|
|
zoc1 = Z_RSHIFT((0x14a104d1LL * zoo1) + (0x0d7d2504LL * zoo2) +
|
|
(0x0094b599LL * zoo3), 30);
|
|
zoc2 = Z_RSHIFT((-0x0d22530bLL * zoe1) + (0x0bb37a2cLL * zoe2) +
|
|
(0x016ed8e0LL * zoe3), 30);
|
|
zoc3 = Z_RSHIFT((-0x0d744b1cLL * zoo1) + (0x01649591LL * zoo2) +
|
|
(0x01dae93aLL * zoo3), 30);
|
|
zoc4 = Z_RSHIFT((0x02a7ee1bLL * zoe1) + (-0x03fbdb24LL * zoe2) +
|
|
(0x0153ed07LL * zoe3), 30);
|
|
zoc5 = Z_RSHIFT((0x04cf9b6cLL * zoo1) + (-0x0266b378LL * zoo2) +
|
|
(0x007a7c26LL * zoo3), 30);
|
|
|
|
coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
|
|
(int64_t)zoc5 * zoz, Z_SHIFT) +
|
|
zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
|
|
zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
|
|
#elif defined(Z_COEFF_INTERP_OPT4X)
|
|
int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
|
|
int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
|
|
|
|
/* 6-point, 5th-order Optimal 4x */
|
|
zoz = z - (Z_ONE >> 1);
|
|
zoe1 = z_coeff[1] + z_coeff[0];
|
|
zoe2 = z_coeff[2] + z_coeff[-1];
|
|
zoe3 = z_coeff[3] + z_coeff[-2];
|
|
zoo1 = z_coeff[1] - z_coeff[0];
|
|
zoo2 = z_coeff[2] - z_coeff[-1];
|
|
zoo3 = z_coeff[3] - z_coeff[-2];
|
|
|
|
zoc0 = Z_RSHIFT((0x1a8eda43LL * zoe1) + (0x0556ee38LL * zoe2) +
|
|
(0x001a3784LL * zoe3), 30);
|
|
zoc1 = Z_RSHIFT((0x143d863eLL * zoo1) + (0x0d910e36LL * zoo2) +
|
|
(0x009ca889LL * zoo3), 30);
|
|
zoc2 = Z_RSHIFT((-0x0d026821LL * zoe1) + (0x0b837773LL * zoe2) +
|
|
(0x017ef0c6LL * zoe3), 30);
|
|
zoc3 = Z_RSHIFT((-0x0cef1502LL * zoo1) + (0x01207a8eLL * zoo2) +
|
|
(0x01e936dbLL * zoo3), 30);
|
|
zoc4 = Z_RSHIFT((0x029fe643LL * zoe1) + (-0x03ef3fc8LL * zoe2) +
|
|
(0x014f5923LL * zoe3), 30);
|
|
zoc5 = Z_RSHIFT((0x043a9d08LL * zoo1) + (-0x02154febLL * zoo2) +
|
|
(0x00670dbdLL * zoo3), 30);
|
|
|
|
coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
|
|
(int64_t)zoc5 * zoz, Z_SHIFT) +
|
|
zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
|
|
zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
|
|
#elif defined(Z_COEFF_INTERP_OPT2X)
|
|
int32_t zoz, zoe1, zoe2, zoe3, zoo1, zoo2, zoo3;
|
|
int32_t zoc0, zoc1, zoc2, zoc3, zoc4, zoc5;
|
|
|
|
/* 6-point, 5th-order Optimal 2x */
|
|
zoz = z - (Z_ONE >> 1);
|
|
zoe1 = z_coeff[1] + z_coeff[0];
|
|
zoe2 = z_coeff[2] + z_coeff[-1];
|
|
zoe3 = z_coeff[3] + z_coeff[-2];
|
|
zoo1 = z_coeff[1] - z_coeff[0];
|
|
zoo2 = z_coeff[2] - z_coeff[-1];
|
|
zoo3 = z_coeff[3] - z_coeff[-2];
|
|
|
|
zoc0 = Z_RSHIFT((0x19edb6fdLL * zoe1) + (0x05ebd062LL * zoe2) +
|
|
(0x00267881LL * zoe3), 30);
|
|
zoc1 = Z_RSHIFT((0x1223af76LL * zoo1) + (0x0de3dd6bLL * zoo2) +
|
|
(0x00d683cdLL * zoo3), 30);
|
|
zoc2 = Z_RSHIFT((-0x0c3ee068LL * zoe1) + (0x0a5c3769LL * zoe2) +
|
|
(0x01e2aceaLL * zoe3), 30);
|
|
zoc3 = Z_RSHIFT((-0x0a8ab614LL * zoo1) + (-0x0019522eLL * zoo2) +
|
|
(0x022cefc7LL * zoo3), 30);
|
|
zoc4 = Z_RSHIFT((0x0276187dLL * zoe1) + (-0x03a801e8LL * zoe2) +
|
|
(0x0131d935LL * zoe3), 30);
|
|
zoc5 = Z_RSHIFT((0x02c373f5LL * zoo1) + (-0x01275f83LL * zoo2) +
|
|
(0x0018ee79LL * zoo3), 30);
|
|
|
|
coeff = Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT((Z_RSHIFT(
|
|
(int64_t)zoc5 * zoz, Z_SHIFT) +
|
|
zoc4) * zoz, Z_SHIFT) + zoc3) * zoz, Z_SHIFT) +
|
|
zoc2) * zoz, Z_SHIFT) + zoc1) * zoz, Z_SHIFT) + zoc0;
|
|
#else
|
|
#error "Interpolation type screwed!"
|
|
#endif
|
|
|
|
#if Z_POLYPHASE_COEFF_SHIFT > 0
|
|
coeff = Z_RSHIFT(coeff, Z_POLYPHASE_COEFF_SHIFT);
|
|
#endif
|
|
return (coeff);
|
|
}
|
|
|
|
static int
|
|
z_resampler_build_polyphase(struct z_info *info)
|
|
{
|
|
int32_t alpha, c, i, z, idx;
|
|
|
|
/* Let this be here first. */
|
|
if (info->z_pcoeff != NULL) {
|
|
free(info->z_pcoeff, M_DEVBUF);
|
|
info->z_pcoeff = NULL;
|
|
}
|
|
|
|
if (feeder_rate_polyphase_max < 1)
|
|
return (ENOTSUP);
|
|
|
|
if (((int64_t)info->z_size * info->z_gy * 2) >
|
|
feeder_rate_polyphase_max) {
|
|
#ifndef _KERNEL
|
|
fprintf(stderr, "Polyphase entries exceed: [%d/%d] %jd > %d\n",
|
|
info->z_gx, info->z_gy,
|
|
(intmax_t)info->z_size * info->z_gy * 2,
|
|
feeder_rate_polyphase_max);
|
|
#endif
|
|
return (E2BIG);
|
|
}
|
|
|
|
info->z_pcoeff = malloc(sizeof(int32_t) *
|
|
info->z_size * info->z_gy * 2, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (info->z_pcoeff == NULL)
|
|
return (ENOMEM);
|
|
|
|
for (alpha = 0; alpha < info->z_gy; alpha++) {
|
|
z = alpha * info->z_dx;
|
|
c = 0;
|
|
for (i = info->z_size; i != 0; i--) {
|
|
c += z >> Z_SHIFT;
|
|
z &= Z_MASK;
|
|
idx = (alpha * info->z_size * 2) +
|
|
(info->z_size * 2) - i;
|
|
info->z_pcoeff[idx] =
|
|
z_coeff_interpolate(z, info->z_coeff + c);
|
|
z += info->z_dy;
|
|
}
|
|
z = info->z_dy - (alpha * info->z_dx);
|
|
c = 0;
|
|
for (i = info->z_size; i != 0; i--) {
|
|
c += z >> Z_SHIFT;
|
|
z &= Z_MASK;
|
|
idx = (alpha * info->z_size * 2) + i - 1;
|
|
info->z_pcoeff[idx] =
|
|
z_coeff_interpolate(z, info->z_coeff + c);
|
|
z += info->z_dy;
|
|
}
|
|
}
|
|
|
|
#ifndef _KERNEL
|
|
fprintf(stderr, "Polyphase: [%d/%d] %d entries\n",
|
|
info->z_gx, info->z_gy, info->z_size * info->z_gy * 2);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
z_resampler_setup(struct pcm_feeder *f)
|
|
{
|
|
struct z_info *info;
|
|
int64_t gy2gx_max, gx2gy_max;
|
|
uint32_t format;
|
|
int32_t align, i, z_scale;
|
|
int adaptive;
|
|
|
|
info = f->data;
|
|
z_resampler_reset(info);
|
|
|
|
if (info->src == info->dst)
|
|
return (0);
|
|
|
|
/* Shrink by greatest common divisor. */
|
|
i = z_gcd(info->src, info->dst);
|
|
info->z_gx = info->src / i;
|
|
info->z_gy = info->dst / i;
|
|
|
|
/* Too big, or too small. Bail out. */
|
|
if (!(Z_FACTOR_SAFE(info->z_gx) && Z_FACTOR_SAFE(info->z_gy)))
|
|
return (EINVAL);
|
|
|
|
format = f->desc->in;
|
|
adaptive = 0;
|
|
z_scale = 0;
|
|
|
|
/*
|
|
* Setup everything: filter length, conversion factor, etc.
|
|
*/
|
|
if (Z_IS_SINC(info)) {
|
|
/*
|
|
* Downsampling, or upsampling scaling factor. As long as the
|
|
* factor can be represented by a fraction of 1 << Z_SHIFT,
|
|
* we're pretty much in business. Scaling is not needed for
|
|
* upsampling, so we just slap Z_ONE there.
|
|
*/
|
|
if (info->z_gx > info->z_gy)
|
|
/*
|
|
* If the downsampling ratio is beyond sanity,
|
|
* enable semi-adaptive mode. Although handling
|
|
* extreme ratio is possible, the result of the
|
|
* conversion is just pointless, unworthy,
|
|
* nonsensical noises, etc.
|
|
*/
|
|
if ((info->z_gx / info->z_gy) > Z_SINC_DOWNMAX)
|
|
z_scale = Z_ONE / Z_SINC_DOWNMAX;
|
|
else
|
|
z_scale = ((uint64_t)info->z_gy << Z_SHIFT) /
|
|
info->z_gx;
|
|
else
|
|
z_scale = Z_ONE;
|
|
|
|
/*
|
|
* This is actually impossible, unless anything above
|
|
* overflow.
|
|
*/
|
|
if (z_scale < 1)
|
|
return (E2BIG);
|
|
|
|
/*
|
|
* Calculate sample time/coefficients index drift. It is
|
|
* a constant for upsampling, but downsampling require
|
|
* heavy duty filtering with possible too long filters.
|
|
* If anything goes wrong, revisit again and enable
|
|
* adaptive mode.
|
|
*/
|
|
z_setup_adaptive_sinc:
|
|
if (info->z_pcoeff != NULL) {
|
|
free(info->z_pcoeff, M_DEVBUF);
|
|
info->z_pcoeff = NULL;
|
|
}
|
|
|
|
if (adaptive == 0) {
|
|
info->z_dy = z_scale << Z_DRIFT_SHIFT;
|
|
if (info->z_dy < 1)
|
|
return (E2BIG);
|
|
info->z_scale = z_scale;
|
|
} else {
|
|
info->z_dy = Z_FULL_ONE;
|
|
info->z_scale = Z_ONE;
|
|
}
|
|
|
|
#if 0
|
|
#define Z_SCALE_DIV 10000
|
|
#define Z_SCALE_LIMIT(s, v) \
|
|
((((uint64_t)(s) * (v)) + (Z_SCALE_DIV >> 1)) / Z_SCALE_DIV)
|
|
|
|
info->z_scale = Z_SCALE_LIMIT(info->z_scale, 9780);
|
|
#endif
|
|
|
|
/* Smallest drift increment. */
|
|
info->z_dx = info->z_dy / info->z_gy;
|
|
|
|
/*
|
|
* Overflow or underflow. Try adaptive, let it continue and
|
|
* retry.
|
|
*/
|
|
if (info->z_dx < 1) {
|
|
if (adaptive == 0) {
|
|
adaptive = 1;
|
|
goto z_setup_adaptive_sinc;
|
|
}
|
|
return (E2BIG);
|
|
}
|
|
|
|
/*
|
|
* Round back output drift.
|
|
*/
|
|
info->z_dy = info->z_dx * info->z_gy;
|
|
|
|
for (i = 0; i < Z_COEFF_TAB_SIZE; i++) {
|
|
if (Z_SINC_COEFF_IDX(info) != i)
|
|
continue;
|
|
/*
|
|
* Calculate required filter length and guard
|
|
* against possible abusive result. Note that
|
|
* this represents only 1/2 of the entire filter
|
|
* length.
|
|
*/
|
|
info->z_size = z_resampler_sinc_len(info);
|
|
|
|
/*
|
|
* Multiple of 2 rounding, for better accumulator
|
|
* performance.
|
|
*/
|
|
info->z_size &= ~1;
|
|
|
|
if (info->z_size < 2 || info->z_size > Z_SINC_MAX) {
|
|
if (adaptive == 0) {
|
|
adaptive = 1;
|
|
goto z_setup_adaptive_sinc;
|
|
}
|
|
return (E2BIG);
|
|
}
|
|
info->z_coeff = z_coeff_tab[i].coeff + Z_COEFF_OFFSET;
|
|
info->z_dcoeff = z_coeff_tab[i].dcoeff;
|
|
break;
|
|
}
|
|
|
|
if (info->z_coeff == NULL || info->z_dcoeff == NULL)
|
|
return (EINVAL);
|
|
} else if (Z_IS_LINEAR(info)) {
|
|
/*
|
|
* Don't put much effort if we're doing linear interpolation.
|
|
* Just center the interpolation distance within Z_LINEAR_ONE,
|
|
* and be happy about it.
|
|
*/
|
|
info->z_dx = Z_LINEAR_FULL_ONE / info->z_gy;
|
|
}
|
|
|
|
/*
|
|
* We're safe for now, lets continue.. Look for our resampler
|
|
* depending on configured format and quality.
|
|
*/
|
|
for (i = 0; i < Z_RESAMPLER_TAB_SIZE; i++) {
|
|
int ridx;
|
|
|
|
if (AFMT_ENCODING(format) != z_resampler_tab[i].format)
|
|
continue;
|
|
if (Z_IS_SINC(info) && adaptive == 0 &&
|
|
z_resampler_build_polyphase(info) == 0)
|
|
ridx = Z_RESAMPLER_SINC_POLYPHASE;
|
|
else
|
|
ridx = Z_RESAMPLER_IDX(info);
|
|
info->z_resample = z_resampler_tab[i].resampler[ridx];
|
|
break;
|
|
}
|
|
|
|
if (info->z_resample == NULL)
|
|
return (EINVAL);
|
|
|
|
info->bps = AFMT_BPS(format);
|
|
align = info->channels * info->bps;
|
|
|
|
/*
|
|
* Calculate largest value that can be fed into z_gy2gx() and
|
|
* z_gx2gy() without causing (signed) 32bit overflow. z_gy2gx() will
|
|
* be called early during feeding process to determine how much input
|
|
* samples that is required to generate requested output, while
|
|
* z_gx2gy() will be called just before samples filtering /
|
|
* accumulation process based on available samples that has been
|
|
* calculated using z_gx2gy().
|
|
*
|
|
* Now that is damn confusing, I guess ;-) .
|
|
*/
|
|
gy2gx_max = (((uint64_t)info->z_gy * INT32_MAX) - info->z_gy + 1) /
|
|
info->z_gx;
|
|
|
|
if ((gy2gx_max * align) > SND_FXDIV_MAX)
|
|
gy2gx_max = SND_FXDIV_MAX / align;
|
|
|
|
if (gy2gx_max < 1)
|
|
return (E2BIG);
|
|
|
|
gx2gy_max = (((uint64_t)info->z_gx * INT32_MAX) - info->z_gy) /
|
|
info->z_gy;
|
|
|
|
if (gx2gy_max > INT32_MAX)
|
|
gx2gy_max = INT32_MAX;
|
|
|
|
if (gx2gy_max < 1)
|
|
return (E2BIG);
|
|
|
|
/*
|
|
* Ensure that z_gy2gx() at its largest possible calculated value
|
|
* (alpha = 0) will not cause overflow further late during z_gx2gy()
|
|
* stage.
|
|
*/
|
|
if (z_gy2gx(info, gy2gx_max) > _Z_GCAST(gx2gy_max))
|
|
return (E2BIG);
|
|
|
|
info->z_maxfeed = gy2gx_max * align;
|
|
|
|
#ifdef Z_USE_ALPHADRIFT
|
|
info->z_startdrift = z_gy2gx(info, 1);
|
|
info->z_alphadrift = z_drift(info, info->z_startdrift, 1);
|
|
#endif
|
|
|
|
i = z_gy2gx(info, 1);
|
|
info->z_full = z_roundpow2((info->z_size << 1) + i);
|
|
|
|
/*
|
|
* Too big to be true, and overflowing left and right like mad ..
|
|
*/
|
|
if ((info->z_full * align) < 1) {
|
|
if (adaptive == 0 && Z_IS_SINC(info)) {
|
|
adaptive = 1;
|
|
goto z_setup_adaptive_sinc;
|
|
}
|
|
return (E2BIG);
|
|
}
|
|
|
|
/*
|
|
* Increase full buffer size if its too small to reduce cyclic
|
|
* buffer shifting in main conversion/feeder loop.
|
|
*/
|
|
while (info->z_full < Z_RESERVOIR_MAX &&
|
|
(info->z_full - (info->z_size << 1)) < Z_RESERVOIR)
|
|
info->z_full <<= 1;
|
|
|
|
/* Initialize buffer position. */
|
|
info->z_mask = info->z_full - 1;
|
|
info->z_start = z_prev(info, info->z_size << 1, 1);
|
|
info->z_pos = z_next(info, info->z_start, 1);
|
|
|
|
/*
|
|
* Allocate or reuse delay line buffer, whichever makes sense.
|
|
*/
|
|
i = info->z_full * align;
|
|
if (i < 1)
|
|
return (E2BIG);
|
|
|
|
if (info->z_delay == NULL || info->z_alloc < i ||
|
|
i <= (info->z_alloc >> 1)) {
|
|
if (info->z_delay != NULL)
|
|
free(info->z_delay, M_DEVBUF);
|
|
info->z_delay = malloc(i, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (info->z_delay == NULL)
|
|
return (ENOMEM);
|
|
info->z_alloc = i;
|
|
}
|
|
|
|
/*
|
|
* Zero out head of buffer to avoid pops and clicks.
|
|
*/
|
|
memset(info->z_delay, sndbuf_zerodata(f->desc->out),
|
|
info->z_pos * align);
|
|
|
|
#ifdef Z_DIAGNOSTIC
|
|
/*
|
|
* XXX Debuging mess !@#$%^
|
|
*/
|
|
#define dumpz(x) fprintf(stderr, "\t%12s = %10u : %-11d\n", \
|
|
"z_"__STRING(x), (uint32_t)info->z_##x, \
|
|
(int32_t)info->z_##x)
|
|
fprintf(stderr, "\n%s():\n", __func__);
|
|
fprintf(stderr, "\tchannels=%d, bps=%d, format=0x%08x, quality=%d\n",
|
|
info->channels, info->bps, format, info->quality);
|
|
fprintf(stderr, "\t%d (%d) -> %d (%d), ",
|
|
info->src, info->rsrc, info->dst, info->rdst);
|
|
fprintf(stderr, "[%d/%d]\n", info->z_gx, info->z_gy);
|
|
fprintf(stderr, "\tminreq=%d, ", z_gy2gx(info, 1));
|
|
if (adaptive != 0)
|
|
z_scale = Z_ONE;
|
|
fprintf(stderr, "factor=0x%08x/0x%08x (%f)\n",
|
|
z_scale, Z_ONE, (double)z_scale / Z_ONE);
|
|
fprintf(stderr, "\tbase_length=%d, ", Z_SINC_BASE_LEN(info));
|
|
fprintf(stderr, "adaptive=%s\n", (adaptive != 0) ? "YES" : "NO");
|
|
dumpz(size);
|
|
dumpz(alloc);
|
|
if (info->z_alloc < 1024)
|
|
fprintf(stderr, "\t%15s%10d Bytes\n",
|
|
"", info->z_alloc);
|
|
else if (info->z_alloc < (1024 << 10))
|
|
fprintf(stderr, "\t%15s%10d KBytes\n",
|
|
"", info->z_alloc >> 10);
|
|
else if (info->z_alloc < (1024 << 20))
|
|
fprintf(stderr, "\t%15s%10d MBytes\n",
|
|
"", info->z_alloc >> 20);
|
|
else
|
|
fprintf(stderr, "\t%15s%10d GBytes\n",
|
|
"", info->z_alloc >> 30);
|
|
fprintf(stderr, "\t%12s %10d (min output samples)\n",
|
|
"",
|
|
(int32_t)z_gx2gy(info, info->z_full - (info->z_size << 1)));
|
|
fprintf(stderr, "\t%12s %10d (min allocated output samples)\n",
|
|
"",
|
|
(int32_t)z_gx2gy(info, (info->z_alloc / align) -
|
|
(info->z_size << 1)));
|
|
fprintf(stderr, "\t%12s = %10d\n",
|
|
"z_gy2gx()", (int32_t)z_gy2gx(info, 1));
|
|
fprintf(stderr, "\t%12s = %10d -> z_gy2gx() -> %d\n",
|
|
"Max", (int32_t)gy2gx_max, (int32_t)z_gy2gx(info, gy2gx_max));
|
|
fprintf(stderr, "\t%12s = %10d\n",
|
|
"z_gx2gy()", (int32_t)z_gx2gy(info, 1));
|
|
fprintf(stderr, "\t%12s = %10d -> z_gx2gy() -> %d\n",
|
|
"Max", (int32_t)gx2gy_max, (int32_t)z_gx2gy(info, gx2gy_max));
|
|
dumpz(maxfeed);
|
|
dumpz(full);
|
|
dumpz(start);
|
|
dumpz(pos);
|
|
dumpz(scale);
|
|
fprintf(stderr, "\t%12s %10f\n", "",
|
|
(double)info->z_scale / Z_ONE);
|
|
dumpz(dx);
|
|
fprintf(stderr, "\t%12s %10f\n", "",
|
|
(double)info->z_dx / info->z_dy);
|
|
dumpz(dy);
|
|
fprintf(stderr, "\t%12s %10d (drift step)\n", "",
|
|
info->z_dy >> Z_SHIFT);
|
|
fprintf(stderr, "\t%12s %10d (scaling differences)\n", "",
|
|
(z_scale << Z_DRIFT_SHIFT) - info->z_dy);
|
|
fprintf(stderr, "\t%12s = %u bytes\n",
|
|
"intpcm32_t", sizeof(intpcm32_t));
|
|
fprintf(stderr, "\t%12s = 0x%08x, smallest=%.16lf\n",
|
|
"Z_ONE", Z_ONE, (double)1.0 / (double)Z_ONE);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
z_resampler_set(struct pcm_feeder *f, int what, int32_t value)
|
|
{
|
|
struct z_info *info;
|
|
int32_t oquality;
|
|
|
|
info = f->data;
|
|
|
|
switch (what) {
|
|
case Z_RATE_SRC:
|
|
if (value < feeder_rate_min || value > feeder_rate_max)
|
|
return (E2BIG);
|
|
if (value == info->rsrc)
|
|
return (0);
|
|
info->rsrc = value;
|
|
break;
|
|
case Z_RATE_DST:
|
|
if (value < feeder_rate_min || value > feeder_rate_max)
|
|
return (E2BIG);
|
|
if (value == info->rdst)
|
|
return (0);
|
|
info->rdst = value;
|
|
break;
|
|
case Z_RATE_QUALITY:
|
|
if (value < Z_QUALITY_MIN || value > Z_QUALITY_MAX)
|
|
return (EINVAL);
|
|
if (value == info->quality)
|
|
return (0);
|
|
/*
|
|
* If we failed to set the requested quality, restore
|
|
* the old one. We cannot afford leaving it broken since
|
|
* passive feeder chains like vchans never reinitialize
|
|
* itself.
|
|
*/
|
|
oquality = info->quality;
|
|
info->quality = value;
|
|
if (z_resampler_setup(f) == 0)
|
|
return (0);
|
|
info->quality = oquality;
|
|
break;
|
|
case Z_RATE_CHANNELS:
|
|
if (value < SND_CHN_MIN || value > SND_CHN_MAX)
|
|
return (EINVAL);
|
|
if (value == info->channels)
|
|
return (0);
|
|
info->channels = value;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
break;
|
|
}
|
|
|
|
return (z_resampler_setup(f));
|
|
}
|
|
|
|
static int
|
|
z_resampler_get(struct pcm_feeder *f, int what)
|
|
{
|
|
struct z_info *info;
|
|
|
|
info = f->data;
|
|
|
|
switch (what) {
|
|
case Z_RATE_SRC:
|
|
return (info->rsrc);
|
|
break;
|
|
case Z_RATE_DST:
|
|
return (info->rdst);
|
|
break;
|
|
case Z_RATE_QUALITY:
|
|
return (info->quality);
|
|
break;
|
|
case Z_RATE_CHANNELS:
|
|
return (info->channels);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return (-1);
|
|
}
|
|
|
|
static int
|
|
z_resampler_init(struct pcm_feeder *f)
|
|
{
|
|
struct z_info *info;
|
|
int ret;
|
|
|
|
if (f->desc->in != f->desc->out)
|
|
return (EINVAL);
|
|
|
|
info = malloc(sizeof(*info), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (info == NULL)
|
|
return (ENOMEM);
|
|
|
|
info->rsrc = Z_RATE_DEFAULT;
|
|
info->rdst = Z_RATE_DEFAULT;
|
|
info->quality = feeder_rate_quality;
|
|
info->channels = AFMT_CHANNEL(f->desc->in);
|
|
|
|
f->data = info;
|
|
|
|
ret = z_resampler_setup(f);
|
|
if (ret != 0) {
|
|
if (info->z_pcoeff != NULL)
|
|
free(info->z_pcoeff, M_DEVBUF);
|
|
if (info->z_delay != NULL)
|
|
free(info->z_delay, M_DEVBUF);
|
|
free(info, M_DEVBUF);
|
|
f->data = NULL;
|
|
}
|
|
|
|
return (ret);
|
|
}
|
|
|
|
static int
|
|
z_resampler_free(struct pcm_feeder *f)
|
|
{
|
|
struct z_info *info;
|
|
|
|
info = f->data;
|
|
if (info != NULL) {
|
|
if (info->z_pcoeff != NULL)
|
|
free(info->z_pcoeff, M_DEVBUF);
|
|
if (info->z_delay != NULL)
|
|
free(info->z_delay, M_DEVBUF);
|
|
free(info, M_DEVBUF);
|
|
}
|
|
|
|
f->data = NULL;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static uint32_t
|
|
z_resampler_feed_internal(struct pcm_feeder *f, struct pcm_channel *c,
|
|
uint8_t *b, uint32_t count, void *source)
|
|
{
|
|
struct z_info *info;
|
|
int32_t alphadrift, startdrift, reqout, ocount, reqin, align;
|
|
int32_t fetch, fetched, start, cp;
|
|
uint8_t *dst;
|
|
|
|
info = f->data;
|
|
if (info->z_resample == NULL)
|
|
return (z_feed(f->source, c, b, count, source));
|
|
|
|
/*
|
|
* Calculate sample size alignment and amount of sample output.
|
|
* We will do everything in sample domain, but at the end we
|
|
* will jump back to byte domain.
|
|
*/
|
|
align = info->channels * info->bps;
|
|
ocount = SND_FXDIV(count, align);
|
|
if (ocount == 0)
|
|
return (0);
|
|
|
|
/*
|
|
* Calculate amount of input samples that is needed to generate
|
|
* exact amount of output.
|
|
*/
|
|
reqin = z_gy2gx(info, ocount) - z_fetched(info);
|
|
|
|
#ifdef Z_USE_ALPHADRIFT
|
|
startdrift = info->z_startdrift;
|
|
alphadrift = info->z_alphadrift;
|
|
#else
|
|
startdrift = _Z_GY2GX(info, 0, 1);
|
|
alphadrift = z_drift(info, startdrift, 1);
|
|
#endif
|
|
|
|
dst = b;
|
|
|
|
do {
|
|
if (reqin != 0) {
|
|
fetch = z_min(z_free(info), reqin);
|
|
if (fetch == 0) {
|
|
/*
|
|
* No more free spaces, so wind enough
|
|
* samples back to the head of delay line
|
|
* in byte domain.
|
|
*/
|
|
fetched = z_fetched(info);
|
|
start = z_prev(info, info->z_start,
|
|
(info->z_size << 1) - 1);
|
|
cp = (info->z_size << 1) + fetched;
|
|
z_copy(info->z_delay + (start * align),
|
|
info->z_delay, cp * align);
|
|
info->z_start =
|
|
z_prev(info, info->z_size << 1, 1);
|
|
info->z_pos =
|
|
z_next(info, info->z_start, fetched + 1);
|
|
fetch = z_min(z_free(info), reqin);
|
|
#ifdef Z_DIAGNOSTIC
|
|
if (1) {
|
|
static uint32_t kk = 0;
|
|
fprintf(stderr,
|
|
"Buffer Move: "
|
|
"start=%d fetched=%d cp=%d "
|
|
"cycle=%u [%u]\r",
|
|
start, fetched, cp, info->z_cycle,
|
|
++kk);
|
|
}
|
|
info->z_cycle = 0;
|
|
#endif
|
|
}
|
|
if (fetch != 0) {
|
|
/*
|
|
* Fetch in byte domain and jump back
|
|
* to sample domain.
|
|
*/
|
|
fetched = SND_FXDIV(z_feed(f->source, c,
|
|
info->z_delay + (info->z_pos * align),
|
|
fetch * align, source), align);
|
|
/*
|
|
* Prepare to convert fetched buffer,
|
|
* or mark us done if we cannot fulfill
|
|
* the request.
|
|
*/
|
|
reqin -= fetched;
|
|
info->z_pos += fetched;
|
|
if (fetched != fetch)
|
|
reqin = 0;
|
|
}
|
|
}
|
|
|
|
reqout = z_min(z_gx2gy(info, z_fetched(info)), ocount);
|
|
if (reqout != 0) {
|
|
ocount -= reqout;
|
|
|
|
/*
|
|
* Drift.. drift.. drift..
|
|
*
|
|
* Notice that there are 2 methods of doing the drift
|
|
* operations: The former is much cleaner (in a sense
|
|
* of mathematical readings of my eyes), but slower
|
|
* due to integer division in z_gy2gx(). Nevertheless,
|
|
* both should give the same exact accurate drifting
|
|
* results, so the later is favourable.
|
|
*/
|
|
do {
|
|
info->z_resample(info, dst);
|
|
#if 0
|
|
startdrift = z_gy2gx(info, 1);
|
|
alphadrift = z_drift(info, startdrift, 1);
|
|
info->z_start += startdrift;
|
|
info->z_alpha += alphadrift;
|
|
#else
|
|
info->z_alpha += alphadrift;
|
|
if (info->z_alpha < info->z_gy)
|
|
info->z_start += startdrift;
|
|
else {
|
|
info->z_start += startdrift - 1;
|
|
info->z_alpha -= info->z_gy;
|
|
}
|
|
#endif
|
|
dst += align;
|
|
#ifdef Z_DIAGNOSTIC
|
|
info->z_cycle++;
|
|
#endif
|
|
} while (--reqout != 0);
|
|
}
|
|
} while (reqin != 0 && ocount != 0);
|
|
|
|
/*
|
|
* Back to byte domain..
|
|
*/
|
|
return (dst - b);
|
|
}
|
|
|
|
static int
|
|
z_resampler_feed(struct pcm_feeder *f, struct pcm_channel *c, uint8_t *b,
|
|
uint32_t count, void *source)
|
|
{
|
|
uint32_t feed, maxfeed, left;
|
|
|
|
/*
|
|
* Split count to smaller chunks to avoid possible 32bit overflow.
|
|
*/
|
|
maxfeed = ((struct z_info *)(f->data))->z_maxfeed;
|
|
left = count;
|
|
|
|
do {
|
|
feed = z_resampler_feed_internal(f, c, b,
|
|
z_min(maxfeed, left), source);
|
|
b += feed;
|
|
left -= feed;
|
|
} while (left != 0 && feed != 0);
|
|
|
|
return (count - left);
|
|
}
|
|
|
|
static struct pcm_feederdesc feeder_rate_desc[] = {
|
|
{ FEEDER_RATE, 0, 0, 0, 0 },
|
|
{ 0, 0, 0, 0, 0 },
|
|
};
|
|
|
|
static kobj_method_t feeder_rate_methods[] = {
|
|
KOBJMETHOD(feeder_init, z_resampler_init),
|
|
KOBJMETHOD(feeder_free, z_resampler_free),
|
|
KOBJMETHOD(feeder_set, z_resampler_set),
|
|
KOBJMETHOD(feeder_get, z_resampler_get),
|
|
KOBJMETHOD(feeder_feed, z_resampler_feed),
|
|
KOBJMETHOD_END
|
|
};
|
|
|
|
FEEDER_DECLARE(feeder_rate, NULL);
|