freebsd-skq/sys/i386/isa/labpc.c
Julian Elischer f7ea2f55d1 There is no such thing any more as "struct bdevsw".
There is only cdevsw (which should be renamed in a later edit to deventry
or something). cdevsw contains the union of what were in both bdevsw an
cdevsw entries.  The bdevsw[] table stiff exists and is a second pointer
to the cdevsw entry of the device. it's major is in d_bmaj rather than
d_maj. some cleanup still to happen (e.g. dsopen now gets two pointers
to the same cdevsw struct instead of one to a bdevsw and one to a cdevsw).

rawread()/rawwrite() went away as part of this though it's not strictly
the same  patch, just that it involves all the same lines in the drivers.

cdroms no longer have write() entries (they did have rawwrite (?)).
tapes no longer have support for bdev operations.

Reviewed by: Eivind Eklund and Mike Smith
	Changes suggested by eivind.
1998-07-04 22:30:26 +00:00

1113 lines
23 KiB
C

/*
* Copyright (c) 1995 HD Associates, Inc.
* All rights reserved.
*
* HD Associates, Inc.
* PO Box 276
* Pepperell, MA 01463-0276
* dufault@hda.com
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by HD Associates, Inc.
* 4. The name of HD Associates, Inc.
* may not be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY HD ASSOCIATES ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Written by:
* Peter Dufault
* dufault@hda.com
*/
#include "labpc.h"
#include "opt_debug_outb.h"
#include "opt_devfs.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#define b_actf b_act.tqe_next
#include <sys/dataacq.h>
#include <sys/conf.h>
#ifdef DEVFS
#include <sys/devfsext.h>
#endif /*DEVFS*/
#include <machine/clock.h>
#include <i386/isa/isa_device.h>
/* Miniumum timeout:
*/
#ifndef LABPC_MIN_TMO
#define LABPC_MIN_TMO (hz)
#endif
#ifndef LABPC_DEFAULT_HERZ
#define LABPC_DEFAULT_HERZ 500
#endif
/* Minor number:
* UUSIDCCC
* UU: Board unit.
* S: SCAN bit for scan enable.
* I: INTERVAL for interval support
* D: 1: Digital I/O, 0: Analog I/O
* CCC: Channel.
* Analog (D==0):
* input: channel must be 0 to 7.
* output: channel must be 0 to 2
* 0: D-A 0
* 1: D-A 1
* 2: Alternate channel 0 then 1
*
* Digital (D==1):
* input: Channel must be 0 to 2.
* output: Channel must be 0 to 2.
*/
/* Up to four boards:
*/
#define MAX_UNITS 4
#define UNIT(dev) (((minor(dev) & 0xB0) >> 6) & 0x3)
#define SCAN(dev) ((minor(dev) & 0x20) >> 5)
#define INTERVAL(dev) ((minor(dev) & 0x10) >> 4)
#define DIGITAL(dev) ((minor(dev) & 0x08) >> 3)
/* Eight channels:
*/
#define CHAN(dev) (minor(dev) & 0x7)
/* History: Derived from "dt2811.c" March 1995
*/
struct ctlr
{
int err;
#define DROPPED_INPUT 0x100
int base;
int unit;
unsigned long flags;
#define BUSY 0x00000001
u_char cr_image[4];
u_short sample_us;
struct buf start_queue; /* Start queue */
struct buf *last; /* End of start queue */
u_char *data;
u_char *data_end;
long tmo; /* Timeout in Herz */
long min_tmo; /* Timeout in Herz */
int cleared_intr;
int gains[8];
dev_t dev; /* Copy of device */
void (*starter)(struct ctlr *ctlr, long count);
void (*stop)(struct ctlr *ctlr);
void (*intr)(struct ctlr *ctlr);
/* Digital I/O support. Copy of Data Control Register for 8255:
*/
u_char dcr_val, dcr_is;
/*
* Handle for canceling our timeout.
*/
struct callout_handle ch;
/* Device configuration structure:
*/
#ifdef DEVFS
void *devfs_token;
#endif
};
#ifdef LOUTB
/* loutb is a slow outb for debugging. The overrun test may fail
* with this for some slower processors.
*/
static __inline void loutb(int port, u_char val)
{
outb(port, val);
DELAY(1);
}
#else
#define loutb(port, val) outb(port, val)
#endif
static struct ctlr **labpcs; /* XXX: Should be dynamic */
/* CR_EXPR: A macro that sets the shadow register in addition to
* sending out the data.
*/
#define CR_EXPR(LABPC, CR, EXPR) do { \
(LABPC)->cr_image[CR - 1] EXPR ; \
loutb(((LABPC)->base + ( (CR == 4) ? (0x0F) : (CR - 1))), ((LABPC)->cr_image[(CR - 1)])); \
} while (0)
#define CR_CLR(LABPC, CR) CR_EXPR(LABPC, CR, &=0)
#define CR_REFRESH(LABPC, CR) CR_EXPR(LABPC, CR, &=0xff)
#define CR_SET(LABPC, CR, EXPR) CR_EXPR(LABPC, CR, = EXPR)
/* Configuration and Status Register Group.
*/
#define CR1(LABPC) ((LABPC)->base + 0x00) /* Page 4-5 */
#define SCANEN 0x80
#define GAINMASK 0x70
#define GAIN(LABPC, SEL) do { \
(LABPC)->cr_image[1 - 1] &= ~GAINMASK; \
(LABPC)->cr_image[1 - 1] |= (SEL << 4); \
loutb((LABPC)->base + (1 - 1), (LABPC)->cr_image[(1 - 1)]); \
} while (0)
#define TWOSCMP 0x08
#define MAMASK 0x07
#define MA(LABPC, SEL) do { \
(LABPC)->cr_image[1 - 1] &= ~MAMASK; \
(LABPC)->cr_image[1 - 1] |= SEL; \
loutb((LABPC)->base + (1 - 1), (LABPC)->cr_image[(1 - 1)]); \
} while (0)
#define STATUS(LABPC) ((LABPC)->base + 0x00) /* Page 4-7 */
#define LABPCPLUS 0x80
#define EXTGATA0 0x40
#define GATA0 0x20
#define DMATC 0x10
#define CNTINT 0x08
#define OVERFLOW 0x04
#define OVERRUN 0x02
#define DAVAIL 0x01
#define CR2(LABPC) ((LABPC)->base + 0x01) /* Page 4-9 */
#define LDAC1 0x80
#define LDAC0 0x40
#define _2SDAC1 0x20
#define _2SDAC0 0x10
#define TBSEL 0x08
#define SWTRIG 0x04
#define HWTRIG 0x02
#define PRETRIG 0x01
#define SWTRIGGERRED(LABPC) ((LABPC->cr_image[1]) & SWTRIG)
#define CR3(LABPC) ((LABPC)->base + 0x02) /* Page 4-11 */
#define FIFOINTEN 0x20
#define ERRINTEN 0x10
#define CNTINTEN 0x08
#define TCINTEN 0x04
#define DIOINTEN 0x02
#define DMAEN 0x01
#define ALLINTEN 0x3E
#define FIFOINTENABLED(LABPC) ((LABPC->cr_image[2]) & FIFOINTEN)
#define CR4(LABPC) ((LABPC)->base + 0x0F) /* Page 4-13 */
#define ECLKRCV 0x10
#define SE_D 0x08
#define ECKDRV 0x04
#define EOIRCV 0x02
#define INTSCAN 0x01
/* Analog Input Register Group
*/
#define ADFIFO(LABPC) ((LABPC)->base + 0x0A) /* Page 4-16 */
#define ADCLEAR(LABPC) ((LABPC)->base + 0x08) /* Page 4-18 */
#define ADSTART(LABPC) ((LABPC)->base + 0x03) /* Page 4-19 */
#define DMATCICLR(LABPC) ((LABPC)->base + 0x0A) /* Page 4-20 */
/* Analog Output Register Group
*/
#define DAC0L(LABPC) ((LABPC)->base + 0x04) /* Page 4-22 */
#define DAC0H(LABPC) ((LABPC)->base + 0x05) /* Page 4-22 */
#define DAC1L(LABPC) ((LABPC)->base + 0x06) /* Page 4-22 */
#define DAC1H(LABPC) ((LABPC)->base + 0x07) /* Page 4-22 */
/* 8253 registers:
*/
#define A0DATA(LABPC) ((LABPC)->base + 0x14)
#define A1DATA(LABPC) ((LABPC)->base + 0x15)
#define A2DATA(LABPC) ((LABPC)->base + 0x16)
#define AMODE(LABPC) ((LABPC)->base + 0x17)
#define TICR(LABPC) ((LABPC)->base + 0x0c)
#define B0DATA(LABPC) ((LABPC)->base + 0x18)
#define B1DATA(LABPC) ((LABPC)->base + 0x19)
#define B2DATA(LABPC) ((LABPC)->base + 0x1A)
#define BMODE(LABPC) ((LABPC)->base + 0x1B)
/* 8255 registers:
*/
#define PORTX(LABPC, X) ((LABPC)->base + 0x10 + X)
#define PORTA(LABPC) PORTX(LABPC, 0)
#define PORTB(LABPC) PORTX(LABPC, 1)
#define PORTC(LABPC) PORTX(LABPC, 2)
#define DCR(LABPC) ((LABPC)->base + 0x13)
static int labpcattach(struct isa_device *dev);
static int labpcprobe(struct isa_device *dev);
struct isa_driver labpcdriver =
{ labpcprobe, labpcattach, "labpc", 0 };
static d_read_t labpcread;
static d_write_t labpcwrite;
static d_open_t labpcopen;
static d_close_t labpcclose;
static d_ioctl_t labpcioctl;
static d_strategy_t labpcstrategy;
#define CDEV_MAJOR 66
static struct cdevsw labpc_cdevsw =
{ labpcopen, labpcclose, labpcread, labpcwrite,
labpcioctl, nostop, nullreset, nodevtotty,
seltrue, nommap, labpcstrategy, "labpc", NULL, -1 };
static void start(struct ctlr *ctlr);
static void
bp_done(struct buf *bp, int err)
{
bp->b_error = err;
if (err || bp->b_resid)
{
bp->b_flags |= B_ERROR;
}
biodone(bp);
}
static void tmo_stop(void *p);
static void
done_and_start_next(struct ctlr *ctlr, struct buf *bp, int err)
{
bp->b_resid = ctlr->data_end - ctlr->data;
ctlr->data = 0;
ctlr->start_queue.b_actf = bp->b_actf;
bp_done(bp, err);
untimeout(tmo_stop, ctlr, ctlr->ch);
start(ctlr);
}
static __inline void
ad_clear(struct ctlr *ctlr)
{
int i;
loutb(ADCLEAR(ctlr), 0);
for (i = 0; i < 10000 && (inb(STATUS(ctlr)) & GATA0); i++)
;
(void)inb(ADFIFO(ctlr));
(void)inb(ADFIFO(ctlr));
}
/* reset: Reset the board following the sequence on page 5-1
*/
static __inline void
reset(struct ctlr *ctlr)
{
int s = splhigh();
CR_CLR(ctlr, 3); /* Turn off interrupts first */
splx(s);
CR_CLR(ctlr, 1);
CR_CLR(ctlr, 2);
CR_CLR(ctlr, 4);
loutb(AMODE(ctlr), 0x34);
loutb(A0DATA(ctlr),0x0A);
loutb(A0DATA(ctlr),0x00);
loutb(DMATCICLR(ctlr), 0x00);
loutb(TICR(ctlr), 0x00);
ad_clear(ctlr);
loutb(DAC0L(ctlr), 0);
loutb(DAC0H(ctlr), 0);
loutb(DAC1L(ctlr), 0);
loutb(DAC1H(ctlr), 0);
ad_clear(ctlr);
}
/* overrun: slam the start convert register and OVERRUN should get set:
*/
static u_char
overrun(struct ctlr *ctlr)
{
int i;
u_char status = inb(STATUS(ctlr));
for (i = 0; ((status & OVERRUN) == 0) && i < 100; i++)
{
loutb(ADSTART(ctlr), 1);
status = inb(STATUS(ctlr));
}
return status;
}
static int
labpcinit(void)
{
if (NLABPC > MAX_UNITS)
return 0;
labpcs = malloc(NLABPC * sizeof(struct ctlr *), M_DEVBUF, M_NOWAIT);
if (labpcs)
{
bzero(labpcs, NLABPC * sizeof(struct cltr *));
return 1;
}
return 0;
}
static int
labpcprobe(struct isa_device *dev)
{
static unit;
struct ctlr scratch, *ctlr;
u_char status;
if (!labpcs)
{
if (labpcinit() == 0)
{
printf("labpcprobe: init failed\n");
return 0;
}
}
if (unit > NLABPC)
{
printf("Too many LAB-PCs. Reconfigure O/S.\n");
return 0;
}
ctlr = &scratch; /* Need somebody with the right base for the macros */
ctlr->base = dev->id_iobase;
/* XXX: There really isn't a perfect way to probe this board.
* Here is my best attempt:
*/
reset(ctlr);
/* After reset none of these bits should be set:
*/
status = inb(STATUS(ctlr));
if (status & (GATA0 | OVERFLOW | DAVAIL | OVERRUN))
return 0;
/* Now try to overrun the board FIFO and get the overrun bit set:
*/
status = overrun(ctlr);
if ((status & OVERRUN) == 0) /* No overrun bit set? */
return 0;
/* Assume we have a board.
*/
reset(ctlr);
if ( (labpcs[unit] = malloc(sizeof(struct ctlr), M_DEVBUF, M_NOWAIT)) )
{
struct ctlr *l = labpcs[unit];
bzero(l, sizeof(struct ctlr));
l->base = ctlr->base;
dev->id_unit = l->unit = unit;
unit++;
return 0x20;
}
else
{
printf("labpc%d: Can't malloc.\n", unit);
return 0;
}
}
/* attach: Set things in a normal state.
*/
static int
labpcattach(struct isa_device *dev)
{
struct ctlr *ctlr = labpcs[dev->id_unit];
callout_handle_init(&ctlr->ch);
ctlr->sample_us = (1000000.0 / (double)LABPC_DEFAULT_HERZ) + .50;
reset(ctlr);
ctlr->min_tmo = LABPC_MIN_TMO;
ctlr->dcr_val = 0x80;
ctlr->dcr_is = 0x80;
loutb(DCR(ctlr), ctlr->dcr_val);
#ifdef DEVFS
ctlr->devfs_token =
devfs_add_devswf(&labpc_cdevsw, 0, DV_CHR,
/* what UID GID PERM */
0, 0, 0600,
"labpc%d", dev->id_unit);
#endif
return 1;
}
/* Null handlers:
*/
static void null_intr (struct ctlr *ctlr) { }
static void null_start(struct ctlr *ctlr, long count) { }
static void null_stop (struct ctlr *ctlr) { }
static __inline void
trigger(struct ctlr *ctlr)
{
CR_EXPR(ctlr, 2, |= SWTRIG);
}
static void
ad_start(struct ctlr *ctlr, long count)
{
if (!SWTRIGGERRED(ctlr)) {
int chan = CHAN(ctlr->dev);
CR_EXPR(ctlr, 1, &= ~SCANEN);
CR_EXPR(ctlr, 2, &= ~TBSEL);
MA(ctlr, chan);
GAIN(ctlr, ctlr->gains[chan]);
if (SCAN(ctlr->dev))
CR_EXPR(ctlr, 1, |= SCANEN);
loutb(AMODE(ctlr), 0x34);
loutb(A0DATA(ctlr), (u_char)((ctlr->sample_us & 0xff)));
loutb(A0DATA(ctlr), (u_char)((ctlr->sample_us >> 8)&0xff));
loutb(AMODE(ctlr), 0x70);
ad_clear(ctlr);
trigger(ctlr);
}
ctlr->tmo = ((count + 16) * (long)ctlr->sample_us * hz) / 1000000 +
ctlr->min_tmo;
}
static void
ad_interval_start(struct ctlr *ctlr, long count)
{
int chan = CHAN(ctlr->dev);
int n_frames = count / (chan + 1);
if (!SWTRIGGERRED(ctlr)) {
CR_EXPR(ctlr, 1, &= ~SCANEN);
CR_EXPR(ctlr, 2, &= ~TBSEL);
MA(ctlr, chan);
GAIN(ctlr, ctlr->gains[chan]);
/* XXX: Is it really possible that you clear INTSCAN as
* the documentation says? That seems pretty unlikely.
*/
CR_EXPR(ctlr, 4, &= ~INTSCAN); /* XXX: Is this possible? */
/* Program the sample interval counter to run as fast as
* possible.
*/
loutb(AMODE(ctlr), 0x34);
loutb(A0DATA(ctlr), (u_char)(0x02));
loutb(A0DATA(ctlr), (u_char)(0x00));
loutb(AMODE(ctlr), 0x70);
/* Program the interval scanning counter to run at the sample
* frequency.
*/
loutb(BMODE(ctlr), 0x74);
loutb(B1DATA(ctlr), (u_char)((ctlr->sample_us & 0xff)));
loutb(B1DATA(ctlr), (u_char)((ctlr->sample_us >> 8)&0xff));
CR_EXPR(ctlr, 1, |= SCANEN);
ad_clear(ctlr);
trigger(ctlr);
}
/* Each frame time takes two microseconds per channel times
* the number of channels being sampled plus the sample period.
*/
ctlr->tmo = ((n_frames + 16) *
((long)ctlr->sample_us + (chan + 1 ) * 2 ) * hz) / 1000000 +
ctlr->min_tmo;
}
static void
all_stop(struct ctlr *ctlr)
{
reset(ctlr);
}
static void
tmo_stop(void *p)
{
struct ctlr *ctlr = (struct ctlr *)p;
struct buf *bp;
int s = spltty();
if (ctlr == 0)
{
printf("labpc?: Null ctlr struct?\n");
splx(s);
return;
}
printf("labpc%d: timeout", ctlr->unit);
(*ctlr->stop)(ctlr);
bp = ctlr->start_queue.b_actf;
if (bp == 0) {
printf(", Null bp.\n");
splx(s);
return;
}
printf("\n");
done_and_start_next(ctlr, bp, ETIMEDOUT);
splx(s);
}
static void ad_intr(struct ctlr *ctlr)
{
u_char status;
if (ctlr->cr_image[2] == 0)
{
if (ctlr->cleared_intr)
{
ctlr->cleared_intr = 0;
return;
}
printf("ad_intr (should not happen) interrupt with interrupts off\n");
printf("status %x, cr3 %x\n", inb(STATUS(ctlr)), ctlr->cr_image[2]);
return;
}
while ( (status = (inb(STATUS(ctlr)) & (DAVAIL|OVERRUN|OVERFLOW)) ) )
{
if ((status & (OVERRUN|OVERFLOW)))
{
struct buf *bp = ctlr->start_queue.b_actf;
printf("ad_intr: error: bp %0p, data %0p, status %x",
bp, ctlr->data, status);
if (status & OVERRUN)
printf(" Conversion overrun (multiple A-D trigger)");
if (status & OVERFLOW)
printf(" FIFO overflow");
printf("\n");
if (bp)
{
done_and_start_next(ctlr, bp, EIO);
return;
}
else
{
printf("ad_intr: (should not happen) error between records\n");
ctlr->err = status; /* Set overrun condition */
return;
}
}
else /* FIFO interrupt */
{
struct buf *bp = ctlr->start_queue.b_actf;
if (ctlr->data)
{
*ctlr->data++ = inb(ADFIFO(ctlr));
if (ctlr->data == ctlr->data_end) /* Normal completion */
{
done_and_start_next(ctlr, bp, 0);
return;
}
}
else /* Interrupt with no where to put the data. */
{
printf("ad_intr: (should not happen) dropped input.\n");
(void)inb(ADFIFO(ctlr));
printf("bp %0p, status %x, cr3 %x\n", bp, status,
ctlr->cr_image[2]);
ctlr->err = DROPPED_INPUT;
return;
}
}
}
}
void labpcintr(int unit)
{
struct ctlr *ctlr = labpcs[unit];
(*ctlr->intr)(ctlr);
}
/* lockout_multiple_opens: Return whether or not we can open again, or
* if the new mode is inconsistent with an already opened mode.
* We only permit multiple opens for digital I/O now.
*/
static int
lockout_multiple_open(dev_t current, dev_t next)
{
return ! (DIGITAL(current) && DIGITAL(next));
}
static int
labpcopen(dev_t dev, int flags, int fmt, struct proc *p)
{
u_short unit = UNIT(dev);
struct ctlr *ctlr;
if (unit >= MAX_UNITS)
return ENXIO;
ctlr = labpcs[unit];
if (ctlr == 0)
return ENXIO;
/* Don't allow another open if we have to change modes.
*/
if ( (ctlr->flags & BUSY) == 0)
{
ctlr->flags |= BUSY;
reset(ctlr);
ctlr->err = 0;
ctlr->dev = dev;
ctlr->intr = null_intr;
ctlr->starter = null_start;
ctlr->stop = null_stop;
}
else if (lockout_multiple_open(ctlr->dev, dev))
return EBUSY;
return 0;
}
static int
labpcclose(dev_t dev, int flags, int fmt, struct proc *p)
{
struct ctlr *ctlr = labpcs[UNIT(dev)];
(*ctlr->stop)(ctlr);
ctlr->flags &= ~BUSY;
return 0;
}
static int
labpcread( dev_t dev, struct uio *uio, int ioflag)
{
return (physio(labpcstrategy, NULL, dev, 1, minphys, uio));
}
static int
labpcwrite ( dev_t dev, struct uio *uio, int ioflag)
{
return (physio(labpcstrategy, NULL, dev, 0, minphys, uio));
}
/*
* Start: Start a frame going in or out.
*/
static void
start(struct ctlr *ctlr)
{
struct buf *bp;
if ((bp = ctlr->start_queue.b_actf) == 0)
{
/* We must turn off FIFO interrupts when there is no
* place to put the data. We have to get back to
* reading before the FIFO overflows.
*/
CR_EXPR(ctlr, 3, &= ~(FIFOINTEN|ERRINTEN));
ctlr->cleared_intr = 1;
ctlr->start_queue.b_bcount = 0;
return;
}
ctlr->data = (u_char *)bp->b_data;
ctlr->data_end = ctlr->data + bp->b_bcount;
if (ctlr->err)
{
printf("labpc start: (should not happen) error between records.\n");
done_and_start_next(ctlr, bp, EIO);
return;
}
if (ctlr->data == 0)
{
printf("labpc start: (should not happen) NULL data pointer.\n");
done_and_start_next(ctlr, bp, EIO);
return;
}
(*ctlr->starter)(ctlr, bp->b_bcount);
if (!FIFOINTENABLED(ctlr)) /* We can store the data again */
{
CR_EXPR(ctlr, 3, |= (FIFOINTEN|ERRINTEN));
/* Don't wait for the interrupts to fill things up.
*/
(*ctlr->intr)(ctlr);
}
ctlr->ch = timeout(tmo_stop, ctlr, ctlr->tmo);
}
static void
ad_strategy(struct buf *bp, struct ctlr *ctlr)
{
int s;
s = spltty();
bp->b_actf = NULL;
if (ctlr->start_queue.b_bcount)
{
ctlr->last->b_actf = bp;
ctlr->last = bp;
}
else
{
ctlr->start_queue.b_bcount = 1;
ctlr->start_queue.b_actf = bp;
ctlr->last = bp;
start(ctlr);
}
splx(s);
}
/* da_strategy: Send data to the D-A. The CHAN field should be
* 0: D-A port 0
* 1: D-A port 1
* 2: Alternate port 0 then port 1
*
* XXX:
*
* 1. There is no state for CHAN field 2:
* the first sample in each buffer goes to channel 0.
*
* 2. No interrupt support yet.
*/
static void
da_strategy(struct buf *bp, struct ctlr *ctlr)
{
int len;
u_char *data;
int port;
int i;
switch(CHAN(bp->b_dev))
{
case 0:
port = DAC0L(ctlr);
break;
case 1:
port = DAC1L(ctlr);
break;
case 2: /* Device 2 handles both ports interleaved. */
if (bp->b_bcount <= 2)
{
port = DAC0L(ctlr);
break;
}
len = bp->b_bcount / 2;
data = (u_char *)bp->b_data;
for (i = 0; i < len; i++)
{
loutb(DAC0H(ctlr), *data++);
loutb(DAC0L(ctlr), *data++);
loutb(DAC1H(ctlr), *data++);
loutb(DAC1L(ctlr), *data++);
}
bp->b_resid = bp->b_bcount & 3;
bp_done(bp, 0);
return;
default:
bp_done(bp, ENXIO);
return;
}
/* Port 0 or 1 falls through to here.
*/
if (bp->b_bcount & 1) /* Odd transfers are illegal */
bp_done(bp, EIO);
len = bp->b_bcount;
data = (u_char *)bp->b_data;
for (i = 0; i < len; i++)
{
loutb(port + 1, *data++);
loutb(port, *data++);
}
bp->b_resid = 0;
bp_done(bp, 0);
}
/* Input masks for MODE 0 of the ports treating PC as a single
* 8 bit port. Set these bits to set the port to input.
*/
/* A B lowc highc combined */
static u_char set_input[] = { 0x10, 0x02, 0x01, 0x08, 0x09 };
static void flush_dcr(struct ctlr *ctlr)
{
if (ctlr->dcr_is != ctlr->dcr_val)
{
loutb(DCR(ctlr), ctlr->dcr_val);
ctlr->dcr_is = ctlr->dcr_val;
}
}
/* do: Digital output
*/
static void
digital_out_strategy(struct buf *bp, struct ctlr *ctlr)
{
int len;
u_char *data;
int port;
int i;
int chan = CHAN(bp->b_dev);
ctlr->dcr_val &= ~set_input[chan]; /* Digital out: Clear bit */
flush_dcr(ctlr);
port = PORTX(ctlr, chan);
len = bp->b_bcount;
data = (u_char *)bp->b_data;
for (i = 0; i < len; i++)
{
loutb(port, *data++);
}
bp->b_resid = 0;
bp_done(bp, 0);
}
/* digital_in_strategy: Digital input
*/
static void
digital_in_strategy(struct buf *bp, struct ctlr *ctlr)
{
int len;
u_char *data;
int port;
int i;
int chan = CHAN(bp->b_dev);
ctlr->dcr_val |= set_input[chan]; /* Digital in: Set bit */
flush_dcr(ctlr);
port = PORTX(ctlr, chan);
len = bp->b_bcount;
data = (u_char *)bp->b_data;
for (i = 0; i < len; i++)
{
*data++ = inb(port);
}
bp->b_resid = 0;
bp_done(bp, 0);
}
static void
labpcstrategy(struct buf *bp)
{
struct ctlr *ctlr = labpcs[UNIT(bp->b_dev)];
if (DIGITAL(bp->b_dev)) {
if (bp->b_flags & B_READ) {
ctlr->starter = null_start;
ctlr->stop = all_stop;
ctlr->intr = null_intr;
digital_in_strategy(bp, ctlr);
}
else
{
ctlr->starter = null_start;
ctlr->stop = all_stop;
ctlr->intr = null_intr;
digital_out_strategy(bp, ctlr);
}
}
else {
if (bp->b_flags & B_READ) {
ctlr->starter = INTERVAL(ctlr->dev) ? ad_interval_start : ad_start;
ctlr->stop = all_stop;
ctlr->intr = ad_intr;
ad_strategy(bp, ctlr);
}
else
{
ctlr->starter = null_start;
ctlr->stop = all_stop;
ctlr->intr = null_intr;
da_strategy(bp, ctlr);
}
}
}
static int
labpcioctl(dev_t dev, u_long cmd, caddr_t arg, int mode, struct proc *p)
{
struct ctlr *ctlr = labpcs[UNIT(dev)];
switch(cmd)
{
case AD_MICRO_PERIOD_SET:
{
/* XXX I'm only supporting what I have to, which is
* no slow periods. You can't get any slower than 15 Hz
* with the current setup. To go slower you'll need to
* support TCINTEN in CR3.
*/
long sample_us = *(long *)arg;
if (sample_us > 65535)
return EIO;
ctlr->sample_us = sample_us;
return 0;
}
case AD_MICRO_PERIOD_GET:
*(long *)arg = ctlr->sample_us;
return 0;
case AD_NGAINS_GET:
*(int *)arg = 8;
return 0;
case AD_NCHANS_GET:
*(int *)arg = 8;
return 0;
case AD_SUPPORTED_GAINS:
{
static double gains[] = {1., 1.25, 2., 5., 10., 20., 50., 100.};
copyout(gains, *(caddr_t *)arg, sizeof(gains));
return 0;
}
case AD_GAINS_SET:
{
copyin(*(caddr_t *)arg, ctlr->gains, sizeof(ctlr->gains));
return 0;
}
case AD_GAINS_GET:
{
copyout(ctlr->gains, *(caddr_t *)arg, sizeof(ctlr->gains));
return 0;
}
default:
return ENOTTY;
}
}
static labpc_devsw_installed = 0;
static void labpc_drvinit(void *unused)
{
dev_t dev;
if( ! labpc_devsw_installed ) {
dev = makedev(CDEV_MAJOR,0);
cdevsw_add(&dev,&labpc_cdevsw,NULL);
labpc_devsw_installed = 1;
}
}
SYSINIT(labpcdev,SI_SUB_DRIVERS,SI_ORDER_MIDDLE+CDEV_MAJOR,labpc_drvinit,NULL)