5500b82820
Noticed-by: julian
1938 lines
48 KiB
C
1938 lines
48 KiB
C
/*-
|
|
* Copyright (c) 1982, 1986, 1991, 1993, 1995
|
|
* The Regents of the University of California.
|
|
* Copyright (c) 2007-2008 Robert N. M. Watson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_inet.h"
|
|
#include "opt_ipsec.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_mac.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/jail.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vimage.h>
|
|
|
|
#ifdef DDB
|
|
#include <ddb/ddb.h>
|
|
#endif
|
|
|
|
#include <vm/uma.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/tcp_var.h>
|
|
#include <netinet/udp.h>
|
|
#include <netinet/udp_var.h>
|
|
#include <netinet/vinet.h>
|
|
#ifdef INET6
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/vinet6.h>
|
|
#endif /* INET6 */
|
|
|
|
|
|
#ifdef IPSEC
|
|
#include <netipsec/ipsec.h>
|
|
#include <netipsec/key.h>
|
|
#endif /* IPSEC */
|
|
|
|
#include <security/mac/mac_framework.h>
|
|
|
|
#ifdef VIMAGE_GLOBALS
|
|
/*
|
|
* These configure the range of local port addresses assigned to
|
|
* "unspecified" outgoing connections/packets/whatever.
|
|
*/
|
|
int ipport_lowfirstauto;
|
|
int ipport_lowlastauto;
|
|
int ipport_firstauto;
|
|
int ipport_lastauto;
|
|
int ipport_hifirstauto;
|
|
int ipport_hilastauto;
|
|
|
|
/*
|
|
* Reserved ports accessible only to root. There are significant
|
|
* security considerations that must be accounted for when changing these,
|
|
* but the security benefits can be great. Please be careful.
|
|
*/
|
|
int ipport_reservedhigh;
|
|
int ipport_reservedlow;
|
|
|
|
/* Variables dealing with random ephemeral port allocation. */
|
|
int ipport_randomized;
|
|
int ipport_randomcps;
|
|
int ipport_randomtime;
|
|
int ipport_stoprandom;
|
|
int ipport_tcpallocs;
|
|
int ipport_tcplastcount;
|
|
#endif
|
|
|
|
#define RANGECHK(var, min, max) \
|
|
if ((var) < (min)) { (var) = (min); } \
|
|
else if ((var) > (max)) { (var) = (max); }
|
|
|
|
static int
|
|
sysctl_net_ipport_check(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
int error;
|
|
|
|
error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2, req);
|
|
if (error == 0) {
|
|
RANGECHK(V_ipport_lowfirstauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(V_ipport_lowlastauto, 1, IPPORT_RESERVED - 1);
|
|
RANGECHK(V_ipport_firstauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_lastauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_hifirstauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
RANGECHK(V_ipport_hilastauto, IPPORT_RESERVED, IPPORT_MAX);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#undef RANGECHK
|
|
|
|
SYSCTL_NODE(_net_inet_ip, IPPROTO_IP, portrange, CTLFLAG_RW, 0, "IP Ports");
|
|
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
lowfirst, CTLTYPE_INT|CTLFLAG_RW, ipport_lowfirstauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
lowlast, CTLTYPE_INT|CTLFLAG_RW, ipport_lowlastauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
first, CTLTYPE_INT|CTLFLAG_RW, ipport_firstauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
last, CTLTYPE_INT|CTLFLAG_RW, ipport_lastauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
hifirst, CTLTYPE_INT|CTLFLAG_RW, ipport_hifirstauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_PROC(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
hilast, CTLTYPE_INT|CTLFLAG_RW, ipport_hilastauto, 0,
|
|
&sysctl_net_ipport_check, "I", "");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO,
|
|
reservedhigh, CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedhigh, 0, "");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, reservedlow,
|
|
CTLFLAG_RW|CTLFLAG_SECURE, ipport_reservedlow, 0, "");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomized,
|
|
CTLFLAG_RW, ipport_randomized, 0, "Enable random port allocation");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomcps,
|
|
CTLFLAG_RW, ipport_randomcps, 0, "Maximum number of random port "
|
|
"allocations before switching to a sequental one");
|
|
SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_ip_portrange, OID_AUTO, randomtime,
|
|
CTLFLAG_RW, ipport_randomtime, 0,
|
|
"Minimum time to keep sequental port "
|
|
"allocation before switching to a random one");
|
|
|
|
/*
|
|
* in_pcb.c: manage the Protocol Control Blocks.
|
|
*
|
|
* NOTE: It is assumed that most of these functions will be called with
|
|
* the pcbinfo lock held, and often, the inpcb lock held, as these utility
|
|
* functions often modify hash chains or addresses in pcbs.
|
|
*/
|
|
|
|
/*
|
|
* Allocate a PCB and associate it with the socket.
|
|
* On success return with the PCB locked.
|
|
*/
|
|
int
|
|
in_pcballoc(struct socket *so, struct inpcbinfo *pcbinfo)
|
|
{
|
|
#ifdef INET6
|
|
INIT_VNET_INET6(curvnet);
|
|
#endif
|
|
struct inpcb *inp;
|
|
int error;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
error = 0;
|
|
inp = uma_zalloc(pcbinfo->ipi_zone, M_NOWAIT);
|
|
if (inp == NULL)
|
|
return (ENOBUFS);
|
|
bzero(inp, inp_zero_size);
|
|
inp->inp_pcbinfo = pcbinfo;
|
|
inp->inp_socket = so;
|
|
inp->inp_cred = crhold(so->so_cred);
|
|
inp->inp_inc.inc_fibnum = so->so_fibnum;
|
|
#ifdef MAC
|
|
error = mac_inpcb_init(inp, M_NOWAIT);
|
|
if (error != 0)
|
|
goto out;
|
|
SOCK_LOCK(so);
|
|
mac_inpcb_create(so, inp);
|
|
SOCK_UNLOCK(so);
|
|
#endif
|
|
#ifdef IPSEC
|
|
error = ipsec_init_policy(so, &inp->inp_sp);
|
|
if (error != 0) {
|
|
#ifdef MAC
|
|
mac_inpcb_destroy(inp);
|
|
#endif
|
|
goto out;
|
|
}
|
|
#endif /*IPSEC*/
|
|
#ifdef INET6
|
|
if (INP_SOCKAF(so) == AF_INET6) {
|
|
inp->inp_vflag |= INP_IPV6PROTO;
|
|
if (V_ip6_v6only)
|
|
inp->inp_flags |= IN6P_IPV6_V6ONLY;
|
|
}
|
|
#endif
|
|
LIST_INSERT_HEAD(pcbinfo->ipi_listhead, inp, inp_list);
|
|
pcbinfo->ipi_count++;
|
|
so->so_pcb = (caddr_t)inp;
|
|
#ifdef INET6
|
|
if (V_ip6_auto_flowlabel)
|
|
inp->inp_flags |= IN6P_AUTOFLOWLABEL;
|
|
#endif
|
|
INP_WLOCK(inp);
|
|
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
|
|
inp->inp_refcount = 1; /* Reference from the inpcbinfo */
|
|
#if defined(IPSEC) || defined(MAC)
|
|
out:
|
|
if (error != 0) {
|
|
crfree(inp->inp_cred);
|
|
uma_zfree(pcbinfo->ipi_zone, inp);
|
|
}
|
|
#endif
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
in_pcbbind(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
|
|
{
|
|
int anonport, error;
|
|
|
|
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if (inp->inp_lport != 0 || inp->inp_laddr.s_addr != INADDR_ANY)
|
|
return (EINVAL);
|
|
anonport = inp->inp_lport == 0 && (nam == NULL ||
|
|
((struct sockaddr_in *)nam)->sin_port == 0);
|
|
error = in_pcbbind_setup(inp, nam, &inp->inp_laddr.s_addr,
|
|
&inp->inp_lport, cred);
|
|
if (error)
|
|
return (error);
|
|
if (in_pcbinshash(inp) != 0) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
return (EAGAIN);
|
|
}
|
|
if (anonport)
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set up a bind operation on a PCB, performing port allocation
|
|
* as required, but do not actually modify the PCB. Callers can
|
|
* either complete the bind by setting inp_laddr/inp_lport and
|
|
* calling in_pcbinshash(), or they can just use the resulting
|
|
* port and address to authorise the sending of a once-off packet.
|
|
*
|
|
* On error, the values of *laddrp and *lportp are not changed.
|
|
*/
|
|
int
|
|
in_pcbbind_setup(struct inpcb *inp, struct sockaddr *nam, in_addr_t *laddrp,
|
|
u_short *lportp, struct ucred *cred)
|
|
{
|
|
INIT_VNET_INET(inp->inp_vnet);
|
|
struct socket *so = inp->inp_socket;
|
|
unsigned short *lastport;
|
|
struct sockaddr_in *sin;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct in_addr laddr;
|
|
u_short lport = 0;
|
|
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
|
|
int error;
|
|
int dorandom;
|
|
|
|
/*
|
|
* Because no actual state changes occur here, a global write lock on
|
|
* the pcbinfo isn't required.
|
|
*/
|
|
INP_INFO_LOCK_ASSERT(pcbinfo);
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
if (TAILQ_EMPTY(&V_in_ifaddrhead)) /* XXX broken! */
|
|
return (EADDRNOTAVAIL);
|
|
laddr.s_addr = *laddrp;
|
|
if (nam != NULL && laddr.s_addr != INADDR_ANY)
|
|
return (EINVAL);
|
|
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
|
|
wild = INPLOOKUP_WILDCARD;
|
|
if (nam) {
|
|
sin = (struct sockaddr_in *)nam;
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
#ifdef notdef
|
|
/*
|
|
* We should check the family, but old programs
|
|
* incorrectly fail to initialize it.
|
|
*/
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
#endif
|
|
if (prison_local_ip4(cred, &sin->sin_addr))
|
|
return (EINVAL);
|
|
if (sin->sin_port != *lportp) {
|
|
/* Don't allow the port to change. */
|
|
if (*lportp != 0)
|
|
return (EINVAL);
|
|
lport = sin->sin_port;
|
|
}
|
|
/* NB: lport is left as 0 if the port isn't being changed. */
|
|
if (IN_MULTICAST(ntohl(sin->sin_addr.s_addr))) {
|
|
/*
|
|
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
|
|
* allow complete duplication of binding if
|
|
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
|
|
* and a multicast address is bound on both
|
|
* new and duplicated sockets.
|
|
*/
|
|
if (so->so_options & SO_REUSEADDR)
|
|
reuseport = SO_REUSEADDR|SO_REUSEPORT;
|
|
} else if (sin->sin_addr.s_addr != INADDR_ANY) {
|
|
sin->sin_port = 0; /* yech... */
|
|
bzero(&sin->sin_zero, sizeof(sin->sin_zero));
|
|
/*
|
|
* Is the address a local IP address?
|
|
* If INP_NONLOCALOK is set, then the socket may be bound
|
|
* to any endpoint address, local or not.
|
|
*/
|
|
if (
|
|
#if defined(IP_NONLOCALBIND)
|
|
((inp->inp_flags & INP_NONLOCALOK) == 0) &&
|
|
#endif
|
|
(ifa_ifwithaddr((struct sockaddr *)sin) == 0))
|
|
return (EADDRNOTAVAIL);
|
|
}
|
|
laddr = sin->sin_addr;
|
|
if (lport) {
|
|
struct inpcb *t;
|
|
struct tcptw *tw;
|
|
|
|
/* GROSS */
|
|
if (ntohs(lport) <= V_ipport_reservedhigh &&
|
|
ntohs(lport) >= V_ipport_reservedlow &&
|
|
priv_check_cred(cred, PRIV_NETINET_RESERVEDPORT,
|
|
0))
|
|
return (EACCES);
|
|
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)) &&
|
|
priv_check_cred(inp->inp_cred,
|
|
PRIV_NETINET_REUSEPORT, 0) != 0) {
|
|
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
|
|
lport, INPLOOKUP_WILDCARD, cred);
|
|
/*
|
|
* XXX
|
|
* This entire block sorely needs a rewrite.
|
|
*/
|
|
if (t &&
|
|
((t->inp_vflag & INP_TIMEWAIT) == 0) &&
|
|
(so->so_type != SOCK_STREAM ||
|
|
ntohl(t->inp_faddr.s_addr) == INADDR_ANY) &&
|
|
(ntohl(sin->sin_addr.s_addr) != INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) != INADDR_ANY ||
|
|
(t->inp_socket->so_options &
|
|
SO_REUSEPORT) == 0) &&
|
|
(inp->inp_cred->cr_uid !=
|
|
t->inp_cred->cr_uid))
|
|
return (EADDRINUSE);
|
|
}
|
|
if (prison_local_ip4(cred, &sin->sin_addr))
|
|
return (EADDRNOTAVAIL);
|
|
t = in_pcblookup_local(pcbinfo, sin->sin_addr,
|
|
lport, wild, cred);
|
|
if (t && (t->inp_vflag & INP_TIMEWAIT)) {
|
|
/*
|
|
* XXXRW: If an incpb has had its timewait
|
|
* state recycled, we treat the address as
|
|
* being in use (for now). This is better
|
|
* than a panic, but not desirable.
|
|
*/
|
|
tw = intotw(inp);
|
|
if (tw == NULL ||
|
|
(reuseport & tw->tw_so_options) == 0)
|
|
return (EADDRINUSE);
|
|
} else if (t &&
|
|
(reuseport & t->inp_socket->so_options) == 0) {
|
|
#ifdef INET6
|
|
if (ntohl(sin->sin_addr.s_addr) !=
|
|
INADDR_ANY ||
|
|
ntohl(t->inp_laddr.s_addr) !=
|
|
INADDR_ANY ||
|
|
INP_SOCKAF(so) ==
|
|
INP_SOCKAF(t->inp_socket))
|
|
#endif
|
|
return (EADDRINUSE);
|
|
}
|
|
}
|
|
}
|
|
if (*lportp != 0)
|
|
lport = *lportp;
|
|
if (lport == 0) {
|
|
u_short first, last, aux;
|
|
int count;
|
|
|
|
if (prison_local_ip4(cred, &laddr))
|
|
return (EINVAL);
|
|
|
|
if (inp->inp_flags & INP_HIGHPORT) {
|
|
first = V_ipport_hifirstauto; /* sysctl */
|
|
last = V_ipport_hilastauto;
|
|
lastport = &pcbinfo->ipi_lasthi;
|
|
} else if (inp->inp_flags & INP_LOWPORT) {
|
|
error = priv_check_cred(cred,
|
|
PRIV_NETINET_RESERVEDPORT, 0);
|
|
if (error)
|
|
return error;
|
|
first = V_ipport_lowfirstauto; /* 1023 */
|
|
last = V_ipport_lowlastauto; /* 600 */
|
|
lastport = &pcbinfo->ipi_lastlow;
|
|
} else {
|
|
first = V_ipport_firstauto; /* sysctl */
|
|
last = V_ipport_lastauto;
|
|
lastport = &pcbinfo->ipi_lastport;
|
|
}
|
|
/*
|
|
* For UDP, use random port allocation as long as the user
|
|
* allows it. For TCP (and as of yet unknown) connections,
|
|
* use random port allocation only if the user allows it AND
|
|
* ipport_tick() allows it.
|
|
*/
|
|
if (V_ipport_randomized &&
|
|
(!V_ipport_stoprandom || pcbinfo == &V_udbinfo))
|
|
dorandom = 1;
|
|
else
|
|
dorandom = 0;
|
|
/*
|
|
* It makes no sense to do random port allocation if
|
|
* we have the only port available.
|
|
*/
|
|
if (first == last)
|
|
dorandom = 0;
|
|
/* Make sure to not include UDP packets in the count. */
|
|
if (pcbinfo != &V_udbinfo)
|
|
V_ipport_tcpallocs++;
|
|
/*
|
|
* Instead of having two loops further down counting up or down
|
|
* make sure that first is always <= last and go with only one
|
|
* code path implementing all logic.
|
|
*/
|
|
if (first > last) {
|
|
aux = first;
|
|
first = last;
|
|
last = aux;
|
|
}
|
|
|
|
if (dorandom)
|
|
*lastport = first +
|
|
(arc4random() % (last - first));
|
|
|
|
count = last - first;
|
|
|
|
do {
|
|
if (count-- < 0) /* completely used? */
|
|
return (EADDRNOTAVAIL);
|
|
++*lastport;
|
|
if (*lastport < first || *lastport > last)
|
|
*lastport = first;
|
|
lport = htons(*lastport);
|
|
} while (in_pcblookup_local(pcbinfo, laddr,
|
|
lport, wild, cred));
|
|
}
|
|
if (prison_local_ip4(cred, &laddr))
|
|
return (EINVAL);
|
|
*laddrp = laddr.s_addr;
|
|
*lportp = lport;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Connect from a socket to a specified address.
|
|
* Both address and port must be specified in argument sin.
|
|
* If don't have a local address for this socket yet,
|
|
* then pick one.
|
|
*/
|
|
int
|
|
in_pcbconnect(struct inpcb *inp, struct sockaddr *nam, struct ucred *cred)
|
|
{
|
|
u_short lport, fport;
|
|
in_addr_t laddr, faddr;
|
|
int anonport, error;
|
|
|
|
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
lport = inp->inp_lport;
|
|
laddr = inp->inp_laddr.s_addr;
|
|
anonport = (lport == 0);
|
|
error = in_pcbconnect_setup(inp, nam, &laddr, &lport, &faddr, &fport,
|
|
NULL, cred);
|
|
if (error)
|
|
return (error);
|
|
|
|
/* Do the initial binding of the local address if required. */
|
|
if (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) {
|
|
inp->inp_lport = lport;
|
|
inp->inp_laddr.s_addr = laddr;
|
|
if (in_pcbinshash(inp) != 0) {
|
|
inp->inp_laddr.s_addr = INADDR_ANY;
|
|
inp->inp_lport = 0;
|
|
return (EAGAIN);
|
|
}
|
|
}
|
|
|
|
/* Commit the remaining changes. */
|
|
inp->inp_lport = lport;
|
|
inp->inp_laddr.s_addr = laddr;
|
|
inp->inp_faddr.s_addr = faddr;
|
|
inp->inp_fport = fport;
|
|
in_pcbrehash(inp);
|
|
|
|
if (anonport)
|
|
inp->inp_flags |= INP_ANONPORT;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Do proper source address selection on an unbound socket in case
|
|
* of connect. Take jails into account as well.
|
|
*/
|
|
static int
|
|
in_pcbladdr(struct inpcb *inp, struct in_addr *faddr, struct in_addr *laddr,
|
|
struct ucred *cred)
|
|
{
|
|
struct in_ifaddr *ia;
|
|
struct ifaddr *ifa;
|
|
struct sockaddr *sa;
|
|
struct sockaddr_in *sin;
|
|
struct route sro;
|
|
int error;
|
|
|
|
KASSERT(laddr != NULL, ("%s: laddr NULL", __func__));
|
|
|
|
error = 0;
|
|
ia = NULL;
|
|
bzero(&sro, sizeof(sro));
|
|
|
|
sin = (struct sockaddr_in *)&sro.ro_dst;
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(struct sockaddr_in);
|
|
sin->sin_addr.s_addr = faddr->s_addr;
|
|
|
|
/*
|
|
* If route is known our src addr is taken from the i/f,
|
|
* else punt.
|
|
*
|
|
* Find out route to destination.
|
|
*/
|
|
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0)
|
|
in_rtalloc_ign(&sro, 0, inp->inp_inc.inc_fibnum);
|
|
|
|
/*
|
|
* If we found a route, use the address corresponding to
|
|
* the outgoing interface.
|
|
*
|
|
* Otherwise assume faddr is reachable on a directly connected
|
|
* network and try to find a corresponding interface to take
|
|
* the source address from.
|
|
*/
|
|
if (sro.ro_rt == NULL || sro.ro_rt->rt_ifp == NULL) {
|
|
struct ifnet *ifp;
|
|
|
|
ia = ifatoia(ifa_ifwithdstaddr((struct sockaddr *)sin));
|
|
if (ia == NULL)
|
|
ia = ifatoia(ifa_ifwithnet((struct sockaddr *)sin));
|
|
if (ia == NULL) {
|
|
error = ENETUNREACH;
|
|
goto done;
|
|
}
|
|
|
|
if (cred == NULL || !jailed(cred)) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
ifp = ia->ia_ifp;
|
|
ia = NULL;
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred, &sin->sin_addr)) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
if (prison_getip4(cred, laddr) != 0)
|
|
error = EADDRNOTAVAIL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* If the outgoing interface on the route found is not
|
|
* a loopback interface, use the address from that interface.
|
|
* In case of jails do those three steps:
|
|
* 1. check if the interface address belongs to the jail. If so use it.
|
|
* 2. check if we have any address on the outgoing interface
|
|
* belonging to this jail. If so use it.
|
|
* 3. as a last resort return the 'default' jail address.
|
|
*/
|
|
if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0) {
|
|
|
|
/* If not jailed, use the default returned. */
|
|
if (cred == NULL || !jailed(cred)) {
|
|
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* Jailed. */
|
|
/* 1. Check if the iface address belongs to the jail. */
|
|
sin = (struct sockaddr_in *)sro.ro_rt->rt_ifa->ifa_addr;
|
|
if (prison_check_ip4(cred, &sin->sin_addr)) {
|
|
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* 2. Check if we have any address on the outgoing interface
|
|
* belonging to this jail.
|
|
*/
|
|
TAILQ_FOREACH(ifa, &sro.ro_rt->rt_ifp->if_addrhead, ifa_link) {
|
|
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred, &sin->sin_addr)) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
if (prison_getip4(cred, laddr) != 0)
|
|
error = EADDRNOTAVAIL;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* The outgoing interface is marked with 'loopback net', so a route
|
|
* to ourselves is here.
|
|
* Try to find the interface of the destination address and then
|
|
* take the address from there. That interface is not necessarily
|
|
* a loopback interface.
|
|
* In case of jails, check that it is an address of the jail
|
|
* and if we cannot find, fall back to the 'default' jail address.
|
|
*/
|
|
if ((sro.ro_rt->rt_ifp->if_flags & IFF_LOOPBACK) != 0) {
|
|
struct sockaddr_in sain;
|
|
|
|
bzero(&sain, sizeof(struct sockaddr_in));
|
|
sain.sin_family = AF_INET;
|
|
sain.sin_len = sizeof(struct sockaddr_in);
|
|
sain.sin_addr.s_addr = faddr->s_addr;
|
|
|
|
ia = ifatoia(ifa_ifwithdstaddr(sintosa(&sain)));
|
|
if (ia == NULL)
|
|
ia = ifatoia(ifa_ifwithnet(sintosa(&sain)));
|
|
|
|
if (cred == NULL || !jailed(cred)) {
|
|
#if __FreeBSD_version < 800000
|
|
if (ia == NULL)
|
|
ia = (struct in_ifaddr *)sro.ro_rt->rt_ifa;
|
|
#endif
|
|
if (ia == NULL) {
|
|
error = ENETUNREACH;
|
|
goto done;
|
|
}
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
|
|
/* Jailed. */
|
|
if (ia != NULL) {
|
|
struct ifnet *ifp;
|
|
|
|
ifp = ia->ia_ifp;
|
|
ia = NULL;
|
|
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
|
|
|
|
sa = ifa->ifa_addr;
|
|
if (sa->sa_family != AF_INET)
|
|
continue;
|
|
sin = (struct sockaddr_in *)sa;
|
|
if (prison_check_ip4(cred, &sin->sin_addr)) {
|
|
ia = (struct in_ifaddr *)ifa;
|
|
break;
|
|
}
|
|
}
|
|
if (ia != NULL) {
|
|
laddr->s_addr = ia->ia_addr.sin_addr.s_addr;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* 3. As a last resort return the 'default' jail address. */
|
|
if (prison_getip4(cred, laddr) != 0)
|
|
error = EADDRNOTAVAIL;
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
if (sro.ro_rt != NULL)
|
|
RTFREE(sro.ro_rt);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Set up for a connect from a socket to the specified address.
|
|
* On entry, *laddrp and *lportp should contain the current local
|
|
* address and port for the PCB; these are updated to the values
|
|
* that should be placed in inp_laddr and inp_lport to complete
|
|
* the connect.
|
|
*
|
|
* On success, *faddrp and *fportp will be set to the remote address
|
|
* and port. These are not updated in the error case.
|
|
*
|
|
* If the operation fails because the connection already exists,
|
|
* *oinpp will be set to the PCB of that connection so that the
|
|
* caller can decide to override it. In all other cases, *oinpp
|
|
* is set to NULL.
|
|
*/
|
|
int
|
|
in_pcbconnect_setup(struct inpcb *inp, struct sockaddr *nam,
|
|
in_addr_t *laddrp, u_short *lportp, in_addr_t *faddrp, u_short *fportp,
|
|
struct inpcb **oinpp, struct ucred *cred)
|
|
{
|
|
INIT_VNET_INET(inp->inp_vnet);
|
|
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
|
|
struct in_ifaddr *ia;
|
|
struct inpcb *oinp;
|
|
struct in_addr laddr, faddr, jailia;
|
|
u_short lport, fport;
|
|
int error;
|
|
|
|
/*
|
|
* Because a global state change doesn't actually occur here, a read
|
|
* lock is sufficient.
|
|
*/
|
|
INP_INFO_LOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_LOCK_ASSERT(inp);
|
|
|
|
if (oinpp != NULL)
|
|
*oinpp = NULL;
|
|
if (nam->sa_len != sizeof (*sin))
|
|
return (EINVAL);
|
|
if (sin->sin_family != AF_INET)
|
|
return (EAFNOSUPPORT);
|
|
if (sin->sin_port == 0)
|
|
return (EADDRNOTAVAIL);
|
|
laddr.s_addr = *laddrp;
|
|
lport = *lportp;
|
|
faddr = sin->sin_addr;
|
|
fport = sin->sin_port;
|
|
|
|
if (!TAILQ_EMPTY(&V_in_ifaddrhead)) {
|
|
/*
|
|
* If the destination address is INADDR_ANY,
|
|
* use the primary local address.
|
|
* If the supplied address is INADDR_BROADCAST,
|
|
* and the primary interface supports broadcast,
|
|
* choose the broadcast address for that interface.
|
|
*/
|
|
if (faddr.s_addr == INADDR_ANY) {
|
|
if (cred != NULL && jailed(cred)) {
|
|
if (prison_getip4(cred, &jailia) != 0)
|
|
return (EADDRNOTAVAIL);
|
|
faddr.s_addr = jailia.s_addr;
|
|
} else {
|
|
faddr =
|
|
IA_SIN(TAILQ_FIRST(&V_in_ifaddrhead))->
|
|
sin_addr;
|
|
}
|
|
} else if (faddr.s_addr == (u_long)INADDR_BROADCAST &&
|
|
(TAILQ_FIRST(&V_in_ifaddrhead)->ia_ifp->if_flags &
|
|
IFF_BROADCAST))
|
|
faddr = satosin(&TAILQ_FIRST(
|
|
&V_in_ifaddrhead)->ia_broadaddr)->sin_addr;
|
|
}
|
|
if (laddr.s_addr == INADDR_ANY) {
|
|
error = in_pcbladdr(inp, &faddr, &laddr, cred);
|
|
if (error)
|
|
return (error);
|
|
|
|
/*
|
|
* If the destination address is multicast and an outgoing
|
|
* interface has been set as a multicast option, use the
|
|
* address of that interface as our source address.
|
|
*/
|
|
if (IN_MULTICAST(ntohl(faddr.s_addr)) &&
|
|
inp->inp_moptions != NULL) {
|
|
struct ip_moptions *imo;
|
|
struct ifnet *ifp;
|
|
|
|
imo = inp->inp_moptions;
|
|
if (imo->imo_multicast_ifp != NULL) {
|
|
ifp = imo->imo_multicast_ifp;
|
|
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link)
|
|
if (ia->ia_ifp == ifp)
|
|
break;
|
|
if (ia == NULL)
|
|
return (EADDRNOTAVAIL);
|
|
laddr = ia->ia_addr.sin_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
oinp = in_pcblookup_hash(inp->inp_pcbinfo, faddr, fport, laddr, lport,
|
|
0, NULL);
|
|
if (oinp != NULL) {
|
|
if (oinpp != NULL)
|
|
*oinpp = oinp;
|
|
return (EADDRINUSE);
|
|
}
|
|
if (lport == 0) {
|
|
error = in_pcbbind_setup(inp, NULL, &laddr.s_addr, &lport,
|
|
cred);
|
|
if (error)
|
|
return (error);
|
|
}
|
|
*laddrp = laddr.s_addr;
|
|
*lportp = lport;
|
|
*faddrp = faddr.s_addr;
|
|
*fportp = fport;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
in_pcbdisconnect(struct inpcb *inp)
|
|
{
|
|
|
|
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
inp->inp_faddr.s_addr = INADDR_ANY;
|
|
inp->inp_fport = 0;
|
|
in_pcbrehash(inp);
|
|
}
|
|
|
|
/*
|
|
* in_pcbdetach() is responsibe for disassociating a socket from an inpcb.
|
|
* For most protocols, this will be invoked immediately prior to calling
|
|
* in_pcbfree(). However, with TCP the inpcb may significantly outlive the
|
|
* socket, in which case in_pcbfree() is deferred.
|
|
*/
|
|
void
|
|
in_pcbdetach(struct inpcb *inp)
|
|
{
|
|
|
|
KASSERT(inp->inp_socket != NULL, ("%s: inp_socket == NULL", __func__));
|
|
|
|
inp->inp_socket->so_pcb = NULL;
|
|
inp->inp_socket = NULL;
|
|
}
|
|
|
|
/*
|
|
* in_pcbfree_internal() frees an inpcb that has been detached from its
|
|
* socket, and whose reference count has reached 0. It will also remove the
|
|
* inpcb from any global lists it might remain on.
|
|
*/
|
|
static void
|
|
in_pcbfree_internal(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *ipi = inp->inp_pcbinfo;
|
|
|
|
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL", __func__));
|
|
KASSERT(inp->inp_refcount == 0, ("%s: refcount !0", __func__));
|
|
|
|
INP_INFO_WLOCK_ASSERT(ipi);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
#ifdef IPSEC
|
|
if (inp->inp_sp != NULL)
|
|
ipsec_delete_pcbpolicy(inp);
|
|
#endif /* IPSEC */
|
|
inp->inp_gencnt = ++ipi->ipi_gencnt;
|
|
in_pcbremlists(inp);
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6PROTO) {
|
|
ip6_freepcbopts(inp->in6p_outputopts);
|
|
ip6_freemoptions(inp->in6p_moptions);
|
|
}
|
|
#endif
|
|
if (inp->inp_options)
|
|
(void)m_free(inp->inp_options);
|
|
if (inp->inp_moptions != NULL)
|
|
inp_freemoptions(inp->inp_moptions);
|
|
inp->inp_vflag = 0;
|
|
crfree(inp->inp_cred);
|
|
|
|
#ifdef MAC
|
|
mac_inpcb_destroy(inp);
|
|
#endif
|
|
INP_WUNLOCK(inp);
|
|
uma_zfree(ipi->ipi_zone, inp);
|
|
}
|
|
|
|
/*
|
|
* in_pcbref() bumps the reference count on an inpcb in order to maintain
|
|
* stability of an inpcb pointer despite the inpcb lock being released. This
|
|
* is used in TCP when the inpcbinfo lock needs to be acquired or upgraded,
|
|
* but where the inpcb lock is already held.
|
|
*
|
|
* While the inpcb will not be freed, releasing the inpcb lock means that the
|
|
* connection's state may change, so the caller should be careful to
|
|
* revalidate any cached state on reacquiring the lock. Drop the reference
|
|
* using in_pcbrele().
|
|
*/
|
|
void
|
|
in_pcbref(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
|
|
|
|
inp->inp_refcount++;
|
|
}
|
|
|
|
/*
|
|
* Drop a refcount on an inpcb elevated using in_pcbref(); because a call to
|
|
* in_pcbfree() may have been made between in_pcbref() and in_pcbrele(), we
|
|
* return a flag indicating whether or not the inpcb remains valid. If it is
|
|
* valid, we return with the inpcb lock held.
|
|
*/
|
|
int
|
|
in_pcbrele(struct inpcb *inp)
|
|
{
|
|
#ifdef INVARIANTS
|
|
struct inpcbinfo *ipi = inp->inp_pcbinfo;
|
|
#endif
|
|
|
|
KASSERT(inp->inp_refcount > 0, ("%s: refcount 0", __func__));
|
|
|
|
INP_INFO_WLOCK_ASSERT(ipi);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
inp->inp_refcount--;
|
|
if (inp->inp_refcount > 0)
|
|
return (0);
|
|
in_pcbfree_internal(inp);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Unconditionally schedule an inpcb to be freed by decrementing its
|
|
* reference count, which should occur only after the inpcb has been detached
|
|
* from its socket. If another thread holds a temporary reference (acquired
|
|
* using in_pcbref()) then the free is deferred until that reference is
|
|
* released using in_pcbrele(), but the inpcb is still unlocked.
|
|
*/
|
|
void
|
|
in_pcbfree(struct inpcb *inp)
|
|
{
|
|
#ifdef INVARIANTS
|
|
struct inpcbinfo *ipi = inp->inp_pcbinfo;
|
|
#endif
|
|
|
|
KASSERT(inp->inp_socket == NULL, ("%s: inp_socket != NULL",
|
|
__func__));
|
|
|
|
INP_INFO_WLOCK_ASSERT(ipi);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
if (!in_pcbrele(inp))
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
|
|
/*
|
|
* in_pcbdrop() removes an inpcb from hashed lists, releasing its address and
|
|
* port reservation, and preventing it from being returned by inpcb lookups.
|
|
*
|
|
* It is used by TCP to mark an inpcb as unused and avoid future packet
|
|
* delivery or event notification when a socket remains open but TCP has
|
|
* closed. This might occur as a result of a shutdown()-initiated TCP close
|
|
* or a RST on the wire, and allows the port binding to be reused while still
|
|
* maintaining the invariant that so_pcb always points to a valid inpcb until
|
|
* in_pcbdetach().
|
|
*
|
|
* XXXRW: An inp_lport of 0 is used to indicate that the inpcb is not on hash
|
|
* lists, but can lead to confusing netstat output, as open sockets with
|
|
* closed TCP connections will no longer appear to have their bound port
|
|
* number. An explicit flag would be better, as it would allow us to leave
|
|
* the port number intact after the connection is dropped.
|
|
*
|
|
* XXXRW: Possibly in_pcbdrop() should also prevent future notifications by
|
|
* in_pcbnotifyall() and in_pcbpurgeif0()?
|
|
*/
|
|
void
|
|
in_pcbdrop(struct inpcb *inp)
|
|
{
|
|
|
|
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
inp->inp_vflag |= INP_DROPPED;
|
|
if (inp->inp_lport) {
|
|
struct inpcbport *phd = inp->inp_phd;
|
|
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_REMOVE(inp, inp_portlist);
|
|
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
|
|
LIST_REMOVE(phd, phd_hash);
|
|
free(phd, M_PCB);
|
|
}
|
|
inp->inp_lport = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common routines to return the socket addresses associated with inpcbs.
|
|
*/
|
|
struct sockaddr *
|
|
in_sockaddr(in_port_t port, struct in_addr *addr_p)
|
|
{
|
|
struct sockaddr_in *sin;
|
|
|
|
sin = malloc(sizeof *sin, M_SONAME,
|
|
M_WAITOK | M_ZERO);
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = *addr_p;
|
|
sin->sin_port = port;
|
|
|
|
return (struct sockaddr *)sin;
|
|
}
|
|
|
|
int
|
|
in_getsockaddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in_addr addr;
|
|
in_port_t port;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_getsockaddr: inp == NULL"));
|
|
|
|
INP_RLOCK(inp);
|
|
port = inp->inp_lport;
|
|
addr = inp->inp_laddr;
|
|
INP_RUNLOCK(inp);
|
|
|
|
*nam = in_sockaddr(port, &addr);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
in_getpeeraddr(struct socket *so, struct sockaddr **nam)
|
|
{
|
|
struct inpcb *inp;
|
|
struct in_addr addr;
|
|
in_port_t port;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_getpeeraddr: inp == NULL"));
|
|
|
|
INP_RLOCK(inp);
|
|
port = inp->inp_fport;
|
|
addr = inp->inp_faddr;
|
|
INP_RUNLOCK(inp);
|
|
|
|
*nam = in_sockaddr(port, &addr);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
in_pcbnotifyall(struct inpcbinfo *pcbinfo, struct in_addr faddr, int errno,
|
|
struct inpcb *(*notify)(struct inpcb *, int))
|
|
{
|
|
struct inpcb *inp, *inp_temp;
|
|
|
|
INP_INFO_WLOCK(pcbinfo);
|
|
LIST_FOREACH_SAFE(inp, pcbinfo->ipi_listhead, inp_list, inp_temp) {
|
|
INP_WLOCK(inp);
|
|
#ifdef INET6
|
|
if ((inp->inp_vflag & INP_IPV4) == 0) {
|
|
INP_WUNLOCK(inp);
|
|
continue;
|
|
}
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != faddr.s_addr ||
|
|
inp->inp_socket == NULL) {
|
|
INP_WUNLOCK(inp);
|
|
continue;
|
|
}
|
|
if ((*notify)(inp, errno))
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_WUNLOCK(pcbinfo);
|
|
}
|
|
|
|
void
|
|
in_pcbpurgeif0(struct inpcbinfo *pcbinfo, struct ifnet *ifp)
|
|
{
|
|
struct inpcb *inp;
|
|
struct ip_moptions *imo;
|
|
int i, gap;
|
|
|
|
INP_INFO_RLOCK(pcbinfo);
|
|
LIST_FOREACH(inp, pcbinfo->ipi_listhead, inp_list) {
|
|
INP_WLOCK(inp);
|
|
imo = inp->inp_moptions;
|
|
if ((inp->inp_vflag & INP_IPV4) &&
|
|
imo != NULL) {
|
|
/*
|
|
* Unselect the outgoing interface if it is being
|
|
* detached.
|
|
*/
|
|
if (imo->imo_multicast_ifp == ifp)
|
|
imo->imo_multicast_ifp = NULL;
|
|
|
|
/*
|
|
* Drop multicast group membership if we joined
|
|
* through the interface being detached.
|
|
*/
|
|
for (i = 0, gap = 0; i < imo->imo_num_memberships;
|
|
i++) {
|
|
if (imo->imo_membership[i]->inm_ifp == ifp) {
|
|
in_delmulti(imo->imo_membership[i]);
|
|
gap++;
|
|
} else if (gap != 0)
|
|
imo->imo_membership[i - gap] =
|
|
imo->imo_membership[i];
|
|
}
|
|
imo->imo_num_memberships -= gap;
|
|
}
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_RUNLOCK(pcbinfo);
|
|
}
|
|
|
|
/*
|
|
* Lookup a PCB based on the local address and port.
|
|
*/
|
|
#define INP_LOOKUP_MAPPED_PCB_COST 3
|
|
struct inpcb *
|
|
in_pcblookup_local(struct inpcbinfo *pcbinfo, struct in_addr laddr,
|
|
u_short lport, int wild_okay, struct ucred *cred)
|
|
{
|
|
struct inpcb *inp;
|
|
#ifdef INET6
|
|
int matchwild = 3 + INP_LOOKUP_MAPPED_PCB_COST;
|
|
#else
|
|
int matchwild = 3;
|
|
#endif
|
|
int wildcard;
|
|
|
|
INP_INFO_LOCK_ASSERT(pcbinfo);
|
|
|
|
if (!wild_okay) {
|
|
struct inpcbhead *head;
|
|
/*
|
|
* Look for an unconnected (wildcard foreign addr) PCB that
|
|
* matches the local address and port we're looking for.
|
|
*/
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
|
|
0, pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == INADDR_ANY &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* Found?
|
|
*/
|
|
if (cred == NULL ||
|
|
inp->inp_cred->cr_prison == cred->cr_prison)
|
|
return (inp);
|
|
}
|
|
}
|
|
/*
|
|
* Not found.
|
|
*/
|
|
return (NULL);
|
|
} else {
|
|
struct inpcbporthead *porthash;
|
|
struct inpcbport *phd;
|
|
struct inpcb *match = NULL;
|
|
/*
|
|
* Best fit PCB lookup.
|
|
*
|
|
* First see if this local port is in use by looking on the
|
|
* port hash list.
|
|
*/
|
|
porthash = &pcbinfo->ipi_porthashbase[INP_PCBPORTHASH(lport,
|
|
pcbinfo->ipi_porthashmask)];
|
|
LIST_FOREACH(phd, porthash, phd_hash) {
|
|
if (phd->phd_port == lport)
|
|
break;
|
|
}
|
|
if (phd != NULL) {
|
|
/*
|
|
* Port is in use by one or more PCBs. Look for best
|
|
* fit.
|
|
*/
|
|
LIST_FOREACH(inp, &phd->phd_pcblist, inp_portlist) {
|
|
wildcard = 0;
|
|
if (cred != NULL &&
|
|
inp->inp_cred->cr_prison != cred->cr_prison)
|
|
continue;
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
/*
|
|
* We never select the PCB that has
|
|
* INP_IPV6 flag and is bound to :: if
|
|
* we have another PCB which is bound
|
|
* to 0.0.0.0. If a PCB has the
|
|
* INP_IPV6 flag, then we set its cost
|
|
* higher than IPv4 only PCBs.
|
|
*
|
|
* Note that the case only happens
|
|
* when a socket is bound to ::, under
|
|
* the condition that the use of the
|
|
* mapped address is allowed.
|
|
*/
|
|
if ((inp->inp_vflag & INP_IPV6) != 0)
|
|
wildcard += INP_LOOKUP_MAPPED_PCB_COST;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
if (inp->inp_laddr.s_addr != INADDR_ANY) {
|
|
if (laddr.s_addr == INADDR_ANY)
|
|
wildcard++;
|
|
else if (inp->inp_laddr.s_addr != laddr.s_addr)
|
|
continue;
|
|
} else {
|
|
if (laddr.s_addr != INADDR_ANY)
|
|
wildcard++;
|
|
}
|
|
if (wildcard < matchwild) {
|
|
match = inp;
|
|
matchwild = wildcard;
|
|
if (matchwild == 0)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return (match);
|
|
}
|
|
}
|
|
#undef INP_LOOKUP_MAPPED_PCB_COST
|
|
|
|
/*
|
|
* Lookup PCB in hash list.
|
|
*/
|
|
struct inpcb *
|
|
in_pcblookup_hash(struct inpcbinfo *pcbinfo, struct in_addr faddr,
|
|
u_int fport_arg, struct in_addr laddr, u_int lport_arg, int wildcard,
|
|
struct ifnet *ifp)
|
|
{
|
|
struct inpcbhead *head;
|
|
struct inpcb *inp, *tmpinp;
|
|
u_short fport = fport_arg, lport = lport_arg;
|
|
|
|
INP_INFO_LOCK_ASSERT(pcbinfo);
|
|
|
|
/*
|
|
* First look for an exact match.
|
|
*/
|
|
tmpinp = NULL;
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(faddr.s_addr, lport, fport,
|
|
pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr == faddr.s_addr &&
|
|
inp->inp_laddr.s_addr == laddr.s_addr &&
|
|
inp->inp_fport == fport &&
|
|
inp->inp_lport == lport) {
|
|
/*
|
|
* XXX We should be able to directly return
|
|
* the inp here, without any checks.
|
|
* Well unless both bound with SO_REUSEPORT?
|
|
*/
|
|
if (jailed(inp->inp_cred))
|
|
return (inp);
|
|
if (tmpinp == NULL)
|
|
tmpinp = inp;
|
|
}
|
|
}
|
|
if (tmpinp != NULL)
|
|
return (tmpinp);
|
|
|
|
/*
|
|
* Then look for a wildcard match, if requested.
|
|
*/
|
|
if (wildcard == INPLOOKUP_WILDCARD) {
|
|
struct inpcb *local_wild = NULL, *local_exact = NULL;
|
|
#ifdef INET6
|
|
struct inpcb *local_wild_mapped = NULL;
|
|
#endif
|
|
struct inpcb *jail_wild = NULL;
|
|
int injail;
|
|
|
|
/*
|
|
* Order of socket selection - we always prefer jails.
|
|
* 1. jailed, non-wild.
|
|
* 2. jailed, wild.
|
|
* 3. non-jailed, non-wild.
|
|
* 4. non-jailed, wild.
|
|
*/
|
|
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(INADDR_ANY, lport,
|
|
0, pcbinfo->ipi_hashmask)];
|
|
LIST_FOREACH(inp, head, inp_hash) {
|
|
#ifdef INET6
|
|
/* XXX inp locking */
|
|
if ((inp->inp_vflag & INP_IPV4) == 0)
|
|
continue;
|
|
#endif
|
|
if (inp->inp_faddr.s_addr != INADDR_ANY ||
|
|
inp->inp_lport != lport)
|
|
continue;
|
|
|
|
/* XXX inp locking */
|
|
if (ifp && ifp->if_type == IFT_FAITH &&
|
|
(inp->inp_flags & INP_FAITH) == 0)
|
|
continue;
|
|
|
|
injail = jailed(inp->inp_cred);
|
|
if (injail) {
|
|
if (!prison_check_ip4(inp->inp_cred, &laddr))
|
|
continue;
|
|
} else {
|
|
if (local_exact != NULL)
|
|
continue;
|
|
}
|
|
|
|
if (inp->inp_laddr.s_addr == laddr.s_addr) {
|
|
if (injail)
|
|
return (inp);
|
|
else
|
|
local_exact = inp;
|
|
} else if (inp->inp_laddr.s_addr == INADDR_ANY) {
|
|
#ifdef INET6
|
|
/* XXX inp locking, NULL check */
|
|
if (inp->inp_vflag & INP_IPV6PROTO)
|
|
local_wild_mapped = inp;
|
|
else
|
|
#endif /* INET6 */
|
|
if (injail)
|
|
jail_wild = inp;
|
|
else
|
|
local_wild = inp;
|
|
}
|
|
} /* LIST_FOREACH */
|
|
if (jail_wild != NULL)
|
|
return (jail_wild);
|
|
if (local_exact != NULL)
|
|
return (local_exact);
|
|
if (local_wild != NULL)
|
|
return (local_wild);
|
|
#ifdef INET6
|
|
if (local_wild_mapped != NULL)
|
|
return (local_wild_mapped);
|
|
#endif /* defined(INET6) */
|
|
} /* if (wildcard == INPLOOKUP_WILDCARD) */
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Insert PCB onto various hash lists.
|
|
*/
|
|
int
|
|
in_pcbinshash(struct inpcb *inp)
|
|
{
|
|
struct inpcbhead *pcbhash;
|
|
struct inpcbporthead *pcbporthash;
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct inpcbport *phd;
|
|
u_int32_t hashkey_faddr;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
|
|
else
|
|
#endif /* INET6 */
|
|
hashkey_faddr = inp->inp_faddr.s_addr;
|
|
|
|
pcbhash = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
|
|
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
|
|
|
|
pcbporthash = &pcbinfo->ipi_porthashbase[
|
|
INP_PCBPORTHASH(inp->inp_lport, pcbinfo->ipi_porthashmask)];
|
|
|
|
/*
|
|
* Go through port list and look for a head for this lport.
|
|
*/
|
|
LIST_FOREACH(phd, pcbporthash, phd_hash) {
|
|
if (phd->phd_port == inp->inp_lport)
|
|
break;
|
|
}
|
|
/*
|
|
* If none exists, malloc one and tack it on.
|
|
*/
|
|
if (phd == NULL) {
|
|
phd = malloc(sizeof(struct inpcbport), M_PCB, M_NOWAIT);
|
|
if (phd == NULL) {
|
|
return (ENOBUFS); /* XXX */
|
|
}
|
|
phd->phd_port = inp->inp_lport;
|
|
LIST_INIT(&phd->phd_pcblist);
|
|
LIST_INSERT_HEAD(pcbporthash, phd, phd_hash);
|
|
}
|
|
inp->inp_phd = phd;
|
|
LIST_INSERT_HEAD(&phd->phd_pcblist, inp, inp_portlist);
|
|
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Move PCB to the proper hash bucket when { faddr, fport } have been
|
|
* changed. NOTE: This does not handle the case of the lport changing (the
|
|
* hashed port list would have to be updated as well), so the lport must
|
|
* not change after in_pcbinshash() has been called.
|
|
*/
|
|
void
|
|
in_pcbrehash(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
struct inpcbhead *head;
|
|
u_int32_t hashkey_faddr;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6)
|
|
hashkey_faddr = inp->in6p_faddr.s6_addr32[3] /* XXX */;
|
|
else
|
|
#endif /* INET6 */
|
|
hashkey_faddr = inp->inp_faddr.s_addr;
|
|
|
|
head = &pcbinfo->ipi_hashbase[INP_PCBHASH(hashkey_faddr,
|
|
inp->inp_lport, inp->inp_fport, pcbinfo->ipi_hashmask)];
|
|
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_INSERT_HEAD(head, inp, inp_hash);
|
|
}
|
|
|
|
/*
|
|
* Remove PCB from various lists.
|
|
*/
|
|
void
|
|
in_pcbremlists(struct inpcb *inp)
|
|
{
|
|
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
|
|
|
|
INP_INFO_WLOCK_ASSERT(pcbinfo);
|
|
INP_WLOCK_ASSERT(inp);
|
|
|
|
inp->inp_gencnt = ++pcbinfo->ipi_gencnt;
|
|
if (inp->inp_lport) {
|
|
struct inpcbport *phd = inp->inp_phd;
|
|
|
|
LIST_REMOVE(inp, inp_hash);
|
|
LIST_REMOVE(inp, inp_portlist);
|
|
if (LIST_FIRST(&phd->phd_pcblist) == NULL) {
|
|
LIST_REMOVE(phd, phd_hash);
|
|
free(phd, M_PCB);
|
|
}
|
|
}
|
|
LIST_REMOVE(inp, inp_list);
|
|
pcbinfo->ipi_count--;
|
|
}
|
|
|
|
/*
|
|
* A set label operation has occurred at the socket layer, propagate the
|
|
* label change into the in_pcb for the socket.
|
|
*/
|
|
void
|
|
in_pcbsosetlabel(struct socket *so)
|
|
{
|
|
#ifdef MAC
|
|
struct inpcb *inp;
|
|
|
|
inp = sotoinpcb(so);
|
|
KASSERT(inp != NULL, ("in_pcbsosetlabel: so->so_pcb == NULL"));
|
|
|
|
INP_WLOCK(inp);
|
|
SOCK_LOCK(so);
|
|
mac_inpcb_sosetlabel(so, inp);
|
|
SOCK_UNLOCK(so);
|
|
INP_WUNLOCK(inp);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* ipport_tick runs once per second, determining if random port allocation
|
|
* should be continued. If more than ipport_randomcps ports have been
|
|
* allocated in the last second, then we return to sequential port
|
|
* allocation. We return to random allocation only once we drop below
|
|
* ipport_randomcps for at least ipport_randomtime seconds.
|
|
*/
|
|
void
|
|
ipport_tick(void *xtp)
|
|
{
|
|
VNET_ITERATOR_DECL(vnet_iter);
|
|
|
|
VNET_LIST_RLOCK();
|
|
VNET_FOREACH(vnet_iter) {
|
|
CURVNET_SET(vnet_iter); /* XXX appease INVARIANTS here */
|
|
INIT_VNET_INET(vnet_iter);
|
|
if (V_ipport_tcpallocs <=
|
|
V_ipport_tcplastcount + V_ipport_randomcps) {
|
|
if (V_ipport_stoprandom > 0)
|
|
V_ipport_stoprandom--;
|
|
} else
|
|
V_ipport_stoprandom = V_ipport_randomtime;
|
|
V_ipport_tcplastcount = V_ipport_tcpallocs;
|
|
CURVNET_RESTORE();
|
|
}
|
|
VNET_LIST_RUNLOCK();
|
|
callout_reset(&ipport_tick_callout, hz, ipport_tick, NULL);
|
|
}
|
|
|
|
void
|
|
inp_wlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_wunlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_rlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_RLOCK(inp);
|
|
}
|
|
|
|
void
|
|
inp_runlock(struct inpcb *inp)
|
|
{
|
|
|
|
INP_RUNLOCK(inp);
|
|
}
|
|
|
|
#ifdef INVARIANTS
|
|
void
|
|
inp_lock_assert(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
}
|
|
|
|
void
|
|
inp_unlock_assert(struct inpcb *inp)
|
|
{
|
|
|
|
INP_UNLOCK_ASSERT(inp);
|
|
}
|
|
#endif
|
|
|
|
void
|
|
inp_apply_all(void (*func)(struct inpcb *, void *), void *arg)
|
|
{
|
|
INIT_VNET_INET(curvnet);
|
|
struct inpcb *inp;
|
|
|
|
INP_INFO_RLOCK(&V_tcbinfo);
|
|
LIST_FOREACH(inp, V_tcbinfo.ipi_listhead, inp_list) {
|
|
INP_WLOCK(inp);
|
|
func(inp, arg);
|
|
INP_WUNLOCK(inp);
|
|
}
|
|
INP_INFO_RUNLOCK(&V_tcbinfo);
|
|
}
|
|
|
|
struct socket *
|
|
inp_inpcbtosocket(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
return (inp->inp_socket);
|
|
}
|
|
|
|
struct tcpcb *
|
|
inp_inpcbtotcpcb(struct inpcb *inp)
|
|
{
|
|
|
|
INP_WLOCK_ASSERT(inp);
|
|
return ((struct tcpcb *)inp->inp_ppcb);
|
|
}
|
|
|
|
int
|
|
inp_ip_tos_get(const struct inpcb *inp)
|
|
{
|
|
|
|
return (inp->inp_ip_tos);
|
|
}
|
|
|
|
void
|
|
inp_ip_tos_set(struct inpcb *inp, int val)
|
|
{
|
|
|
|
inp->inp_ip_tos = val;
|
|
}
|
|
|
|
void
|
|
inp_4tuple_get(struct inpcb *inp, uint32_t *laddr, uint16_t *lp,
|
|
uint32_t *faddr, uint16_t *fp)
|
|
{
|
|
|
|
INP_LOCK_ASSERT(inp);
|
|
*laddr = inp->inp_laddr.s_addr;
|
|
*faddr = inp->inp_faddr.s_addr;
|
|
*lp = inp->inp_lport;
|
|
*fp = inp->inp_fport;
|
|
}
|
|
|
|
struct inpcb *
|
|
so_sotoinpcb(struct socket *so)
|
|
{
|
|
|
|
return (sotoinpcb(so));
|
|
}
|
|
|
|
struct tcpcb *
|
|
so_sototcpcb(struct socket *so)
|
|
{
|
|
|
|
return (sototcpcb(so));
|
|
}
|
|
|
|
#ifdef DDB
|
|
static void
|
|
db_print_indent(int indent)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < indent; i++)
|
|
db_printf(" ");
|
|
}
|
|
|
|
static void
|
|
db_print_inconninfo(struct in_conninfo *inc, const char *name, int indent)
|
|
{
|
|
char faddr_str[48], laddr_str[48];
|
|
|
|
db_print_indent(indent);
|
|
db_printf("%s at %p\n", name, inc);
|
|
|
|
indent += 2;
|
|
|
|
#ifdef INET6
|
|
if (inc->inc_flags & INC_ISIPV6) {
|
|
/* IPv6. */
|
|
ip6_sprintf(laddr_str, &inc->inc6_laddr);
|
|
ip6_sprintf(faddr_str, &inc->inc6_faddr);
|
|
} else {
|
|
#endif
|
|
/* IPv4. */
|
|
inet_ntoa_r(inc->inc_laddr, laddr_str);
|
|
inet_ntoa_r(inc->inc_faddr, faddr_str);
|
|
#ifdef INET6
|
|
}
|
|
#endif
|
|
db_print_indent(indent);
|
|
db_printf("inc_laddr %s inc_lport %u\n", laddr_str,
|
|
ntohs(inc->inc_lport));
|
|
db_print_indent(indent);
|
|
db_printf("inc_faddr %s inc_fport %u\n", faddr_str,
|
|
ntohs(inc->inc_fport));
|
|
}
|
|
|
|
static void
|
|
db_print_inpflags(int inp_flags)
|
|
{
|
|
int comma;
|
|
|
|
comma = 0;
|
|
if (inp_flags & INP_RECVOPTS) {
|
|
db_printf("%sINP_RECVOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVRETOPTS) {
|
|
db_printf("%sINP_RECVRETOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVDSTADDR) {
|
|
db_printf("%sINP_RECVDSTADDR", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_HDRINCL) {
|
|
db_printf("%sINP_HDRINCL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_HIGHPORT) {
|
|
db_printf("%sINP_HIGHPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_LOWPORT) {
|
|
db_printf("%sINP_LOWPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_ANONPORT) {
|
|
db_printf("%sINP_ANONPORT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVIF) {
|
|
db_printf("%sINP_RECVIF", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_MTUDISC) {
|
|
db_printf("%sINP_MTUDISC", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_FAITH) {
|
|
db_printf("%sINP_FAITH", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_RECVTTL) {
|
|
db_printf("%sINP_RECVTTL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & INP_DONTFRAG) {
|
|
db_printf("%sINP_DONTFRAG", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_IPV6_V6ONLY) {
|
|
db_printf("%sIN6P_IPV6_V6ONLY", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_PKTINFO) {
|
|
db_printf("%sIN6P_PKTINFO", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_HOPLIMIT) {
|
|
db_printf("%sIN6P_HOPLIMIT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_HOPOPTS) {
|
|
db_printf("%sIN6P_HOPOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_DSTOPTS) {
|
|
db_printf("%sIN6P_DSTOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RTHDR) {
|
|
db_printf("%sIN6P_RTHDR", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RTHDRDSTOPTS) {
|
|
db_printf("%sIN6P_RTHDRDSTOPTS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_TCLASS) {
|
|
db_printf("%sIN6P_TCLASS", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_AUTOFLOWLABEL) {
|
|
db_printf("%sIN6P_AUTOFLOWLABEL", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_RFC2292) {
|
|
db_printf("%sIN6P_RFC2292", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_flags & IN6P_MTU) {
|
|
db_printf("IN6P_MTU%s", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
db_print_inpvflag(u_char inp_vflag)
|
|
{
|
|
int comma;
|
|
|
|
comma = 0;
|
|
if (inp_vflag & INP_IPV4) {
|
|
db_printf("%sINP_IPV4", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_IPV6) {
|
|
db_printf("%sINP_IPV6", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_IPV6PROTO) {
|
|
db_printf("%sINP_IPV6PROTO", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_TIMEWAIT) {
|
|
db_printf("%sINP_TIMEWAIT", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_ONESBCAST) {
|
|
db_printf("%sINP_ONESBCAST", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_DROPPED) {
|
|
db_printf("%sINP_DROPPED", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
if (inp_vflag & INP_SOCKREF) {
|
|
db_printf("%sINP_SOCKREF", comma ? ", " : "");
|
|
comma = 1;
|
|
}
|
|
}
|
|
|
|
void
|
|
db_print_inpcb(struct inpcb *inp, const char *name, int indent)
|
|
{
|
|
|
|
db_print_indent(indent);
|
|
db_printf("%s at %p\n", name, inp);
|
|
|
|
indent += 2;
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_flow: 0x%x\n", inp->inp_flow);
|
|
|
|
db_print_inconninfo(&inp->inp_inc, "inp_conninfo", indent);
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_ppcb: %p inp_pcbinfo: %p inp_socket: %p\n",
|
|
inp->inp_ppcb, inp->inp_pcbinfo, inp->inp_socket);
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_label: %p inp_flags: 0x%x (",
|
|
inp->inp_label, inp->inp_flags);
|
|
db_print_inpflags(inp->inp_flags);
|
|
db_printf(")\n");
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_sp: %p inp_vflag: 0x%x (", inp->inp_sp,
|
|
inp->inp_vflag);
|
|
db_print_inpvflag(inp->inp_vflag);
|
|
db_printf(")\n");
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_ip_ttl: %d inp_ip_p: %d inp_ip_minttl: %d\n",
|
|
inp->inp_ip_ttl, inp->inp_ip_p, inp->inp_ip_minttl);
|
|
|
|
db_print_indent(indent);
|
|
#ifdef INET6
|
|
if (inp->inp_vflag & INP_IPV6) {
|
|
db_printf("in6p_options: %p in6p_outputopts: %p "
|
|
"in6p_moptions: %p\n", inp->in6p_options,
|
|
inp->in6p_outputopts, inp->in6p_moptions);
|
|
db_printf("in6p_icmp6filt: %p in6p_cksum %d "
|
|
"in6p_hops %u\n", inp->in6p_icmp6filt, inp->in6p_cksum,
|
|
inp->in6p_hops);
|
|
} else
|
|
#endif
|
|
{
|
|
db_printf("inp_ip_tos: %d inp_ip_options: %p "
|
|
"inp_ip_moptions: %p\n", inp->inp_ip_tos,
|
|
inp->inp_options, inp->inp_moptions);
|
|
}
|
|
|
|
db_print_indent(indent);
|
|
db_printf("inp_phd: %p inp_gencnt: %ju\n", inp->inp_phd,
|
|
(uintmax_t)inp->inp_gencnt);
|
|
}
|
|
|
|
DB_SHOW_COMMAND(inpcb, db_show_inpcb)
|
|
{
|
|
struct inpcb *inp;
|
|
|
|
if (!have_addr) {
|
|
db_printf("usage: show inpcb <addr>\n");
|
|
return;
|
|
}
|
|
inp = (struct inpcb *)addr;
|
|
|
|
db_print_inpcb(inp, "inpcb", 0);
|
|
}
|
|
#endif
|