freebsd-skq/sys/netatalk/ddp_pcb.c
Ian Dowse c6cca33809 Make `options NETATALK' compile after the -fno-common changes.
Tested by:	Emiel Kollof <coolvibe@hackerheaven.org>
2002-01-16 11:26:50 +00:00

591 lines
13 KiB
C

/*
* Copyright (c) 1990,1994 Regents of The University of Michigan.
* All Rights Reserved. See COPYRIGHT.
*
* $FreeBSD$
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <net/if.h>
#include <net/route.h>
#include <net/intrq.h>
#include <netatalk/at.h>
#include <netatalk/at_var.h>
#include <netatalk/ddp_var.h>
#include <netatalk/at_extern.h>
static void at_pcbdisconnect( struct ddpcb *ddp );
static void at_sockaddr(struct ddpcb *ddp, struct sockaddr **addr);
static int at_pcbsetaddr(struct ddpcb *ddp, struct sockaddr *addr,
struct thread *td);
static int at_pcbconnect(struct ddpcb *ddp, struct sockaddr *addr,
struct thread *td);
static void at_pcbdetach(struct socket *so, struct ddpcb *ddp);
static int at_pcballoc(struct socket *so);
struct ddpcb *ddp_ports[ ATPORT_LAST ];
struct ddpcb *ddpcb = NULL;
static u_long ddp_sendspace = DDP_MAXSZ; /* Max ddp size + 1 (ddp_type) */
static u_long ddp_recvspace = 10 * ( 587 + sizeof( struct sockaddr_at ));
static int
ddp_attach(struct socket *so, int proto, struct thread *td)
{
struct ddpcb *ddp;
int error = 0;
int s;
ddp = sotoddpcb( so );
if ( ddp != NULL ) {
return( EINVAL);
}
s = splnet();
error = at_pcballoc( so );
splx(s);
if (error) {
return (error);
}
return (soreserve( so, ddp_sendspace, ddp_recvspace ));
}
static int
ddp_detach(struct socket *so)
{
struct ddpcb *ddp;
int s;
ddp = sotoddpcb( so );
if ( ddp == NULL ) {
return( EINVAL);
}
s = splnet();
at_pcbdetach( so, ddp );
splx(s);
return(0);
}
static int
ddp_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct ddpcb *ddp;
int error = 0;
int s;
ddp = sotoddpcb( so );
if ( ddp == NULL ) {
return( EINVAL);
}
s = splnet();
error = at_pcbsetaddr(ddp, nam, td);
splx(s);
return (error);
}
static int
ddp_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct ddpcb *ddp;
int error = 0;
int s;
ddp = sotoddpcb( so );
if ( ddp == NULL ) {
return( EINVAL);
}
if ( ddp->ddp_fsat.sat_port != ATADDR_ANYPORT ) {
return(EISCONN);
}
s = splnet();
error = at_pcbconnect( ddp, nam, td );
splx(s);
if ( error == 0 )
soisconnected( so );
return(error);
}
static int
ddp_disconnect(struct socket *so)
{
struct ddpcb *ddp;
int s;
ddp = sotoddpcb( so );
if ( ddp == NULL ) {
return( EINVAL);
}
if ( ddp->ddp_fsat.sat_addr.s_node == ATADDR_ANYNODE ) {
return(ENOTCONN);
}
s = splnet();
at_pcbdisconnect( ddp );
ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE;
splx(s);
soisdisconnected( so );
return(0);
}
static int
ddp_shutdown(struct socket *so)
{
struct ddpcb *ddp;
ddp = sotoddpcb( so );
if ( ddp == NULL ) {
return( EINVAL);
}
socantsendmore( so );
return(0);
}
static int
ddp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct thread *td)
{
struct ddpcb *ddp;
int error = 0;
int s;
ddp = sotoddpcb( so );
if ( ddp == NULL ) {
return(EINVAL);
}
if ( control && control->m_len ) {
return(EINVAL);
}
if ( addr ) {
if ( ddp->ddp_fsat.sat_port != ATADDR_ANYPORT ) {
return(EISCONN);
}
s = splnet();
error = at_pcbconnect(ddp, addr, td);
splx( s );
if ( error ) {
return(error);
}
} else {
if ( ddp->ddp_fsat.sat_port == ATADDR_ANYPORT ) {
return(ENOTCONN);
}
}
s = splnet();
error = ddp_output( m, so );
if ( addr ) {
at_pcbdisconnect( ddp );
}
splx(s);
return(error);
}
static int
ddp_abort(struct socket *so)
{
struct ddpcb *ddp;
int s;
ddp = sotoddpcb( so );
if ( ddp == NULL ) {
return(EINVAL);
}
soisdisconnected( so );
s = splnet();
at_pcbdetach( so, ddp );
splx(s);
return(0);
}
static void
at_sockaddr(struct ddpcb *ddp, struct sockaddr **addr)
{
*addr = dup_sockaddr((struct sockaddr *)&ddp->ddp_lsat, 0);
}
static int
at_pcbsetaddr(struct ddpcb *ddp, struct sockaddr *addr, struct thread *td)
{
struct sockaddr_at lsat, *sat;
struct at_ifaddr *aa;
struct ddpcb *ddpp;
if ( ddp->ddp_lsat.sat_port != ATADDR_ANYPORT ) { /* shouldn't be bound */
return( EINVAL );
}
if (addr != 0) { /* validate passed address */
sat = (struct sockaddr_at *)addr;
if (sat->sat_family != AF_APPLETALK) {
return(EAFNOSUPPORT);
}
if ( sat->sat_addr.s_node != ATADDR_ANYNODE ||
sat->sat_addr.s_net != ATADDR_ANYNET ) {
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if (( sat->sat_addr.s_net == AA_SAT( aa )->sat_addr.s_net ) &&
( sat->sat_addr.s_node == AA_SAT( aa )->sat_addr.s_node )) {
break;
}
}
if ( !aa ) {
return( EADDRNOTAVAIL );
}
}
if ( sat->sat_port != ATADDR_ANYPORT ) {
if ( sat->sat_port < ATPORT_FIRST ||
sat->sat_port >= ATPORT_LAST ) {
return( EINVAL );
}
if ( sat->sat_port < ATPORT_RESERVED &&
suser_td(td) ) {
return( EACCES );
}
}
} else {
bzero( (caddr_t)&lsat, sizeof( struct sockaddr_at ));
lsat.sat_len = sizeof(struct sockaddr_at);
lsat.sat_addr.s_node = ATADDR_ANYNODE;
lsat.sat_addr.s_net = ATADDR_ANYNET;
lsat.sat_family = AF_APPLETALK;
sat = &lsat;
}
if ( sat->sat_addr.s_node == ATADDR_ANYNODE &&
sat->sat_addr.s_net == ATADDR_ANYNET ) {
if ( at_ifaddr == NULL ) {
return( EADDRNOTAVAIL );
}
sat->sat_addr = AA_SAT( at_ifaddr )->sat_addr;
}
ddp->ddp_lsat = *sat;
/*
* Choose port.
*/
if ( sat->sat_port == ATADDR_ANYPORT ) {
for ( sat->sat_port = ATPORT_RESERVED;
sat->sat_port < ATPORT_LAST; sat->sat_port++ ) {
if ( ddp_ports[ sat->sat_port - 1 ] == 0 ) {
break;
}
}
if ( sat->sat_port == ATPORT_LAST ) {
return( EADDRNOTAVAIL );
}
ddp->ddp_lsat.sat_port = sat->sat_port;
ddp_ports[ sat->sat_port - 1 ] = ddp;
} else {
for ( ddpp = ddp_ports[ sat->sat_port - 1 ]; ddpp;
ddpp = ddpp->ddp_pnext ) {
if ( ddpp->ddp_lsat.sat_addr.s_net == sat->sat_addr.s_net &&
ddpp->ddp_lsat.sat_addr.s_node == sat->sat_addr.s_node ) {
break;
}
}
if ( ddpp != NULL ) {
return( EADDRINUSE );
}
ddp->ddp_pnext = ddp_ports[ sat->sat_port - 1 ];
ddp_ports[ sat->sat_port - 1 ] = ddp;
if ( ddp->ddp_pnext ) {
ddp->ddp_pnext->ddp_pprev = ddp;
}
}
return( 0 );
}
static int
at_pcbconnect(struct ddpcb *ddp, struct sockaddr *addr, struct thread *td)
{
struct sockaddr_at *sat = (struct sockaddr_at *)addr;
struct route *ro;
struct at_ifaddr *aa = 0;
struct ifnet *ifp;
u_short hintnet = 0, net;
if (sat->sat_family != AF_APPLETALK) {
return(EAFNOSUPPORT);
}
/*
* Under phase 2, network 0 means "the network". We take "the
* network" to mean the network the control block is bound to.
* If the control block is not bound, there is an error.
*/
if ( sat->sat_addr.s_net == ATADDR_ANYNET
&& sat->sat_addr.s_node != ATADDR_ANYNODE ) {
if ( ddp->ddp_lsat.sat_port == ATADDR_ANYPORT ) {
return( EADDRNOTAVAIL );
}
hintnet = ddp->ddp_lsat.sat_addr.s_net;
}
ro = &ddp->ddp_route;
/*
* If we've got an old route for this pcb, check that it is valid.
* If we've changed our address, we may have an old "good looking"
* route here. Attempt to detect it.
*/
if ( ro->ro_rt ) {
if ( hintnet ) {
net = hintnet;
} else {
net = sat->sat_addr.s_net;
}
aa = 0;
if ((ifp = ro->ro_rt->rt_ifp) != NULL) {
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp &&
ntohs( net ) >= ntohs( aa->aa_firstnet ) &&
ntohs( net ) <= ntohs( aa->aa_lastnet )) {
break;
}
}
}
if ( aa == NULL || ( satosat( &ro->ro_dst )->sat_addr.s_net !=
( hintnet ? hintnet : sat->sat_addr.s_net ) ||
satosat( &ro->ro_dst )->sat_addr.s_node !=
sat->sat_addr.s_node )) {
RTFREE( ro->ro_rt );
ro->ro_rt = (struct rtentry *)0;
}
}
/*
* If we've got no route for this interface, try to find one.
*/
if ( ro->ro_rt == (struct rtentry *)0 ||
ro->ro_rt->rt_ifp == (struct ifnet *)0 ) {
ro->ro_dst.sa_len = sizeof( struct sockaddr_at );
ro->ro_dst.sa_family = AF_APPLETALK;
if ( hintnet ) {
satosat( &ro->ro_dst )->sat_addr.s_net = hintnet;
} else {
satosat( &ro->ro_dst )->sat_addr.s_net = sat->sat_addr.s_net;
}
satosat( &ro->ro_dst )->sat_addr.s_node = sat->sat_addr.s_node;
rtalloc( ro );
}
/*
* Make sure any route that we have has a valid interface.
*/
aa = 0;
if ( ro->ro_rt && ( ifp = ro->ro_rt->rt_ifp )) {
for ( aa = at_ifaddr; aa; aa = aa->aa_next ) {
if ( aa->aa_ifp == ifp ) {
break;
}
}
}
if ( aa == 0 ) {
return( ENETUNREACH );
}
ddp->ddp_fsat = *sat;
if ( ddp->ddp_lsat.sat_port == ATADDR_ANYPORT ) {
return(at_pcbsetaddr(ddp, (struct sockaddr *)0, td));
}
return( 0 );
}
static void
at_pcbdisconnect( struct ddpcb *ddp )
{
ddp->ddp_fsat.sat_addr.s_net = ATADDR_ANYNET;
ddp->ddp_fsat.sat_addr.s_node = ATADDR_ANYNODE;
ddp->ddp_fsat.sat_port = ATADDR_ANYPORT;
}
static int
at_pcballoc( struct socket *so )
{
struct ddpcb *ddp;
MALLOC(ddp, struct ddpcb *, sizeof *ddp, M_PCB, M_WAITOK | M_ZERO);
ddp->ddp_lsat.sat_port = ATADDR_ANYPORT;
ddp->ddp_next = ddpcb;
ddp->ddp_prev = NULL;
ddp->ddp_pprev = NULL;
ddp->ddp_pnext = NULL;
if (ddpcb) {
ddpcb->ddp_prev = ddp;
}
ddpcb = ddp;
ddp->ddp_socket = so;
so->so_pcb = (caddr_t)ddp;
return(0);
}
static void
at_pcbdetach( struct socket *so, struct ddpcb *ddp)
{
soisdisconnected( so );
so->so_pcb = 0;
sotryfree(so);
/* remove ddp from ddp_ports list */
if ( ddp->ddp_lsat.sat_port != ATADDR_ANYPORT &&
ddp_ports[ ddp->ddp_lsat.sat_port - 1 ] != NULL ) {
if ( ddp->ddp_pprev != NULL ) {
ddp->ddp_pprev->ddp_pnext = ddp->ddp_pnext;
} else {
ddp_ports[ ddp->ddp_lsat.sat_port - 1 ] = ddp->ddp_pnext;
}
if ( ddp->ddp_pnext != NULL ) {
ddp->ddp_pnext->ddp_pprev = ddp->ddp_pprev;
}
}
if ( ddp->ddp_route.ro_rt ) {
rtfree( ddp->ddp_route.ro_rt );
}
if ( ddp->ddp_prev ) {
ddp->ddp_prev->ddp_next = ddp->ddp_next;
} else {
ddpcb = ddp->ddp_next;
}
if ( ddp->ddp_next ) {
ddp->ddp_next->ddp_prev = ddp->ddp_prev;
}
FREE(ddp, M_PCB);
}
/*
* For the moment, this just find the pcb with the correct local address.
* In the future, this will actually do some real searching, so we can use
* the sender's address to do de-multiplexing on a single port to many
* sockets (pcbs).
*/
struct ddpcb *
ddp_search( struct sockaddr_at *from, struct sockaddr_at *to,
struct at_ifaddr *aa)
{
struct ddpcb *ddp;
/*
* Check for bad ports.
*/
if ( to->sat_port < ATPORT_FIRST || to->sat_port >= ATPORT_LAST ) {
return( NULL );
}
/*
* Make sure the local address matches the sent address. What about
* the interface?
*/
for ( ddp = ddp_ports[ to->sat_port - 1 ]; ddp; ddp = ddp->ddp_pnext ) {
/* XXX should we handle 0.YY? */
/* XXXX.YY to socket on destination interface */
if ( to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net &&
to->sat_addr.s_node == ddp->ddp_lsat.sat_addr.s_node ) {
break;
}
/* 0.255 to socket on receiving interface */
if ( to->sat_addr.s_node == ATADDR_BCAST && ( to->sat_addr.s_net == 0 ||
to->sat_addr.s_net == ddp->ddp_lsat.sat_addr.s_net ) &&
ddp->ddp_lsat.sat_addr.s_net == AA_SAT( aa )->sat_addr.s_net ) {
break;
}
/* XXXX.0 to socket on destination interface */
if ( to->sat_addr.s_net == aa->aa_firstnet &&
to->sat_addr.s_node == 0 &&
ntohs( ddp->ddp_lsat.sat_addr.s_net ) >=
ntohs( aa->aa_firstnet ) &&
ntohs( ddp->ddp_lsat.sat_addr.s_net ) <=
ntohs( aa->aa_lastnet )) {
break;
}
}
return( ddp );
}
static int
at_setpeeraddr(struct socket *so, struct sockaddr **nam)
{
return(EOPNOTSUPP);
}
static int
at_setsockaddr(struct socket *so, struct sockaddr **nam)
{
struct ddpcb *ddp;
ddp = sotoddpcb( so );
if ( ddp == NULL ) {
return( EINVAL);
}
at_sockaddr( ddp, nam );
return(0);
}
void
ddp_init(void )
{
atintrq1.ifq_maxlen = IFQ_MAXLEN;
atintrq2.ifq_maxlen = IFQ_MAXLEN;
atintrq1_present = 1;
atintrq2_present = 1;
mtx_init(&atintrq1.ifq_mtx, "at1_inq", MTX_DEF);
mtx_init(&atintrq2.ifq_mtx, "at2_inq", MTX_DEF);
}
#if 0
static void
ddp_clean(void )
{
struct ddpcb *ddp;
for ( ddp = ddpcb; ddp; ddp = ddp->ddp_next ) {
at_pcbdetach( ddp->ddp_socket, ddp );
}
}
#endif
struct pr_usrreqs ddp_usrreqs = {
ddp_abort,
pru_accept_notsupp,
ddp_attach,
ddp_bind,
ddp_connect,
pru_connect2_notsupp,
at_control,
ddp_detach,
ddp_disconnect,
pru_listen_notsupp,
at_setpeeraddr,
pru_rcvd_notsupp,
pru_rcvoob_notsupp,
ddp_send,
pru_sense_null,
ddp_shutdown,
at_setsockaddr,
sosend,
soreceive,
sopoll
};