freebsd-skq/sys/mips/rmi/dev/sec/rmisec.c
jmg c3ff54cc39 Add some new modes to OpenCrypto. These modes are AES-ICM (can be used
for counter mode), and AES-GCM.  Both of these modes have been added to
the aesni module.

Included is a set of tests to validate that the software and aesni
module calculate the correct values.  These use the NIST KAT test
vectors.  To run the test, you will need to install a soon to be
committed port, nist-kat that will install the vectors.  Using a port
is necessary as the test vectors are around 25MB.

All the man pages were updated.  I have added a new man page, crypto.7,
which includes a description of how to use each mode.  All the new modes
and some other AES modes are present.  It would be good for someone
else to go through and document the other modes.

A new ioctl was added to support AEAD modes which AES-GCM is one of them.
Without this ioctl, it is not possible to test AEAD modes from userland.

Add a timing safe bcmp for use to compare MACs.  Previously we were using
bcmp which could leak timing info and result in the ability to forge
messages.

Add a minor optimization to the aesni module so that single segment
mbufs don't get copied and instead are updated in place.  The aesni
module needs to be updated to support blocked IO so segmented mbufs
don't have to be copied.

We require that the IV be specified for all calls for both GCM and ICM.
This is to ensure proper use of these functions.

Obtained from:	p4: //depot/projects/opencrypto
Relnotes:	yes
Sponsored by:	FreeBSD Foundation
Sponsored by:	NetGate
2014-12-12 19:56:36 +00:00

572 lines
15 KiB
C

/*-
* Copyright (c) 2003-2009 RMI Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of RMI Corporation, nor the names of its contributors,
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RMI_BSD
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/mbuf.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/bus.h>
#include <sys/random.h>
#include <sys/rman.h>
#include <sys/uio.h>
#include <sys/kobj.h>
#include <opencrypto/cryptodev.h>
#include "cryptodev_if.h"
#include <vm/vm.h>
#include <vm/pmap.h>
#include <mips/rmi/dev/sec/rmilib.h>
/* #define RMI_SEC_DEBUG */
void xlr_sec_print_data(struct cryptop *crp);
static int xlr_sec_newsession(device_t dev, uint32_t * sidp, struct cryptoini *cri);
static int xlr_sec_freesession(device_t dev, uint64_t tid);
static int xlr_sec_process(device_t dev, struct cryptop *crp, int hint);
static int xlr_sec_probe(device_t);
static int xlr_sec_attach(device_t);
static int xlr_sec_detach(device_t);
static device_method_t xlr_sec_methods[] = {
/* device interface */
DEVMETHOD(device_probe, xlr_sec_probe),
DEVMETHOD(device_attach, xlr_sec_attach),
DEVMETHOD(device_detach, xlr_sec_detach),
/* crypto device methods */
DEVMETHOD(cryptodev_newsession, xlr_sec_newsession),
DEVMETHOD(cryptodev_freesession,xlr_sec_freesession),
DEVMETHOD(cryptodev_process, xlr_sec_process),
DEVMETHOD_END
};
static driver_t xlr_sec_driver = {
"rmisec",
xlr_sec_methods,
sizeof(struct xlr_sec_softc)
};
static devclass_t xlr_sec_devclass;
DRIVER_MODULE(rmisec, iodi, xlr_sec_driver, xlr_sec_devclass, 0, 0);
MODULE_DEPEND(rmisec, crypto, 1, 1, 1);
static int
xlr_sec_probe(device_t dev)
{
device_set_desc(dev, "XLR Security Accelerator");
return (BUS_PROBE_DEFAULT);
}
/*
* Attach an interface that successfully probed.
*/
static int
xlr_sec_attach(device_t dev)
{
struct xlr_sec_softc *sc = device_get_softc(dev);
sc->sc_dev = dev;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), "rmi crypto driver",
MTX_DEF);
sc->sc_cid = crypto_get_driverid(dev, CRYPTOCAP_F_HARDWARE);
if (sc->sc_cid < 0) {
printf("xlr_sec - error : could not get the driver id\n");
goto error_exit;
}
if (crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0) != 0)
printf("register failed for CRYPTO_DES_CBC\n");
if (crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0) != 0)
printf("register failed for CRYPTO_3DES_CBC\n");
if (crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0) != 0)
printf("register failed for CRYPTO_AES_CBC\n");
if (crypto_register(sc->sc_cid, CRYPTO_ARC4, 0, 0) != 0)
printf("register failed for CRYPTO_ARC4\n");
if (crypto_register(sc->sc_cid, CRYPTO_MD5, 0, 0) != 0)
printf("register failed for CRYPTO_MD5\n");
if (crypto_register(sc->sc_cid, CRYPTO_SHA1, 0, 0) != 0)
printf("register failed for CRYPTO_SHA1\n");
if (crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0) != 0)
printf("register failed for CRYPTO_MD5_HMAC\n");
if (crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0) != 0)
printf("register failed for CRYPTO_SHA1_HMAC\n");
xlr_sec_init(sc);
device_printf(dev, "Initialization complete!\n");
return (0);
error_exit:
return (ENXIO);
}
/*
* Detach an interface that successfully probed.
*/
static int
xlr_sec_detach(device_t dev)
{
int sesn;
struct xlr_sec_softc *sc = device_get_softc(dev);
struct xlr_sec_session *ses = NULL;
symkey_desc_pt desc;
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
ses = &sc->sc_sessions[sesn];
desc = (symkey_desc_pt) ses->desc_ptr;
free(desc->user.kern_src, M_DEVBUF);
free(desc->user.kern_dest, M_DEVBUF);
free(desc->next_src_buf, M_DEVBUF);
free(desc->next_dest_buf, M_DEVBUF);
free(ses->desc_ptr, M_DEVBUF);
}
return (0);
}
/*
* Allocate a new 'session' and return an encoded session id. 'sidp'
* contains our registration id, and should contain an encoded session
* id on successful allocation.
*/
static int
xlr_sec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
{
struct cryptoini *c;
struct xlr_sec_softc *sc = device_get_softc(dev);
int mac = 0, cry = 0, sesn;
struct xlr_sec_session *ses = NULL;
if (sidp == NULL || cri == NULL || sc == NULL)
return (EINVAL);
if (sc->sc_sessions == NULL) {
ses = sc->sc_sessions = (struct xlr_sec_session *)malloc(
sizeof(struct xlr_sec_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
sesn = 0;
sc->sc_nsessions = 1;
} else {
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
if (!sc->sc_sessions[sesn].hs_used) {
ses = &sc->sc_sessions[sesn];
break;
}
}
if (ses == NULL) {
sesn = sc->sc_nsessions;
ses = (struct xlr_sec_session *)malloc((sesn + 1) *
sizeof(struct xlr_sec_session), M_DEVBUF, M_NOWAIT);
if (ses == NULL)
return (ENOMEM);
bcopy(sc->sc_sessions, ses, sesn * sizeof(*ses));
bzero(sc->sc_sessions, sesn * sizeof(*ses));
free(sc->sc_sessions, M_DEVBUF);
sc->sc_sessions = ses;
ses = &sc->sc_sessions[sesn];
sc->sc_nsessions++;
}
}
bzero(ses, sizeof(*ses));
ses->sessionid = sesn;
ses->desc_ptr = xlr_sec_allocate_desc(ses);
if (ses->desc_ptr == NULL)
return (ENOMEM);
ses->hs_used = 1;
for (c = cri; c != NULL; c = c->cri_next) {
switch (c->cri_alg) {
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_MD5_HMAC:
case CRYPTO_SHA1_HMAC:
if (mac)
return (EINVAL);
mac = 1;
ses->hs_mlen = c->cri_mlen;
if (ses->hs_mlen == 0) {
switch (c->cri_alg) {
case CRYPTO_MD5:
case CRYPTO_MD5_HMAC:
ses->hs_mlen = 16;
break;
case CRYPTO_SHA1:
case CRYPTO_SHA1_HMAC:
ses->hs_mlen = 20;
break;
}
}
break;
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_AES_CBC:
/* XXX this may read fewer, does it matter? */
/*
* read_random(ses->hs_iv, c->cri_alg ==
* CRYPTO_AES_CBC ? XLR_SEC_AES_IV_LENGTH :
* XLR_SEC_IV_LENGTH);
*/
/* FALLTHROUGH */
case CRYPTO_ARC4:
if (cry)
return (EINVAL);
cry = 1;
break;
default:
return (EINVAL);
}
}
if (mac == 0 && cry == 0)
return (EINVAL);
*sidp = XLR_SEC_SID(device_get_unit(sc->sc_dev), sesn);
return (0);
}
/*
* Deallocate a session.
* XXX this routine should run a zero'd mac/encrypt key into context ram.
* XXX to blow away any keys already stored there.
*/
static int
xlr_sec_freesession(device_t dev, u_int64_t tid)
{
struct xlr_sec_softc *sc = device_get_softc(dev);
int session;
u_int32_t sid = CRYPTO_SESID2LID(tid);
if (sc == NULL)
return (EINVAL);
session = XLR_SEC_SESSION(sid);
if (session >= sc->sc_nsessions)
return (EINVAL);
sc->sc_sessions[session].hs_used = 0;
return (0);
}
#ifdef RMI_SEC_DEBUG
void
xlr_sec_print_data(struct cryptop *crp)
{
int i, key_len;
struct cryptodesc *crp_desc;
printf("session id = 0x%llx, crp_ilen = %d, crp_olen=%d \n",
crp->crp_sid, crp->crp_ilen, crp->crp_olen);
printf("crp_flags = 0x%x\n", crp->crp_flags);
printf("crp buf:\n");
for (i = 0; i < crp->crp_ilen; i++) {
printf("%c ", crp->crp_buf[i]);
if (i % 10 == 0)
printf("\n");
}
printf("\n");
printf("****************** desc ****************\n");
crp_desc = crp->crp_desc;
printf("crd_skip=%d, crd_len=%d, crd_flags=0x%x, crd_alg=%d\n",
crp_desc->crd_skip, crp_desc->crd_len, crp_desc->crd_flags, crp_desc->crd_alg);
key_len = crp_desc->crd_klen / 8;
printf("key(%d) :\n", key_len);
for (i = 0; i < key_len; i++)
printf("%d", crp_desc->crd_key[i]);
printf("\n");
printf(" IV : \n");
for (i = 0; i < EALG_MAX_BLOCK_LEN; i++)
printf("%d", crp_desc->crd_iv[i]);
printf("\n");
printf("crd_next=%p\n", crp_desc->crd_next);
return;
}
#endif
static int
xlr_sec_process(device_t dev, struct cryptop *crp, int hint)
{
struct xlr_sec_softc *sc = device_get_softc(dev);
struct xlr_sec_command *cmd = NULL;
int session, err;
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
struct xlr_sec_session *ses;
if (crp == NULL || crp->crp_callback == NULL) {
return (EINVAL);
}
session = XLR_SEC_SESSION(crp->crp_sid);
if (sc == NULL || session >= sc->sc_nsessions) {
err = EINVAL;
goto errout;
}
ses = &sc->sc_sessions[session];
cmd = &ses->cmd;
if (cmd == NULL) {
err = ENOMEM;
goto errout;
}
crd1 = crp->crp_desc;
if (crd1 == NULL) {
err = EINVAL;
goto errout;
}
crd2 = crd1->crd_next;
if (crd2 == NULL) {
if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
crd1->crd_alg == CRYPTO_SHA1 ||
crd1->crd_alg == CRYPTO_MD5) {
maccrd = crd1;
enccrd = NULL;
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC ||
crd1->crd_alg == CRYPTO_ARC4) {
maccrd = NULL;
enccrd = crd1;
} else {
err = EINVAL;
goto errout;
}
} else {
if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
crd1->crd_alg == CRYPTO_MD5 ||
crd1->crd_alg == CRYPTO_SHA1) &&
(crd2->crd_alg == CRYPTO_DES_CBC ||
crd2->crd_alg == CRYPTO_3DES_CBC ||
crd2->crd_alg == CRYPTO_AES_CBC ||
crd2->crd_alg == CRYPTO_ARC4)) {
maccrd = crd1;
enccrd = crd2;
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
crd1->crd_alg == CRYPTO_ARC4 ||
crd1->crd_alg == CRYPTO_3DES_CBC ||
crd1->crd_alg == CRYPTO_AES_CBC) &&
(crd2->crd_alg == CRYPTO_MD5_HMAC ||
crd2->crd_alg == CRYPTO_SHA1_HMAC ||
crd2->crd_alg == CRYPTO_MD5 ||
crd2->crd_alg == CRYPTO_SHA1) &&
(crd1->crd_flags & CRD_F_ENCRYPT)) {
enccrd = crd1;
maccrd = crd2;
} else {
err = EINVAL;
goto errout;
}
}
bzero(&cmd->op, sizeof(xlr_sec_io_t));
cmd->op.source_buf = (uint64_t) (unsigned long)crp->crp_buf;
cmd->op.source_buf_size = crp->crp_ilen;
cmd->op.dest_buf = (uint64_t) (unsigned long)crp->crp_buf;
cmd->op.dest_buf_size = crp->crp_ilen;
cmd->op.num_packets = 1;
cmd->op.num_fragments = 1;
if (cmd->op.source_buf_size > SEC_MAX_FRAG_LEN) {
ses->multi_frag_flag = 1;
} else {
ses->multi_frag_flag = 0;
}
if (maccrd) {
cmd->maccrd = maccrd;
cmd->op.cipher_op = XLR_SEC_CIPHER_MODE_PASS;
cmd->op.cipher_mode = XLR_SEC_CIPHER_MODE_NONE;
cmd->op.cipher_type = XLR_SEC_CIPHER_TYPE_NONE;
cmd->op.cipher_init = 0;
cmd->op.cipher_offset = 0;
switch (maccrd->crd_alg) {
case CRYPTO_MD5:
cmd->op.digest_type = XLR_SEC_DIGEST_TYPE_MD5;
cmd->op.digest_init = XLR_SEC_DIGEST_INIT_NEWKEY;
cmd->op.digest_src = XLR_SEC_DIGEST_SRC_DMA;
cmd->op.digest_offset = 0;
cmd->op.cksum_type = XLR_SEC_CKSUM_TYPE_NOP;
cmd->op.cksum_src = XLR_SEC_CKSUM_SRC_CIPHER;
cmd->op.cksum_offset = 0;
cmd->op.pkt_hmac = XLR_SEC_LOADHMACKEY_MODE_OLD;
cmd->op.pkt_hash = XLR_SEC_PADHASH_PAD;
cmd->op.pkt_hashbytes = XLR_SEC_HASHBYTES_ALL8;
cmd->op.pkt_next = XLR_SEC_NEXT_FINISH;
cmd->op.pkt_iv = XLR_SEC_PKT_IV_OLD;
cmd->op.pkt_lastword = XLR_SEC_LASTWORD_128;
default:
printf("currently not handled\n");
}
}
if (enccrd) {
cmd->enccrd = enccrd;
#ifdef RMI_SEC_DEBUG
xlr_sec_print_data(crp);
#endif
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
cmd->op.cipher_op = XLR_SEC_CIPHER_OP_ENCRYPT;
} else
cmd->op.cipher_op = XLR_SEC_CIPHER_OP_DECRYPT;
switch (enccrd->crd_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
if (enccrd->crd_alg == CRYPTO_DES_CBC) {
cmd->op.cipher_type = XLR_SEC_CIPHER_TYPE_DES;
memcpy(&cmd->op.crypt_key[0], enccrd->crd_key, XLR_SEC_DES_KEY_LENGTH);
} else {
cmd->op.cipher_type = XLR_SEC_CIPHER_TYPE_3DES;
//if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
{
memcpy(&cmd->op.crypt_key[0], enccrd->crd_key,
XLR_SEC_3DES_KEY_LENGTH);
}
}
cmd->op.cipher_mode = XLR_SEC_CIPHER_MODE_CBC;
cmd->op.cipher_init = XLR_SEC_CIPHER_INIT_NK;
cmd->op.cipher_offset = XLR_SEC_DES_IV_LENGTH;
cmd->op.digest_type = XLR_SEC_DIGEST_TYPE_NONE;
cmd->op.digest_init = XLR_SEC_DIGEST_INIT_OLDKEY;
cmd->op.digest_src = XLR_SEC_DIGEST_SRC_DMA;
cmd->op.digest_offset = 0;
cmd->op.cksum_type = XLR_SEC_CKSUM_TYPE_NOP;
cmd->op.cksum_src = XLR_SEC_CKSUM_SRC_CIPHER;
cmd->op.cksum_offset = 0;
cmd->op.pkt_hmac = XLR_SEC_LOADHMACKEY_MODE_OLD;
cmd->op.pkt_hash = XLR_SEC_PADHASH_PAD;
cmd->op.pkt_hashbytes = XLR_SEC_HASHBYTES_ALL8;
cmd->op.pkt_next = XLR_SEC_NEXT_FINISH;
cmd->op.pkt_iv = XLR_SEC_PKT_IV_NEW;
cmd->op.pkt_lastword = XLR_SEC_LASTWORD_128;
//if ((!(enccrd->crd_flags & CRD_F_IV_PRESENT)) &&
if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT)) {
memcpy(&cmd->op.initial_vector[0], enccrd->crd_iv,
XLR_SEC_DES_IV_LENGTH);
}
break;
case CRYPTO_AES_CBC:
if (enccrd->crd_alg == CRYPTO_AES_CBC) {
cmd->op.cipher_type = XLR_SEC_CIPHER_TYPE_AES128;
//if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
{
memcpy(&cmd->op.crypt_key[0], enccrd->crd_key,
XLR_SEC_AES128_KEY_LENGTH);
}
}
cmd->op.cipher_mode = XLR_SEC_CIPHER_MODE_CBC;
cmd->op.cipher_init = XLR_SEC_CIPHER_INIT_NK;
cmd->op.cipher_offset = XLR_SEC_AES_BLOCK_SIZE;
cmd->op.digest_type = XLR_SEC_DIGEST_TYPE_NONE;
cmd->op.digest_init = XLR_SEC_DIGEST_INIT_OLDKEY;
cmd->op.digest_src = XLR_SEC_DIGEST_SRC_DMA;
cmd->op.digest_offset = 0;
cmd->op.cksum_type = XLR_SEC_CKSUM_TYPE_NOP;
cmd->op.cksum_src = XLR_SEC_CKSUM_SRC_CIPHER;
cmd->op.cksum_offset = 0;
cmd->op.pkt_hmac = XLR_SEC_LOADHMACKEY_MODE_OLD;
cmd->op.pkt_hash = XLR_SEC_PADHASH_PAD;
cmd->op.pkt_hashbytes = XLR_SEC_HASHBYTES_ALL8;
cmd->op.pkt_next = XLR_SEC_NEXT_FINISH;
cmd->op.pkt_iv = XLR_SEC_PKT_IV_NEW;
cmd->op.pkt_lastword = XLR_SEC_LASTWORD_128;
//if (!(enccrd->crd_flags & CRD_F_IV_PRESENT)) {
if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT)) {
memcpy(&cmd->op.initial_vector[0], enccrd->crd_iv,
XLR_SEC_AES_BLOCK_SIZE);
}
//}
break;
}
}
cmd->crp = crp;
cmd->session_num = session;
xlr_sec_setup(ses, cmd, (symkey_desc_pt) ses->desc_ptr);
return (0);
errout:
if (cmd != NULL)
free(cmd, M_DEVBUF);
crp->crp_etype = err;
crypto_done(crp);
return (err);
}