freebsd-skq/sys/netinet/raw_ip.c
glebius 8e20fa5ae9 Mechanically substitute flags from historic mbuf allocator with
malloc(9) flags within sys.

Exceptions:

- sys/contrib not touched
- sys/mbuf.h edited manually
2012-12-05 08:04:20 +00:00

1131 lines
27 KiB
C

/*-
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)raw_ip.c 8.7 (Berkeley) 5/15/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include <sys/param.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/rwlock.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/route.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/if_ether.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/ip_mroute.h>
#ifdef IPSEC
#include <netipsec/ipsec.h>
#endif /*IPSEC*/
#include <security/mac/mac_framework.h>
VNET_DEFINE(int, ip_defttl) = IPDEFTTL;
SYSCTL_VNET_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
&VNET_NAME(ip_defttl), 0,
"Maximum TTL on IP packets");
VNET_DEFINE(struct inpcbhead, ripcb);
VNET_DEFINE(struct inpcbinfo, ripcbinfo);
#define V_ripcb VNET(ripcb)
#define V_ripcbinfo VNET(ripcbinfo)
/*
* Control and data hooks for ipfw, dummynet, divert and so on.
* The data hooks are not used here but it is convenient
* to keep them all in one place.
*/
VNET_DEFINE(ip_fw_chk_ptr_t, ip_fw_chk_ptr) = NULL;
VNET_DEFINE(ip_fw_ctl_ptr_t, ip_fw_ctl_ptr) = NULL;
int (*ip_dn_ctl_ptr)(struct sockopt *);
int (*ip_dn_io_ptr)(struct mbuf **, int, struct ip_fw_args *);
void (*ip_divert_ptr)(struct mbuf *, int);
int (*ng_ipfw_input_p)(struct mbuf **, int,
struct ip_fw_args *, int);
#ifdef INET
/*
* Hooks for multicast routing. They all default to NULL, so leave them not
* initialized and rely on BSS being set to 0.
*/
/*
* The socket used to communicate with the multicast routing daemon.
*/
VNET_DEFINE(struct socket *, ip_mrouter);
/*
* The various mrouter and rsvp functions.
*/
int (*ip_mrouter_set)(struct socket *, struct sockopt *);
int (*ip_mrouter_get)(struct socket *, struct sockopt *);
int (*ip_mrouter_done)(void);
int (*ip_mforward)(struct ip *, struct ifnet *, struct mbuf *,
struct ip_moptions *);
int (*mrt_ioctl)(u_long, caddr_t, int);
int (*legal_vif_num)(int);
u_long (*ip_mcast_src)(int);
void (*rsvp_input_p)(struct mbuf *m, int off);
int (*ip_rsvp_vif)(struct socket *, struct sockopt *);
void (*ip_rsvp_force_done)(struct socket *);
#endif /* INET */
u_long rip_sendspace = 9216;
SYSCTL_ULONG(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW,
&rip_sendspace, 0, "Maximum outgoing raw IP datagram size");
u_long rip_recvspace = 9216;
SYSCTL_ULONG(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW,
&rip_recvspace, 0, "Maximum space for incoming raw IP datagrams");
/*
* Hash functions
*/
#define INP_PCBHASH_RAW_SIZE 256
#define INP_PCBHASH_RAW(proto, laddr, faddr, mask) \
(((proto) + (laddr) + (faddr)) % (mask) + 1)
#ifdef INET
static void
rip_inshash(struct inpcb *inp)
{
struct inpcbinfo *pcbinfo = inp->inp_pcbinfo;
struct inpcbhead *pcbhash;
int hash;
INP_INFO_WLOCK_ASSERT(pcbinfo);
INP_WLOCK_ASSERT(inp);
if (inp->inp_ip_p != 0 &&
inp->inp_laddr.s_addr != INADDR_ANY &&
inp->inp_faddr.s_addr != INADDR_ANY) {
hash = INP_PCBHASH_RAW(inp->inp_ip_p, inp->inp_laddr.s_addr,
inp->inp_faddr.s_addr, pcbinfo->ipi_hashmask);
} else
hash = 0;
pcbhash = &pcbinfo->ipi_hashbase[hash];
LIST_INSERT_HEAD(pcbhash, inp, inp_hash);
}
static void
rip_delhash(struct inpcb *inp)
{
INP_INFO_WLOCK_ASSERT(inp->inp_pcbinfo);
INP_WLOCK_ASSERT(inp);
LIST_REMOVE(inp, inp_hash);
}
#endif /* INET */
/*
* Raw interface to IP protocol.
*/
/*
* Initialize raw connection block q.
*/
static void
rip_zone_change(void *tag)
{
uma_zone_set_max(V_ripcbinfo.ipi_zone, maxsockets);
}
static int
rip_inpcb_init(void *mem, int size, int flags)
{
struct inpcb *inp = mem;
INP_LOCK_INIT(inp, "inp", "rawinp");
return (0);
}
void
rip_init(void)
{
in_pcbinfo_init(&V_ripcbinfo, "rip", &V_ripcb, INP_PCBHASH_RAW_SIZE,
1, "ripcb", rip_inpcb_init, NULL, UMA_ZONE_NOFREE,
IPI_HASHFIELDS_NONE);
EVENTHANDLER_REGISTER(maxsockets_change, rip_zone_change, NULL,
EVENTHANDLER_PRI_ANY);
}
#ifdef VIMAGE
void
rip_destroy(void)
{
in_pcbinfo_destroy(&V_ripcbinfo);
}
#endif
#ifdef INET
static int
rip_append(struct inpcb *last, struct ip *ip, struct mbuf *n,
struct sockaddr_in *ripsrc)
{
int policyfail = 0;
INP_LOCK_ASSERT(last);
#ifdef IPSEC
/* check AH/ESP integrity. */
if (ipsec4_in_reject(n, last)) {
policyfail = 1;
}
#endif /* IPSEC */
#ifdef MAC
if (!policyfail && mac_inpcb_check_deliver(last, n) != 0)
policyfail = 1;
#endif
/* Check the minimum TTL for socket. */
if (last->inp_ip_minttl && last->inp_ip_minttl > ip->ip_ttl)
policyfail = 1;
if (!policyfail) {
struct mbuf *opts = NULL;
struct socket *so;
so = last->inp_socket;
if ((last->inp_flags & INP_CONTROLOPTS) ||
(so->so_options & (SO_TIMESTAMP | SO_BINTIME)))
ip_savecontrol(last, &opts, ip, n);
SOCKBUF_LOCK(&so->so_rcv);
if (sbappendaddr_locked(&so->so_rcv,
(struct sockaddr *)ripsrc, n, opts) == 0) {
/* should notify about lost packet */
m_freem(n);
if (opts)
m_freem(opts);
SOCKBUF_UNLOCK(&so->so_rcv);
} else
sorwakeup_locked(so);
} else
m_freem(n);
return (policyfail);
}
/*
* Setup generic address and protocol structures for raw_input routine, then
* pass them along with mbuf chain.
*/
void
rip_input(struct mbuf *m, int off)
{
struct ifnet *ifp;
struct ip *ip = mtod(m, struct ip *);
int proto = ip->ip_p;
struct inpcb *inp, *last;
struct sockaddr_in ripsrc;
int hash;
bzero(&ripsrc, sizeof(ripsrc));
ripsrc.sin_len = sizeof(ripsrc);
ripsrc.sin_family = AF_INET;
ripsrc.sin_addr = ip->ip_src;
last = NULL;
ifp = m->m_pkthdr.rcvif;
/*
* Applications on raw sockets expect host byte order.
*/
ip->ip_len = ntohs(ip->ip_len);
ip->ip_off = ntohs(ip->ip_off);
hash = INP_PCBHASH_RAW(proto, ip->ip_src.s_addr,
ip->ip_dst.s_addr, V_ripcbinfo.ipi_hashmask);
INP_INFO_RLOCK(&V_ripcbinfo);
LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[hash], inp_hash) {
if (inp->inp_ip_p != proto)
continue;
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
continue;
if (inp->inp_faddr.s_addr != ip->ip_src.s_addr)
continue;
if (jailed_without_vnet(inp->inp_cred)) {
/*
* XXX: If faddr was bound to multicast group,
* jailed raw socket will drop datagram.
*/
if (prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0)
continue;
}
if (last != NULL) {
struct mbuf *n;
n = m_copy(m, 0, (int)M_COPYALL);
if (n != NULL)
(void) rip_append(last, ip, n, &ripsrc);
/* XXX count dropped packet */
INP_RUNLOCK(last);
}
INP_RLOCK(inp);
last = inp;
}
LIST_FOREACH(inp, &V_ripcbinfo.ipi_hashbase[0], inp_hash) {
if (inp->inp_ip_p && inp->inp_ip_p != proto)
continue;
#ifdef INET6
/* XXX inp locking */
if ((inp->inp_vflag & INP_IPV4) == 0)
continue;
#endif
if (!in_nullhost(inp->inp_laddr) &&
!in_hosteq(inp->inp_laddr, ip->ip_dst))
continue;
if (!in_nullhost(inp->inp_faddr) &&
!in_hosteq(inp->inp_faddr, ip->ip_src))
continue;
if (jailed_without_vnet(inp->inp_cred)) {
/*
* Allow raw socket in jail to receive multicast;
* assume process had PRIV_NETINET_RAW at attach,
* and fall through into normal filter path if so.
*/
if (!IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
prison_check_ip4(inp->inp_cred, &ip->ip_dst) != 0)
continue;
}
/*
* If this raw socket has multicast state, and we
* have received a multicast, check if this socket
* should receive it, as multicast filtering is now
* the responsibility of the transport layer.
*/
if (inp->inp_moptions != NULL &&
IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
/*
* If the incoming datagram is for IGMP, allow it
* through unconditionally to the raw socket.
*
* In the case of IGMPv2, we may not have explicitly
* joined the group, and may have set IFF_ALLMULTI
* on the interface. imo_multi_filter() may discard
* control traffic we actually need to see.
*
* Userland multicast routing daemons should continue
* filter the control traffic appropriately.
*/
int blocked;
blocked = MCAST_PASS;
if (proto != IPPROTO_IGMP) {
struct sockaddr_in group;
bzero(&group, sizeof(struct sockaddr_in));
group.sin_len = sizeof(struct sockaddr_in);
group.sin_family = AF_INET;
group.sin_addr = ip->ip_dst;
blocked = imo_multi_filter(inp->inp_moptions,
ifp,
(struct sockaddr *)&group,
(struct sockaddr *)&ripsrc);
}
if (blocked != MCAST_PASS) {
IPSTAT_INC(ips_notmember);
continue;
}
}
if (last != NULL) {
struct mbuf *n;
n = m_copy(m, 0, (int)M_COPYALL);
if (n != NULL)
(void) rip_append(last, ip, n, &ripsrc);
/* XXX count dropped packet */
INP_RUNLOCK(last);
}
INP_RLOCK(inp);
last = inp;
}
INP_INFO_RUNLOCK(&V_ripcbinfo);
if (last != NULL) {
if (rip_append(last, ip, m, &ripsrc) != 0)
IPSTAT_INC(ips_delivered);
INP_RUNLOCK(last);
} else {
m_freem(m);
IPSTAT_INC(ips_noproto);
IPSTAT_DEC(ips_delivered);
}
}
/*
* Generate IP header and pass packet to ip_output. Tack on options user may
* have setup with control call.
*/
int
rip_output(struct mbuf *m, struct socket *so, u_long dst)
{
struct ip *ip;
int error;
struct inpcb *inp = sotoinpcb(so);
int flags = ((so->so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0) |
IP_ALLOWBROADCAST;
/*
* If the user handed us a complete IP packet, use it. Otherwise,
* allocate an mbuf for a header and fill it in.
*/
if ((inp->inp_flags & INP_HDRINCL) == 0) {
if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) {
m_freem(m);
return(EMSGSIZE);
}
M_PREPEND(m, sizeof(struct ip), M_NOWAIT);
if (m == NULL)
return(ENOBUFS);
INP_RLOCK(inp);
ip = mtod(m, struct ip *);
ip->ip_tos = inp->inp_ip_tos;
if (inp->inp_flags & INP_DONTFRAG)
ip->ip_off = htons(IP_DF);
else
ip->ip_off = htons(0);
ip->ip_p = inp->inp_ip_p;
ip->ip_len = htons(m->m_pkthdr.len);
ip->ip_src = inp->inp_laddr;
if (jailed(inp->inp_cred)) {
/*
* prison_local_ip4() would be good enough but would
* let a source of INADDR_ANY pass, which we do not
* want to see from jails. We do not go through the
* pain of in_pcbladdr() for raw sockets.
*/
if (ip->ip_src.s_addr == INADDR_ANY)
error = prison_get_ip4(inp->inp_cred,
&ip->ip_src);
else
error = prison_local_ip4(inp->inp_cred,
&ip->ip_src);
if (error != 0) {
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
}
ip->ip_dst.s_addr = dst;
ip->ip_ttl = inp->inp_ip_ttl;
} else {
if (m->m_pkthdr.len > IP_MAXPACKET) {
m_freem(m);
return(EMSGSIZE);
}
INP_RLOCK(inp);
ip = mtod(m, struct ip *);
error = prison_check_ip4(inp->inp_cred, &ip->ip_src);
if (error != 0) {
INP_RUNLOCK(inp);
m_freem(m);
return (error);
}
/*
* Don't allow both user specified and setsockopt options,
* and don't allow packet length sizes that will crash.
*/
if (((ip->ip_hl != (sizeof (*ip) >> 2)) && inp->inp_options)
|| (ip->ip_len > m->m_pkthdr.len)
|| (ip->ip_len < (ip->ip_hl << 2))) {
INP_RUNLOCK(inp);
m_freem(m);
return (EINVAL);
}
if (ip->ip_id == 0)
ip->ip_id = ip_newid();
/*
* Applications on raw sockets pass us packets
* in host byte order.
*/
ip->ip_len = htons(ip->ip_len);
ip->ip_off = htons(ip->ip_off);
/*
* XXX prevent ip_output from overwriting header fields.
*/
flags |= IP_RAWOUTPUT;
IPSTAT_INC(ips_rawout);
}
if (inp->inp_flags & INP_ONESBCAST)
flags |= IP_SENDONES;
#ifdef MAC
mac_inpcb_create_mbuf(inp, m);
#endif
error = ip_output(m, inp->inp_options, NULL, flags,
inp->inp_moptions, inp);
INP_RUNLOCK(inp);
return (error);
}
/*
* Raw IP socket option processing.
*
* IMPORTANT NOTE regarding access control: Traditionally, raw sockets could
* only be created by a privileged process, and as such, socket option
* operations to manage system properties on any raw socket were allowed to
* take place without explicit additional access control checks. However,
* raw sockets can now also be created in jail(), and therefore explicit
* checks are now required. Likewise, raw sockets can be used by a process
* after it gives up privilege, so some caution is required. For options
* passed down to the IP layer via ip_ctloutput(), checks are assumed to be
* performed in ip_ctloutput() and therefore no check occurs here.
* Unilaterally checking priv_check() here breaks normal IP socket option
* operations on raw sockets.
*
* When adding new socket options here, make sure to add access control
* checks here as necessary.
*
* XXX-BZ inp locking?
*/
int
rip_ctloutput(struct socket *so, struct sockopt *sopt)
{
struct inpcb *inp = sotoinpcb(so);
int error, optval;
if (sopt->sopt_level != IPPROTO_IP) {
if ((sopt->sopt_level == SOL_SOCKET) &&
(sopt->sopt_name == SO_SETFIB)) {
inp->inp_inc.inc_fibnum = so->so_fibnum;
return (0);
}
return (EINVAL);
}
error = 0;
switch (sopt->sopt_dir) {
case SOPT_GET:
switch (sopt->sopt_name) {
case IP_HDRINCL:
optval = inp->inp_flags & INP_HDRINCL;
error = sooptcopyout(sopt, &optval, sizeof optval);
break;
case IP_FW3: /* generic ipfw v.3 functions */
case IP_FW_ADD: /* ADD actually returns the body... */
case IP_FW_GET:
case IP_FW_TABLE_GETSIZE:
case IP_FW_TABLE_LIST:
case IP_FW_NAT_GET_CONFIG:
case IP_FW_NAT_GET_LOG:
if (V_ip_fw_ctl_ptr != NULL)
error = V_ip_fw_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break;
case IP_DUMMYNET3: /* generic dummynet v.3 functions */
case IP_DUMMYNET_GET:
if (ip_dn_ctl_ptr != NULL)
error = ip_dn_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break ;
case MRT_INIT:
case MRT_DONE:
case MRT_ADD_VIF:
case MRT_DEL_VIF:
case MRT_ADD_MFC:
case MRT_DEL_MFC:
case MRT_VERSION:
case MRT_ASSERT:
case MRT_API_SUPPORT:
case MRT_API_CONFIG:
case MRT_ADD_BW_UPCALL:
case MRT_DEL_BW_UPCALL:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_mrouter_get ? ip_mrouter_get(so, sopt) :
EOPNOTSUPP;
break;
default:
error = ip_ctloutput(so, sopt);
break;
}
break;
case SOPT_SET:
switch (sopt->sopt_name) {
case IP_HDRINCL:
error = sooptcopyin(sopt, &optval, sizeof optval,
sizeof optval);
if (error)
break;
if (optval)
inp->inp_flags |= INP_HDRINCL;
else
inp->inp_flags &= ~INP_HDRINCL;
break;
case IP_FW3: /* generic ipfw v.3 functions */
case IP_FW_ADD:
case IP_FW_DEL:
case IP_FW_FLUSH:
case IP_FW_ZERO:
case IP_FW_RESETLOG:
case IP_FW_TABLE_ADD:
case IP_FW_TABLE_DEL:
case IP_FW_TABLE_FLUSH:
case IP_FW_NAT_CFG:
case IP_FW_NAT_DEL:
if (V_ip_fw_ctl_ptr != NULL)
error = V_ip_fw_ctl_ptr(sopt);
else
error = ENOPROTOOPT;
break;
case IP_DUMMYNET3: /* generic dummynet v.3 functions */
case IP_DUMMYNET_CONFIGURE:
case IP_DUMMYNET_DEL:
case IP_DUMMYNET_FLUSH:
if (ip_dn_ctl_ptr != NULL)
error = ip_dn_ctl_ptr(sopt);
else
error = ENOPROTOOPT ;
break ;
case IP_RSVP_ON:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_rsvp_init(so);
break;
case IP_RSVP_OFF:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_rsvp_done();
break;
case IP_RSVP_VIF_ON:
case IP_RSVP_VIF_OFF:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_rsvp_vif ?
ip_rsvp_vif(so, sopt) : EINVAL;
break;
case MRT_INIT:
case MRT_DONE:
case MRT_ADD_VIF:
case MRT_DEL_VIF:
case MRT_ADD_MFC:
case MRT_DEL_MFC:
case MRT_VERSION:
case MRT_ASSERT:
case MRT_API_SUPPORT:
case MRT_API_CONFIG:
case MRT_ADD_BW_UPCALL:
case MRT_DEL_BW_UPCALL:
error = priv_check(curthread, PRIV_NETINET_MROUTE);
if (error != 0)
return (error);
error = ip_mrouter_set ? ip_mrouter_set(so, sopt) :
EOPNOTSUPP;
break;
default:
error = ip_ctloutput(so, sopt);
break;
}
break;
}
return (error);
}
/*
* This function exists solely to receive the PRC_IFDOWN messages which are
* sent by if_down(). It looks for an ifaddr whose ifa_addr is sa, and calls
* in_ifadown() to remove all routes corresponding to that address. It also
* receives the PRC_IFUP messages from if_up() and reinstalls the interface
* routes.
*/
void
rip_ctlinput(int cmd, struct sockaddr *sa, void *vip)
{
struct in_ifaddr *ia;
struct ifnet *ifp;
int err;
int flags;
switch (cmd) {
case PRC_IFDOWN:
IN_IFADDR_RLOCK();
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
if (ia->ia_ifa.ifa_addr == sa
&& (ia->ia_flags & IFA_ROUTE)) {
ifa_ref(&ia->ia_ifa);
IN_IFADDR_RUNLOCK();
/*
* in_ifscrub kills the interface route.
*/
in_ifscrub(ia->ia_ifp, ia, 0);
/*
* in_ifadown gets rid of all the rest of the
* routes. This is not quite the right thing
* to do, but at least if we are running a
* routing process they will come back.
*/
in_ifadown(&ia->ia_ifa, 0);
ifa_free(&ia->ia_ifa);
break;
}
}
if (ia == NULL) /* If ia matched, already unlocked. */
IN_IFADDR_RUNLOCK();
break;
case PRC_IFUP:
IN_IFADDR_RLOCK();
TAILQ_FOREACH(ia, &V_in_ifaddrhead, ia_link) {
if (ia->ia_ifa.ifa_addr == sa)
break;
}
if (ia == NULL || (ia->ia_flags & IFA_ROUTE)) {
IN_IFADDR_RUNLOCK();
return;
}
ifa_ref(&ia->ia_ifa);
IN_IFADDR_RUNLOCK();
flags = RTF_UP;
ifp = ia->ia_ifa.ifa_ifp;
if ((ifp->if_flags & IFF_LOOPBACK)
|| (ifp->if_flags & IFF_POINTOPOINT))
flags |= RTF_HOST;
err = ifa_del_loopback_route((struct ifaddr *)ia, sa);
if (err == 0)
ia->ia_flags &= ~IFA_RTSELF;
err = rtinit(&ia->ia_ifa, RTM_ADD, flags);
if (err == 0)
ia->ia_flags |= IFA_ROUTE;
err = ifa_add_loopback_route((struct ifaddr *)ia, sa);
if (err == 0)
ia->ia_flags |= IFA_RTSELF;
ifa_free(&ia->ia_ifa);
break;
}
}
static int
rip_attach(struct socket *so, int proto, struct thread *td)
{
struct inpcb *inp;
int error;
inp = sotoinpcb(so);
KASSERT(inp == NULL, ("rip_attach: inp != NULL"));
error = priv_check(td, PRIV_NETINET_RAW);
if (error)
return (error);
if (proto >= IPPROTO_MAX || proto < 0)
return EPROTONOSUPPORT;
error = soreserve(so, rip_sendspace, rip_recvspace);
if (error)
return (error);
INP_INFO_WLOCK(&V_ripcbinfo);
error = in_pcballoc(so, &V_ripcbinfo);
if (error) {
INP_INFO_WUNLOCK(&V_ripcbinfo);
return (error);
}
inp = (struct inpcb *)so->so_pcb;
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_p = proto;
inp->inp_ip_ttl = V_ip_defttl;
rip_inshash(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
INP_WUNLOCK(inp);
return (0);
}
static void
rip_detach(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_detach: inp == NULL"));
KASSERT(inp->inp_faddr.s_addr == INADDR_ANY,
("rip_detach: not closed"));
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_delhash(inp);
if (so == V_ip_mrouter && ip_mrouter_done)
ip_mrouter_done();
if (ip_rsvp_force_done)
ip_rsvp_force_done(so);
if (so == V_ip_rsvpd)
ip_rsvp_done();
in_pcbdetach(inp);
in_pcbfree(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
}
static void
rip_dodisconnect(struct socket *so, struct inpcb *inp)
{
struct inpcbinfo *pcbinfo;
pcbinfo = inp->inp_pcbinfo;
INP_INFO_WLOCK(pcbinfo);
INP_WLOCK(inp);
rip_delhash(inp);
inp->inp_faddr.s_addr = INADDR_ANY;
rip_inshash(inp);
SOCK_LOCK(so);
so->so_state &= ~SS_ISCONNECTED;
SOCK_UNLOCK(so);
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(pcbinfo);
}
static void
rip_abort(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_abort: inp == NULL"));
rip_dodisconnect(so, inp);
}
static void
rip_close(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_close: inp == NULL"));
rip_dodisconnect(so, inp);
}
static int
rip_disconnect(struct socket *so)
{
struct inpcb *inp;
if ((so->so_state & SS_ISCONNECTED) == 0)
return (ENOTCONN);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_disconnect: inp == NULL"));
rip_dodisconnect(so, inp);
return (0);
}
static int
rip_bind(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct sockaddr_in *addr = (struct sockaddr_in *)nam;
struct inpcb *inp;
int error;
if (nam->sa_len != sizeof(*addr))
return (EINVAL);
error = prison_check_ip4(td->td_ucred, &addr->sin_addr);
if (error != 0)
return (error);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_bind: inp == NULL"));
if (TAILQ_EMPTY(&V_ifnet) ||
(addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK) ||
(addr->sin_addr.s_addr &&
(inp->inp_flags & INP_BINDANY) == 0 &&
ifa_ifwithaddr_check((struct sockaddr *)addr) == 0))
return (EADDRNOTAVAIL);
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_delhash(inp);
inp->inp_laddr = addr->sin_addr;
rip_inshash(inp);
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
return (0);
}
static int
rip_connect(struct socket *so, struct sockaddr *nam, struct thread *td)
{
struct sockaddr_in *addr = (struct sockaddr_in *)nam;
struct inpcb *inp;
if (nam->sa_len != sizeof(*addr))
return (EINVAL);
if (TAILQ_EMPTY(&V_ifnet))
return (EADDRNOTAVAIL);
if (addr->sin_family != AF_INET && addr->sin_family != AF_IMPLINK)
return (EAFNOSUPPORT);
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_connect: inp == NULL"));
INP_INFO_WLOCK(&V_ripcbinfo);
INP_WLOCK(inp);
rip_delhash(inp);
inp->inp_faddr = addr->sin_addr;
rip_inshash(inp);
soisconnected(so);
INP_WUNLOCK(inp);
INP_INFO_WUNLOCK(&V_ripcbinfo);
return (0);
}
static int
rip_shutdown(struct socket *so)
{
struct inpcb *inp;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_shutdown: inp == NULL"));
INP_WLOCK(inp);
socantsendmore(so);
INP_WUNLOCK(inp);
return (0);
}
static int
rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct thread *td)
{
struct inpcb *inp;
u_long dst;
inp = sotoinpcb(so);
KASSERT(inp != NULL, ("rip_send: inp == NULL"));
/*
* Note: 'dst' reads below are unlocked.
*/
if (so->so_state & SS_ISCONNECTED) {
if (nam) {
m_freem(m);
return (EISCONN);
}
dst = inp->inp_faddr.s_addr; /* Unlocked read. */
} else {
if (nam == NULL) {
m_freem(m);
return (ENOTCONN);
}
dst = ((struct sockaddr_in *)nam)->sin_addr.s_addr;
}
return (rip_output(m, so, dst));
}
#endif /* INET */
static int
rip_pcblist(SYSCTL_HANDLER_ARGS)
{
int error, i, n;
struct inpcb *inp, **inp_list;
inp_gen_t gencnt;
struct xinpgen xig;
/*
* The process of preparing the TCB list is too time-consuming and
* resource-intensive to repeat twice on every request.
*/
if (req->oldptr == 0) {
n = V_ripcbinfo.ipi_count;
n += imax(n / 8, 10);
req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb);
return (0);
}
if (req->newptr != 0)
return (EPERM);
/*
* OK, now we're committed to doing something.
*/
INP_INFO_RLOCK(&V_ripcbinfo);
gencnt = V_ripcbinfo.ipi_gencnt;
n = V_ripcbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_ripcbinfo);
xig.xig_len = sizeof xig;
xig.xig_count = n;
xig.xig_gen = gencnt;
xig.xig_sogen = so_gencnt;
error = SYSCTL_OUT(req, &xig, sizeof xig);
if (error)
return (error);
inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
if (inp_list == 0)
return (ENOMEM);
INP_INFO_RLOCK(&V_ripcbinfo);
for (inp = LIST_FIRST(V_ripcbinfo.ipi_listhead), i = 0; inp && i < n;
inp = LIST_NEXT(inp, inp_list)) {
INP_WLOCK(inp);
if (inp->inp_gencnt <= gencnt &&
cr_canseeinpcb(req->td->td_ucred, inp) == 0) {
in_pcbref(inp);
inp_list[i++] = inp;
}
INP_WUNLOCK(inp);
}
INP_INFO_RUNLOCK(&V_ripcbinfo);
n = i;
error = 0;
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (inp->inp_gencnt <= gencnt) {
struct xinpcb xi;
bzero(&xi, sizeof(xi));
xi.xi_len = sizeof xi;
/* XXX should avoid extra copy */
bcopy(inp, &xi.xi_inp, sizeof *inp);
if (inp->inp_socket)
sotoxsocket(inp->inp_socket, &xi.xi_socket);
INP_RUNLOCK(inp);
error = SYSCTL_OUT(req, &xi, sizeof xi);
} else
INP_RUNLOCK(inp);
}
INP_INFO_WLOCK(&V_ripcbinfo);
for (i = 0; i < n; i++) {
inp = inp_list[i];
INP_RLOCK(inp);
if (!in_pcbrele_rlocked(inp))
INP_RUNLOCK(inp);
}
INP_INFO_WUNLOCK(&V_ripcbinfo);
if (!error) {
/*
* Give the user an updated idea of our state. If the
* generation differs from what we told her before, she knows
* that something happened while we were processing this
* request, and it might be necessary to retry.
*/
INP_INFO_RLOCK(&V_ripcbinfo);
xig.xig_gen = V_ripcbinfo.ipi_gencnt;
xig.xig_sogen = so_gencnt;
xig.xig_count = V_ripcbinfo.ipi_count;
INP_INFO_RUNLOCK(&V_ripcbinfo);
error = SYSCTL_OUT(req, &xig, sizeof xig);
}
free(inp_list, M_TEMP);
return (error);
}
SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist,
CTLTYPE_OPAQUE | CTLFLAG_RD, NULL, 0,
rip_pcblist, "S,xinpcb", "List of active raw IP sockets");
#ifdef INET
struct pr_usrreqs rip_usrreqs = {
.pru_abort = rip_abort,
.pru_attach = rip_attach,
.pru_bind = rip_bind,
.pru_connect = rip_connect,
.pru_control = in_control,
.pru_detach = rip_detach,
.pru_disconnect = rip_disconnect,
.pru_peeraddr = in_getpeeraddr,
.pru_send = rip_send,
.pru_shutdown = rip_shutdown,
.pru_sockaddr = in_getsockaddr,
.pru_sosetlabel = in_pcbsosetlabel,
.pru_close = rip_close,
};
#endif /* INET */