Konstantin Belousov 633034fe0e Add FPU_KERN_KTHR flag to fpu_kern_enter(9), which avoids saving FPU
context into memory for the kernel threads which called
fpu_kern_thread(9).  This allows the fpu_kern_enter() callers to not
check for is_fpu_kern_thread() to get the optimization.

Apply the flag to padlock(4) and aesni(4).  In aesni_cipher_process(),
do not leak FPU context state on error.

Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
2014-06-23 07:37:54 +00:00

1126 lines
31 KiB
C

/*-
* Copyright (c) 1990 William Jolitz.
* Copyright (c) 1991 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)npx.c 7.2 (Berkeley) 5/12/91
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_cpu.h"
#include "opt_isa.h"
#include "opt_npx.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <sys/rman.h>
#ifdef NPX_DEBUG
#include <sys/syslog.h>
#endif
#include <sys/signalvar.h>
#include <machine/asmacros.h>
#include <machine/cputypes.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/resource.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/ucontext.h>
#include <machine/intr_machdep.h>
#ifdef XEN
#include <xen/xen-os.h>
#include <xen/hypervisor.h>
#endif
#ifdef DEV_ISA
#include <isa/isavar.h>
#endif
#if !defined(CPU_DISABLE_SSE) && defined(I686_CPU)
#define CPU_ENABLE_SSE
#endif
/*
* 387 and 287 Numeric Coprocessor Extension (NPX) Driver.
*/
#if defined(__GNUCLIKE_ASM) && !defined(lint)
#define fldcw(cw) __asm __volatile("fldcw %0" : : "m" (cw))
#define fnclex() __asm __volatile("fnclex")
#define fninit() __asm __volatile("fninit")
#define fnsave(addr) __asm __volatile("fnsave %0" : "=m" (*(addr)))
#define fnstcw(addr) __asm __volatile("fnstcw %0" : "=m" (*(addr)))
#define fnstsw(addr) __asm __volatile("fnstsw %0" : "=am" (*(addr)))
#define fp_divide_by_0() __asm __volatile( \
"fldz; fld1; fdiv %st,%st(1); fnop")
#define frstor(addr) __asm __volatile("frstor %0" : : "m" (*(addr)))
#ifdef CPU_ENABLE_SSE
#define fxrstor(addr) __asm __volatile("fxrstor %0" : : "m" (*(addr)))
#define fxsave(addr) __asm __volatile("fxsave %0" : "=m" (*(addr)))
#define stmxcsr(addr) __asm __volatile("stmxcsr %0" : : "m" (*(addr)))
#endif
#else /* !(__GNUCLIKE_ASM && !lint) */
void fldcw(u_short cw);
void fnclex(void);
void fninit(void);
void fnsave(caddr_t addr);
void fnstcw(caddr_t addr);
void fnstsw(caddr_t addr);
void fp_divide_by_0(void);
void frstor(caddr_t addr);
#ifdef CPU_ENABLE_SSE
void fxsave(caddr_t addr);
void fxrstor(caddr_t addr);
void stmxcsr(u_int *csr);
#endif
#endif /* __GNUCLIKE_ASM && !lint */
#ifdef XEN
#define start_emulating() (HYPERVISOR_fpu_taskswitch(1))
#define stop_emulating() (HYPERVISOR_fpu_taskswitch(0))
#else
#define start_emulating() load_cr0(rcr0() | CR0_TS)
#define stop_emulating() clts()
#endif
#ifdef CPU_ENABLE_SSE
#define GET_FPU_CW(thread) \
(cpu_fxsr ? \
(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_cw : \
(thread)->td_pcb->pcb_save->sv_87.sv_env.en_cw)
#define GET_FPU_SW(thread) \
(cpu_fxsr ? \
(thread)->td_pcb->pcb_save->sv_xmm.sv_env.en_sw : \
(thread)->td_pcb->pcb_save->sv_87.sv_env.en_sw)
#define SET_FPU_CW(savefpu, value) do { \
if (cpu_fxsr) \
(savefpu)->sv_xmm.sv_env.en_cw = (value); \
else \
(savefpu)->sv_87.sv_env.en_cw = (value); \
} while (0)
#else /* CPU_ENABLE_SSE */
#define GET_FPU_CW(thread) \
(thread->td_pcb->pcb_save->sv_87.sv_env.en_cw)
#define GET_FPU_SW(thread) \
(thread->td_pcb->pcb_save->sv_87.sv_env.en_sw)
#define SET_FPU_CW(savefpu, value) \
(savefpu)->sv_87.sv_env.en_cw = (value)
#endif /* CPU_ENABLE_SSE */
typedef u_char bool_t;
#ifdef CPU_ENABLE_SSE
static void fpu_clean_state(void);
#endif
static void fpusave(union savefpu *);
static void fpurstor(union savefpu *);
static int npx_attach(device_t dev);
static void npx_identify(driver_t *driver, device_t parent);
static int npx_probe(device_t dev);
int hw_float;
SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
&hw_float, 0, "Floating point instructions executed in hardware");
static volatile u_int npx_traps_while_probing;
static union savefpu npx_initialstate;
alias_for_inthand_t probetrap;
__asm(" \n\
.text \n\
.p2align 2,0x90 \n\
.type " __XSTRING(CNAME(probetrap)) ",@function \n\
" __XSTRING(CNAME(probetrap)) ": \n\
ss \n\
incl " __XSTRING(CNAME(npx_traps_while_probing)) " \n\
fnclex \n\
iret \n\
");
/*
* Identify routine. Create a connection point on our parent for probing.
*/
static void
npx_identify(driver, parent)
driver_t *driver;
device_t parent;
{
device_t child;
child = BUS_ADD_CHILD(parent, 0, "npx", 0);
if (child == NULL)
panic("npx_identify");
}
/*
* Probe routine. Set flags to tell npxattach() what to do. Set up an
* interrupt handler if npx needs to use interrupts.
*/
static int
npx_probe(device_t dev)
{
struct gate_descriptor save_idt_npxtrap;
u_short control, status;
device_set_desc(dev, "math processor");
/*
* Modern CPUs all have an FPU that uses the INT16 interface
* and provide a simple way to verify that, so handle the
* common case right away.
*/
if (cpu_feature & CPUID_FPU) {
hw_float = 1;
device_quiet(dev);
return (0);
}
save_idt_npxtrap = idt[IDT_MF];
setidt(IDT_MF, probetrap, SDT_SYS386TGT, SEL_KPL,
GSEL(GCODE_SEL, SEL_KPL));
/*
* Don't trap while we're probing.
*/
stop_emulating();
/*
* Finish resetting the coprocessor, if any. If there is an error
* pending, then we may get a bogus IRQ13, but npx_intr() will handle
* it OK. Bogus halts have never been observed, but we enabled
* IRQ13 and cleared the BUSY# latch early to handle them anyway.
*/
fninit();
/*
* Don't use fwait here because it might hang.
* Don't use fnop here because it usually hangs if there is no FPU.
*/
DELAY(1000); /* wait for any IRQ13 */
#ifdef DIAGNOSTIC
if (npx_traps_while_probing != 0)
printf("fninit caused %u bogus npx trap(s)\n",
npx_traps_while_probing);
#endif
/*
* Check for a status of mostly zero.
*/
status = 0x5a5a;
fnstsw(&status);
if ((status & 0xb8ff) == 0) {
/*
* Good, now check for a proper control word.
*/
control = 0x5a5a;
fnstcw(&control);
if ((control & 0x1f3f) == 0x033f) {
/*
* We have an npx, now divide by 0 to see if exception
* 16 works.
*/
control &= ~(1 << 2); /* enable divide by 0 trap */
fldcw(control);
#ifdef FPU_ERROR_BROKEN
/*
* FPU error signal doesn't work on some CPU
* accelerator board.
*/
hw_float = 1;
return (0);
#endif
npx_traps_while_probing = 0;
fp_divide_by_0();
if (npx_traps_while_probing != 0) {
/*
* Good, exception 16 works.
*/
hw_float = 1;
goto cleanup;
}
device_printf(dev,
"FPU does not use exception 16 for error reporting\n");
goto cleanup;
}
}
/*
* Probe failed. Floating point simply won't work.
* Notify user and disable FPU/MMX/SSE instruction execution.
*/
device_printf(dev, "WARNING: no FPU!\n");
__asm __volatile("smsw %%ax; orb %0,%%al; lmsw %%ax" : :
"n" (CR0_EM | CR0_MP) : "ax");
cleanup:
idt[IDT_MF] = save_idt_npxtrap;
return (hw_float ? 0 : ENXIO);
}
/*
* Attach routine - announce which it is, and wire into system
*/
static int
npx_attach(device_t dev)
{
npxinit();
critical_enter();
stop_emulating();
fpusave(&npx_initialstate);
start_emulating();
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr) {
if (npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask)
cpu_mxcsr_mask =
npx_initialstate.sv_xmm.sv_env.en_mxcsr_mask;
else
cpu_mxcsr_mask = 0xFFBF;
bzero(npx_initialstate.sv_xmm.sv_fp,
sizeof(npx_initialstate.sv_xmm.sv_fp));
bzero(npx_initialstate.sv_xmm.sv_xmm,
sizeof(npx_initialstate.sv_xmm.sv_xmm));
/* XXX might need even more zeroing. */
} else
#endif
bzero(npx_initialstate.sv_87.sv_ac,
sizeof(npx_initialstate.sv_87.sv_ac));
critical_exit();
return (0);
}
/*
* Initialize floating point unit.
*/
void
npxinit(void)
{
static union savefpu dummy;
register_t saveintr;
u_short control;
if (!hw_float)
return;
/*
* fninit has the same h/w bugs as fnsave. Use the detoxified
* fnsave to throw away any junk in the fpu. npxsave() initializes
* the fpu and sets fpcurthread = NULL as important side effects.
*
* It is too early for critical_enter() to work on AP.
*/
saveintr = intr_disable();
npxsave(&dummy);
stop_emulating();
#ifdef CPU_ENABLE_SSE
/* XXX npxsave() doesn't actually initialize the fpu in the SSE case. */
if (cpu_fxsr)
fninit();
#endif
control = __INITIAL_NPXCW__;
fldcw(control);
start_emulating();
intr_restore(saveintr);
}
/*
* Free coprocessor (if we have it).
*/
void
npxexit(td)
struct thread *td;
{
critical_enter();
if (curthread == PCPU_GET(fpcurthread))
npxsave(curpcb->pcb_save);
critical_exit();
#ifdef NPX_DEBUG
if (hw_float) {
u_int masked_exceptions;
masked_exceptions = GET_FPU_CW(td) & GET_FPU_SW(td) & 0x7f;
/*
* Log exceptions that would have trapped with the old
* control word (overflow, divide by 0, and invalid operand).
*/
if (masked_exceptions & 0x0d)
log(LOG_ERR,
"pid %d (%s) exited with masked floating point exceptions 0x%02x\n",
td->td_proc->p_pid, td->td_proc->p_comm,
masked_exceptions);
}
#endif
}
int
npxformat()
{
if (!hw_float)
return (_MC_FPFMT_NODEV);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
return (_MC_FPFMT_XMM);
#endif
return (_MC_FPFMT_387);
}
/*
* The following mechanism is used to ensure that the FPE_... value
* that is passed as a trapcode to the signal handler of the user
* process does not have more than one bit set.
*
* Multiple bits may be set if the user process modifies the control
* word while a status word bit is already set. While this is a sign
* of bad coding, we have no choise than to narrow them down to one
* bit, since we must not send a trapcode that is not exactly one of
* the FPE_ macros.
*
* The mechanism has a static table with 127 entries. Each combination
* of the 7 FPU status word exception bits directly translates to a
* position in this table, where a single FPE_... value is stored.
* This FPE_... value stored there is considered the "most important"
* of the exception bits and will be sent as the signal code. The
* precedence of the bits is based upon Intel Document "Numerical
* Applications", Chapter "Special Computational Situations".
*
* The macro to choose one of these values does these steps: 1) Throw
* away status word bits that cannot be masked. 2) Throw away the bits
* currently masked in the control word, assuming the user isn't
* interested in them anymore. 3) Reinsert status word bit 7 (stack
* fault) if it is set, which cannot be masked but must be presered.
* 4) Use the remaining bits to point into the trapcode table.
*
* The 6 maskable bits in order of their preference, as stated in the
* above referenced Intel manual:
* 1 Invalid operation (FP_X_INV)
* 1a Stack underflow
* 1b Stack overflow
* 1c Operand of unsupported format
* 1d SNaN operand.
* 2 QNaN operand (not an exception, irrelavant here)
* 3 Any other invalid-operation not mentioned above or zero divide
* (FP_X_INV, FP_X_DZ)
* 4 Denormal operand (FP_X_DNML)
* 5 Numeric over/underflow (FP_X_OFL, FP_X_UFL)
* 6 Inexact result (FP_X_IMP)
*/
static char fpetable[128] = {
0,
FPE_FLTINV, /* 1 - INV */
FPE_FLTUND, /* 2 - DNML */
FPE_FLTINV, /* 3 - INV | DNML */
FPE_FLTDIV, /* 4 - DZ */
FPE_FLTINV, /* 5 - INV | DZ */
FPE_FLTDIV, /* 6 - DNML | DZ */
FPE_FLTINV, /* 7 - INV | DNML | DZ */
FPE_FLTOVF, /* 8 - OFL */
FPE_FLTINV, /* 9 - INV | OFL */
FPE_FLTUND, /* A - DNML | OFL */
FPE_FLTINV, /* B - INV | DNML | OFL */
FPE_FLTDIV, /* C - DZ | OFL */
FPE_FLTINV, /* D - INV | DZ | OFL */
FPE_FLTDIV, /* E - DNML | DZ | OFL */
FPE_FLTINV, /* F - INV | DNML | DZ | OFL */
FPE_FLTUND, /* 10 - UFL */
FPE_FLTINV, /* 11 - INV | UFL */
FPE_FLTUND, /* 12 - DNML | UFL */
FPE_FLTINV, /* 13 - INV | DNML | UFL */
FPE_FLTDIV, /* 14 - DZ | UFL */
FPE_FLTINV, /* 15 - INV | DZ | UFL */
FPE_FLTDIV, /* 16 - DNML | DZ | UFL */
FPE_FLTINV, /* 17 - INV | DNML | DZ | UFL */
FPE_FLTOVF, /* 18 - OFL | UFL */
FPE_FLTINV, /* 19 - INV | OFL | UFL */
FPE_FLTUND, /* 1A - DNML | OFL | UFL */
FPE_FLTINV, /* 1B - INV | DNML | OFL | UFL */
FPE_FLTDIV, /* 1C - DZ | OFL | UFL */
FPE_FLTINV, /* 1D - INV | DZ | OFL | UFL */
FPE_FLTDIV, /* 1E - DNML | DZ | OFL | UFL */
FPE_FLTINV, /* 1F - INV | DNML | DZ | OFL | UFL */
FPE_FLTRES, /* 20 - IMP */
FPE_FLTINV, /* 21 - INV | IMP */
FPE_FLTUND, /* 22 - DNML | IMP */
FPE_FLTINV, /* 23 - INV | DNML | IMP */
FPE_FLTDIV, /* 24 - DZ | IMP */
FPE_FLTINV, /* 25 - INV | DZ | IMP */
FPE_FLTDIV, /* 26 - DNML | DZ | IMP */
FPE_FLTINV, /* 27 - INV | DNML | DZ | IMP */
FPE_FLTOVF, /* 28 - OFL | IMP */
FPE_FLTINV, /* 29 - INV | OFL | IMP */
FPE_FLTUND, /* 2A - DNML | OFL | IMP */
FPE_FLTINV, /* 2B - INV | DNML | OFL | IMP */
FPE_FLTDIV, /* 2C - DZ | OFL | IMP */
FPE_FLTINV, /* 2D - INV | DZ | OFL | IMP */
FPE_FLTDIV, /* 2E - DNML | DZ | OFL | IMP */
FPE_FLTINV, /* 2F - INV | DNML | DZ | OFL | IMP */
FPE_FLTUND, /* 30 - UFL | IMP */
FPE_FLTINV, /* 31 - INV | UFL | IMP */
FPE_FLTUND, /* 32 - DNML | UFL | IMP */
FPE_FLTINV, /* 33 - INV | DNML | UFL | IMP */
FPE_FLTDIV, /* 34 - DZ | UFL | IMP */
FPE_FLTINV, /* 35 - INV | DZ | UFL | IMP */
FPE_FLTDIV, /* 36 - DNML | DZ | UFL | IMP */
FPE_FLTINV, /* 37 - INV | DNML | DZ | UFL | IMP */
FPE_FLTOVF, /* 38 - OFL | UFL | IMP */
FPE_FLTINV, /* 39 - INV | OFL | UFL | IMP */
FPE_FLTUND, /* 3A - DNML | OFL | UFL | IMP */
FPE_FLTINV, /* 3B - INV | DNML | OFL | UFL | IMP */
FPE_FLTDIV, /* 3C - DZ | OFL | UFL | IMP */
FPE_FLTINV, /* 3D - INV | DZ | OFL | UFL | IMP */
FPE_FLTDIV, /* 3E - DNML | DZ | OFL | UFL | IMP */
FPE_FLTINV, /* 3F - INV | DNML | DZ | OFL | UFL | IMP */
FPE_FLTSUB, /* 40 - STK */
FPE_FLTSUB, /* 41 - INV | STK */
FPE_FLTUND, /* 42 - DNML | STK */
FPE_FLTSUB, /* 43 - INV | DNML | STK */
FPE_FLTDIV, /* 44 - DZ | STK */
FPE_FLTSUB, /* 45 - INV | DZ | STK */
FPE_FLTDIV, /* 46 - DNML | DZ | STK */
FPE_FLTSUB, /* 47 - INV | DNML | DZ | STK */
FPE_FLTOVF, /* 48 - OFL | STK */
FPE_FLTSUB, /* 49 - INV | OFL | STK */
FPE_FLTUND, /* 4A - DNML | OFL | STK */
FPE_FLTSUB, /* 4B - INV | DNML | OFL | STK */
FPE_FLTDIV, /* 4C - DZ | OFL | STK */
FPE_FLTSUB, /* 4D - INV | DZ | OFL | STK */
FPE_FLTDIV, /* 4E - DNML | DZ | OFL | STK */
FPE_FLTSUB, /* 4F - INV | DNML | DZ | OFL | STK */
FPE_FLTUND, /* 50 - UFL | STK */
FPE_FLTSUB, /* 51 - INV | UFL | STK */
FPE_FLTUND, /* 52 - DNML | UFL | STK */
FPE_FLTSUB, /* 53 - INV | DNML | UFL | STK */
FPE_FLTDIV, /* 54 - DZ | UFL | STK */
FPE_FLTSUB, /* 55 - INV | DZ | UFL | STK */
FPE_FLTDIV, /* 56 - DNML | DZ | UFL | STK */
FPE_FLTSUB, /* 57 - INV | DNML | DZ | UFL | STK */
FPE_FLTOVF, /* 58 - OFL | UFL | STK */
FPE_FLTSUB, /* 59 - INV | OFL | UFL | STK */
FPE_FLTUND, /* 5A - DNML | OFL | UFL | STK */
FPE_FLTSUB, /* 5B - INV | DNML | OFL | UFL | STK */
FPE_FLTDIV, /* 5C - DZ | OFL | UFL | STK */
FPE_FLTSUB, /* 5D - INV | DZ | OFL | UFL | STK */
FPE_FLTDIV, /* 5E - DNML | DZ | OFL | UFL | STK */
FPE_FLTSUB, /* 5F - INV | DNML | DZ | OFL | UFL | STK */
FPE_FLTRES, /* 60 - IMP | STK */
FPE_FLTSUB, /* 61 - INV | IMP | STK */
FPE_FLTUND, /* 62 - DNML | IMP | STK */
FPE_FLTSUB, /* 63 - INV | DNML | IMP | STK */
FPE_FLTDIV, /* 64 - DZ | IMP | STK */
FPE_FLTSUB, /* 65 - INV | DZ | IMP | STK */
FPE_FLTDIV, /* 66 - DNML | DZ | IMP | STK */
FPE_FLTSUB, /* 67 - INV | DNML | DZ | IMP | STK */
FPE_FLTOVF, /* 68 - OFL | IMP | STK */
FPE_FLTSUB, /* 69 - INV | OFL | IMP | STK */
FPE_FLTUND, /* 6A - DNML | OFL | IMP | STK */
FPE_FLTSUB, /* 6B - INV | DNML | OFL | IMP | STK */
FPE_FLTDIV, /* 6C - DZ | OFL | IMP | STK */
FPE_FLTSUB, /* 6D - INV | DZ | OFL | IMP | STK */
FPE_FLTDIV, /* 6E - DNML | DZ | OFL | IMP | STK */
FPE_FLTSUB, /* 6F - INV | DNML | DZ | OFL | IMP | STK */
FPE_FLTUND, /* 70 - UFL | IMP | STK */
FPE_FLTSUB, /* 71 - INV | UFL | IMP | STK */
FPE_FLTUND, /* 72 - DNML | UFL | IMP | STK */
FPE_FLTSUB, /* 73 - INV | DNML | UFL | IMP | STK */
FPE_FLTDIV, /* 74 - DZ | UFL | IMP | STK */
FPE_FLTSUB, /* 75 - INV | DZ | UFL | IMP | STK */
FPE_FLTDIV, /* 76 - DNML | DZ | UFL | IMP | STK */
FPE_FLTSUB, /* 77 - INV | DNML | DZ | UFL | IMP | STK */
FPE_FLTOVF, /* 78 - OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 79 - INV | OFL | UFL | IMP | STK */
FPE_FLTUND, /* 7A - DNML | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7B - INV | DNML | OFL | UFL | IMP | STK */
FPE_FLTDIV, /* 7C - DZ | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7D - INV | DZ | OFL | UFL | IMP | STK */
FPE_FLTDIV, /* 7E - DNML | DZ | OFL | UFL | IMP | STK */
FPE_FLTSUB, /* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
};
/*
* Read the FP status and control words, then generate si_code value
* for SIGFPE. The error code chosen will be one of the
* FPE_... macros. It will be sent as the second argument to old
* BSD-style signal handlers and as "siginfo_t->si_code" (second
* argument) to SA_SIGINFO signal handlers.
*
* Some time ago, we cleared the x87 exceptions with FNCLEX there.
* Clearing exceptions was necessary mainly to avoid IRQ13 bugs. The
* usermode code which understands the FPU hardware enough to enable
* the exceptions, can also handle clearing the exception state in the
* handler. The only consequence of not clearing the exception is the
* rethrow of the SIGFPE on return from the signal handler and
* reexecution of the corresponding instruction.
*
* For XMM traps, the exceptions were never cleared.
*/
int
npxtrap_x87(void)
{
u_short control, status;
if (!hw_float) {
printf(
"npxtrap_x87: fpcurthread = %p, curthread = %p, hw_float = %d\n",
PCPU_GET(fpcurthread), curthread, hw_float);
panic("npxtrap from nowhere");
}
critical_enter();
/*
* Interrupt handling (for another interrupt) may have pushed the
* state to memory. Fetch the relevant parts of the state from
* wherever they are.
*/
if (PCPU_GET(fpcurthread) != curthread) {
control = GET_FPU_CW(curthread);
status = GET_FPU_SW(curthread);
} else {
fnstcw(&control);
fnstsw(&status);
}
critical_exit();
return (fpetable[status & ((~control & 0x3f) | 0x40)]);
}
#ifdef CPU_ENABLE_SSE
int
npxtrap_sse(void)
{
u_int mxcsr;
if (!hw_float) {
printf(
"npxtrap_sse: fpcurthread = %p, curthread = %p, hw_float = %d\n",
PCPU_GET(fpcurthread), curthread, hw_float);
panic("npxtrap from nowhere");
}
critical_enter();
if (PCPU_GET(fpcurthread) != curthread)
mxcsr = curthread->td_pcb->pcb_save->sv_xmm.sv_env.en_mxcsr;
else
stmxcsr(&mxcsr);
critical_exit();
return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
}
#endif
/*
* Implement device not available (DNA) exception
*
* It would be better to switch FP context here (if curthread != fpcurthread)
* and not necessarily for every context switch, but it is too hard to
* access foreign pcb's.
*/
static int err_count = 0;
int
npxdna(void)
{
if (!hw_float)
return (0);
critical_enter();
if (PCPU_GET(fpcurthread) == curthread) {
printf("npxdna: fpcurthread == curthread %d times\n",
++err_count);
stop_emulating();
critical_exit();
return (1);
}
if (PCPU_GET(fpcurthread) != NULL) {
printf("npxdna: fpcurthread = %p (%d), curthread = %p (%d)\n",
PCPU_GET(fpcurthread),
PCPU_GET(fpcurthread)->td_proc->p_pid,
curthread, curthread->td_proc->p_pid);
panic("npxdna");
}
stop_emulating();
/*
* Record new context early in case frstor causes an IRQ13.
*/
PCPU_SET(fpcurthread, curthread);
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
fpu_clean_state();
#endif
if ((curpcb->pcb_flags & PCB_NPXINITDONE) == 0) {
/*
* This is the first time this thread has used the FPU or
* the PCB doesn't contain a clean FPU state. Explicitly
* load an initial state.
*/
fpurstor(&npx_initialstate);
if (curpcb->pcb_initial_npxcw != __INITIAL_NPXCW__)
fldcw(curpcb->pcb_initial_npxcw);
curpcb->pcb_flags |= PCB_NPXINITDONE;
if (PCB_USER_FPU(curpcb))
curpcb->pcb_flags |= PCB_NPXUSERINITDONE;
} else {
/*
* The following fpurstor() may cause an IRQ13 when the
* state being restored has a pending error. The error will
* appear to have been triggered by the current (npx) user
* instruction even when that instruction is a no-wait
* instruction that should not trigger an error (e.g.,
* fnclex). On at least one 486 system all of the no-wait
* instructions are broken the same as frstor, so our
* treatment does not amplify the breakage. On at least
* one 386/Cyrix 387 system, fnclex works correctly while
* frstor and fnsave are broken, so our treatment breaks
* fnclex if it is the first FPU instruction after a context
* switch.
*/
fpurstor(curpcb->pcb_save);
}
critical_exit();
return (1);
}
/*
* Wrapper for fnsave instruction, partly to handle hardware bugs. When npx
* exceptions are reported via IRQ13, spurious IRQ13's may be triggered by
* no-wait npx instructions. See the Intel application note AP-578 for
* details. This doesn't cause any additional complications here. IRQ13's
* are inherently asynchronous unless the CPU is frozen to deliver them --
* one that started in userland may be delivered many instructions later,
* after the process has entered the kernel. It may even be delivered after
* the fnsave here completes. A spurious IRQ13 for the fnsave is handled in
* the same way as a very-late-arriving non-spurious IRQ13 from user mode:
* it is normally ignored at first because we set fpcurthread to NULL; it is
* normally retriggered in npxdna() after return to user mode.
*
* npxsave() must be called with interrupts disabled, so that it clears
* fpcurthread atomically with saving the state. We require callers to do the
* disabling, since most callers need to disable interrupts anyway to call
* npxsave() atomically with checking fpcurthread.
*
* A previous version of npxsave() went to great lengths to excecute fnsave
* with interrupts enabled in case executing it froze the CPU. This case
* can't happen, at least for Intel CPU/NPX's. Spurious IRQ13's don't imply
* spurious freezes.
*/
void
npxsave(addr)
union savefpu *addr;
{
stop_emulating();
fpusave(addr);
start_emulating();
PCPU_SET(fpcurthread, NULL);
}
void
npxdrop()
{
struct thread *td;
/*
* Discard pending exceptions in the !cpu_fxsr case so that unmasked
* ones don't cause a panic on the next frstor.
*/
#ifdef CPU_ENABLE_SSE
if (!cpu_fxsr)
#endif
fnclex();
td = PCPU_GET(fpcurthread);
KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
CRITICAL_ASSERT(td);
PCPU_SET(fpcurthread, NULL);
td->td_pcb->pcb_flags &= ~PCB_NPXINITDONE;
start_emulating();
}
/*
* Get the user state of the FPU into pcb->pcb_user_save without
* dropping ownership (if possible). It returns the FPU ownership
* status.
*/
int
npxgetregs(struct thread *td)
{
struct pcb *pcb;
if (!hw_float)
return (_MC_FPOWNED_NONE);
pcb = td->td_pcb;
if ((pcb->pcb_flags & PCB_NPXINITDONE) == 0) {
bcopy(&npx_initialstate, &pcb->pcb_user_save,
sizeof(npx_initialstate));
SET_FPU_CW(&pcb->pcb_user_save, pcb->pcb_initial_npxcw);
npxuserinited(td);
return (_MC_FPOWNED_PCB);
}
critical_enter();
if (td == PCPU_GET(fpcurthread)) {
fpusave(&pcb->pcb_user_save);
#ifdef CPU_ENABLE_SSE
if (!cpu_fxsr)
#endif
/*
* fnsave initializes the FPU and destroys whatever
* context it contains. Make sure the FPU owner
* starts with a clean state next time.
*/
npxdrop();
critical_exit();
return (_MC_FPOWNED_FPU);
} else {
critical_exit();
return (_MC_FPOWNED_PCB);
}
}
void
npxuserinited(struct thread *td)
{
struct pcb *pcb;
pcb = td->td_pcb;
if (PCB_USER_FPU(pcb))
pcb->pcb_flags |= PCB_NPXINITDONE;
pcb->pcb_flags |= PCB_NPXUSERINITDONE;
}
void
npxsetregs(struct thread *td, union savefpu *addr)
{
struct pcb *pcb;
if (!hw_float)
return;
pcb = td->td_pcb;
critical_enter();
if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
#ifdef CPU_ENABLE_SSE
if (!cpu_fxsr)
#endif
fnclex(); /* As in npxdrop(). */
if (((uintptr_t)addr & 0xf) != 0) {
bcopy(addr, &pcb->pcb_user_save, sizeof(*addr));
fpurstor(&pcb->pcb_user_save);
} else
fpurstor(addr);
critical_exit();
pcb->pcb_flags |= PCB_NPXUSERINITDONE | PCB_NPXINITDONE;
} else {
critical_exit();
bcopy(addr, &pcb->pcb_user_save, sizeof(*addr));
npxuserinited(td);
}
}
static void
fpusave(addr)
union savefpu *addr;
{
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
fxsave(addr);
else
#endif
fnsave(addr);
}
#ifdef CPU_ENABLE_SSE
/*
* On AuthenticAMD processors, the fxrstor instruction does not restore
* the x87's stored last instruction pointer, last data pointer, and last
* opcode values, except in the rare case in which the exception summary
* (ES) bit in the x87 status word is set to 1.
*
* In order to avoid leaking this information across processes, we clean
* these values by performing a dummy load before executing fxrstor().
*/
static void
fpu_clean_state(void)
{
static float dummy_variable = 0.0;
u_short status;
/*
* Clear the ES bit in the x87 status word if it is currently
* set, in order to avoid causing a fault in the upcoming load.
*/
fnstsw(&status);
if (status & 0x80)
fnclex();
/*
* Load the dummy variable into the x87 stack. This mangles
* the x87 stack, but we don't care since we're about to call
* fxrstor() anyway.
*/
__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
}
#endif /* CPU_ENABLE_SSE */
static void
fpurstor(addr)
union savefpu *addr;
{
#ifdef CPU_ENABLE_SSE
if (cpu_fxsr)
fxrstor(addr);
else
#endif
frstor(addr);
}
static device_method_t npx_methods[] = {
/* Device interface */
DEVMETHOD(device_identify, npx_identify),
DEVMETHOD(device_probe, npx_probe),
DEVMETHOD(device_attach, npx_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
{ 0, 0 }
};
static driver_t npx_driver = {
"npx",
npx_methods,
1, /* no softc */
};
static devclass_t npx_devclass;
/*
* We prefer to attach to the root nexus so that the usual case (exception 16)
* doesn't describe the processor as being `on isa'.
*/
DRIVER_MODULE(npx, nexus, npx_driver, npx_devclass, 0, 0);
#ifdef DEV_ISA
/*
* This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
*/
static struct isa_pnp_id npxisa_ids[] = {
{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
{ 0 }
};
static int
npxisa_probe(device_t dev)
{
int result;
if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, npxisa_ids)) <= 0) {
device_quiet(dev);
}
return(result);
}
static int
npxisa_attach(device_t dev)
{
return (0);
}
static device_method_t npxisa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, npxisa_probe),
DEVMETHOD(device_attach, npxisa_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, bus_generic_resume),
{ 0, 0 }
};
static driver_t npxisa_driver = {
"npxisa",
npxisa_methods,
1, /* no softc */
};
static devclass_t npxisa_devclass;
DRIVER_MODULE(npxisa, isa, npxisa_driver, npxisa_devclass, 0, 0);
#ifndef PC98
DRIVER_MODULE(npxisa, acpi, npxisa_driver, npxisa_devclass, 0, 0);
#endif
#endif /* DEV_ISA */
static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
"Kernel contexts for FPU state");
#define XSAVE_AREA_ALIGN 64
#define FPU_KERN_CTX_NPXINITDONE 0x01
#define FPU_KERN_CTX_DUMMY 0x02
struct fpu_kern_ctx {
union savefpu *prev;
uint32_t flags;
char hwstate1[];
};
struct fpu_kern_ctx *
fpu_kern_alloc_ctx(u_int flags)
{
struct fpu_kern_ctx *res;
size_t sz;
sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
sizeof(union savefpu);
res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
M_NOWAIT : M_WAITOK) | M_ZERO);
return (res);
}
void
fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
{
/* XXXKIB clear the memory ? */
free(ctx, M_FPUKERN_CTX);
}
static union savefpu *
fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
{
vm_offset_t p;
p = (vm_offset_t)&ctx->hwstate1;
p = roundup2(p, XSAVE_AREA_ALIGN);
return ((union savefpu *)p);
}
int
fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
{
struct pcb *pcb;
if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
ctx->flags = FPU_KERN_CTX_DUMMY;
return (0);
}
pcb = td->td_pcb;
KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save == &pcb->pcb_user_save,
("mangled pcb_save"));
ctx->flags = 0;
if ((pcb->pcb_flags & PCB_NPXINITDONE) != 0)
ctx->flags |= FPU_KERN_CTX_NPXINITDONE;
npxexit(td);
ctx->prev = pcb->pcb_save;
pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
pcb->pcb_flags |= PCB_KERNNPX;
pcb->pcb_flags &= ~PCB_NPXINITDONE;
return (0);
}
int
fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
{
struct pcb *pcb;
if (is_fpu_kern_thread(0) && (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
return (0);
pcb = td->td_pcb;
critical_enter();
if (curthread == PCPU_GET(fpcurthread))
npxdrop();
critical_exit();
pcb->pcb_save = ctx->prev;
if (pcb->pcb_save == &pcb->pcb_user_save) {
if ((pcb->pcb_flags & PCB_NPXUSERINITDONE) != 0)
pcb->pcb_flags |= PCB_NPXINITDONE;
else
pcb->pcb_flags &= ~PCB_NPXINITDONE;
pcb->pcb_flags &= ~PCB_KERNNPX;
} else {
if ((ctx->flags & FPU_KERN_CTX_NPXINITDONE) != 0)
pcb->pcb_flags |= PCB_NPXINITDONE;
else
pcb->pcb_flags &= ~PCB_NPXINITDONE;
KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
}
return (0);
}
int
fpu_kern_thread(u_int flags)
{
struct pcb *pcb;
pcb = curpcb;
KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
("Only kthread may use fpu_kern_thread"));
KASSERT(curpcb->pcb_save == &curpcb->pcb_user_save,
("mangled pcb_save"));
KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
curpcb->pcb_flags |= PCB_KERNNPX;
return (0);
}
int
is_fpu_kern_thread(u_int flags)
{
if ((curthread->td_pflags & TDP_KTHREAD) == 0)
return (0);
return ((curpcb->pcb_flags & PCB_KERNNPX) != 0);
}