Navdeep Parhar 671bf2b8b2 cxgbe(4): Changes to the CPL-handler registration mechanism and code
related to "shared" CPLs.

a) Combine t4_set_tcb_field and t4_set_tcb_field_rpl into a single
function.  Allow callers to direct the response to any iq.  Tidy up
set_ulp_mode_iscsi while there to use names from t4_tcb.h instead of
magic constants.

b) Remove all CPL handler tables from struct adapter.  This reduces its
size by around 2KB.  All handlers are now registered at MOD_LOAD instead
of attach or some kind of initialization/activation.  The registration
functions do not need an adapter parameter any more.

c) Add per-iq handlers to deal with CPLs whose destination cannot be
determined solely from the opcode.  There are 2 such CPLs in use right
now: SET_TCB_RPL and L2T_WRITE_RPL.  The base driver continues to send
filter and L2T_WRITEs over the mgmtq and solicits the reply on fwq.
t4_tom (including the DDP code) now uses the port's ctrlq to send
L2T_WRITEs and SET_TCB_FIELDs and solicits the reply on an ofld_rxq.
fwq and ofld_rxq have different handlers that know what kind of tid to
expect in the reply.  Update t4_write_l2e and callers to to support any
wrq/iq combination.

Approved by:	re@ (kib@)
Sponsored by:	Chelsio Communications
2016-07-05 01:29:24 +00:00

337 lines
8.7 KiB
C

/*-
* Copyright (c) 2012 Chelsio Communications, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/eventhandler.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/rwlock.h>
#include <sys/socket.h>
#include <sys/sbuf.h>
#include <netinet/in.h>
#include "common/common.h"
#include "common/t4_msg.h"
#include "t4_l2t.h"
/*
* Module locking notes: There is a RW lock protecting the L2 table as a
* whole plus a spinlock per L2T entry. Entry lookups and allocations happen
* under the protection of the table lock, individual entry changes happen
* while holding that entry's spinlock. The table lock nests outside the
* entry locks. Allocations of new entries take the table lock as writers so
* no other lookups can happen while allocating new entries. Entry updates
* take the table lock as readers so multiple entries can be updated in
* parallel. An L2T entry can be dropped by decrementing its reference count
* and therefore can happen in parallel with entry allocation but no entry
* can change state or increment its ref count during allocation as both of
* these perform lookups.
*
* Note: We do not take references to ifnets in this module because both
* the TOE and the sockets already hold references to the interfaces and the
* lifetime of an L2T entry is fully contained in the lifetime of the TOE.
*/
/*
* Allocate a free L2T entry. Must be called with l2t_data.lock held.
*/
struct l2t_entry *
t4_alloc_l2e(struct l2t_data *d)
{
struct l2t_entry *end, *e, **p;
rw_assert(&d->lock, RA_WLOCKED);
if (!atomic_load_acq_int(&d->nfree))
return (NULL);
/* there's definitely a free entry */
for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e)
if (atomic_load_acq_int(&e->refcnt) == 0)
goto found;
for (e = d->l2tab; atomic_load_acq_int(&e->refcnt); ++e)
continue;
found:
d->rover = e + 1;
atomic_subtract_int(&d->nfree, 1);
/*
* The entry we found may be an inactive entry that is
* presently in the hash table. We need to remove it.
*/
if (e->state < L2T_STATE_SWITCHING) {
for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) {
if (*p == e) {
*p = e->next;
e->next = NULL;
break;
}
}
}
e->state = L2T_STATE_UNUSED;
return (e);
}
/*
* Write an L2T entry. Must be called with the entry locked.
* The write may be synchronous or asynchronous.
*/
int
t4_write_l2e(struct l2t_entry *e, int sync)
{
struct sge_wrq *wrq;
struct adapter *sc;
struct wrq_cookie cookie;
struct cpl_l2t_write_req *req;
int idx;
mtx_assert(&e->lock, MA_OWNED);
MPASS(e->wrq != NULL);
wrq = e->wrq;
sc = wrq->adapter;
req = start_wrq_wr(wrq, howmany(sizeof(*req), 16), &cookie);
if (req == NULL)
return (ENOMEM);
idx = e->idx + sc->vres.l2t.start;
INIT_TP_WR(req, 0);
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, idx |
V_SYNC_WR(sync) | V_TID_QID(e->iqid)));
req->params = htons(V_L2T_W_PORT(e->lport) | V_L2T_W_NOREPLY(!sync));
req->l2t_idx = htons(idx);
req->vlan = htons(e->vlan);
memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
commit_wrq_wr(wrq, req, &cookie);
if (sync && e->state != L2T_STATE_SWITCHING)
e->state = L2T_STATE_SYNC_WRITE;
return (0);
}
/*
* Allocate an L2T entry for use by a switching rule. Such need to be
* explicitly freed and while busy they are not on any hash chain, so normal
* address resolution updates do not see them.
*/
struct l2t_entry *
t4_l2t_alloc_switching(struct l2t_data *d)
{
struct l2t_entry *e;
rw_wlock(&d->lock);
e = t4_alloc_l2e(d);
if (e) {
mtx_lock(&e->lock); /* avoid race with t4_l2t_free */
e->state = L2T_STATE_SWITCHING;
atomic_store_rel_int(&e->refcnt, 1);
mtx_unlock(&e->lock);
}
rw_wunlock(&d->lock);
return e;
}
/*
* Sets/updates the contents of a switching L2T entry that has been allocated
* with an earlier call to @t4_l2t_alloc_switching.
*/
int
t4_l2t_set_switching(struct adapter *sc, struct l2t_entry *e, uint16_t vlan,
uint8_t port, uint8_t *eth_addr)
{
int rc;
e->vlan = vlan;
e->lport = port;
e->wrq = &sc->sge.mgmtq;
e->iqid = sc->sge.fwq.abs_id;
memcpy(e->dmac, eth_addr, ETHER_ADDR_LEN);
mtx_lock(&e->lock);
rc = t4_write_l2e(e, 0);
mtx_unlock(&e->lock);
return (rc);
}
int
t4_init_l2t(struct adapter *sc, int flags)
{
int i, l2t_size;
struct l2t_data *d;
l2t_size = sc->vres.l2t.size;
if (l2t_size < 2) /* At least 1 bucket for IP and 1 for IPv6 */
return (EINVAL);
d = malloc(sizeof(*d) + l2t_size * sizeof (struct l2t_entry), M_CXGBE,
M_ZERO | flags);
if (!d)
return (ENOMEM);
d->l2t_size = l2t_size;
d->rover = d->l2tab;
atomic_store_rel_int(&d->nfree, l2t_size);
rw_init(&d->lock, "L2T");
for (i = 0; i < l2t_size; i++) {
struct l2t_entry *e = &d->l2tab[i];
e->idx = i;
e->state = L2T_STATE_UNUSED;
mtx_init(&e->lock, "L2T_E", NULL, MTX_DEF);
STAILQ_INIT(&e->wr_list);
atomic_store_rel_int(&e->refcnt, 0);
}
sc->l2t = d;
return (0);
}
int
t4_free_l2t(struct l2t_data *d)
{
int i;
for (i = 0; i < d->l2t_size; i++)
mtx_destroy(&d->l2tab[i].lock);
rw_destroy(&d->lock);
free(d, M_CXGBE);
return (0);
}
int
do_l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m)
{
const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
unsigned int tid = GET_TID(rpl);
unsigned int idx = tid % L2T_SIZE;
if (__predict_false(rpl->status != CPL_ERR_NONE)) {
log(LOG_ERR,
"Unexpected L2T_WRITE_RPL (%u) for entry at hw_idx %u\n",
rpl->status, idx);
return (EINVAL);
}
return (0);
}
#ifdef SBUF_DRAIN
static inline unsigned int
vlan_prio(const struct l2t_entry *e)
{
return e->vlan >> 13;
}
static char
l2e_state(const struct l2t_entry *e)
{
switch (e->state) {
case L2T_STATE_VALID: return 'V'; /* valid, fast-path entry */
case L2T_STATE_STALE: return 'S'; /* needs revalidation, but usable */
case L2T_STATE_SYNC_WRITE: return 'W';
case L2T_STATE_RESOLVING: return STAILQ_EMPTY(&e->wr_list) ? 'R' : 'A';
case L2T_STATE_SWITCHING: return 'X';
default: return 'U';
}
}
int
sysctl_l2t(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct l2t_data *l2t = sc->l2t;
struct l2t_entry *e;
struct sbuf *sb;
int rc, i, header = 0;
char ip[INET6_ADDRSTRLEN];
if (l2t == NULL)
return (ENXIO);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
e = &l2t->l2tab[0];
for (i = 0; i < l2t->l2t_size; i++, e++) {
mtx_lock(&e->lock);
if (e->state == L2T_STATE_UNUSED)
goto skip;
if (header == 0) {
sbuf_printf(sb, " Idx IP address "
"Ethernet address VLAN/P LP State Users Port");
header = 1;
}
if (e->state == L2T_STATE_SWITCHING)
ip[0] = 0;
else {
inet_ntop(e->ipv6 ? AF_INET6 : AF_INET, &e->addr[0],
&ip[0], sizeof(ip));
}
/*
* XXX: IPv6 addresses may not align properly in the output.
*/
sbuf_printf(sb, "\n%4u %-15s %02x:%02x:%02x:%02x:%02x:%02x %4d"
" %u %2u %c %5u %s",
e->idx, ip, e->dmac[0], e->dmac[1], e->dmac[2],
e->dmac[3], e->dmac[4], e->dmac[5],
e->vlan & 0xfff, vlan_prio(e), e->lport,
l2e_state(e), atomic_load_acq_int(&e->refcnt),
e->ifp ? e->ifp->if_xname : "-");
skip:
mtx_unlock(&e->lock);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
#endif