freebsd-skq/sys/dev/cxgbe/t4_main.c
Navdeep Parhar 4cf3aa135b cxgbe(4): Catch up with the rename of tlscaps -> cryptocaps. TLS is one
of the capabilities of the crypto engine in T6.

Sponsored by:	Chelsio Communications
2016-09-12 00:15:40 +00:00

9679 lines
246 KiB
C

/*-
* Copyright (c) 2011 Chelsio Communications, Inc.
* All rights reserved.
* Written by: Navdeep Parhar <np@FreeBSD.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_rss.h"
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/priv.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/taskqueue.h>
#include <sys/pciio.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pci_private.h>
#include <sys/firmware.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_dl.h>
#include <net/if_vlan_var.h>
#ifdef RSS
#include <net/rss_config.h>
#endif
#if defined(__i386__) || defined(__amd64__)
#include <vm/vm.h>
#include <vm/pmap.h>
#endif
#ifdef DDB
#include <ddb/ddb.h>
#include <ddb/db_lex.h>
#endif
#include "common/common.h"
#include "common/t4_msg.h"
#include "common/t4_regs.h"
#include "common/t4_regs_values.h"
#include "t4_ioctl.h"
#include "t4_l2t.h"
#include "t4_mp_ring.h"
#include "t4_if.h"
/* T4 bus driver interface */
static int t4_probe(device_t);
static int t4_attach(device_t);
static int t4_detach(device_t);
static int t4_ready(device_t);
static int t4_read_port_device(device_t, int, device_t *);
static device_method_t t4_methods[] = {
DEVMETHOD(device_probe, t4_probe),
DEVMETHOD(device_attach, t4_attach),
DEVMETHOD(device_detach, t4_detach),
DEVMETHOD(t4_is_main_ready, t4_ready),
DEVMETHOD(t4_read_port_device, t4_read_port_device),
DEVMETHOD_END
};
static driver_t t4_driver = {
"t4nex",
t4_methods,
sizeof(struct adapter)
};
/* T4 port (cxgbe) interface */
static int cxgbe_probe(device_t);
static int cxgbe_attach(device_t);
static int cxgbe_detach(device_t);
device_method_t cxgbe_methods[] = {
DEVMETHOD(device_probe, cxgbe_probe),
DEVMETHOD(device_attach, cxgbe_attach),
DEVMETHOD(device_detach, cxgbe_detach),
{ 0, 0 }
};
static driver_t cxgbe_driver = {
"cxgbe",
cxgbe_methods,
sizeof(struct port_info)
};
/* T4 VI (vcxgbe) interface */
static int vcxgbe_probe(device_t);
static int vcxgbe_attach(device_t);
static int vcxgbe_detach(device_t);
static device_method_t vcxgbe_methods[] = {
DEVMETHOD(device_probe, vcxgbe_probe),
DEVMETHOD(device_attach, vcxgbe_attach),
DEVMETHOD(device_detach, vcxgbe_detach),
{ 0, 0 }
};
static driver_t vcxgbe_driver = {
"vcxgbe",
vcxgbe_methods,
sizeof(struct vi_info)
};
static d_ioctl_t t4_ioctl;
static struct cdevsw t4_cdevsw = {
.d_version = D_VERSION,
.d_ioctl = t4_ioctl,
.d_name = "t4nex",
};
/* T5 bus driver interface */
static int t5_probe(device_t);
static device_method_t t5_methods[] = {
DEVMETHOD(device_probe, t5_probe),
DEVMETHOD(device_attach, t4_attach),
DEVMETHOD(device_detach, t4_detach),
DEVMETHOD(t4_is_main_ready, t4_ready),
DEVMETHOD(t4_read_port_device, t4_read_port_device),
DEVMETHOD_END
};
static driver_t t5_driver = {
"t5nex",
t5_methods,
sizeof(struct adapter)
};
/* T5 port (cxl) interface */
static driver_t cxl_driver = {
"cxl",
cxgbe_methods,
sizeof(struct port_info)
};
/* T5 VI (vcxl) interface */
static driver_t vcxl_driver = {
"vcxl",
vcxgbe_methods,
sizeof(struct vi_info)
};
/* ifnet + media interface */
static void cxgbe_init(void *);
static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
static int cxgbe_transmit(struct ifnet *, struct mbuf *);
static void cxgbe_qflush(struct ifnet *);
static int cxgbe_media_change(struct ifnet *);
static void cxgbe_media_status(struct ifnet *, struct ifmediareq *);
MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
/*
* Correct lock order when you need to acquire multiple locks is t4_list_lock,
* then ADAPTER_LOCK, then t4_uld_list_lock.
*/
static struct sx t4_list_lock;
SLIST_HEAD(, adapter) t4_list;
#ifdef TCP_OFFLOAD
static struct sx t4_uld_list_lock;
SLIST_HEAD(, uld_info) t4_uld_list;
#endif
/*
* Tunables. See tweak_tunables() too.
*
* Each tunable is set to a default value here if it's known at compile-time.
* Otherwise it is set to -1 as an indication to tweak_tunables() that it should
* provide a reasonable default when the driver is loaded.
*
* Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to
* T5 are under hw.cxl.
*/
/*
* Number of queues for tx and rx, 10G and 1G, NIC and offload.
*/
#define NTXQ_10G 16
int t4_ntxq10g = -1;
TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq10g);
#define NRXQ_10G 8
int t4_nrxq10g = -1;
TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq10g);
#define NTXQ_1G 4
int t4_ntxq1g = -1;
TUNABLE_INT("hw.cxgbe.ntxq1g", &t4_ntxq1g);
#define NRXQ_1G 2
int t4_nrxq1g = -1;
TUNABLE_INT("hw.cxgbe.nrxq1g", &t4_nrxq1g);
#define NTXQ_VI 1
static int t4_ntxq_vi = -1;
TUNABLE_INT("hw.cxgbe.ntxq_vi", &t4_ntxq_vi);
#define NRXQ_VI 1
static int t4_nrxq_vi = -1;
TUNABLE_INT("hw.cxgbe.nrxq_vi", &t4_nrxq_vi);
static int t4_rsrv_noflowq = 0;
TUNABLE_INT("hw.cxgbe.rsrv_noflowq", &t4_rsrv_noflowq);
#ifdef TCP_OFFLOAD
#define NOFLDTXQ_10G 8
static int t4_nofldtxq10g = -1;
TUNABLE_INT("hw.cxgbe.nofldtxq10g", &t4_nofldtxq10g);
#define NOFLDRXQ_10G 2
static int t4_nofldrxq10g = -1;
TUNABLE_INT("hw.cxgbe.nofldrxq10g", &t4_nofldrxq10g);
#define NOFLDTXQ_1G 2
static int t4_nofldtxq1g = -1;
TUNABLE_INT("hw.cxgbe.nofldtxq1g", &t4_nofldtxq1g);
#define NOFLDRXQ_1G 1
static int t4_nofldrxq1g = -1;
TUNABLE_INT("hw.cxgbe.nofldrxq1g", &t4_nofldrxq1g);
#define NOFLDTXQ_VI 1
static int t4_nofldtxq_vi = -1;
TUNABLE_INT("hw.cxgbe.nofldtxq_vi", &t4_nofldtxq_vi);
#define NOFLDRXQ_VI 1
static int t4_nofldrxq_vi = -1;
TUNABLE_INT("hw.cxgbe.nofldrxq_vi", &t4_nofldrxq_vi);
#endif
#ifdef DEV_NETMAP
#define NNMTXQ_VI 2
static int t4_nnmtxq_vi = -1;
TUNABLE_INT("hw.cxgbe.nnmtxq_vi", &t4_nnmtxq_vi);
#define NNMRXQ_VI 2
static int t4_nnmrxq_vi = -1;
TUNABLE_INT("hw.cxgbe.nnmrxq_vi", &t4_nnmrxq_vi);
#endif
/*
* Holdoff parameters for 10G and 1G ports.
*/
#define TMR_IDX_10G 1
int t4_tmr_idx_10g = TMR_IDX_10G;
TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx_10g);
#define PKTC_IDX_10G (-1)
int t4_pktc_idx_10g = PKTC_IDX_10G;
TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx_10g);
#define TMR_IDX_1G 1
int t4_tmr_idx_1g = TMR_IDX_1G;
TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_1G", &t4_tmr_idx_1g);
#define PKTC_IDX_1G (-1)
int t4_pktc_idx_1g = PKTC_IDX_1G;
TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_1G", &t4_pktc_idx_1g);
/*
* Size (# of entries) of each tx and rx queue.
*/
unsigned int t4_qsize_txq = TX_EQ_QSIZE;
TUNABLE_INT("hw.cxgbe.qsize_txq", &t4_qsize_txq);
unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
TUNABLE_INT("hw.cxgbe.qsize_rxq", &t4_qsize_rxq);
/*
* Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
*/
int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
TUNABLE_INT("hw.cxgbe.interrupt_types", &t4_intr_types);
/*
* Configuration file.
*/
#define DEFAULT_CF "default"
#define FLASH_CF "flash"
#define UWIRE_CF "uwire"
#define FPGA_CF "fpga"
static char t4_cfg_file[32] = DEFAULT_CF;
TUNABLE_STR("hw.cxgbe.config_file", t4_cfg_file, sizeof(t4_cfg_file));
/*
* PAUSE settings (bit 0, 1 = rx_pause, tx_pause respectively).
* rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
* tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
* mark or when signalled to do so, 0 to never emit PAUSE.
*/
static int t4_pause_settings = PAUSE_TX | PAUSE_RX;
TUNABLE_INT("hw.cxgbe.pause_settings", &t4_pause_settings);
/*
* Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
* encouraged respectively).
*/
static unsigned int t4_fw_install = 1;
TUNABLE_INT("hw.cxgbe.fw_install", &t4_fw_install);
/*
* ASIC features that will be used. Disable the ones you don't want so that the
* chip resources aren't wasted on features that will not be used.
*/
static int t4_nbmcaps_allowed = 0;
TUNABLE_INT("hw.cxgbe.nbmcaps_allowed", &t4_nbmcaps_allowed);
static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */
TUNABLE_INT("hw.cxgbe.linkcaps_allowed", &t4_linkcaps_allowed);
static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
FW_CAPS_CONFIG_SWITCH_EGRESS;
TUNABLE_INT("hw.cxgbe.switchcaps_allowed", &t4_switchcaps_allowed);
static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC;
TUNABLE_INT("hw.cxgbe.niccaps_allowed", &t4_niccaps_allowed);
static int t4_toecaps_allowed = -1;
TUNABLE_INT("hw.cxgbe.toecaps_allowed", &t4_toecaps_allowed);
static int t4_rdmacaps_allowed = -1;
TUNABLE_INT("hw.cxgbe.rdmacaps_allowed", &t4_rdmacaps_allowed);
static int t4_cryptocaps_allowed = 0;
TUNABLE_INT("hw.cxgbe.cryptocaps_allowed", &t4_cryptocaps_allowed);
static int t4_iscsicaps_allowed = -1;
TUNABLE_INT("hw.cxgbe.iscsicaps_allowed", &t4_iscsicaps_allowed);
static int t4_fcoecaps_allowed = 0;
TUNABLE_INT("hw.cxgbe.fcoecaps_allowed", &t4_fcoecaps_allowed);
static int t5_write_combine = 0;
TUNABLE_INT("hw.cxl.write_combine", &t5_write_combine);
static int t4_num_vis = 1;
TUNABLE_INT("hw.cxgbe.num_vis", &t4_num_vis);
/* Functions used by extra VIs to obtain unique MAC addresses for each VI. */
static int vi_mac_funcs[] = {
FW_VI_FUNC_OFLD,
FW_VI_FUNC_IWARP,
FW_VI_FUNC_OPENISCSI,
FW_VI_FUNC_OPENFCOE,
FW_VI_FUNC_FOISCSI,
FW_VI_FUNC_FOFCOE,
};
struct intrs_and_queues {
uint16_t intr_type; /* INTx, MSI, or MSI-X */
uint16_t nirq; /* Total # of vectors */
uint16_t intr_flags_10g;/* Interrupt flags for each 10G port */
uint16_t intr_flags_1g; /* Interrupt flags for each 1G port */
uint16_t ntxq10g; /* # of NIC txq's for each 10G port */
uint16_t nrxq10g; /* # of NIC rxq's for each 10G port */
uint16_t ntxq1g; /* # of NIC txq's for each 1G port */
uint16_t nrxq1g; /* # of NIC rxq's for each 1G port */
uint16_t rsrv_noflowq; /* Flag whether to reserve queue 0 */
uint16_t nofldtxq10g; /* # of TOE txq's for each 10G port */
uint16_t nofldrxq10g; /* # of TOE rxq's for each 10G port */
uint16_t nofldtxq1g; /* # of TOE txq's for each 1G port */
uint16_t nofldrxq1g; /* # of TOE rxq's for each 1G port */
/* The vcxgbe/vcxl interfaces use these and not the ones above. */
uint16_t ntxq_vi; /* # of NIC txq's */
uint16_t nrxq_vi; /* # of NIC rxq's */
uint16_t nofldtxq_vi; /* # of TOE txq's */
uint16_t nofldrxq_vi; /* # of TOE rxq's */
uint16_t nnmtxq_vi; /* # of netmap txq's */
uint16_t nnmrxq_vi; /* # of netmap rxq's */
};
struct filter_entry {
uint32_t valid:1; /* filter allocated and valid */
uint32_t locked:1; /* filter is administratively locked */
uint32_t pending:1; /* filter action is pending firmware reply */
uint32_t smtidx:8; /* Source MAC Table index for smac */
struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
struct t4_filter_specification fs;
};
static void setup_memwin(struct adapter *);
static void position_memwin(struct adapter *, int, uint32_t);
static int rw_via_memwin(struct adapter *, int, uint32_t, uint32_t *, int, int);
static inline int read_via_memwin(struct adapter *, int, uint32_t, uint32_t *,
int);
static inline int write_via_memwin(struct adapter *, int, uint32_t,
const uint32_t *, int);
static int validate_mem_range(struct adapter *, uint32_t, int);
static int fwmtype_to_hwmtype(int);
static int validate_mt_off_len(struct adapter *, int, uint32_t, int,
uint32_t *);
static int fixup_devlog_params(struct adapter *);
static int cfg_itype_and_nqueues(struct adapter *, int, int, int,
struct intrs_and_queues *);
static int prep_firmware(struct adapter *);
static int partition_resources(struct adapter *, const struct firmware *,
const char *);
static int get_params__pre_init(struct adapter *);
static int get_params__post_init(struct adapter *);
static int set_params__post_init(struct adapter *);
static void t4_set_desc(struct adapter *);
static void build_medialist(struct port_info *, struct ifmedia *);
static int cxgbe_init_synchronized(struct vi_info *);
static int cxgbe_uninit_synchronized(struct vi_info *);
static void quiesce_txq(struct adapter *, struct sge_txq *);
static void quiesce_wrq(struct adapter *, struct sge_wrq *);
static void quiesce_iq(struct adapter *, struct sge_iq *);
static void quiesce_fl(struct adapter *, struct sge_fl *);
static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
driver_intr_t *, void *, char *);
static int t4_free_irq(struct adapter *, struct irq *);
static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
static void vi_refresh_stats(struct adapter *, struct vi_info *);
static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
static void cxgbe_tick(void *);
static void cxgbe_vlan_config(void *, struct ifnet *, uint16_t);
static void cxgbe_sysctls(struct port_info *);
static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
static int sysctl_bitfield(SYSCTL_HANDLER_ARGS);
static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
#ifdef SBUF_DRAIN
static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
static int sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS);
static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_tids(SYSCTL_HANDLER_ARGS);
static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
static int sysctl_tc_params(SYSCTL_HANDLER_ARGS);
#endif
#ifdef TCP_OFFLOAD
static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
#endif
static uint32_t fconf_iconf_to_mode(uint32_t, uint32_t);
static uint32_t mode_to_fconf(uint32_t);
static uint32_t mode_to_iconf(uint32_t);
static int check_fspec_against_fconf_iconf(struct adapter *,
struct t4_filter_specification *);
static int get_filter_mode(struct adapter *, uint32_t *);
static int set_filter_mode(struct adapter *, uint32_t);
static inline uint64_t get_filter_hits(struct adapter *, uint32_t);
static int get_filter(struct adapter *, struct t4_filter *);
static int set_filter(struct adapter *, struct t4_filter *);
static int del_filter(struct adapter *, struct t4_filter *);
static void clear_filter(struct filter_entry *);
static int set_filter_wr(struct adapter *, int);
static int del_filter_wr(struct adapter *, int);
static int set_tcb_rpl(struct sge_iq *, const struct rss_header *,
struct mbuf *);
static int get_sge_context(struct adapter *, struct t4_sge_context *);
static int load_fw(struct adapter *, struct t4_data *);
static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
static int read_i2c(struct adapter *, struct t4_i2c_data *);
#ifdef TCP_OFFLOAD
static int toe_capability(struct vi_info *, int);
#endif
static int mod_event(module_t, int, void *);
static int notify_siblings(device_t, int);
struct {
uint16_t device;
char *desc;
} t4_pciids[] = {
{0xa000, "Chelsio Terminator 4 FPGA"},
{0x4400, "Chelsio T440-dbg"},
{0x4401, "Chelsio T420-CR"},
{0x4402, "Chelsio T422-CR"},
{0x4403, "Chelsio T440-CR"},
{0x4404, "Chelsio T420-BCH"},
{0x4405, "Chelsio T440-BCH"},
{0x4406, "Chelsio T440-CH"},
{0x4407, "Chelsio T420-SO"},
{0x4408, "Chelsio T420-CX"},
{0x4409, "Chelsio T420-BT"},
{0x440a, "Chelsio T404-BT"},
{0x440e, "Chelsio T440-LP-CR"},
}, t5_pciids[] = {
{0xb000, "Chelsio Terminator 5 FPGA"},
{0x5400, "Chelsio T580-dbg"},
{0x5401, "Chelsio T520-CR"}, /* 2 x 10G */
{0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */
{0x5403, "Chelsio T540-CR"}, /* 4 x 10G */
{0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */
{0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */
{0x540a, "Chelsio T504-BT"}, /* 4 x 1G */
{0x540d, "Chelsio T580-CR"}, /* 2 x 40G */
{0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */
{0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */
{0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */
{0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */
{0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */
{0x5415, "Chelsio T502-BT"}, /* 2 x 1G */
#ifdef notyet
{0x5404, "Chelsio T520-BCH"},
{0x5405, "Chelsio T540-BCH"},
{0x5406, "Chelsio T540-CH"},
{0x5408, "Chelsio T520-CX"},
{0x540b, "Chelsio B520-SR"},
{0x540c, "Chelsio B504-BT"},
{0x540f, "Chelsio Amsterdam"},
{0x5413, "Chelsio T580-CHR"},
#endif
};
#ifdef TCP_OFFLOAD
/*
* service_iq() has an iq and needs the fl. Offset of fl from the iq should be
* exactly the same for both rxq and ofld_rxq.
*/
CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
#endif
CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
static int
t4_probe(device_t dev)
{
int i;
uint16_t v = pci_get_vendor(dev);
uint16_t d = pci_get_device(dev);
uint8_t f = pci_get_function(dev);
if (v != PCI_VENDOR_ID_CHELSIO)
return (ENXIO);
/* Attach only to PF0 of the FPGA */
if (d == 0xa000 && f != 0)
return (ENXIO);
for (i = 0; i < nitems(t4_pciids); i++) {
if (d == t4_pciids[i].device) {
device_set_desc(dev, t4_pciids[i].desc);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static int
t5_probe(device_t dev)
{
int i;
uint16_t v = pci_get_vendor(dev);
uint16_t d = pci_get_device(dev);
uint8_t f = pci_get_function(dev);
if (v != PCI_VENDOR_ID_CHELSIO)
return (ENXIO);
/* Attach only to PF0 of the FPGA */
if (d == 0xb000 && f != 0)
return (ENXIO);
for (i = 0; i < nitems(t5_pciids); i++) {
if (d == t5_pciids[i].device) {
device_set_desc(dev, t5_pciids[i].desc);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static void
t5_attribute_workaround(device_t dev)
{
device_t root_port;
uint32_t v;
/*
* The T5 chips do not properly echo the No Snoop and Relaxed
* Ordering attributes when replying to a TLP from a Root
* Port. As a workaround, find the parent Root Port and
* disable No Snoop and Relaxed Ordering. Note that this
* affects all devices under this root port.
*/
root_port = pci_find_pcie_root_port(dev);
if (root_port == NULL) {
device_printf(dev, "Unable to find parent root port\n");
return;
}
v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
0)
device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
device_get_nameunit(root_port));
}
static int
t4_attach(device_t dev)
{
struct adapter *sc;
int rc = 0, i, j, n10g, n1g, rqidx, tqidx;
struct make_dev_args mda;
struct intrs_and_queues iaq;
struct sge *s;
uint8_t *buf;
#ifdef TCP_OFFLOAD
int ofld_rqidx, ofld_tqidx;
#endif
#ifdef DEV_NETMAP
int nm_rqidx, nm_tqidx;
#endif
int num_vis;
sc = device_get_softc(dev);
sc->dev = dev;
TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
if ((pci_get_device(dev) & 0xff00) == 0x5400)
t5_attribute_workaround(dev);
pci_enable_busmaster(dev);
if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
uint32_t v;
pci_set_max_read_req(dev, 4096);
v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
}
sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
sc->traceq = -1;
mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
device_get_nameunit(dev));
snprintf(sc->lockname, sizeof(sc->lockname), "%s",
device_get_nameunit(dev));
mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
t4_add_adapter(sc);
mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
TAILQ_INIT(&sc->sfl);
callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
rc = t4_map_bars_0_and_4(sc);
if (rc != 0)
goto done; /* error message displayed already */
/*
* This is the real PF# to which we're attaching. Works from within PCI
* passthrough environments too, where pci_get_function() could return a
* different PF# depending on the passthrough configuration. We need to
* use the real PF# in all our communication with the firmware.
*/
sc->pf = G_SOURCEPF(t4_read_reg(sc, A_PL_WHOAMI));
sc->mbox = sc->pf;
memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
/* Prepare the adapter for operation. */
buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
rc = -t4_prep_adapter(sc, buf);
free(buf, M_CXGBE);
if (rc != 0) {
device_printf(dev, "failed to prepare adapter: %d.\n", rc);
goto done;
}
/*
* Do this really early, with the memory windows set up even before the
* character device. The userland tool's register i/o and mem read
* will work even in "recovery mode".
*/
setup_memwin(sc);
if (t4_init_devlog_params(sc, 0) == 0)
fixup_devlog_params(sc);
make_dev_args_init(&mda);
mda.mda_devsw = &t4_cdevsw;
mda.mda_uid = UID_ROOT;
mda.mda_gid = GID_WHEEL;
mda.mda_mode = 0600;
mda.mda_si_drv1 = sc;
rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
if (rc != 0)
device_printf(dev, "failed to create nexus char device: %d.\n",
rc);
/* Go no further if recovery mode has been requested. */
if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
device_printf(dev, "recovery mode.\n");
goto done;
}
#if defined(__i386__)
if ((cpu_feature & CPUID_CX8) == 0) {
device_printf(dev, "64 bit atomics not available.\n");
rc = ENOTSUP;
goto done;
}
#endif
/* Prepare the firmware for operation */
rc = prep_firmware(sc);
if (rc != 0)
goto done; /* error message displayed already */
rc = get_params__post_init(sc);
if (rc != 0)
goto done; /* error message displayed already */
rc = set_params__post_init(sc);
if (rc != 0)
goto done; /* error message displayed already */
rc = t4_map_bar_2(sc);
if (rc != 0)
goto done; /* error message displayed already */
rc = t4_create_dma_tag(sc);
if (rc != 0)
goto done; /* error message displayed already */
/*
* Number of VIs to create per-port. The first VI is the "main" regular
* VI for the port. The rest are additional virtual interfaces on the
* same physical port. Note that the main VI does not have native
* netmap support but the extra VIs do.
*
* Limit the number of VIs per port to the number of available
* MAC addresses per port.
*/
if (t4_num_vis >= 1)
num_vis = t4_num_vis;
else
num_vis = 1;
if (num_vis > nitems(vi_mac_funcs)) {
num_vis = nitems(vi_mac_funcs);
device_printf(dev, "Number of VIs limited to %d\n", num_vis);
}
/*
* First pass over all the ports - allocate VIs and initialize some
* basic parameters like mac address, port type, etc. We also figure
* out whether a port is 10G or 1G and use that information when
* calculating how many interrupts to attempt to allocate.
*/
n10g = n1g = 0;
for_each_port(sc, i) {
struct port_info *pi;
pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
sc->port[i] = pi;
/* These must be set before t4_port_init */
pi->adapter = sc;
pi->port_id = i;
/*
* XXX: vi[0] is special so we can't delay this allocation until
* pi->nvi's final value is known.
*/
pi->vi = malloc(sizeof(struct vi_info) * num_vis, M_CXGBE,
M_ZERO | M_WAITOK);
/*
* Allocate the "main" VI and initialize parameters
* like mac addr.
*/
rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
if (rc != 0) {
device_printf(dev, "unable to initialize port %d: %d\n",
i, rc);
free(pi->vi, M_CXGBE);
free(pi, M_CXGBE);
sc->port[i] = NULL;
goto done;
}
pi->link_cfg.requested_fc &= ~(PAUSE_TX | PAUSE_RX);
pi->link_cfg.requested_fc |= t4_pause_settings;
pi->link_cfg.fc &= ~(PAUSE_TX | PAUSE_RX);
pi->link_cfg.fc |= t4_pause_settings;
rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, &pi->link_cfg);
if (rc != 0) {
device_printf(dev, "port %d l1cfg failed: %d\n", i, rc);
free(pi->vi, M_CXGBE);
free(pi, M_CXGBE);
sc->port[i] = NULL;
goto done;
}
snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
device_get_nameunit(dev), i);
mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
sc->chan_map[pi->tx_chan] = i;
pi->tc = malloc(sizeof(struct tx_sched_class) *
sc->chip_params->nsched_cls, M_CXGBE, M_ZERO | M_WAITOK);
if (is_10G_port(pi) || is_40G_port(pi)) {
n10g++;
} else {
n1g++;
}
pi->linkdnrc = -1;
pi->dev = device_add_child(dev, is_t4(sc) ? "cxgbe" : "cxl", -1);
if (pi->dev == NULL) {
device_printf(dev,
"failed to add device for port %d.\n", i);
rc = ENXIO;
goto done;
}
pi->vi[0].dev = pi->dev;
device_set_softc(pi->dev, pi);
}
/*
* Interrupt type, # of interrupts, # of rx/tx queues, etc.
*/
rc = cfg_itype_and_nqueues(sc, n10g, n1g, num_vis, &iaq);
if (rc != 0)
goto done; /* error message displayed already */
if (iaq.nrxq_vi + iaq.nofldrxq_vi + iaq.nnmrxq_vi == 0)
num_vis = 1;
sc->intr_type = iaq.intr_type;
sc->intr_count = iaq.nirq;
s = &sc->sge;
s->nrxq = n10g * iaq.nrxq10g + n1g * iaq.nrxq1g;
s->ntxq = n10g * iaq.ntxq10g + n1g * iaq.ntxq1g;
if (num_vis > 1) {
s->nrxq += (n10g + n1g) * (num_vis - 1) * iaq.nrxq_vi;
s->ntxq += (n10g + n1g) * (num_vis - 1) * iaq.ntxq_vi;
}
s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */
s->neq += sc->params.nports + 1;/* ctrl queues: 1 per port + 1 mgmt */
s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */
#ifdef TCP_OFFLOAD
if (is_offload(sc)) {
s->nofldrxq = n10g * iaq.nofldrxq10g + n1g * iaq.nofldrxq1g;
s->nofldtxq = n10g * iaq.nofldtxq10g + n1g * iaq.nofldtxq1g;
if (num_vis > 1) {
s->nofldrxq += (n10g + n1g) * (num_vis - 1) *
iaq.nofldrxq_vi;
s->nofldtxq += (n10g + n1g) * (num_vis - 1) *
iaq.nofldtxq_vi;
}
s->neq += s->nofldtxq + s->nofldrxq;
s->niq += s->nofldrxq;
s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
M_CXGBE, M_ZERO | M_WAITOK);
s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
M_CXGBE, M_ZERO | M_WAITOK);
}
#endif
#ifdef DEV_NETMAP
if (num_vis > 1) {
s->nnmrxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmrxq_vi;
s->nnmtxq = (n10g + n1g) * (num_vis - 1) * iaq.nnmtxq_vi;
}
s->neq += s->nnmtxq + s->nnmrxq;
s->niq += s->nnmrxq;
s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
M_CXGBE, M_ZERO | M_WAITOK);
s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
M_CXGBE, M_ZERO | M_WAITOK);
#endif
s->ctrlq = malloc(sc->params.nports * sizeof(struct sge_wrq), M_CXGBE,
M_ZERO | M_WAITOK);
s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
M_ZERO | M_WAITOK);
s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
M_ZERO | M_WAITOK);
s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
M_ZERO | M_WAITOK);
s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
M_ZERO | M_WAITOK);
sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
M_ZERO | M_WAITOK);
t4_init_l2t(sc, M_WAITOK);
/*
* Second pass over the ports. This time we know the number of rx and
* tx queues that each port should get.
*/
rqidx = tqidx = 0;
#ifdef TCP_OFFLOAD
ofld_rqidx = ofld_tqidx = 0;
#endif
#ifdef DEV_NETMAP
nm_rqidx = nm_tqidx = 0;
#endif
for_each_port(sc, i) {
struct port_info *pi = sc->port[i];
struct vi_info *vi;
if (pi == NULL)
continue;
pi->nvi = num_vis;
for_each_vi(pi, j, vi) {
vi->pi = pi;
vi->qsize_rxq = t4_qsize_rxq;
vi->qsize_txq = t4_qsize_txq;
vi->first_rxq = rqidx;
vi->first_txq = tqidx;
if (is_10G_port(pi) || is_40G_port(pi)) {
vi->tmr_idx = t4_tmr_idx_10g;
vi->pktc_idx = t4_pktc_idx_10g;
vi->flags |= iaq.intr_flags_10g & INTR_RXQ;
vi->nrxq = j == 0 ? iaq.nrxq10g : iaq.nrxq_vi;
vi->ntxq = j == 0 ? iaq.ntxq10g : iaq.ntxq_vi;
} else {
vi->tmr_idx = t4_tmr_idx_1g;
vi->pktc_idx = t4_pktc_idx_1g;
vi->flags |= iaq.intr_flags_1g & INTR_RXQ;
vi->nrxq = j == 0 ? iaq.nrxq1g : iaq.nrxq_vi;
vi->ntxq = j == 0 ? iaq.ntxq1g : iaq.ntxq_vi;
}
rqidx += vi->nrxq;
tqidx += vi->ntxq;
if (j == 0 && vi->ntxq > 1)
vi->rsrv_noflowq = iaq.rsrv_noflowq ? 1 : 0;
else
vi->rsrv_noflowq = 0;
#ifdef TCP_OFFLOAD
vi->first_ofld_rxq = ofld_rqidx;
vi->first_ofld_txq = ofld_tqidx;
if (is_10G_port(pi) || is_40G_port(pi)) {
vi->flags |= iaq.intr_flags_10g & INTR_OFLD_RXQ;
vi->nofldrxq = j == 0 ? iaq.nofldrxq10g :
iaq.nofldrxq_vi;
vi->nofldtxq = j == 0 ? iaq.nofldtxq10g :
iaq.nofldtxq_vi;
} else {
vi->flags |= iaq.intr_flags_1g & INTR_OFLD_RXQ;
vi->nofldrxq = j == 0 ? iaq.nofldrxq1g :
iaq.nofldrxq_vi;
vi->nofldtxq = j == 0 ? iaq.nofldtxq1g :
iaq.nofldtxq_vi;
}
ofld_rqidx += vi->nofldrxq;
ofld_tqidx += vi->nofldtxq;
#endif
#ifdef DEV_NETMAP
if (j > 0) {
vi->first_nm_rxq = nm_rqidx;
vi->first_nm_txq = nm_tqidx;
vi->nnmrxq = iaq.nnmrxq_vi;
vi->nnmtxq = iaq.nnmtxq_vi;
nm_rqidx += vi->nnmrxq;
nm_tqidx += vi->nnmtxq;
}
#endif
}
}
rc = t4_setup_intr_handlers(sc);
if (rc != 0) {
device_printf(dev,
"failed to setup interrupt handlers: %d\n", rc);
goto done;
}
rc = bus_generic_attach(dev);
if (rc != 0) {
device_printf(dev,
"failed to attach all child ports: %d\n", rc);
goto done;
}
device_printf(dev,
"PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
(sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
t4_set_desc(sc);
notify_siblings(dev, 0);
done:
if (rc != 0 && sc->cdev) {
/* cdev was created and so cxgbetool works; recover that way. */
device_printf(dev,
"error during attach, adapter is now in recovery mode.\n");
rc = 0;
}
if (rc != 0)
t4_detach_common(dev);
else
t4_sysctls(sc);
return (rc);
}
static int
t4_ready(device_t dev)
{
struct adapter *sc;
sc = device_get_softc(dev);
if (sc->flags & FW_OK)
return (0);
return (ENXIO);
}
static int
t4_read_port_device(device_t dev, int port, device_t *child)
{
struct adapter *sc;
struct port_info *pi;
sc = device_get_softc(dev);
if (port < 0 || port >= MAX_NPORTS)
return (EINVAL);
pi = sc->port[port];
if (pi == NULL || pi->dev == NULL)
return (ENXIO);
*child = pi->dev;
return (0);
}
static int
notify_siblings(device_t dev, int detaching)
{
device_t sibling;
int error, i;
error = 0;
for (i = 0; i < PCI_FUNCMAX; i++) {
if (i == pci_get_function(dev))
continue;
sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
pci_get_slot(dev), i);
if (sibling == NULL || !device_is_attached(sibling))
continue;
if (detaching)
error = T4_DETACH_CHILD(sibling);
else
(void)T4_ATTACH_CHILD(sibling);
if (error)
break;
}
return (error);
}
/*
* Idempotent
*/
static int
t4_detach(device_t dev)
{
struct adapter *sc;
int rc;
sc = device_get_softc(dev);
rc = notify_siblings(dev, 1);
if (rc) {
device_printf(dev,
"failed to detach sibling devices: %d\n", rc);
return (rc);
}
return (t4_detach_common(dev));
}
int
t4_detach_common(device_t dev)
{
struct adapter *sc;
struct port_info *pi;
int i, rc;
sc = device_get_softc(dev);
if (sc->flags & FULL_INIT_DONE) {
if (!(sc->flags & IS_VF))
t4_intr_disable(sc);
}
if (sc->cdev) {
destroy_dev(sc->cdev);
sc->cdev = NULL;
}
if (device_is_attached(dev)) {
rc = bus_generic_detach(dev);
if (rc) {
device_printf(dev,
"failed to detach child devices: %d\n", rc);
return (rc);
}
}
for (i = 0; i < sc->intr_count; i++)
t4_free_irq(sc, &sc->irq[i]);
for (i = 0; i < MAX_NPORTS; i++) {
pi = sc->port[i];
if (pi) {
t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
if (pi->dev)
device_delete_child(dev, pi->dev);
mtx_destroy(&pi->pi_lock);
free(pi->vi, M_CXGBE);
free(pi->tc, M_CXGBE);
free(pi, M_CXGBE);
}
}
if (sc->flags & FULL_INIT_DONE)
adapter_full_uninit(sc);
if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
t4_fw_bye(sc, sc->mbox);
if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
pci_release_msi(dev);
if (sc->regs_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
sc->regs_res);
if (sc->udbs_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
sc->udbs_res);
if (sc->msix_res)
bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
sc->msix_res);
if (sc->l2t)
t4_free_l2t(sc->l2t);
#ifdef TCP_OFFLOAD
free(sc->sge.ofld_rxq, M_CXGBE);
free(sc->sge.ofld_txq, M_CXGBE);
#endif
#ifdef DEV_NETMAP
free(sc->sge.nm_rxq, M_CXGBE);
free(sc->sge.nm_txq, M_CXGBE);
#endif
free(sc->irq, M_CXGBE);
free(sc->sge.rxq, M_CXGBE);
free(sc->sge.txq, M_CXGBE);
free(sc->sge.ctrlq, M_CXGBE);
free(sc->sge.iqmap, M_CXGBE);
free(sc->sge.eqmap, M_CXGBE);
free(sc->tids.ftid_tab, M_CXGBE);
t4_destroy_dma_tag(sc);
if (mtx_initialized(&sc->sc_lock)) {
sx_xlock(&t4_list_lock);
SLIST_REMOVE(&t4_list, sc, adapter, link);
sx_xunlock(&t4_list_lock);
mtx_destroy(&sc->sc_lock);
}
callout_drain(&sc->sfl_callout);
if (mtx_initialized(&sc->tids.ftid_lock))
mtx_destroy(&sc->tids.ftid_lock);
if (mtx_initialized(&sc->sfl_lock))
mtx_destroy(&sc->sfl_lock);
if (mtx_initialized(&sc->ifp_lock))
mtx_destroy(&sc->ifp_lock);
if (mtx_initialized(&sc->reg_lock))
mtx_destroy(&sc->reg_lock);
for (i = 0; i < NUM_MEMWIN; i++) {
struct memwin *mw = &sc->memwin[i];
if (rw_initialized(&mw->mw_lock))
rw_destroy(&mw->mw_lock);
}
bzero(sc, sizeof(*sc));
return (0);
}
static int
cxgbe_probe(device_t dev)
{
char buf[128];
struct port_info *pi = device_get_softc(dev);
snprintf(buf, sizeof(buf), "port %d", pi->port_id);
device_set_desc_copy(dev, buf);
return (BUS_PROBE_DEFAULT);
}
#define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS)
#define T4_CAP_ENABLE (T4_CAP)
static int
cxgbe_vi_attach(device_t dev, struct vi_info *vi)
{
struct ifnet *ifp;
struct sbuf *sb;
vi->xact_addr_filt = -1;
callout_init(&vi->tick, 1);
/* Allocate an ifnet and set it up */
ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "Cannot allocate ifnet\n");
return (ENOMEM);
}
vi->ifp = ifp;
ifp->if_softc = vi;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = cxgbe_init;
ifp->if_ioctl = cxgbe_ioctl;
ifp->if_transmit = cxgbe_transmit;
ifp->if_qflush = cxgbe_qflush;
ifp->if_get_counter = cxgbe_get_counter;
ifp->if_capabilities = T4_CAP;
#ifdef TCP_OFFLOAD
if (vi->nofldrxq != 0)
ifp->if_capabilities |= IFCAP_TOE;
#endif
ifp->if_capenable = T4_CAP_ENABLE;
ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
ifp->if_hw_tsomax = 65536 - (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS;
ifp->if_hw_tsomaxsegsize = 65536;
/* Initialize ifmedia for this VI */
ifmedia_init(&vi->media, IFM_IMASK, cxgbe_media_change,
cxgbe_media_status);
build_medialist(vi->pi, &vi->media);
vi->vlan_c = EVENTHANDLER_REGISTER(vlan_config, cxgbe_vlan_config, ifp,
EVENTHANDLER_PRI_ANY);
ether_ifattach(ifp, vi->hw_addr);
#ifdef DEV_NETMAP
if (vi->nnmrxq != 0)
cxgbe_nm_attach(vi);
#endif
sb = sbuf_new_auto();
sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
#ifdef TCP_OFFLOAD
if (ifp->if_capabilities & IFCAP_TOE)
sbuf_printf(sb, "; %d txq, %d rxq (TOE)",
vi->nofldtxq, vi->nofldrxq);
#endif
#ifdef DEV_NETMAP
if (ifp->if_capabilities & IFCAP_NETMAP)
sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
vi->nnmtxq, vi->nnmrxq);
#endif
sbuf_finish(sb);
device_printf(dev, "%s\n", sbuf_data(sb));
sbuf_delete(sb);
vi_sysctls(vi);
return (0);
}
static int
cxgbe_attach(device_t dev)
{
struct port_info *pi = device_get_softc(dev);
struct vi_info *vi;
int i, rc;
callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
rc = cxgbe_vi_attach(dev, &pi->vi[0]);
if (rc)
return (rc);
for_each_vi(pi, i, vi) {
if (i == 0)
continue;
vi->dev = device_add_child(dev, is_t4(pi->adapter) ?
"vcxgbe" : "vcxl", -1);
if (vi->dev == NULL) {
device_printf(dev, "failed to add VI %d\n", i);
continue;
}
device_set_softc(vi->dev, vi);
}
cxgbe_sysctls(pi);
bus_generic_attach(dev);
return (0);
}
static void
cxgbe_vi_detach(struct vi_info *vi)
{
struct ifnet *ifp = vi->ifp;
ether_ifdetach(ifp);
if (vi->vlan_c)
EVENTHANDLER_DEREGISTER(vlan_config, vi->vlan_c);
/* Let detach proceed even if these fail. */
#ifdef DEV_NETMAP
if (ifp->if_capabilities & IFCAP_NETMAP)
cxgbe_nm_detach(vi);
#endif
cxgbe_uninit_synchronized(vi);
callout_drain(&vi->tick);
vi_full_uninit(vi);
ifmedia_removeall(&vi->media);
if_free(vi->ifp);
vi->ifp = NULL;
}
static int
cxgbe_detach(device_t dev)
{
struct port_info *pi = device_get_softc(dev);
struct adapter *sc = pi->adapter;
int rc;
/* Detach the extra VIs first. */
rc = bus_generic_detach(dev);
if (rc)
return (rc);
device_delete_children(dev);
doom_vi(sc, &pi->vi[0]);
if (pi->flags & HAS_TRACEQ) {
sc->traceq = -1; /* cloner should not create ifnet */
t4_tracer_port_detach(sc);
}
cxgbe_vi_detach(&pi->vi[0]);
callout_drain(&pi->tick);
end_synchronized_op(sc, 0);
return (0);
}
static void
cxgbe_init(void *arg)
{
struct vi_info *vi = arg;
struct adapter *sc = vi->pi->adapter;
if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
return;
cxgbe_init_synchronized(vi);
end_synchronized_op(sc, 0);
}
static int
cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
{
int rc = 0, mtu, flags, can_sleep;
struct vi_info *vi = ifp->if_softc;
struct adapter *sc = vi->pi->adapter;
struct ifreq *ifr = (struct ifreq *)data;
uint32_t mask;
switch (cmd) {
case SIOCSIFMTU:
mtu = ifr->ifr_mtu;
if ((mtu < ETHERMIN) || (mtu > ETHERMTU_JUMBO))
return (EINVAL);
rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
if (rc)
return (rc);
ifp->if_mtu = mtu;
if (vi->flags & VI_INIT_DONE) {
t4_update_fl_bufsize(ifp);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = update_mac_settings(ifp, XGMAC_MTU);
}
end_synchronized_op(sc, 0);
break;
case SIOCSIFFLAGS:
can_sleep = 0;
redo_sifflags:
rc = begin_synchronized_op(sc, vi,
can_sleep ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4flg");
if (rc)
return (rc);
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
flags = vi->if_flags;
if ((ifp->if_flags ^ flags) &
(IFF_PROMISC | IFF_ALLMULTI)) {
if (can_sleep == 1) {
end_synchronized_op(sc, 0);
can_sleep = 0;
goto redo_sifflags;
}
rc = update_mac_settings(ifp,
XGMAC_PROMISC | XGMAC_ALLMULTI);
}
} else {
if (can_sleep == 0) {
end_synchronized_op(sc, LOCK_HELD);
can_sleep = 1;
goto redo_sifflags;
}
rc = cxgbe_init_synchronized(vi);
}
vi->if_flags = ifp->if_flags;
} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
if (can_sleep == 0) {
end_synchronized_op(sc, LOCK_HELD);
can_sleep = 1;
goto redo_sifflags;
}
rc = cxgbe_uninit_synchronized(vi);
}
end_synchronized_op(sc, can_sleep ? 0 : LOCK_HELD);
break;
case SIOCADDMULTI:
case SIOCDELMULTI: /* these two are called with a mutex held :-( */
rc = begin_synchronized_op(sc, vi, HOLD_LOCK, "t4multi");
if (rc)
return (rc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = update_mac_settings(ifp, XGMAC_MCADDRS);
end_synchronized_op(sc, LOCK_HELD);
break;
case SIOCSIFCAP:
rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
if (rc)
return (rc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if (mask & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
if (IFCAP_TSO4 & ifp->if_capenable &&
!(IFCAP_TXCSUM & ifp->if_capenable)) {
ifp->if_capenable &= ~IFCAP_TSO4;
if_printf(ifp,
"tso4 disabled due to -txcsum.\n");
}
}
if (mask & IFCAP_TXCSUM_IPV6) {
ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
if (IFCAP_TSO6 & ifp->if_capenable &&
!(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
ifp->if_capenable &= ~IFCAP_TSO6;
if_printf(ifp,
"tso6 disabled due to -txcsum6.\n");
}
}
if (mask & IFCAP_RXCSUM)
ifp->if_capenable ^= IFCAP_RXCSUM;
if (mask & IFCAP_RXCSUM_IPV6)
ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
/*
* Note that we leave CSUM_TSO alone (it is always set). The
* kernel takes both IFCAP_TSOx and CSUM_TSO into account before
* sending a TSO request our way, so it's sufficient to toggle
* IFCAP_TSOx only.
*/
if (mask & IFCAP_TSO4) {
if (!(IFCAP_TSO4 & ifp->if_capenable) &&
!(IFCAP_TXCSUM & ifp->if_capenable)) {
if_printf(ifp, "enable txcsum first.\n");
rc = EAGAIN;
goto fail;
}
ifp->if_capenable ^= IFCAP_TSO4;
}
if (mask & IFCAP_TSO6) {
if (!(IFCAP_TSO6 & ifp->if_capenable) &&
!(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
if_printf(ifp, "enable txcsum6 first.\n");
rc = EAGAIN;
goto fail;
}
ifp->if_capenable ^= IFCAP_TSO6;
}
if (mask & IFCAP_LRO) {
#if defined(INET) || defined(INET6)
int i;
struct sge_rxq *rxq;
ifp->if_capenable ^= IFCAP_LRO;
for_each_rxq(vi, i, rxq) {
if (ifp->if_capenable & IFCAP_LRO)
rxq->iq.flags |= IQ_LRO_ENABLED;
else
rxq->iq.flags &= ~IQ_LRO_ENABLED;
}
#endif
}
#ifdef TCP_OFFLOAD
if (mask & IFCAP_TOE) {
int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
rc = toe_capability(vi, enable);
if (rc != 0)
goto fail;
ifp->if_capenable ^= mask;
}
#endif
if (mask & IFCAP_VLAN_HWTAGGING) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rc = update_mac_settings(ifp, XGMAC_VLANEX);
}
if (mask & IFCAP_VLAN_MTU) {
ifp->if_capenable ^= IFCAP_VLAN_MTU;
/* Need to find out how to disable auto-mtu-inflation */
}
if (mask & IFCAP_VLAN_HWTSO)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if (mask & IFCAP_VLAN_HWCSUM)
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
#ifdef VLAN_CAPABILITIES
VLAN_CAPABILITIES(ifp);
#endif
fail:
end_synchronized_op(sc, 0);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
ifmedia_ioctl(ifp, ifr, &vi->media, cmd);
break;
case SIOCGI2C: {
struct ifi2creq i2c;
rc = copyin(ifr->ifr_data, &i2c, sizeof(i2c));
if (rc != 0)
break;
if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
rc = EPERM;
break;
}
if (i2c.len > sizeof(i2c.data)) {
rc = EINVAL;
break;
}
rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
if (rc)
return (rc);
rc = -t4_i2c_rd(sc, sc->mbox, vi->pi->port_id, i2c.dev_addr,
i2c.offset, i2c.len, &i2c.data[0]);
end_synchronized_op(sc, 0);
if (rc == 0)
rc = copyout(&i2c, ifr->ifr_data, sizeof(i2c));
break;
}
default:
rc = ether_ioctl(ifp, cmd, data);
}
return (rc);
}
static int
cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct vi_info *vi = ifp->if_softc;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct sge_txq *txq;
void *items[1];
int rc;
M_ASSERTPKTHDR(m);
MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */
if (__predict_false(pi->link_cfg.link_ok == 0)) {
m_freem(m);
return (ENETDOWN);
}
rc = parse_pkt(sc, &m);
if (__predict_false(rc != 0)) {
MPASS(m == NULL); /* was freed already */
atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */
return (rc);
}
/* Select a txq. */
txq = &sc->sge.txq[vi->first_txq];
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
vi->rsrv_noflowq);
items[0] = m;
rc = mp_ring_enqueue(txq->r, items, 1, 4096);
if (__predict_false(rc != 0))
m_freem(m);
return (rc);
}
static void
cxgbe_qflush(struct ifnet *ifp)
{
struct vi_info *vi = ifp->if_softc;
struct sge_txq *txq;
int i;
/* queues do not exist if !VI_INIT_DONE. */
if (vi->flags & VI_INIT_DONE) {
for_each_txq(vi, i, txq) {
TXQ_LOCK(txq);
txq->eq.flags &= ~EQ_ENABLED;
TXQ_UNLOCK(txq);
while (!mp_ring_is_idle(txq->r)) {
mp_ring_check_drainage(txq->r, 0);
pause("qflush", 1);
}
}
}
if_qflush(ifp);
}
static uint64_t
vi_get_counter(struct ifnet *ifp, ift_counter c)
{
struct vi_info *vi = ifp->if_softc;
struct fw_vi_stats_vf *s = &vi->stats;
vi_refresh_stats(vi->pi->adapter, vi);
switch (c) {
case IFCOUNTER_IPACKETS:
return (s->rx_bcast_frames + s->rx_mcast_frames +
s->rx_ucast_frames);
case IFCOUNTER_IERRORS:
return (s->rx_err_frames);
case IFCOUNTER_OPACKETS:
return (s->tx_bcast_frames + s->tx_mcast_frames +
s->tx_ucast_frames + s->tx_offload_frames);
case IFCOUNTER_OERRORS:
return (s->tx_drop_frames);
case IFCOUNTER_IBYTES:
return (s->rx_bcast_bytes + s->rx_mcast_bytes +
s->rx_ucast_bytes);
case IFCOUNTER_OBYTES:
return (s->tx_bcast_bytes + s->tx_mcast_bytes +
s->tx_ucast_bytes + s->tx_offload_bytes);
case IFCOUNTER_IMCASTS:
return (s->rx_mcast_frames);
case IFCOUNTER_OMCASTS:
return (s->tx_mcast_frames);
case IFCOUNTER_OQDROPS: {
uint64_t drops;
drops = 0;
if (vi->flags & VI_INIT_DONE) {
int i;
struct sge_txq *txq;
for_each_txq(vi, i, txq)
drops += counter_u64_fetch(txq->r->drops);
}
return (drops);
}
default:
return (if_get_counter_default(ifp, c));
}
}
uint64_t
cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
{
struct vi_info *vi = ifp->if_softc;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct port_stats *s = &pi->stats;
if (pi->nvi > 1 || sc->flags & IS_VF)
return (vi_get_counter(ifp, c));
cxgbe_refresh_stats(sc, pi);
switch (c) {
case IFCOUNTER_IPACKETS:
return (s->rx_frames);
case IFCOUNTER_IERRORS:
return (s->rx_jabber + s->rx_runt + s->rx_too_long +
s->rx_fcs_err + s->rx_len_err);
case IFCOUNTER_OPACKETS:
return (s->tx_frames);
case IFCOUNTER_OERRORS:
return (s->tx_error_frames);
case IFCOUNTER_IBYTES:
return (s->rx_octets);
case IFCOUNTER_OBYTES:
return (s->tx_octets);
case IFCOUNTER_IMCASTS:
return (s->rx_mcast_frames);
case IFCOUNTER_OMCASTS:
return (s->tx_mcast_frames);
case IFCOUNTER_IQDROPS:
return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
s->rx_trunc3 + pi->tnl_cong_drops);
case IFCOUNTER_OQDROPS: {
uint64_t drops;
drops = s->tx_drop;
if (vi->flags & VI_INIT_DONE) {
int i;
struct sge_txq *txq;
for_each_txq(vi, i, txq)
drops += counter_u64_fetch(txq->r->drops);
}
return (drops);
}
default:
return (if_get_counter_default(ifp, c));
}
}
static int
cxgbe_media_change(struct ifnet *ifp)
{
struct vi_info *vi = ifp->if_softc;
device_printf(vi->dev, "%s unimplemented.\n", __func__);
return (EOPNOTSUPP);
}
static void
cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct vi_info *vi = ifp->if_softc;
struct port_info *pi = vi->pi;
struct ifmedia_entry *cur;
int speed = pi->link_cfg.speed;
cur = vi->media.ifm_cur;
ifmr->ifm_status = IFM_AVALID;
if (!pi->link_cfg.link_ok)
return;
ifmr->ifm_status |= IFM_ACTIVE;
/* active and current will differ iff current media is autoselect. */
if (IFM_SUBTYPE(cur->ifm_media) != IFM_AUTO)
return;
ifmr->ifm_active = IFM_ETHER | IFM_FDX;
if (speed == 10000)
ifmr->ifm_active |= IFM_10G_T;
else if (speed == 1000)
ifmr->ifm_active |= IFM_1000_T;
else if (speed == 100)
ifmr->ifm_active |= IFM_100_TX;
else if (speed == 10)
ifmr->ifm_active |= IFM_10_T;
else
KASSERT(0, ("%s: link up but speed unknown (%u)", __func__,
speed));
}
static int
vcxgbe_probe(device_t dev)
{
char buf[128];
struct vi_info *vi = device_get_softc(dev);
snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
vi - vi->pi->vi);
device_set_desc_copy(dev, buf);
return (BUS_PROBE_DEFAULT);
}
static int
vcxgbe_attach(device_t dev)
{
struct vi_info *vi;
struct port_info *pi;
struct adapter *sc;
int func, index, rc;
u32 param, val;
vi = device_get_softc(dev);
pi = vi->pi;
sc = pi->adapter;
index = vi - pi->vi;
KASSERT(index < nitems(vi_mac_funcs),
("%s: VI %s doesn't have a MAC func", __func__,
device_get_nameunit(dev)));
func = vi_mac_funcs[index];
rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
vi->hw_addr, &vi->rss_size, func, 0);
if (rc < 0) {
device_printf(dev, "Failed to allocate virtual interface "
"for port %d: %d\n", pi->port_id, -rc);
return (-rc);
}
vi->viid = rc;
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
V_FW_PARAMS_PARAM_YZ(vi->viid);
rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
if (rc)
vi->rss_base = 0xffff;
else {
/* MPASS((val >> 16) == rss_size); */
vi->rss_base = val & 0xffff;
}
rc = cxgbe_vi_attach(dev, vi);
if (rc) {
t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
return (rc);
}
return (0);
}
static int
vcxgbe_detach(device_t dev)
{
struct vi_info *vi;
struct adapter *sc;
vi = device_get_softc(dev);
sc = vi->pi->adapter;
doom_vi(sc, vi);
cxgbe_vi_detach(vi);
t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
end_synchronized_op(sc, 0);
return (0);
}
void
t4_fatal_err(struct adapter *sc)
{
t4_set_reg_field(sc, A_SGE_CONTROL, F_GLOBALENABLE, 0);
t4_intr_disable(sc);
log(LOG_EMERG, "%s: encountered fatal error, adapter stopped.\n",
device_get_nameunit(sc->dev));
}
void
t4_add_adapter(struct adapter *sc)
{
sx_xlock(&t4_list_lock);
SLIST_INSERT_HEAD(&t4_list, sc, link);
sx_xunlock(&t4_list_lock);
}
int
t4_map_bars_0_and_4(struct adapter *sc)
{
sc->regs_rid = PCIR_BAR(0);
sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->regs_rid, RF_ACTIVE);
if (sc->regs_res == NULL) {
device_printf(sc->dev, "cannot map registers.\n");
return (ENXIO);
}
sc->bt = rman_get_bustag(sc->regs_res);
sc->bh = rman_get_bushandle(sc->regs_res);
sc->mmio_len = rman_get_size(sc->regs_res);
setbit(&sc->doorbells, DOORBELL_KDB);
sc->msix_rid = PCIR_BAR(4);
sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->msix_rid, RF_ACTIVE);
if (sc->msix_res == NULL) {
device_printf(sc->dev, "cannot map MSI-X BAR.\n");
return (ENXIO);
}
return (0);
}
int
t4_map_bar_2(struct adapter *sc)
{
/*
* T4: only iWARP driver uses the userspace doorbells. There is no need
* to map it if RDMA is disabled.
*/
if (is_t4(sc) && sc->rdmacaps == 0)
return (0);
sc->udbs_rid = PCIR_BAR(2);
sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
&sc->udbs_rid, RF_ACTIVE);
if (sc->udbs_res == NULL) {
device_printf(sc->dev, "cannot map doorbell BAR.\n");
return (ENXIO);
}
sc->udbs_base = rman_get_virtual(sc->udbs_res);
if (chip_id(sc) >= CHELSIO_T5) {
setbit(&sc->doorbells, DOORBELL_UDB);
#if defined(__i386__) || defined(__amd64__)
if (t5_write_combine) {
int rc, mode;
/*
* Enable write combining on BAR2. This is the
* userspace doorbell BAR and is split into 128B
* (UDBS_SEG_SIZE) doorbell regions, each associated
* with an egress queue. The first 64B has the doorbell
* and the second 64B can be used to submit a tx work
* request with an implicit doorbell.
*/
rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
if (rc == 0) {
clrbit(&sc->doorbells, DOORBELL_UDB);
setbit(&sc->doorbells, DOORBELL_WCWR);
setbit(&sc->doorbells, DOORBELL_UDBWC);
} else {
device_printf(sc->dev,
"couldn't enable write combining: %d\n",
rc);
}
mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
t4_write_reg(sc, A_SGE_STAT_CFG,
V_STATSOURCE_T5(7) | mode);
}
#endif
}
return (0);
}
struct memwin_init {
uint32_t base;
uint32_t aperture;
};
static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
{ MEMWIN0_BASE, MEMWIN0_APERTURE },
{ MEMWIN1_BASE, MEMWIN1_APERTURE },
{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
};
static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
{ MEMWIN0_BASE, MEMWIN0_APERTURE },
{ MEMWIN1_BASE, MEMWIN1_APERTURE },
{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
};
static void
setup_memwin(struct adapter *sc)
{
const struct memwin_init *mw_init;
struct memwin *mw;
int i;
uint32_t bar0;
if (is_t4(sc)) {
/*
* Read low 32b of bar0 indirectly via the hardware backdoor
* mechanism. Works from within PCI passthrough environments
* too, where rman_get_start() can return a different value. We
* need to program the T4 memory window decoders with the actual
* addresses that will be coming across the PCIe link.
*/
bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
mw_init = &t4_memwin[0];
} else {
/* T5+ use the relative offset inside the PCIe BAR */
bar0 = 0;
mw_init = &t5_memwin[0];
}
for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
rw_init(&mw->mw_lock, "memory window access");
mw->mw_base = mw_init->base;
mw->mw_aperture = mw_init->aperture;
mw->mw_curpos = 0;
t4_write_reg(sc,
PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
(mw->mw_base + bar0) | V_BIR(0) |
V_WINDOW(ilog2(mw->mw_aperture) - 10));
rw_wlock(&mw->mw_lock);
position_memwin(sc, i, 0);
rw_wunlock(&mw->mw_lock);
}
/* flush */
t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
}
/*
* Positions the memory window at the given address in the card's address space.
* There are some alignment requirements and the actual position may be at an
* address prior to the requested address. mw->mw_curpos always has the actual
* position of the window.
*/
static void
position_memwin(struct adapter *sc, int idx, uint32_t addr)
{
struct memwin *mw;
uint32_t pf;
uint32_t reg;
MPASS(idx >= 0 && idx < NUM_MEMWIN);
mw = &sc->memwin[idx];
rw_assert(&mw->mw_lock, RA_WLOCKED);
if (is_t4(sc)) {
pf = 0;
mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */
} else {
pf = V_PFNUM(sc->pf);
mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */
}
reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
t4_write_reg(sc, reg, mw->mw_curpos | pf);
t4_read_reg(sc, reg); /* flush */
}
static int
rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
int len, int rw)
{
struct memwin *mw;
uint32_t mw_end, v;
MPASS(idx >= 0 && idx < NUM_MEMWIN);
/* Memory can only be accessed in naturally aligned 4 byte units */
if (addr & 3 || len & 3 || len <= 0)
return (EINVAL);
mw = &sc->memwin[idx];
while (len > 0) {
rw_rlock(&mw->mw_lock);
mw_end = mw->mw_curpos + mw->mw_aperture;
if (addr >= mw_end || addr < mw->mw_curpos) {
/* Will need to reposition the window */
if (!rw_try_upgrade(&mw->mw_lock)) {
rw_runlock(&mw->mw_lock);
rw_wlock(&mw->mw_lock);
}
rw_assert(&mw->mw_lock, RA_WLOCKED);
position_memwin(sc, idx, addr);
rw_downgrade(&mw->mw_lock);
mw_end = mw->mw_curpos + mw->mw_aperture;
}
rw_assert(&mw->mw_lock, RA_RLOCKED);
while (addr < mw_end && len > 0) {
if (rw == 0) {
v = t4_read_reg(sc, mw->mw_base + addr -
mw->mw_curpos);
*val++ = le32toh(v);
} else {
v = *val++;
t4_write_reg(sc, mw->mw_base + addr -
mw->mw_curpos, htole32(v));
}
addr += 4;
len -= 4;
}
rw_runlock(&mw->mw_lock);
}
return (0);
}
static inline int
read_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
int len)
{
return (rw_via_memwin(sc, idx, addr, val, len, 0));
}
static inline int
write_via_memwin(struct adapter *sc, int idx, uint32_t addr,
const uint32_t *val, int len)
{
return (rw_via_memwin(sc, idx, addr, (void *)(uintptr_t)val, len, 1));
}
static int
t4_range_cmp(const void *a, const void *b)
{
return ((const struct t4_range *)a)->start -
((const struct t4_range *)b)->start;
}
/*
* Verify that the memory range specified by the addr/len pair is valid within
* the card's address space.
*/
static int
validate_mem_range(struct adapter *sc, uint32_t addr, int len)
{
struct t4_range mem_ranges[4], *r, *next;
uint32_t em, addr_len;
int i, n, remaining;
/* Memory can only be accessed in naturally aligned 4 byte units */
if (addr & 3 || len & 3 || len <= 0)
return (EINVAL);
/* Enabled memories */
em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
r = &mem_ranges[0];
n = 0;
bzero(r, sizeof(mem_ranges));
if (em & F_EDRAM0_ENABLE) {
addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
r->size = G_EDRAM0_SIZE(addr_len) << 20;
if (r->size > 0) {
r->start = G_EDRAM0_BASE(addr_len) << 20;
if (addr >= r->start &&
addr + len <= r->start + r->size)
return (0);
r++;
n++;
}
}
if (em & F_EDRAM1_ENABLE) {
addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
r->size = G_EDRAM1_SIZE(addr_len) << 20;
if (r->size > 0) {
r->start = G_EDRAM1_BASE(addr_len) << 20;
if (addr >= r->start &&
addr + len <= r->start + r->size)
return (0);
r++;
n++;
}
}
if (em & F_EXT_MEM_ENABLE) {
addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
r->size = G_EXT_MEM_SIZE(addr_len) << 20;
if (r->size > 0) {
r->start = G_EXT_MEM_BASE(addr_len) << 20;
if (addr >= r->start &&
addr + len <= r->start + r->size)
return (0);
r++;
n++;
}
}
if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
if (r->size > 0) {
r->start = G_EXT_MEM1_BASE(addr_len) << 20;
if (addr >= r->start &&
addr + len <= r->start + r->size)
return (0);
r++;
n++;
}
}
MPASS(n <= nitems(mem_ranges));
if (n > 1) {
/* Sort and merge the ranges. */
qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
/* Start from index 0 and examine the next n - 1 entries. */
r = &mem_ranges[0];
for (remaining = n - 1; remaining > 0; remaining--, r++) {
MPASS(r->size > 0); /* r is a valid entry. */
next = r + 1;
MPASS(next->size > 0); /* and so is the next one. */
while (r->start + r->size >= next->start) {
/* Merge the next one into the current entry. */
r->size = max(r->start + r->size,
next->start + next->size) - r->start;
n--; /* One fewer entry in total. */
if (--remaining == 0)
goto done; /* short circuit */
next++;
}
if (next != r + 1) {
/*
* Some entries were merged into r and next
* points to the first valid entry that couldn't
* be merged.
*/
MPASS(next->size > 0); /* must be valid */
memcpy(r + 1, next, remaining * sizeof(*r));
#ifdef INVARIANTS
/*
* This so that the foo->size assertion in the
* next iteration of the loop do the right
* thing for entries that were pulled up and are
* no longer valid.
*/
MPASS(n < nitems(mem_ranges));
bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
sizeof(struct t4_range));
#endif
}
}
done:
/* Done merging the ranges. */
MPASS(n > 0);
r = &mem_ranges[0];
for (i = 0; i < n; i++, r++) {
if (addr >= r->start &&
addr + len <= r->start + r->size)
return (0);
}
}
return (EFAULT);
}
static int
fwmtype_to_hwmtype(int mtype)
{
switch (mtype) {
case FW_MEMTYPE_EDC0:
return (MEM_EDC0);
case FW_MEMTYPE_EDC1:
return (MEM_EDC1);
case FW_MEMTYPE_EXTMEM:
return (MEM_MC0);
case FW_MEMTYPE_EXTMEM1:
return (MEM_MC1);
default:
panic("%s: cannot translate fw mtype %d.", __func__, mtype);
}
}
/*
* Verify that the memory range specified by the memtype/offset/len pair is
* valid and lies entirely within the memtype specified. The global address of
* the start of the range is returned in addr.
*/
static int
validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, int len,
uint32_t *addr)
{
uint32_t em, addr_len, maddr;
/* Memory can only be accessed in naturally aligned 4 byte units */
if (off & 3 || len & 3 || len == 0)
return (EINVAL);
em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
switch (fwmtype_to_hwmtype(mtype)) {
case MEM_EDC0:
if (!(em & F_EDRAM0_ENABLE))
return (EINVAL);
addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
maddr = G_EDRAM0_BASE(addr_len) << 20;
break;
case MEM_EDC1:
if (!(em & F_EDRAM1_ENABLE))
return (EINVAL);
addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
maddr = G_EDRAM1_BASE(addr_len) << 20;
break;
case MEM_MC:
if (!(em & F_EXT_MEM_ENABLE))
return (EINVAL);
addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
maddr = G_EXT_MEM_BASE(addr_len) << 20;
break;
case MEM_MC1:
if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
return (EINVAL);
addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
maddr = G_EXT_MEM1_BASE(addr_len) << 20;
break;
default:
return (EINVAL);
}
*addr = maddr + off; /* global address */
return (validate_mem_range(sc, *addr, len));
}
static int
fixup_devlog_params(struct adapter *sc)
{
struct devlog_params *dparams = &sc->params.devlog;
int rc;
rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
dparams->size, &dparams->addr);
return (rc);
}
static int
cfg_itype_and_nqueues(struct adapter *sc, int n10g, int n1g, int num_vis,
struct intrs_and_queues *iaq)
{
int rc, itype, navail, nrxq10g, nrxq1g, n;
int nofldrxq10g = 0, nofldrxq1g = 0;
bzero(iaq, sizeof(*iaq));
iaq->ntxq10g = t4_ntxq10g;
iaq->ntxq1g = t4_ntxq1g;
iaq->ntxq_vi = t4_ntxq_vi;
iaq->nrxq10g = nrxq10g = t4_nrxq10g;
iaq->nrxq1g = nrxq1g = t4_nrxq1g;
iaq->nrxq_vi = t4_nrxq_vi;
iaq->rsrv_noflowq = t4_rsrv_noflowq;
#ifdef TCP_OFFLOAD
if (is_offload(sc)) {
iaq->nofldtxq10g = t4_nofldtxq10g;
iaq->nofldtxq1g = t4_nofldtxq1g;
iaq->nofldtxq_vi = t4_nofldtxq_vi;
iaq->nofldrxq10g = nofldrxq10g = t4_nofldrxq10g;
iaq->nofldrxq1g = nofldrxq1g = t4_nofldrxq1g;
iaq->nofldrxq_vi = t4_nofldrxq_vi;
}
#endif
#ifdef DEV_NETMAP
iaq->nnmtxq_vi = t4_nnmtxq_vi;
iaq->nnmrxq_vi = t4_nnmrxq_vi;
#endif
for (itype = INTR_MSIX; itype; itype >>= 1) {
if ((itype & t4_intr_types) == 0)
continue; /* not allowed */
if (itype == INTR_MSIX)
navail = pci_msix_count(sc->dev);
else if (itype == INTR_MSI)
navail = pci_msi_count(sc->dev);
else
navail = 1;
restart:
if (navail == 0)
continue;
iaq->intr_type = itype;
iaq->intr_flags_10g = 0;
iaq->intr_flags_1g = 0;
/*
* Best option: an interrupt vector for errors, one for the
* firmware event queue, and one for every rxq (NIC and TOE) of
* every VI. The VIs that support netmap use the same
* interrupts for the NIC rx queues and the netmap rx queues
* because only one set of queues is active at a time.
*/
iaq->nirq = T4_EXTRA_INTR;
iaq->nirq += n10g * (nrxq10g + nofldrxq10g);
iaq->nirq += n1g * (nrxq1g + nofldrxq1g);
iaq->nirq += (n10g + n1g) * (num_vis - 1) *
max(iaq->nrxq_vi, iaq->nnmrxq_vi); /* See comment above. */
iaq->nirq += (n10g + n1g) * (num_vis - 1) * iaq->nofldrxq_vi;
if (iaq->nirq <= navail &&
(itype != INTR_MSI || powerof2(iaq->nirq))) {
iaq->intr_flags_10g = INTR_ALL;
iaq->intr_flags_1g = INTR_ALL;
goto allocate;
}
/* Disable the VIs (and netmap) if there aren't enough intrs */
if (num_vis > 1) {
device_printf(sc->dev, "virtual interfaces disabled "
"because num_vis=%u with current settings "
"(nrxq10g=%u, nrxq1g=%u, nofldrxq10g=%u, "
"nofldrxq1g=%u, nrxq_vi=%u nofldrxq_vi=%u, "
"nnmrxq_vi=%u) would need %u interrupts but "
"only %u are available.\n", num_vis, nrxq10g,
nrxq1g, nofldrxq10g, nofldrxq1g, iaq->nrxq_vi,
iaq->nofldrxq_vi, iaq->nnmrxq_vi, iaq->nirq,
navail);
num_vis = 1;
iaq->ntxq_vi = iaq->nrxq_vi = 0;
iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
goto restart;
}
/*
* Second best option: a vector for errors, one for the firmware
* event queue, and vectors for either all the NIC rx queues or
* all the TOE rx queues. The queues that don't get vectors
* will forward their interrupts to those that do.
*/
iaq->nirq = T4_EXTRA_INTR;
if (nrxq10g >= nofldrxq10g) {
iaq->intr_flags_10g = INTR_RXQ;
iaq->nirq += n10g * nrxq10g;
} else {
iaq->intr_flags_10g = INTR_OFLD_RXQ;
iaq->nirq += n10g * nofldrxq10g;
}
if (nrxq1g >= nofldrxq1g) {
iaq->intr_flags_1g = INTR_RXQ;
iaq->nirq += n1g * nrxq1g;
} else {
iaq->intr_flags_1g = INTR_OFLD_RXQ;
iaq->nirq += n1g * nofldrxq1g;
}
if (iaq->nirq <= navail &&
(itype != INTR_MSI || powerof2(iaq->nirq)))
goto allocate;
/*
* Next best option: an interrupt vector for errors, one for the
* firmware event queue, and at least one per main-VI. At this
* point we know we'll have to downsize nrxq and/or nofldrxq to
* fit what's available to us.
*/
iaq->nirq = T4_EXTRA_INTR;
iaq->nirq += n10g + n1g;
if (iaq->nirq <= navail) {
int leftover = navail - iaq->nirq;
if (n10g > 0) {
int target = max(nrxq10g, nofldrxq10g);
iaq->intr_flags_10g = nrxq10g >= nofldrxq10g ?
INTR_RXQ : INTR_OFLD_RXQ;
n = 1;
while (n < target && leftover >= n10g) {
leftover -= n10g;
iaq->nirq += n10g;
n++;
}
iaq->nrxq10g = min(n, nrxq10g);
#ifdef TCP_OFFLOAD
iaq->nofldrxq10g = min(n, nofldrxq10g);
#endif
}
if (n1g > 0) {
int target = max(nrxq1g, nofldrxq1g);
iaq->intr_flags_1g = nrxq1g >= nofldrxq1g ?
INTR_RXQ : INTR_OFLD_RXQ;
n = 1;
while (n < target && leftover >= n1g) {
leftover -= n1g;
iaq->nirq += n1g;
n++;
}
iaq->nrxq1g = min(n, nrxq1g);
#ifdef TCP_OFFLOAD
iaq->nofldrxq1g = min(n, nofldrxq1g);
#endif
}
if (itype != INTR_MSI || powerof2(iaq->nirq))
goto allocate;
}
/*
* Least desirable option: one interrupt vector for everything.
*/
iaq->nirq = iaq->nrxq10g = iaq->nrxq1g = 1;
iaq->intr_flags_10g = iaq->intr_flags_1g = 0;
#ifdef TCP_OFFLOAD
if (is_offload(sc))
iaq->nofldrxq10g = iaq->nofldrxq1g = 1;
#endif
allocate:
navail = iaq->nirq;
rc = 0;
if (itype == INTR_MSIX)
rc = pci_alloc_msix(sc->dev, &navail);
else if (itype == INTR_MSI)
rc = pci_alloc_msi(sc->dev, &navail);
if (rc == 0) {
if (navail == iaq->nirq)
return (0);
/*
* Didn't get the number requested. Use whatever number
* the kernel is willing to allocate (it's in navail).
*/
device_printf(sc->dev, "fewer vectors than requested, "
"type=%d, req=%d, rcvd=%d; will downshift req.\n",
itype, iaq->nirq, navail);
pci_release_msi(sc->dev);
goto restart;
}
device_printf(sc->dev,
"failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
itype, rc, iaq->nirq, navail);
}
device_printf(sc->dev,
"failed to find a usable interrupt type. "
"allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
pci_msix_count(sc->dev), pci_msi_count(sc->dev));
return (ENXIO);
}
#define FW_VERSION(chip) ( \
V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
#define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
struct fw_info {
uint8_t chip;
char *kld_name;
char *fw_mod_name;
struct fw_hdr fw_hdr; /* XXX: waste of space, need a sparse struct */
} fw_info[] = {
{
.chip = CHELSIO_T4,
.kld_name = "t4fw_cfg",
.fw_mod_name = "t4fw",
.fw_hdr = {
.chip = FW_HDR_CHIP_T4,
.fw_ver = htobe32_const(FW_VERSION(T4)),
.intfver_nic = FW_INTFVER(T4, NIC),
.intfver_vnic = FW_INTFVER(T4, VNIC),
.intfver_ofld = FW_INTFVER(T4, OFLD),
.intfver_ri = FW_INTFVER(T4, RI),
.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
.intfver_iscsi = FW_INTFVER(T4, ISCSI),
.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
.intfver_fcoe = FW_INTFVER(T4, FCOE),
},
}, {
.chip = CHELSIO_T5,
.kld_name = "t5fw_cfg",
.fw_mod_name = "t5fw",
.fw_hdr = {
.chip = FW_HDR_CHIP_T5,
.fw_ver = htobe32_const(FW_VERSION(T5)),
.intfver_nic = FW_INTFVER(T5, NIC),
.intfver_vnic = FW_INTFVER(T5, VNIC),
.intfver_ofld = FW_INTFVER(T5, OFLD),
.intfver_ri = FW_INTFVER(T5, RI),
.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
.intfver_iscsi = FW_INTFVER(T5, ISCSI),
.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
.intfver_fcoe = FW_INTFVER(T5, FCOE),
},
}
};
static struct fw_info *
find_fw_info(int chip)
{
int i;
for (i = 0; i < nitems(fw_info); i++) {
if (fw_info[i].chip == chip)
return (&fw_info[i]);
}
return (NULL);
}
/*
* Is the given firmware API compatible with the one the driver was compiled
* with?
*/
static int
fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
{
/* short circuit if it's the exact same firmware version */
if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
return (1);
/*
* XXX: Is this too conservative? Perhaps I should limit this to the
* features that are supported in the driver.
*/
#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
return (1);
#undef SAME_INTF
return (0);
}
/*
* The firmware in the KLD is usable, but should it be installed? This routine
* explains itself in detail if it indicates the KLD firmware should be
* installed.
*/
static int
should_install_kld_fw(struct adapter *sc, int card_fw_usable, int k, int c)
{
const char *reason;
if (!card_fw_usable) {
reason = "incompatible or unusable";
goto install;
}
if (k > c) {
reason = "older than the version bundled with this driver";
goto install;
}
if (t4_fw_install == 2 && k != c) {
reason = "different than the version bundled with this driver";
goto install;
}
return (0);
install:
if (t4_fw_install == 0) {
device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
"but the driver is prohibited from installing a different "
"firmware on the card.\n",
G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
return (0);
}
device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
"installing firmware %u.%u.%u.%u on card.\n",
G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
return (1);
}
/*
* Establish contact with the firmware and determine if we are the master driver
* or not, and whether we are responsible for chip initialization.
*/
static int
prep_firmware(struct adapter *sc)
{
const struct firmware *fw = NULL, *default_cfg;
int rc, pf, card_fw_usable, kld_fw_usable, need_fw_reset = 1;
enum dev_state state;
struct fw_info *fw_info;
struct fw_hdr *card_fw; /* fw on the card */
const struct fw_hdr *kld_fw; /* fw in the KLD */
const struct fw_hdr *drv_fw; /* fw header the driver was compiled
against */
/* Contact firmware. */
rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
if (rc < 0 || state == DEV_STATE_ERR) {
rc = -rc;
device_printf(sc->dev,
"failed to connect to the firmware: %d, %d.\n", rc, state);
return (rc);
}
pf = rc;
if (pf == sc->mbox)
sc->flags |= MASTER_PF;
else if (state == DEV_STATE_UNINIT) {
/*
* We didn't get to be the master so we definitely won't be
* configuring the chip. It's a bug if someone else hasn't
* configured it already.
*/
device_printf(sc->dev, "couldn't be master(%d), "
"device not already initialized either(%d).\n", rc, state);
return (EDOOFUS);
}
/* This is the firmware whose headers the driver was compiled against */
fw_info = find_fw_info(chip_id(sc));
if (fw_info == NULL) {
device_printf(sc->dev,
"unable to look up firmware information for chip %d.\n",
chip_id(sc));
return (EINVAL);
}
drv_fw = &fw_info->fw_hdr;
/*
* The firmware KLD contains many modules. The KLD name is also the
* name of the module that contains the default config file.
*/
default_cfg = firmware_get(fw_info->kld_name);
/* Read the header of the firmware on the card */
card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
rc = -t4_read_flash(sc, FLASH_FW_START,
sizeof (*card_fw) / sizeof (uint32_t), (uint32_t *)card_fw, 1);
if (rc == 0)
card_fw_usable = fw_compatible(drv_fw, (const void*)card_fw);
else {
device_printf(sc->dev,
"Unable to read card's firmware header: %d\n", rc);
card_fw_usable = 0;
}
/* This is the firmware in the KLD */
fw = firmware_get(fw_info->fw_mod_name);
if (fw != NULL) {
kld_fw = (const void *)fw->data;
kld_fw_usable = fw_compatible(drv_fw, kld_fw);
} else {
kld_fw = NULL;
kld_fw_usable = 0;
}
if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
(!kld_fw_usable || kld_fw->fw_ver == drv_fw->fw_ver)) {
/*
* Common case: the firmware on the card is an exact match and
* the KLD is an exact match too, or the KLD is
* absent/incompatible. Note that t4_fw_install = 2 is ignored
* here -- use cxgbetool loadfw if you want to reinstall the
* same firmware as the one on the card.
*/
} else if (kld_fw_usable && state == DEV_STATE_UNINIT &&
should_install_kld_fw(sc, card_fw_usable, be32toh(kld_fw->fw_ver),
be32toh(card_fw->fw_ver))) {
rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
if (rc != 0) {
device_printf(sc->dev,
"failed to install firmware: %d\n", rc);
goto done;
}
/* Installed successfully, update the cached header too. */
memcpy(card_fw, kld_fw, sizeof(*card_fw));
card_fw_usable = 1;
need_fw_reset = 0; /* already reset as part of load_fw */
}
if (!card_fw_usable) {
uint32_t d, c, k;
d = ntohl(drv_fw->fw_ver);
c = ntohl(card_fw->fw_ver);
k = kld_fw ? ntohl(kld_fw->fw_ver) : 0;
device_printf(sc->dev, "Cannot find a usable firmware: "
"fw_install %d, chip state %d, "
"driver compiled with %d.%d.%d.%d, "
"card has %d.%d.%d.%d, KLD has %d.%d.%d.%d\n",
t4_fw_install, state,
G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d),
G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c),
G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k));
rc = EINVAL;
goto done;
}
/* Reset device */
if (need_fw_reset &&
(rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST)) != 0) {
device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
if (rc != ETIMEDOUT && rc != EIO)
t4_fw_bye(sc, sc->mbox);
goto done;
}
sc->flags |= FW_OK;
rc = get_params__pre_init(sc);
if (rc != 0)
goto done; /* error message displayed already */
/* Partition adapter resources as specified in the config file. */
if (state == DEV_STATE_UNINIT) {
KASSERT(sc->flags & MASTER_PF,
("%s: trying to change chip settings when not master.",
__func__));
rc = partition_resources(sc, default_cfg, fw_info->kld_name);
if (rc != 0)
goto done; /* error message displayed already */
t4_tweak_chip_settings(sc);
/* get basic stuff going */
rc = -t4_fw_initialize(sc, sc->mbox);
if (rc != 0) {
device_printf(sc->dev, "fw init failed: %d.\n", rc);
goto done;
}
} else {
snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", pf);
sc->cfcsum = 0;
}
done:
free(card_fw, M_CXGBE);
if (fw != NULL)
firmware_put(fw, FIRMWARE_UNLOAD);
if (default_cfg != NULL)
firmware_put(default_cfg, FIRMWARE_UNLOAD);
return (rc);
}
#define FW_PARAM_DEV(param) \
(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
#define FW_PARAM_PFVF(param) \
(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
/*
* Partition chip resources for use between various PFs, VFs, etc.
*/
static int
partition_resources(struct adapter *sc, const struct firmware *default_cfg,
const char *name_prefix)
{
const struct firmware *cfg = NULL;
int rc = 0;
struct fw_caps_config_cmd caps;
uint32_t mtype, moff, finicsum, cfcsum;
/*
* Figure out what configuration file to use. Pick the default config
* file for the card if the user hasn't specified one explicitly.
*/
snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", t4_cfg_file);
if (strncmp(t4_cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
/* Card specific overrides go here. */
if (pci_get_device(sc->dev) == 0x440a)
snprintf(sc->cfg_file, sizeof(sc->cfg_file), UWIRE_CF);
if (is_fpga(sc))
snprintf(sc->cfg_file, sizeof(sc->cfg_file), FPGA_CF);
}
/*
* We need to load another module if the profile is anything except
* "default" or "flash".
*/
if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) != 0 &&
strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
char s[32];
snprintf(s, sizeof(s), "%s_%s", name_prefix, sc->cfg_file);
cfg = firmware_get(s);
if (cfg == NULL) {
if (default_cfg != NULL) {
device_printf(sc->dev,
"unable to load module \"%s\" for "
"configuration profile \"%s\", will use "
"the default config file instead.\n",
s, sc->cfg_file);
snprintf(sc->cfg_file, sizeof(sc->cfg_file),
"%s", DEFAULT_CF);
} else {
device_printf(sc->dev,
"unable to load module \"%s\" for "
"configuration profile \"%s\", will use "
"the config file on the card's flash "
"instead.\n", s, sc->cfg_file);
snprintf(sc->cfg_file, sizeof(sc->cfg_file),
"%s", FLASH_CF);
}
}
}
if (strncmp(sc->cfg_file, DEFAULT_CF, sizeof(sc->cfg_file)) == 0 &&
default_cfg == NULL) {
device_printf(sc->dev,
"default config file not available, will use the config "
"file on the card's flash instead.\n");
snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", FLASH_CF);
}
if (strncmp(sc->cfg_file, FLASH_CF, sizeof(sc->cfg_file)) != 0) {
u_int cflen;
const uint32_t *cfdata;
uint32_t param, val, addr;
KASSERT(cfg != NULL || default_cfg != NULL,
("%s: no config to upload", __func__));
/*
* Ask the firmware where it wants us to upload the config file.
*/
param = FW_PARAM_DEV(CF);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
if (rc != 0) {
/* No support for config file? Shouldn't happen. */
device_printf(sc->dev,
"failed to query config file location: %d.\n", rc);
goto done;
}
mtype = G_FW_PARAMS_PARAM_Y(val);
moff = G_FW_PARAMS_PARAM_Z(val) << 16;
/*
* XXX: sheer laziness. We deliberately added 4 bytes of
* useless stuffing/comments at the end of the config file so
* it's ok to simply throw away the last remaining bytes when
* the config file is not an exact multiple of 4. This also
* helps with the validate_mt_off_len check.
*/
if (cfg != NULL) {
cflen = cfg->datasize & ~3;
cfdata = cfg->data;
} else {
cflen = default_cfg->datasize & ~3;
cfdata = default_cfg->data;
}
if (cflen > FLASH_CFG_MAX_SIZE) {
device_printf(sc->dev,
"config file too long (%d, max allowed is %d). "
"Will try to use the config on the card, if any.\n",
cflen, FLASH_CFG_MAX_SIZE);
goto use_config_on_flash;
}
rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
if (rc != 0) {
device_printf(sc->dev,
"%s: addr (%d/0x%x) or len %d is not valid: %d. "
"Will try to use the config on the card, if any.\n",
__func__, mtype, moff, cflen, rc);
goto use_config_on_flash;
}
write_via_memwin(sc, 2, addr, cfdata, cflen);
} else {
use_config_on_flash:
mtype = FW_MEMTYPE_FLASH;
moff = t4_flash_cfg_addr(sc);
}
bzero(&caps, sizeof(caps));
caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | FW_LEN16(caps));
rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
if (rc != 0) {
device_printf(sc->dev,
"failed to pre-process config file: %d "
"(mtype %d, moff 0x%x).\n", rc, mtype, moff);
goto done;
}
finicsum = be32toh(caps.finicsum);
cfcsum = be32toh(caps.cfcsum);
if (finicsum != cfcsum) {
device_printf(sc->dev,
"WARNING: config file checksum mismatch: %08x %08x\n",
finicsum, cfcsum);
}
sc->cfcsum = cfcsum;
#define LIMIT_CAPS(x) do { \
caps.x &= htobe16(t4_##x##_allowed); \
} while (0)
/*
* Let the firmware know what features will (not) be used so it can tune
* things accordingly.
*/
LIMIT_CAPS(nbmcaps);
LIMIT_CAPS(linkcaps);
LIMIT_CAPS(switchcaps);
LIMIT_CAPS(niccaps);
LIMIT_CAPS(toecaps);
LIMIT_CAPS(rdmacaps);
LIMIT_CAPS(cryptocaps);
LIMIT_CAPS(iscsicaps);
LIMIT_CAPS(fcoecaps);
#undef LIMIT_CAPS
caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
if (rc != 0) {
device_printf(sc->dev,
"failed to process config file: %d.\n", rc);
}
done:
if (cfg != NULL)
firmware_put(cfg, FIRMWARE_UNLOAD);
return (rc);
}
/*
* Retrieve parameters that are needed (or nice to have) very early.
*/
static int
get_params__pre_init(struct adapter *sc)
{
int rc;
uint32_t param[2], val[2];
t4_get_version_info(sc);
snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
param[0] = FW_PARAM_DEV(PORTVEC);
param[1] = FW_PARAM_DEV(CCLK);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query parameters (pre_init): %d.\n", rc);
return (rc);
}
sc->params.portvec = val[0];
sc->params.nports = bitcount32(val[0]);
sc->params.vpd.cclk = val[1];
/* Read device log parameters. */
rc = -t4_init_devlog_params(sc, 1);
if (rc == 0)
fixup_devlog_params(sc);
else {
device_printf(sc->dev,
"failed to get devlog parameters: %d.\n", rc);
rc = 0; /* devlog isn't critical for device operation */
}
return (rc);
}
/*
* Retrieve various parameters that are of interest to the driver. The device
* has been initialized by the firmware at this point.
*/
static int
get_params__post_init(struct adapter *sc)
{
int rc;
uint32_t param[7], val[7];
struct fw_caps_config_cmd caps;
param[0] = FW_PARAM_PFVF(IQFLINT_START);
param[1] = FW_PARAM_PFVF(EQ_START);
param[2] = FW_PARAM_PFVF(FILTER_START);
param[3] = FW_PARAM_PFVF(FILTER_END);
param[4] = FW_PARAM_PFVF(L2T_START);
param[5] = FW_PARAM_PFVF(L2T_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query parameters (post_init): %d.\n", rc);
return (rc);
}
sc->sge.iq_start = val[0];
sc->sge.eq_start = val[1];
sc->tids.ftid_base = val[2];
sc->tids.nftids = val[3] - val[2] + 1;
sc->params.ftid_min = val[2];
sc->params.ftid_max = val[3];
sc->vres.l2t.start = val[4];
sc->vres.l2t.size = val[5] - val[4] + 1;
KASSERT(sc->vres.l2t.size <= L2T_SIZE,
("%s: L2 table size (%u) larger than expected (%u)",
__func__, sc->vres.l2t.size, L2T_SIZE));
/* get capabilites */
bzero(&caps, sizeof(caps));
caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ);
caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
if (rc != 0) {
device_printf(sc->dev,
"failed to get card capabilities: %d.\n", rc);
return (rc);
}
#define READ_CAPS(x) do { \
sc->x = htobe16(caps.x); \
} while (0)
READ_CAPS(nbmcaps);
READ_CAPS(linkcaps);
READ_CAPS(switchcaps);
READ_CAPS(niccaps);
READ_CAPS(toecaps);
READ_CAPS(rdmacaps);
READ_CAPS(cryptocaps);
READ_CAPS(iscsicaps);
READ_CAPS(fcoecaps);
if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
param[0] = FW_PARAM_PFVF(ETHOFLD_START);
param[1] = FW_PARAM_PFVF(ETHOFLD_END);
param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query NIC parameters: %d.\n", rc);
return (rc);
}
sc->tids.etid_base = val[0];
sc->params.etid_min = val[0];
sc->tids.netids = val[1] - val[0] + 1;
sc->params.netids = sc->tids.netids;
sc->params.eo_wr_cred = val[2];
sc->params.ethoffload = 1;
}
if (sc->toecaps) {
/* query offload-related parameters */
param[0] = FW_PARAM_DEV(NTID);
param[1] = FW_PARAM_PFVF(SERVER_START);
param[2] = FW_PARAM_PFVF(SERVER_END);
param[3] = FW_PARAM_PFVF(TDDP_START);
param[4] = FW_PARAM_PFVF(TDDP_END);
param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query TOE parameters: %d.\n", rc);
return (rc);
}
sc->tids.ntids = val[0];
sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
sc->tids.stid_base = val[1];
sc->tids.nstids = val[2] - val[1] + 1;
sc->vres.ddp.start = val[3];
sc->vres.ddp.size = val[4] - val[3] + 1;
sc->params.ofldq_wr_cred = val[5];
sc->params.offload = 1;
}
if (sc->rdmacaps) {
param[0] = FW_PARAM_PFVF(STAG_START);
param[1] = FW_PARAM_PFVF(STAG_END);
param[2] = FW_PARAM_PFVF(RQ_START);
param[3] = FW_PARAM_PFVF(RQ_END);
param[4] = FW_PARAM_PFVF(PBL_START);
param[5] = FW_PARAM_PFVF(PBL_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query RDMA parameters(1): %d.\n", rc);
return (rc);
}
sc->vres.stag.start = val[0];
sc->vres.stag.size = val[1] - val[0] + 1;
sc->vres.rq.start = val[2];
sc->vres.rq.size = val[3] - val[2] + 1;
sc->vres.pbl.start = val[4];
sc->vres.pbl.size = val[5] - val[4] + 1;
param[0] = FW_PARAM_PFVF(SQRQ_START);
param[1] = FW_PARAM_PFVF(SQRQ_END);
param[2] = FW_PARAM_PFVF(CQ_START);
param[3] = FW_PARAM_PFVF(CQ_END);
param[4] = FW_PARAM_PFVF(OCQ_START);
param[5] = FW_PARAM_PFVF(OCQ_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query RDMA parameters(2): %d.\n", rc);
return (rc);
}
sc->vres.qp.start = val[0];
sc->vres.qp.size = val[1] - val[0] + 1;
sc->vres.cq.start = val[2];
sc->vres.cq.size = val[3] - val[2] + 1;
sc->vres.ocq.start = val[4];
sc->vres.ocq.size = val[5] - val[4] + 1;
}
if (sc->iscsicaps) {
param[0] = FW_PARAM_PFVF(ISCSI_START);
param[1] = FW_PARAM_PFVF(ISCSI_END);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
if (rc != 0) {
device_printf(sc->dev,
"failed to query iSCSI parameters: %d.\n", rc);
return (rc);
}
sc->vres.iscsi.start = val[0];
sc->vres.iscsi.size = val[1] - val[0] + 1;
}
t4_init_sge_params(sc);
/*
* We've got the params we wanted to query via the firmware. Now grab
* some others directly from the chip.
*/
rc = t4_read_chip_settings(sc);
return (rc);
}
static int
set_params__post_init(struct adapter *sc)
{
uint32_t param, val;
/* ask for encapsulated CPLs */
param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
val = 1;
(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
return (0);
}
#undef FW_PARAM_PFVF
#undef FW_PARAM_DEV
static void
t4_set_desc(struct adapter *sc)
{
char buf[128];
struct adapter_params *p = &sc->params;
snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
device_set_desc_copy(sc->dev, buf);
}
static void
build_medialist(struct port_info *pi, struct ifmedia *media)
{
int m;
PORT_LOCK(pi);
ifmedia_removeall(media);
m = IFM_ETHER | IFM_FDX;
switch(pi->port_type) {
case FW_PORT_TYPE_BT_XFI:
case FW_PORT_TYPE_BT_XAUI:
ifmedia_add(media, m | IFM_10G_T, 0, NULL);
/* fall through */
case FW_PORT_TYPE_BT_SGMII:
ifmedia_add(media, m | IFM_1000_T, 0, NULL);
ifmedia_add(media, m | IFM_100_TX, 0, NULL);
ifmedia_add(media, IFM_ETHER | IFM_AUTO, 0, NULL);
ifmedia_set(media, IFM_ETHER | IFM_AUTO);
break;
case FW_PORT_TYPE_CX4:
ifmedia_add(media, m | IFM_10G_CX4, 0, NULL);
ifmedia_set(media, m | IFM_10G_CX4);
break;
case FW_PORT_TYPE_QSFP_10G:
case FW_PORT_TYPE_SFP:
case FW_PORT_TYPE_FIBER_XFI:
case FW_PORT_TYPE_FIBER_XAUI:
switch (pi->mod_type) {
case FW_PORT_MOD_TYPE_LR:
ifmedia_add(media, m | IFM_10G_LR, 0, NULL);
ifmedia_set(media, m | IFM_10G_LR);
break;
case FW_PORT_MOD_TYPE_SR:
ifmedia_add(media, m | IFM_10G_SR, 0, NULL);
ifmedia_set(media, m | IFM_10G_SR);
break;
case FW_PORT_MOD_TYPE_LRM:
ifmedia_add(media, m | IFM_10G_LRM, 0, NULL);
ifmedia_set(media, m | IFM_10G_LRM);
break;
case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
ifmedia_add(media, m | IFM_10G_TWINAX, 0, NULL);
ifmedia_set(media, m | IFM_10G_TWINAX);
break;
case FW_PORT_MOD_TYPE_NONE:
m &= ~IFM_FDX;
ifmedia_add(media, m | IFM_NONE, 0, NULL);
ifmedia_set(media, m | IFM_NONE);
break;
case FW_PORT_MOD_TYPE_NA:
case FW_PORT_MOD_TYPE_ER:
default:
device_printf(pi->dev,
"unknown port_type (%d), mod_type (%d)\n",
pi->port_type, pi->mod_type);
ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
break;
case FW_PORT_TYPE_CR_QSFP:
case FW_PORT_TYPE_SFP28:
switch (pi->mod_type) {
case FW_PORT_MOD_TYPE_SR:
MPASS(pi->port_type == FW_PORT_TYPE_SFP28);
ifmedia_add(media, m | IFM_25G_SR, 0, NULL);
ifmedia_set(media, m | IFM_25G_SR);
break;
case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
ifmedia_add(media, m | IFM_25G_CR, 0, NULL);
ifmedia_set(media, m | IFM_25G_CR);
break;
case FW_PORT_MOD_TYPE_NONE:
m &= ~IFM_FDX;
ifmedia_add(media, m | IFM_NONE, 0, NULL);
ifmedia_set(media, m | IFM_NONE);
break;
default:
device_printf(pi->dev,
"unknown port_type (%d), mod_type (%d)\n",
pi->port_type, pi->mod_type);
ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
break;
case FW_PORT_TYPE_QSFP:
switch (pi->mod_type) {
case FW_PORT_MOD_TYPE_LR:
ifmedia_add(media, m | IFM_40G_LR4, 0, NULL);
ifmedia_set(media, m | IFM_40G_LR4);
break;
case FW_PORT_MOD_TYPE_SR:
ifmedia_add(media, m | IFM_40G_SR4, 0, NULL);
ifmedia_set(media, m | IFM_40G_SR4);
break;
case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
ifmedia_add(media, m | IFM_40G_CR4, 0, NULL);
ifmedia_set(media, m | IFM_40G_CR4);
break;
case FW_PORT_MOD_TYPE_NONE:
m &= ~IFM_FDX;
ifmedia_add(media, m | IFM_NONE, 0, NULL);
ifmedia_set(media, m | IFM_NONE);
break;
default:
device_printf(pi->dev,
"unknown port_type (%d), mod_type (%d)\n",
pi->port_type, pi->mod_type);
ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
break;
case FW_PORT_TYPE_CR2_QSFP:
switch (pi->mod_type) {
case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
ifmedia_add(media, m | IFM_50G_CR2, 0, NULL);
ifmedia_set(media, m | IFM_50G_CR2);
break;
case FW_PORT_MOD_TYPE_NONE:
m &= ~IFM_FDX;
ifmedia_add(media, m | IFM_NONE, 0, NULL);
ifmedia_set(media, m | IFM_NONE);
break;
default:
device_printf(pi->dev,
"unknown port_type (%d), mod_type (%d)\n",
pi->port_type, pi->mod_type);
ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
break;
case FW_PORT_TYPE_KR4_100G:
case FW_PORT_TYPE_CR4_QSFP:
switch (pi->mod_type) {
case FW_PORT_MOD_TYPE_LR:
ifmedia_add(media, m | IFM_100G_LR4, 0, NULL);
ifmedia_set(media, m | IFM_100G_LR4);
break;
case FW_PORT_MOD_TYPE_SR:
ifmedia_add(media, m | IFM_100G_SR4, 0, NULL);
ifmedia_set(media, m | IFM_100G_SR4);
break;
case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
ifmedia_add(media, m | IFM_100G_CR4, 0, NULL);
ifmedia_set(media, m | IFM_100G_CR4);
break;
case FW_PORT_MOD_TYPE_NONE:
m &= ~IFM_FDX;
ifmedia_add(media, m | IFM_NONE, 0, NULL);
ifmedia_set(media, m | IFM_NONE);
break;
default:
device_printf(pi->dev,
"unknown port_type (%d), mod_type (%d)\n",
pi->port_type, pi->mod_type);
ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
break;
default:
device_printf(pi->dev,
"unknown port_type (%d), mod_type (%d)\n", pi->port_type,
pi->mod_type);
ifmedia_add(media, m | IFM_UNKNOWN, 0, NULL);
ifmedia_set(media, m | IFM_UNKNOWN);
break;
}
PORT_UNLOCK(pi);
}
#define FW_MAC_EXACT_CHUNK 7
/*
* Program the port's XGMAC based on parameters in ifnet. The caller also
* indicates which parameters should be programmed (the rest are left alone).
*/
int
update_mac_settings(struct ifnet *ifp, int flags)
{
int rc = 0;
struct vi_info *vi = ifp->if_softc;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
ASSERT_SYNCHRONIZED_OP(sc);
KASSERT(flags, ("%s: not told what to update.", __func__));
if (flags & XGMAC_MTU)
mtu = ifp->if_mtu;
if (flags & XGMAC_PROMISC)
promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
if (flags & XGMAC_ALLMULTI)
allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
if (flags & XGMAC_VLANEX)
vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
allmulti, 1, vlanex, false);
if (rc) {
if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
rc);
return (rc);
}
}
if (flags & XGMAC_UCADDR) {
uint8_t ucaddr[ETHER_ADDR_LEN];
bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
ucaddr, true, true);
if (rc < 0) {
rc = -rc;
if_printf(ifp, "change_mac failed: %d\n", rc);
return (rc);
} else {
vi->xact_addr_filt = rc;
rc = 0;
}
}
if (flags & XGMAC_MCADDRS) {
const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
int del = 1;
uint64_t hash = 0;
struct ifmultiaddr *ifma;
int i = 0, j;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
mcaddr[i] =
LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
i++;
if (i == FW_MAC_EXACT_CHUNK) {
rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
del, i, mcaddr, NULL, &hash, 0);
if (rc < 0) {
rc = -rc;
for (j = 0; j < i; j++) {
if_printf(ifp,
"failed to add mc address"
" %02x:%02x:%02x:"
"%02x:%02x:%02x rc=%d\n",
mcaddr[j][0], mcaddr[j][1],
mcaddr[j][2], mcaddr[j][3],
mcaddr[j][4], mcaddr[j][5],
rc);
}
goto mcfail;
}
del = 0;
i = 0;
}
}
if (i > 0) {
rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
mcaddr, NULL, &hash, 0);
if (rc < 0) {
rc = -rc;
for (j = 0; j < i; j++) {
if_printf(ifp,
"failed to add mc address"
" %02x:%02x:%02x:"
"%02x:%02x:%02x rc=%d\n",
mcaddr[j][0], mcaddr[j][1],
mcaddr[j][2], mcaddr[j][3],
mcaddr[j][4], mcaddr[j][5],
rc);
}
goto mcfail;
}
}
rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
if (rc != 0)
if_printf(ifp, "failed to set mc address hash: %d", rc);
mcfail:
if_maddr_runlock(ifp);
}
return (rc);
}
/*
* {begin|end}_synchronized_op must be called from the same thread.
*/
int
begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
char *wmesg)
{
int rc, pri;
#ifdef WITNESS
/* the caller thinks it's ok to sleep, but is it really? */
if (flags & SLEEP_OK)
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
"begin_synchronized_op");
#endif
if (INTR_OK)
pri = PCATCH;
else
pri = 0;
ADAPTER_LOCK(sc);
for (;;) {
if (vi && IS_DOOMED(vi)) {
rc = ENXIO;
goto done;
}
if (!IS_BUSY(sc)) {
rc = 0;
break;
}
if (!(flags & SLEEP_OK)) {
rc = EBUSY;
goto done;
}
if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
rc = EINTR;
goto done;
}
}
KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
SET_BUSY(sc);
#ifdef INVARIANTS
sc->last_op = wmesg;
sc->last_op_thr = curthread;
sc->last_op_flags = flags;
#endif
done:
if (!(flags & HOLD_LOCK) || rc)
ADAPTER_UNLOCK(sc);
return (rc);
}
/*
* Tell if_ioctl and if_init that the VI is going away. This is
* special variant of begin_synchronized_op and must be paired with a
* call to end_synchronized_op.
*/
void
doom_vi(struct adapter *sc, struct vi_info *vi)
{
ADAPTER_LOCK(sc);
SET_DOOMED(vi);
wakeup(&sc->flags);
while (IS_BUSY(sc))
mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
SET_BUSY(sc);
#ifdef INVARIANTS
sc->last_op = "t4detach";
sc->last_op_thr = curthread;
sc->last_op_flags = 0;
#endif
ADAPTER_UNLOCK(sc);
}
/*
* {begin|end}_synchronized_op must be called from the same thread.
*/
void
end_synchronized_op(struct adapter *sc, int flags)
{
if (flags & LOCK_HELD)
ADAPTER_LOCK_ASSERT_OWNED(sc);
else
ADAPTER_LOCK(sc);
KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
CLR_BUSY(sc);
wakeup(&sc->flags);
ADAPTER_UNLOCK(sc);
}
static int
cxgbe_init_synchronized(struct vi_info *vi)
{
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct ifnet *ifp = vi->ifp;
int rc = 0, i;
struct sge_txq *txq;
ASSERT_SYNCHRONIZED_OP(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
return (0); /* already running */
if (!(sc->flags & FULL_INIT_DONE) &&
((rc = adapter_full_init(sc)) != 0))
return (rc); /* error message displayed already */
if (!(vi->flags & VI_INIT_DONE) &&
((rc = vi_full_init(vi)) != 0))
return (rc); /* error message displayed already */
rc = update_mac_settings(ifp, XGMAC_ALL);
if (rc)
goto done; /* error message displayed already */
rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
if (rc != 0) {
if_printf(ifp, "enable_vi failed: %d\n", rc);
goto done;
}
/*
* Can't fail from this point onwards. Review cxgbe_uninit_synchronized
* if this changes.
*/
for_each_txq(vi, i, txq) {
TXQ_LOCK(txq);
txq->eq.flags |= EQ_ENABLED;
TXQ_UNLOCK(txq);
}
/*
* The first iq of the first port to come up is used for tracing.
*/
if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL :
A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
V_QUEUENUMBER(sc->traceq));
pi->flags |= HAS_TRACEQ;
}
/* all ok */
PORT_LOCK(pi);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
pi->up_vis++;
if (pi->nvi > 1 || sc->flags & IS_VF)
callout_reset(&vi->tick, hz, vi_tick, vi);
else
callout_reset(&pi->tick, hz, cxgbe_tick, pi);
PORT_UNLOCK(pi);
done:
if (rc != 0)
cxgbe_uninit_synchronized(vi);
return (rc);
}
/*
* Idempotent.
*/
static int
cxgbe_uninit_synchronized(struct vi_info *vi)
{
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
struct ifnet *ifp = vi->ifp;
int rc, i;
struct sge_txq *txq;
ASSERT_SYNCHRONIZED_OP(sc);
if (!(vi->flags & VI_INIT_DONE)) {
KASSERT(!(ifp->if_drv_flags & IFF_DRV_RUNNING),
("uninited VI is running"));
return (0);
}
/*
* Disable the VI so that all its data in either direction is discarded
* by the MPS. Leave everything else (the queues, interrupts, and 1Hz
* tick) intact as the TP can deliver negative advice or data that it's
* holding in its RAM (for an offloaded connection) even after the VI is
* disabled.
*/
rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
if (rc) {
if_printf(ifp, "disable_vi failed: %d\n", rc);
return (rc);
}
for_each_txq(vi, i, txq) {
TXQ_LOCK(txq);
txq->eq.flags &= ~EQ_ENABLED;
TXQ_UNLOCK(txq);
}
PORT_LOCK(pi);
if (pi->nvi > 1 || sc->flags & IS_VF)
callout_stop(&vi->tick);
else
callout_stop(&pi->tick);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
PORT_UNLOCK(pi);
return (0);
}
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
pi->up_vis--;
if (pi->up_vis > 0) {
PORT_UNLOCK(pi);
return (0);
}
PORT_UNLOCK(pi);
pi->link_cfg.link_ok = 0;
pi->link_cfg.speed = 0;
pi->linkdnrc = -1;
t4_os_link_changed(sc, pi->port_id, 0, -1);
return (0);
}
/*
* It is ok for this function to fail midway and return right away. t4_detach
* will walk the entire sc->irq list and clean up whatever is valid.
*/
int
t4_setup_intr_handlers(struct adapter *sc)
{
int rc, rid, p, q, v;
char s[8];
struct irq *irq;
struct port_info *pi;
struct vi_info *vi;
struct sge *sge = &sc->sge;
struct sge_rxq *rxq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
#endif
#ifdef DEV_NETMAP
struct sge_nm_rxq *nm_rxq;
#endif
#ifdef RSS
int nbuckets = rss_getnumbuckets();
#endif
/*
* Setup interrupts.
*/
irq = &sc->irq[0];
rid = sc->intr_type == INTR_INTX ? 0 : 1;
if (sc->intr_count == 1)
return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
/* Multiple interrupts. */
if (sc->flags & IS_VF)
KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
("%s: too few intr.", __func__));
else
KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
("%s: too few intr.", __func__));
/* The first one is always error intr on PFs */
if (!(sc->flags & IS_VF)) {
rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
if (rc != 0)
return (rc);
irq++;
rid++;
}
/* The second one is always the firmware event queue (first on VFs) */
rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
if (rc != 0)
return (rc);
irq++;
rid++;
for_each_port(sc, p) {
pi = sc->port[p];
for_each_vi(pi, v, vi) {
vi->first_intr = rid - 1;
if (vi->nnmrxq > 0) {
int n = max(vi->nrxq, vi->nnmrxq);
MPASS(vi->flags & INTR_RXQ);
rxq = &sge->rxq[vi->first_rxq];
#ifdef DEV_NETMAP
nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
#endif
for (q = 0; q < n; q++) {
snprintf(s, sizeof(s), "%x%c%x", p,
'a' + v, q);
if (q < vi->nrxq)
irq->rxq = rxq++;
#ifdef DEV_NETMAP
if (q < vi->nnmrxq)
irq->nm_rxq = nm_rxq++;
#endif
rc = t4_alloc_irq(sc, irq, rid,
t4_vi_intr, irq, s);
if (rc != 0)
return (rc);
irq++;
rid++;
vi->nintr++;
}
} else if (vi->flags & INTR_RXQ) {
for_each_rxq(vi, q, rxq) {
snprintf(s, sizeof(s), "%x%c%x", p,
'a' + v, q);
rc = t4_alloc_irq(sc, irq, rid,
t4_intr, rxq, s);
if (rc != 0)
return (rc);
#ifdef RSS
bus_bind_intr(sc->dev, irq->res,
rss_getcpu(q % nbuckets));
#endif
irq++;
rid++;
vi->nintr++;
}
}
#ifdef TCP_OFFLOAD
if (vi->flags & INTR_OFLD_RXQ) {
for_each_ofld_rxq(vi, q, ofld_rxq) {
snprintf(s, sizeof(s), "%x%c%x", p,
'A' + v, q);
rc = t4_alloc_irq(sc, irq, rid,
t4_intr, ofld_rxq, s);
if (rc != 0)
return (rc);
irq++;
rid++;
vi->nintr++;
}
}
#endif
}
}
MPASS(irq == &sc->irq[sc->intr_count]);
return (0);
}
int
adapter_full_init(struct adapter *sc)
{
int rc, i;
ASSERT_SYNCHRONIZED_OP(sc);
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
KASSERT((sc->flags & FULL_INIT_DONE) == 0,
("%s: FULL_INIT_DONE already", __func__));
/*
* queues that belong to the adapter (not any particular port).
*/
rc = t4_setup_adapter_queues(sc);
if (rc != 0)
goto done;
for (i = 0; i < nitems(sc->tq); i++) {
sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
taskqueue_thread_enqueue, &sc->tq[i]);
if (sc->tq[i] == NULL) {
device_printf(sc->dev,
"failed to allocate task queue %d\n", i);
rc = ENOMEM;
goto done;
}
taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
device_get_nameunit(sc->dev), i);
}
if (!(sc->flags & IS_VF))
t4_intr_enable(sc);
sc->flags |= FULL_INIT_DONE;
done:
if (rc != 0)
adapter_full_uninit(sc);
return (rc);
}
int
adapter_full_uninit(struct adapter *sc)
{
int i;
ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
t4_teardown_adapter_queues(sc);
for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
taskqueue_free(sc->tq[i]);
sc->tq[i] = NULL;
}
sc->flags &= ~FULL_INIT_DONE;
return (0);
}
#ifdef RSS
#define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
RSS_HASHTYPE_RSS_UDP_IPV6)
/* Translates kernel hash types to hardware. */
static int
hashconfig_to_hashen(int hashconfig)
{
int hashen = 0;
if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
}
if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
}
if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
return (hashen);
}
/* Translates hardware hash types to kernel. */
static int
hashen_to_hashconfig(int hashen)
{
int hashconfig = 0;
if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
/*
* If UDP hashing was enabled it must have been enabled for
* either IPv4 or IPv6 (inclusive or). Enabling UDP without
* enabling any 4-tuple hash is nonsense configuration.
*/
MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
}
if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
hashconfig |= RSS_HASHTYPE_RSS_IPV4;
if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
hashconfig |= RSS_HASHTYPE_RSS_IPV6;
return (hashconfig);
}
#endif
int
vi_full_init(struct vi_info *vi)
{
struct adapter *sc = vi->pi->adapter;
struct ifnet *ifp = vi->ifp;
uint16_t *rss;
struct sge_rxq *rxq;
int rc, i, j, hashen;
#ifdef RSS
int nbuckets = rss_getnumbuckets();
int hashconfig = rss_gethashconfig();
int extra;
uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
#endif
ASSERT_SYNCHRONIZED_OP(sc);
KASSERT((vi->flags & VI_INIT_DONE) == 0,
("%s: VI_INIT_DONE already", __func__));
sysctl_ctx_init(&vi->ctx);
vi->flags |= VI_SYSCTL_CTX;
/*
* Allocate tx/rx/fl queues for this VI.
*/
rc = t4_setup_vi_queues(vi);
if (rc != 0)
goto done; /* error message displayed already */
/*
* Setup RSS for this VI. Save a copy of the RSS table for later use.
*/
if (vi->nrxq > vi->rss_size) {
if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
"some queues will never receive traffic.\n", vi->nrxq,
vi->rss_size);
} else if (vi->rss_size % vi->nrxq) {
if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
"expect uneven traffic distribution.\n", vi->nrxq,
vi->rss_size);
}
#ifdef RSS
MPASS(RSS_KEYSIZE == 40);
if (vi->nrxq != nbuckets) {
if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
"performance will be impacted.\n", vi->nrxq, nbuckets);
}
rss_getkey((void *)&raw_rss_key[0]);
for (i = 0; i < nitems(rss_key); i++) {
rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
}
t4_write_rss_key(sc, &rss_key[0], -1);
#endif
rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
for (i = 0; i < vi->rss_size;) {
#ifdef RSS
j = rss_get_indirection_to_bucket(i);
j %= vi->nrxq;
rxq = &sc->sge.rxq[vi->first_rxq + j];
rss[i++] = rxq->iq.abs_id;
#else
for_each_rxq(vi, j, rxq) {
rss[i++] = rxq->iq.abs_id;
if (i == vi->rss_size)
break;
}
#endif
}
rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
vi->rss_size);
if (rc != 0) {
if_printf(ifp, "rss_config failed: %d\n", rc);
goto done;
}
#ifdef RSS
hashen = hashconfig_to_hashen(hashconfig);
/*
* We may have had to enable some hashes even though the global config
* wants them disabled. This is a potential problem that must be
* reported to the user.
*/
extra = hashen_to_hashconfig(hashen) ^ hashconfig;
/*
* If we consider only the supported hash types, then the enabled hashes
* are a superset of the requested hashes. In other words, there cannot
* be any supported hash that was requested but not enabled, but there
* can be hashes that were not requested but had to be enabled.
*/
extra &= SUPPORTED_RSS_HASHTYPES;
MPASS((extra & hashconfig) == 0);
if (extra) {
if_printf(ifp,
"global RSS config (0x%x) cannot be accommodated.\n",
hashconfig);
}
if (extra & RSS_HASHTYPE_RSS_IPV4)
if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
if (extra & RSS_HASHTYPE_RSS_IPV6)
if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
#else
hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
#endif
rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, hashen, rss[0]);
if (rc != 0) {
if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
goto done;
}
vi->rss = rss;
vi->flags |= VI_INIT_DONE;
done:
if (rc != 0)
vi_full_uninit(vi);
return (rc);
}
/*
* Idempotent.
*/
int
vi_full_uninit(struct vi_info *vi)
{
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
int i;
struct sge_rxq *rxq;
struct sge_txq *txq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
struct sge_wrq *ofld_txq;
#endif
if (vi->flags & VI_INIT_DONE) {
/* Need to quiesce queues. */
/* XXX: Only for the first VI? */
if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
for_each_txq(vi, i, txq) {
quiesce_txq(sc, txq);
}
#ifdef TCP_OFFLOAD
for_each_ofld_txq(vi, i, ofld_txq) {
quiesce_wrq(sc, ofld_txq);
}
#endif
for_each_rxq(vi, i, rxq) {
quiesce_iq(sc, &rxq->iq);
quiesce_fl(sc, &rxq->fl);
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(vi, i, ofld_rxq) {
quiesce_iq(sc, &ofld_rxq->iq);
quiesce_fl(sc, &ofld_rxq->fl);
}
#endif
free(vi->rss, M_CXGBE);
free(vi->nm_rss, M_CXGBE);
}
t4_teardown_vi_queues(vi);
vi->flags &= ~VI_INIT_DONE;
return (0);
}
static void
quiesce_txq(struct adapter *sc, struct sge_txq *txq)
{
struct sge_eq *eq = &txq->eq;
struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
(void) sc; /* unused */
#ifdef INVARIANTS
TXQ_LOCK(txq);
MPASS((eq->flags & EQ_ENABLED) == 0);
TXQ_UNLOCK(txq);
#endif
/* Wait for the mp_ring to empty. */
while (!mp_ring_is_idle(txq->r)) {
mp_ring_check_drainage(txq->r, 0);
pause("rquiesce", 1);
}
/* Then wait for the hardware to finish. */
while (spg->cidx != htobe16(eq->pidx))
pause("equiesce", 1);
/* Finally, wait for the driver to reclaim all descriptors. */
while (eq->cidx != eq->pidx)
pause("dquiesce", 1);
}
static void
quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
{
/* XXXTX */
}
static void
quiesce_iq(struct adapter *sc, struct sge_iq *iq)
{
(void) sc; /* unused */
/* Synchronize with the interrupt handler */
while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
pause("iqfree", 1);
}
static void
quiesce_fl(struct adapter *sc, struct sge_fl *fl)
{
mtx_lock(&sc->sfl_lock);
FL_LOCK(fl);
fl->flags |= FL_DOOMED;
FL_UNLOCK(fl);
callout_stop(&sc->sfl_callout);
mtx_unlock(&sc->sfl_lock);
KASSERT((fl->flags & FL_STARVING) == 0,
("%s: still starving", __func__));
}
static int
t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
driver_intr_t *handler, void *arg, char *name)
{
int rc;
irq->rid = rid;
irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
RF_SHAREABLE | RF_ACTIVE);
if (irq->res == NULL) {
device_printf(sc->dev,
"failed to allocate IRQ for rid %d, name %s.\n", rid, name);
return (ENOMEM);
}
rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
NULL, handler, arg, &irq->tag);
if (rc != 0) {
device_printf(sc->dev,
"failed to setup interrupt for rid %d, name %s: %d\n",
rid, name, rc);
} else if (name)
bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
return (rc);
}
static int
t4_free_irq(struct adapter *sc, struct irq *irq)
{
if (irq->tag)
bus_teardown_intr(sc->dev, irq->res, irq->tag);
if (irq->res)
bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
bzero(irq, sizeof(*irq));
return (0);
}
static void
get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
{
regs->version = chip_id(sc) | chip_rev(sc) << 10;
t4_get_regs(sc, buf, regs->len);
}
#define A_PL_INDIR_CMD 0x1f8
#define S_PL_AUTOINC 31
#define M_PL_AUTOINC 0x1U
#define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC)
#define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
#define S_PL_VFID 20
#define M_PL_VFID 0xffU
#define V_PL_VFID(x) ((x) << S_PL_VFID)
#define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID)
#define S_PL_ADDR 0
#define M_PL_ADDR 0xfffffU
#define V_PL_ADDR(x) ((x) << S_PL_ADDR)
#define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR)
#define A_PL_INDIR_DATA 0x1fc
static uint64_t
read_vf_stat(struct adapter *sc, unsigned int viid, int reg)
{
u32 stats[2];
mtx_assert(&sc->reg_lock, MA_OWNED);
if (sc->flags & IS_VF) {
stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
} else {
t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
V_PL_VFID(G_FW_VIID_VIN(viid)) |
V_PL_ADDR(VF_MPS_REG(reg)));
stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
}
return (((uint64_t)stats[1]) << 32 | stats[0]);
}
static void
t4_get_vi_stats(struct adapter *sc, unsigned int viid,
struct fw_vi_stats_vf *stats)
{
#define GET_STAT(name) \
read_vf_stat(sc, viid, A_MPS_VF_STAT_##name##_L)
stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES);
stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES);
stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES);
stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES);
stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES);
stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES);
stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES);
stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES);
stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES);
stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES);
stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES);
stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES);
stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES);
stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES);
stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES);
#undef GET_STAT
}
static void
t4_clr_vi_stats(struct adapter *sc, unsigned int viid)
{
int reg;
t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
V_PL_VFID(G_FW_VIID_VIN(viid)) |
V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
t4_write_reg(sc, A_PL_INDIR_DATA, 0);
}
static void
vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
{
struct timeval tv;
const struct timeval interval = {0, 250000}; /* 250ms */
if (!(vi->flags & VI_INIT_DONE))
return;
getmicrotime(&tv);
timevalsub(&tv, &interval);
if (timevalcmp(&tv, &vi->last_refreshed, <))
return;
mtx_lock(&sc->reg_lock);
t4_get_vi_stats(sc, vi->viid, &vi->stats);
getmicrotime(&vi->last_refreshed);
mtx_unlock(&sc->reg_lock);
}
static void
cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
{
int i;
u_int v, tnl_cong_drops;
struct timeval tv;
const struct timeval interval = {0, 250000}; /* 250ms */
getmicrotime(&tv);
timevalsub(&tv, &interval);
if (timevalcmp(&tv, &pi->last_refreshed, <))
return;
tnl_cong_drops = 0;
t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
for (i = 0; i < sc->chip_params->nchan; i++) {
if (pi->rx_chan_map & (1 << i)) {
mtx_lock(&sc->reg_lock);
t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
1, A_TP_MIB_TNL_CNG_DROP_0 + i);
mtx_unlock(&sc->reg_lock);
tnl_cong_drops += v;
}
}
pi->tnl_cong_drops = tnl_cong_drops;
getmicrotime(&pi->last_refreshed);
}
static void
cxgbe_tick(void *arg)
{
struct port_info *pi = arg;
struct adapter *sc = pi->adapter;
PORT_LOCK_ASSERT_OWNED(pi);
cxgbe_refresh_stats(sc, pi);
callout_schedule(&pi->tick, hz);
}
void
vi_tick(void *arg)
{
struct vi_info *vi = arg;
struct adapter *sc = vi->pi->adapter;
vi_refresh_stats(sc, vi);
callout_schedule(&vi->tick, hz);
}
static void
cxgbe_vlan_config(void *arg, struct ifnet *ifp, uint16_t vid)
{
struct ifnet *vlan;
if (arg != ifp || ifp->if_type != IFT_ETHER)
return;
vlan = VLAN_DEVAT(ifp, vid);
VLAN_SETCOOKIE(vlan, ifp);
}
/*
* Should match fw_caps_config_<foo> enums in t4fw_interface.h
*/
static char *caps_decoder[] = {
"\20\001IPMI\002NCSI", /* 0: NBM */
"\20\001PPP\002QFC\003DCBX", /* 1: link */
"\20\001INGRESS\002EGRESS", /* 2: switch */
"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */
"\006HASHFILTER\007ETHOFLD",
"\20\001TOE", /* 4: TOE */
"\20\001RDDP\002RDMAC", /* 5: RDMA */
"\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */
"\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
"\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
"\007T10DIF"
"\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
"\20\001LOOKASIDE\002TLSKEYS", /* 7: Crypto */
"\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */
"\004PO_INITIATOR\005PO_TARGET",
};
void
t4_sysctls(struct adapter *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children, *c0;
static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
ctx = device_get_sysctl_ctx(sc->dev);
/*
* dev.t4nex.X.
*/
oid = device_get_sysctl_tree(sc->dev);
c0 = children = SYSCTL_CHILDREN(oid);
sc->sc_do_rxcopy = 1;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
&sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
sc->params.nports, "# of ports");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
CTLTYPE_STRING | CTLFLAG_RD, doorbells, sc->doorbells,
sysctl_bitfield, "A", "available doorbells");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
sc->params.vpd.cclk, "core clock frequency (in KHz)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
"interrupt holdoff timer values (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
"interrupt holdoff packet counter values");
t4_sge_sysctls(sc, ctx, children);
sc->lro_timeout = 100;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
&sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
&sc->debug_flags, 0, "flags to enable runtime debugging");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
CTLFLAG_RD, sc->fw_version, 0, "firmware version");
if (sc->flags & IS_VF)
return;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
NULL, chip_rev(sc), "chip hardware revision");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
sc->er_version, 0, "expansion ROM version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
sc->bs_version, 0, "bootstrap firmware version");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
NULL, sc->params.scfg_vers, "serial config version");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
NULL, sc->params.vpd_vers, "VPD version");
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
sc->cfcsum, "config file checksum");
#define SYSCTL_CAP(name, n, text) \
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], sc->name, \
sysctl_bitfield, "A", "available " text " capabilities")
SYSCTL_CAP(nbmcaps, 0, "NBM");
SYSCTL_CAP(linkcaps, 1, "link");
SYSCTL_CAP(switchcaps, 2, "switch");
SYSCTL_CAP(niccaps, 3, "NIC");
SYSCTL_CAP(toecaps, 4, "TCP offload");
SYSCTL_CAP(rdmacaps, 5, "RDMA");
SYSCTL_CAP(iscsicaps, 6, "iSCSI");
SYSCTL_CAP(cryptocaps, 7, "crypto");
SYSCTL_CAP(fcoecaps, 8, "FCoE");
#undef SYSCTL_CAP
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
NULL, sc->tids.nftids, "number of filters");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
"chip temperature (in Celsius)");
#ifdef SBUF_DRAIN
/*
* dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload.
*/
oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
CTLFLAG_RD | CTLFLAG_SKIP, NULL,
"logs and miscellaneous information");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_cctrl, "A", "congestion control");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
chip_id(sc) <= CHELSIO_T5 ? sysctl_cim_la : sysctl_cim_la_t6,
"A", "CIM logic analyzer");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
if (chip_id(sc) > CHELSIO_T4) {
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
}
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_cim_qcfg, "A", "CIM queue configuration");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_cpl_stats, "A", "CPL statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_ddp_stats, "A", "non-TCP DDP statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_devlog, "A", "firmware's device log");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_fcoe_stats, "A", "FCoE statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_hw_sched, "A", "hardware scheduler ");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_l2t, "A", "hardware L2 table");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_lb_stats, "A", "loopback statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_meminfo, "A", "memory regions");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
"A", "MPS TCAM entries");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_path_mtus, "A", "path MTUs");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_pm_stats, "A", "PM statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_rdma_stats, "A", "RDMA statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tcp_stats, "A", "TCP statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tids, "A", "TID information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tp_err_stats, "A", "TP error statistics");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
"TP logic analyzer event capture mask");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tp_la, "A", "TP logic analyzer");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_tx_rate, "A", "Tx rate");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_ulprx_la, "A", "ULPRX logic analyzer");
if (is_t5(sc)) {
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
sysctl_wcwr_stats, "A", "write combined work requests");
}
#endif
#ifdef TCP_OFFLOAD
if (is_offload(sc)) {
/*
* dev.t4nex.X.toe.
*/
oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
NULL, "TOE parameters");
children = SYSCTL_CHILDREN(oid);
sc->tt.sndbuf = 256 * 1024;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
&sc->tt.sndbuf, 0, "max hardware send buffer size");
sc->tt.ddp = 0;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", CTLFLAG_RW,
&sc->tt.ddp, 0, "DDP allowed");
sc->tt.rx_coalesce = 1;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
sc->tt.tx_align = 1;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
sc->tt.tx_zcopy = 0;
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
"Enable zero-copy aio_write(2)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
"TP timer tick (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
"TCP timestamp tick (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
"DACK tick (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
"IU", "DACK timer (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
sysctl_tp_timer, "LU", "Retransmit min (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
sysctl_tp_timer, "LU", "Retransmit max (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
sysctl_tp_timer, "LU", "Persist timer min (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
sysctl_tp_timer, "LU", "Persist timer max (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
sysctl_tp_timer, "LU", "Keepidle idle timer (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_intvl",
CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
sysctl_tp_timer, "LU", "Keepidle interval (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
sysctl_tp_timer, "LU", "Initial SRTT (us)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
}
#endif
}
void
vi_sysctls(struct vi_info *vi)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(vi->dev);
/*
* dev.v?(cxgbe|cxl).X.
*/
oid = device_get_sysctl_tree(vi->dev);
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
vi->viid, "VI identifer");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
&vi->nrxq, 0, "# of rx queues");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
&vi->ntxq, 0, "# of tx queues");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
&vi->first_rxq, 0, "index of first rx queue");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
&vi->first_txq, 0, "index of first tx queue");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
vi->rss_size, "size of RSS indirection table");
if (IS_MAIN_VI(vi)) {
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
"Reserve queue 0 for non-flowid packets");
}
#ifdef TCP_OFFLOAD
if (vi->nofldrxq != 0) {
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
&vi->nofldrxq, 0,
"# of rx queues for offloaded TCP connections");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
&vi->nofldtxq, 0,
"# of tx queues for offloaded TCP connections");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
CTLFLAG_RD, &vi->first_ofld_rxq, 0,
"index of first TOE rx queue");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
CTLFLAG_RD, &vi->first_ofld_txq, 0,
"index of first TOE tx queue");
}
#endif
#ifdef DEV_NETMAP
if (vi->nnmrxq != 0) {
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
&vi->nnmrxq, 0, "# of netmap rx queues");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
&vi->nnmtxq, 0, "# of netmap tx queues");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
CTLFLAG_RD, &vi->first_nm_rxq, 0,
"index of first netmap rx queue");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
CTLFLAG_RD, &vi->first_nm_txq, 0,
"index of first netmap tx queue");
}
#endif
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
"holdoff timer index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
"holdoff packet counter index");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
"rx queue size");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
"tx queue size");
}
static void
cxgbe_sysctls(struct port_info *pi)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid *oid;
struct sysctl_oid_list *children, *children2;
struct adapter *sc = pi->adapter;
int i;
char name[16];
ctx = device_get_sysctl_ctx(pi->dev);
/*
* dev.cxgbe.X.
*/
oid = device_get_sysctl_tree(pi->dev);
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
"PHY temperature (in Celsius)");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
"PHY firmware version");
}
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
CTLTYPE_STRING | CTLFLAG_RW, pi, PAUSE_TX, sysctl_pause_settings,
"A", "PAUSE settings (bit 0 = rx_pause, bit 1 = tx_pause)");
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
port_top_speed(pi), "max speed (in Gbps)");
if (sc->flags & IS_VF)
return;
/*
* dev.(cxgbe|cxl).X.tc.
*/
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
"Tx scheduler traffic classes");
for (i = 0; i < sc->chip_params->nsched_cls; i++) {
struct tx_sched_class *tc = &pi->tc[i];
snprintf(name, sizeof(name), "%d", i);
children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
"traffic class"));
SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "flags", CTLFLAG_RD,
&tc->flags, 0, "flags");
SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
CTLFLAG_RD, &tc->refcount, 0, "references to this class");
#ifdef SBUF_DRAIN
SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
sysctl_tc_params, "A", "traffic class parameters");
#endif
}
/*
* dev.cxgbe.X.stats.
*/
oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
NULL, "port statistics");
children = SYSCTL_CHILDREN(oid);
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
&pi->tx_parse_error, 0,
"# of tx packets with invalid length or # of segments");
#define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
sysctl_handle_t4_reg64, "QU", desc)
SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
"# of tx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
"# of frames received with bad FCS",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
"# of frames received with length error",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
"# of rx frames in this range",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
#undef SYSCTL_ADD_T4_REG64
#define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
&pi->stats.name, desc)
/* We get these from port_stats and they may be stale by up to 1s */
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
"# drops due to buffer-group 0 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
"# drops due to buffer-group 1 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
"# drops due to buffer-group 2 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
"# drops due to buffer-group 3 overflows");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
"# of buffer-group 0 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
"# of buffer-group 1 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
"# of buffer-group 2 truncated packets");
SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
"# of buffer-group 3 truncated packets");
#undef SYSCTL_ADD_T4_PORTSTAT
}
static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)
{
int rc, *i, space = 0;
struct sbuf sb;
sbuf_new_for_sysctl(&sb, NULL, 64, req);
for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
if (space)
sbuf_printf(&sb, " ");
sbuf_printf(&sb, "%d", *i);
space = 1;
}
rc = sbuf_finish(&sb);
sbuf_delete(&sb);
return (rc);
}
static int
sysctl_bitfield(SYSCTL_HANDLER_ARGS)
{
int rc;
struct sbuf *sb;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return(rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
if (sb == NULL)
return (ENOMEM);
sbuf_printf(sb, "%b", (int)arg2, (char *)arg1);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
int op = arg2;
struct adapter *sc = pi->adapter;
u_int v;
int rc;
rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
if (rc)
return (rc);
/* XXX: magic numbers */
rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
&v);
end_synchronized_op(sc, 0);
if (rc)
return (rc);
if (op == 0)
v /= 256;
rc = sysctl_handle_int(oidp, &v, 0, req);
return (rc);
}
static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)
{
struct vi_info *vi = arg1;
int rc, val;
val = vi->rsrv_noflowq;
rc = sysctl_handle_int(oidp, &val, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if ((val >= 1) && (vi->ntxq > 1))
vi->rsrv_noflowq = 1;
else
vi->rsrv_noflowq = 0;
return (rc);
}
static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
{
struct vi_info *vi = arg1;
struct adapter *sc = vi->pi->adapter;
int idx, rc, i;
struct sge_rxq *rxq;
#ifdef TCP_OFFLOAD
struct sge_ofld_rxq *ofld_rxq;
#endif
uint8_t v;
idx = vi->tmr_idx;
rc = sysctl_handle_int(oidp, &idx, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (idx < 0 || idx >= SGE_NTIMERS)
return (EINVAL);
rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
"t4tmr");
if (rc)
return (rc);
v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
for_each_rxq(vi, i, rxq) {
#ifdef atomic_store_rel_8
atomic_store_rel_8(&rxq->iq.intr_params, v);
#else
rxq->iq.intr_params = v;
#endif
}
#ifdef TCP_OFFLOAD
for_each_ofld_rxq(vi, i, ofld_rxq) {
#ifdef atomic_store_rel_8
atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
#else
ofld_rxq->iq.intr_params = v;
#endif
}
#endif
vi->tmr_idx = idx;
end_synchronized_op(sc, LOCK_HELD);
return (0);
}
static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
{
struct vi_info *vi = arg1;
struct adapter *sc = vi->pi->adapter;
int idx, rc;
idx = vi->pktc_idx;
rc = sysctl_handle_int(oidp, &idx, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (idx < -1 || idx >= SGE_NCOUNTERS)
return (EINVAL);
rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
"t4pktc");
if (rc)
return (rc);
if (vi->flags & VI_INIT_DONE)
rc = EBUSY; /* cannot be changed once the queues are created */
else
vi->pktc_idx = idx;
end_synchronized_op(sc, LOCK_HELD);
return (rc);
}
static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
{
struct vi_info *vi = arg1;
struct adapter *sc = vi->pi->adapter;
int qsize, rc;
qsize = vi->qsize_rxq;
rc = sysctl_handle_int(oidp, &qsize, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (qsize < 128 || (qsize & 7))
return (EINVAL);
rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
"t4rxqs");
if (rc)
return (rc);
if (vi->flags & VI_INIT_DONE)
rc = EBUSY; /* cannot be changed once the queues are created */
else
vi->qsize_rxq = qsize;
end_synchronized_op(sc, LOCK_HELD);
return (rc);
}
static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
{
struct vi_info *vi = arg1;
struct adapter *sc = vi->pi->adapter;
int qsize, rc;
qsize = vi->qsize_txq;
rc = sysctl_handle_int(oidp, &qsize, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (qsize < 128 || qsize > 65536)
return (EINVAL);
rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
"t4txqs");
if (rc)
return (rc);
if (vi->flags & VI_INIT_DONE)
rc = EBUSY; /* cannot be changed once the queues are created */
else
vi->qsize_txq = qsize;
end_synchronized_op(sc, LOCK_HELD);
return (rc);
}
static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
{
struct port_info *pi = arg1;
struct adapter *sc = pi->adapter;
struct link_config *lc = &pi->link_cfg;
int rc;
if (req->newptr == NULL) {
struct sbuf *sb;
static char *bits = "\20\1PAUSE_RX\2PAUSE_TX";
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return(rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
if (sb == NULL)
return (ENOMEM);
sbuf_printf(sb, "%b", lc->fc & (PAUSE_TX | PAUSE_RX), bits);
rc = sbuf_finish(sb);
sbuf_delete(sb);
} else {
char s[2];
int n;
s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX));
s[1] = 0;
rc = sysctl_handle_string(oidp, s, sizeof(s), req);
if (rc != 0)
return(rc);
if (s[1] != 0)
return (EINVAL);
if (s[0] < '0' || s[0] > '9')
return (EINVAL); /* not a number */
n = s[0] - '0';
if (n & ~(PAUSE_TX | PAUSE_RX))
return (EINVAL); /* some other bit is set too */
rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
"t4PAUSE");
if (rc)
return (rc);
if ((lc->requested_fc & (PAUSE_TX | PAUSE_RX)) != n) {
int link_ok = lc->link_ok;
lc->requested_fc &= ~(PAUSE_TX | PAUSE_RX);
lc->requested_fc |= n;
rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
lc->link_ok = link_ok; /* restore */
}
end_synchronized_op(sc, 0);
}
return (rc);
}
static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
int reg = arg2;
uint64_t val;
val = t4_read_reg64(sc, reg);
return (sysctl_handle_64(oidp, &val, 0, req));
}
static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
int rc, t;
uint32_t param, val;
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
if (rc)
return (rc);
param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
end_synchronized_op(sc, 0);
if (rc)
return (rc);
/* unknown is returned as 0 but we display -1 in that case */
t = val == 0 ? -1 : val;
rc = sysctl_handle_int(oidp, &t, 0, req);
return (rc);
}
#ifdef SBUF_DRAIN
static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
uint16_t incr[NMTUS][NCCTRL_WIN];
static const char *dec_fac[] = {
"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
"0.9375"
};
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
t4_read_cong_tbl(sc, incr);
for (i = 0; i < NCCTRL_WIN; ++i) {
sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
incr[5][i], incr[6][i], incr[7][i]);
sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
incr[8][i], incr[9][i], incr[10][i], incr[11][i],
incr[12][i], incr[13][i], incr[14][i], incr[15][i],
sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */
"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */
"SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */
};
static int
sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i, n, qid = arg2;
uint32_t *buf, *p;
char *qtype;
u_int cim_num_obq = sc->chip_params->cim_num_obq;
KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
("%s: bad qid %d\n", __func__, qid));
if (qid < CIM_NUM_IBQ) {
/* inbound queue */
qtype = "IBQ";
n = 4 * CIM_IBQ_SIZE;
buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
rc = t4_read_cim_ibq(sc, qid, buf, n);
} else {
/* outbound queue */
qtype = "OBQ";
qid -= CIM_NUM_IBQ;
n = 4 * cim_num_obq * CIM_OBQ_SIZE;
buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
rc = t4_read_cim_obq(sc, qid, buf, n);
}
if (rc < 0) {
rc = -rc;
goto done;
}
n = rc * sizeof(uint32_t); /* rc has # of words actually read */
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
goto done;
sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
if (sb == NULL) {
rc = ENOMEM;
goto done;
}
sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
for (i = 0, p = buf; i < n; i += 16, p += 4)
sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
p[2], p[3]);
rc = sbuf_finish(sb);
sbuf_delete(sb);
done:
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
u_int cfg;
struct sbuf *sb;
uint32_t *buf, *p;
int rc;
MPASS(chip_id(sc) <= CHELSIO_T5);
rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
if (rc != 0)
return (rc);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
M_ZERO | M_WAITOK);
rc = -t4_cim_read_la(sc, buf, NULL);
if (rc != 0)
goto done;
sbuf_printf(sb, "Status Data PC%s",
cfg & F_UPDBGLACAPTPCONLY ? "" :
" LS0Stat LS0Addr LS0Data");
for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
if (cfg & F_UPDBGLACAPTPCONLY) {
sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff,
p[6], p[7]);
sbuf_printf(sb, "\n %02x %02x%06x %02x%06x",
(p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
p[4] & 0xff, p[5] >> 8);
sbuf_printf(sb, "\n %02x %x%07x %x%07x",
(p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
p[1] & 0xf, p[2] >> 4);
} else {
sbuf_printf(sb,
"\n %02x %x%07x %x%07x %08x %08x "
"%08x%08x%08x%08x",
(p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
p[6], p[7]);
}
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
done:
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_cim_la_t6(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
u_int cfg;
struct sbuf *sb;
uint32_t *buf, *p;
int rc;
MPASS(chip_id(sc) > CHELSIO_T5);
rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
if (rc != 0)
return (rc);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
M_ZERO | M_WAITOK);
rc = -t4_cim_read_la(sc, buf, NULL);
if (rc != 0)
goto done;
sbuf_printf(sb, "Status Inst Data PC%s",
cfg & F_UPDBGLACAPTPCONLY ? "" :
" LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data");
for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
if (cfg & F_UPDBGLACAPTPCONLY) {
sbuf_printf(sb, "\n %02x %08x %08x %08x",
p[3] & 0xff, p[2], p[1], p[0]);
sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x",
(p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x",
(p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
p[6] >> 16);
} else {
sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x "
"%08x %08x %08x %08x %08x %08x",
(p[9] >> 16) & 0xff,
p[9] & 0xffff, p[8] >> 16,
p[8] & 0xffff, p[7] >> 16,
p[7] & 0xffff, p[6] >> 16,
p[2], p[1], p[0], p[5], p[4], p[3]);
}
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
done:
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
u_int i;
struct sbuf *sb;
uint32_t *buf, *p;
int rc;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
M_ZERO | M_WAITOK);
t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
p = buf;
for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
p[1], p[0]);
}
sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD");
for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u",
(p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
(p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
(p[1] >> 2) | ((p[2] & 3) << 30),
(p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
p[0] & 1);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
u_int i;
struct sbuf *sb;
uint32_t *buf, *p;
int rc;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
M_ZERO | M_WAITOK);
t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
p = buf;
sbuf_printf(sb, "Cntl ID DataBE Addr Data");
for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x",
(p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
p[4], p[3], p[2], p[1], p[0]);
}
sbuf_printf(sb, "\n\nCntl ID Data");
for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x",
(p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
uint16_t thres[CIM_NUM_IBQ];
uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
cim_num_obq = sc->chip_params->cim_num_obq;
if (is_t4(sc)) {
ibq_rdaddr = A_UP_IBQ_0_RDADDR;
obq_rdaddr = A_UP_OBQ_0_REALADDR;
} else {
ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
}
nq = CIM_NUM_IBQ + cim_num_obq;
rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
if (rc == 0)
rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
if (rc != 0)
return (rc);
t4_read_cimq_cfg(sc, base, size, thres);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
if (sb == NULL)
return (ENOMEM);
sbuf_printf(sb, "Queue Base Size Thres RdPtr WrPtr SOP EOP Avail");
for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u",
qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
G_QUEREMFLITS(p[2]) * 16);
for ( ; i < nq; i++, p += 4, wr += 2)
sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i],
base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
G_QUEREMFLITS(p[2]) * 16);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_cpl_stats stats;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
mtx_lock(&sc->reg_lock);
t4_tp_get_cpl_stats(sc, &stats);
mtx_unlock(&sc->reg_lock);
if (sc->chip_params->nchan > 2) {
sbuf_printf(sb, " channel 0 channel 1"
" channel 2 channel 3");
sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u",
stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u",
stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
} else {
sbuf_printf(sb, " channel 0 channel 1");
sbuf_printf(sb, "\nCPL requests: %10u %10u",
stats.req[0], stats.req[1]);
sbuf_printf(sb, "\nCPL responses: %10u %10u",
stats.rsp[0], stats.rsp[1]);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_usm_stats stats;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return(rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_get_usm_stats(sc, &stats);
sbuf_printf(sb, "Frames: %u\n", stats.frames);
sbuf_printf(sb, "Octets: %ju\n", stats.octets);
sbuf_printf(sb, "Drops: %u", stats.drops);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static const char * const devlog_level_strings[] = {
[FW_DEVLOG_LEVEL_EMERG] = "EMERG",
[FW_DEVLOG_LEVEL_CRIT] = "CRIT",
[FW_DEVLOG_LEVEL_ERR] = "ERR",
[FW_DEVLOG_LEVEL_NOTICE] = "NOTICE",
[FW_DEVLOG_LEVEL_INFO] = "INFO",
[FW_DEVLOG_LEVEL_DEBUG] = "DEBUG"
};
static const char * const devlog_facility_strings[] = {
[FW_DEVLOG_FACILITY_CORE] = "CORE",
[FW_DEVLOG_FACILITY_CF] = "CF",
[FW_DEVLOG_FACILITY_SCHED] = "SCHED",
[FW_DEVLOG_FACILITY_TIMER] = "TIMER",
[FW_DEVLOG_FACILITY_RES] = "RES",
[FW_DEVLOG_FACILITY_HW] = "HW",
[FW_DEVLOG_FACILITY_FLR] = "FLR",
[FW_DEVLOG_FACILITY_DMAQ] = "DMAQ",
[FW_DEVLOG_FACILITY_PHY] = "PHY",
[FW_DEVLOG_FACILITY_MAC] = "MAC",
[FW_DEVLOG_FACILITY_PORT] = "PORT",
[FW_DEVLOG_FACILITY_VI] = "VI",
[FW_DEVLOG_FACILITY_FILTER] = "FILTER",
[FW_DEVLOG_FACILITY_ACL] = "ACL",
[FW_DEVLOG_FACILITY_TM] = "TM",
[FW_DEVLOG_FACILITY_QFC] = "QFC",
[FW_DEVLOG_FACILITY_DCB] = "DCB",
[FW_DEVLOG_FACILITY_ETH] = "ETH",
[FW_DEVLOG_FACILITY_OFLD] = "OFLD",
[FW_DEVLOG_FACILITY_RI] = "RI",
[FW_DEVLOG_FACILITY_ISCSI] = "ISCSI",
[FW_DEVLOG_FACILITY_FCOE] = "FCOE",
[FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI",
[FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE",
[FW_DEVLOG_FACILITY_CHNET] = "CHNET",
};
static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct devlog_params *dparams = &sc->params.devlog;
struct fw_devlog_e *buf, *e;
int i, j, rc, nentries, first = 0;
struct sbuf *sb;
uint64_t ftstamp = UINT64_MAX;
if (dparams->addr == 0)
return (ENXIO);
buf = malloc(dparams->size, M_CXGBE, M_NOWAIT);
if (buf == NULL)
return (ENOMEM);
rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
if (rc != 0)
goto done;
nentries = dparams->size / sizeof(struct fw_devlog_e);
for (i = 0; i < nentries; i++) {
e = &buf[i];
if (e->timestamp == 0)
break; /* end */
e->timestamp = be64toh(e->timestamp);
e->seqno = be32toh(e->seqno);
for (j = 0; j < 8; j++)
e->params[j] = be32toh(e->params[j]);
if (e->timestamp < ftstamp) {
ftstamp = e->timestamp;
first = i;
}
}
if (buf[first].timestamp == 0)
goto done; /* nothing in the log */
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
goto done;
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL) {
rc = ENOMEM;
goto done;
}
sbuf_printf(sb, "%10s %15s %8s %8s %s\n",
"Seq#", "Tstamp", "Level", "Facility", "Message");
i = first;
do {
e = &buf[i];
if (e->timestamp == 0)
break; /* end */
sbuf_printf(sb, "%10d %15ju %8s %8s ",
e->seqno, e->timestamp,
(e->level < nitems(devlog_level_strings) ?
devlog_level_strings[e->level] : "UNKNOWN"),
(e->facility < nitems(devlog_facility_strings) ?
devlog_facility_strings[e->facility] : "UNKNOWN"));
sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
e->params[2], e->params[3], e->params[4],
e->params[5], e->params[6], e->params[7]);
if (++i == nentries)
i = 0;
} while (i != first);
rc = sbuf_finish(sb);
sbuf_delete(sb);
done:
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_fcoe_stats stats[MAX_NCHAN];
int i, nchan = sc->chip_params->nchan;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
for (i = 0; i < nchan; i++)
t4_get_fcoe_stats(sc, i, &stats[i]);
if (nchan > 2) {
sbuf_printf(sb, " channel 0 channel 1"
" channel 2 channel 3");
sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju",
stats[0].octets_ddp, stats[1].octets_ddp,
stats[2].octets_ddp, stats[3].octets_ddp);
sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u",
stats[0].frames_ddp, stats[1].frames_ddp,
stats[2].frames_ddp, stats[3].frames_ddp);
sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
stats[0].frames_drop, stats[1].frames_drop,
stats[2].frames_drop, stats[3].frames_drop);
} else {
sbuf_printf(sb, " channel 0 channel 1");
sbuf_printf(sb, "\noctetsDDP: %16ju %16ju",
stats[0].octets_ddp, stats[1].octets_ddp);
sbuf_printf(sb, "\nframesDDP: %16u %16u",
stats[0].frames_ddp, stats[1].frames_ddp);
sbuf_printf(sb, "\nframesDrop: %16u %16u",
stats[0].frames_drop, stats[1].frames_drop);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
unsigned int map, kbps, ipg, mode;
unsigned int pace_tab[NTX_SCHED];
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
t4_read_pace_tbl(sc, pace_tab);
sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) "
"Class IPG (0.1 ns) Flow IPG (us)");
for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
t4_get_tx_sched(sc, i, &kbps, &ipg);
sbuf_printf(sb, "\n %u %-5s %u ", i,
(mode & (1 << i)) ? "flow" : "class", map & 3);
if (kbps)
sbuf_printf(sb, "%9u ", kbps);
else
sbuf_printf(sb, " disabled ");
if (ipg)
sbuf_printf(sb, "%13u ", ipg);
else
sbuf_printf(sb, " disabled ");
if (pace_tab[i])
sbuf_printf(sb, "%10u", pace_tab[i]);
else
sbuf_printf(sb, " disabled");
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i, j;
uint64_t *p0, *p1;
struct lb_port_stats s[2];
static const char *stat_name[] = {
"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
"Frames128To255:", "Frames256To511:", "Frames512To1023:",
"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
"BG2FramesTrunc:", "BG3FramesTrunc:"
};
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
memset(s, 0, sizeof(s));
for (i = 0; i < sc->chip_params->nchan; i += 2) {
t4_get_lb_stats(sc, i, &s[0]);
t4_get_lb_stats(sc, i + 1, &s[1]);
p0 = &s[0].octets;
p1 = &s[1].octets;
sbuf_printf(sb, "%s Loopback %u"
" Loopback %u", i == 0 ? "" : "\n", i, i + 1);
for (j = 0; j < nitems(stat_name); j++)
sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
*p0++, *p1++);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
{
int rc = 0;
struct port_info *pi = arg1;
struct sbuf *sb;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return(rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
if (sb == NULL)
return (ENOMEM);
if (pi->linkdnrc < 0)
sbuf_printf(sb, "n/a");
else
sbuf_printf(sb, "%s", t4_link_down_rc_str(pi->linkdnrc));
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
struct mem_desc {
unsigned int base;
unsigned int limit;
unsigned int idx;
};
static int
mem_desc_cmp(const void *a, const void *b)
{
return ((const struct mem_desc *)a)->base -
((const struct mem_desc *)b)->base;
}
static void
mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
unsigned int to)
{
unsigned int size;
if (from == to)
return;
size = to - from + 1;
if (size == 0)
return;
/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
}
static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i, n;
uint32_t lo, hi, used, alloc;
static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
static const char *region[] = {
"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
"RQUDP region:", "PBL region:", "TXPBL region:",
"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
"On-chip queues:"
};
struct mem_desc avail[4];
struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */
struct mem_desc *md = mem;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
for (i = 0; i < nitems(mem); i++) {
mem[i].limit = 0;
mem[i].idx = i;
}
/* Find and sort the populated memory ranges */
i = 0;
lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
if (lo & F_EDRAM0_ENABLE) {
hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
avail[i].base = G_EDRAM0_BASE(hi) << 20;
avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
avail[i].idx = 0;
i++;
}
if (lo & F_EDRAM1_ENABLE) {
hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
avail[i].base = G_EDRAM1_BASE(hi) << 20;
avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
avail[i].idx = 1;
i++;
}
if (lo & F_EXT_MEM_ENABLE) {
hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
avail[i].base = G_EXT_MEM_BASE(hi) << 20;
avail[i].limit = avail[i].base +
(G_EXT_MEM_SIZE(hi) << 20);
avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */
i++;
}
if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
avail[i].limit = avail[i].base +
(G_EXT_MEM1_SIZE(hi) << 20);
avail[i].idx = 4;
i++;
}
if (!i) /* no memory available */
return 0;
qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
/* the next few have explicit upper bounds */
md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
md->limit = md->base - 1 +
t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
md++;
md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
md->limit = md->base - 1 +
t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
md++;
if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
if (chip_id(sc) <= CHELSIO_T5)
md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
else
md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
md->limit = 0;
} else {
md->base = 0;
md->idx = nitems(region); /* hide it */
}
md++;
#define ulp_region(reg) \
md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
ulp_region(RX_ISCSI);
ulp_region(RX_TDDP);
ulp_region(TX_TPT);
ulp_region(RX_STAG);
ulp_region(RX_RQ);
ulp_region(RX_RQUDP);
ulp_region(RX_PBL);
ulp_region(TX_PBL);
#undef ulp_region
md->base = 0;
md->idx = nitems(region);
if (!is_t4(sc)) {
uint32_t size = 0;
uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
if (is_t5(sc)) {
if (sge_ctrl & F_VFIFO_ENABLE)
size = G_DBVFIFO_SIZE(fifo_size);
} else
size = G_T6_DBVFIFO_SIZE(fifo_size);
if (size) {
md->base = G_BASEADDR(t4_read_reg(sc,
A_SGE_DBVFIFO_BADDR));
md->limit = md->base + (size << 2) - 1;
}
}
md++;
md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
md->limit = 0;
md++;
md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
md->limit = 0;
md++;
md->base = sc->vres.ocq.start;
if (sc->vres.ocq.size)
md->limit = md->base + sc->vres.ocq.size - 1;
else
md->idx = nitems(region); /* hide it */
md++;
/* add any address-space holes, there can be up to 3 */
for (n = 0; n < i - 1; n++)
if (avail[n].limit < avail[n + 1].base)
(md++)->base = avail[n].limit;
if (avail[n].limit)
(md++)->base = avail[n].limit;
n = md - mem;
qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
for (lo = 0; lo < i; lo++)
mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
avail[lo].limit - 1);
sbuf_printf(sb, "\n");
for (i = 0; i < n; i++) {
if (mem[i].idx >= nitems(region))
continue; /* skip holes */
if (!mem[i].limit)
mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
mem_region_show(sb, region[mem[i].idx], mem[i].base,
mem[i].limit);
}
sbuf_printf(sb, "\n");
lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
mem_region_show(sb, "uP RAM:", lo, hi);
lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
mem_region_show(sb, "uP Extmem2:", lo, hi);
lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
G_PMRXMAXPAGE(lo),
t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
(lo & F_PMRXNUMCHN) ? 2 : 1);
lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
G_PMTXMAXPAGE(lo),
hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
sbuf_printf(sb, "%u p-structs\n",
t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
for (i = 0; i < 4; i++) {
if (chip_id(sc) > CHELSIO_T5)
lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
else
lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
if (is_t5(sc)) {
used = G_T5_USED(lo);
alloc = G_T5_ALLOC(lo);
} else {
used = G_USED(lo);
alloc = G_ALLOC(lo);
}
/* For T6 these are MAC buffer groups */
sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
i, used, alloc);
}
for (i = 0; i < sc->chip_params->nchan; i++) {
if (chip_id(sc) > CHELSIO_T5)
lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
else
lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
if (is_t5(sc)) {
used = G_T5_USED(lo);
alloc = G_T5_ALLOC(lo);
} else {
used = G_USED(lo);
alloc = G_ALLOC(lo);
}
/* For T6 these are MAC buffer groups */
sbuf_printf(sb,
"\nLoopback %d using %u pages out of %u allocated",
i, used, alloc);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static inline void
tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
{
*mask = x | y;
y = htobe64(y);
memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
}
static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
MPASS(chip_id(sc) <= CHELSIO_T5);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
sbuf_printf(sb,
"Idx Ethernet address Mask Vld Ports PF"
" VF Replication P0 P1 P2 P3 ML");
for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
uint64_t tcamx, tcamy, mask;
uint32_t cls_lo, cls_hi;
uint8_t addr[ETHER_ADDR_LEN];
tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
if (tcamx & tcamy)
continue;
tcamxy2valmask(tcamx, tcamy, addr, &mask);
cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
" %c %#x%4u%4d", i, addr[0], addr[1], addr[2],
addr[3], addr[4], addr[5], (uintmax_t)mask,
(cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
G_PORTMAP(cls_hi), G_PF(cls_lo),
(cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
if (cls_lo & F_REPLICATE) {
struct fw_ldst_cmd ldst_cmd;
memset(&ldst_cmd, 0, sizeof(ldst_cmd));
ldst_cmd.op_to_addrspace =
htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ |
V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
ldst_cmd.u.mps.rplc.fid_idx =
htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
V_FW_LDST_CMD_IDX(i));
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
"t4mps");
if (rc)
break;
rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
sizeof(ldst_cmd), &ldst_cmd);
end_synchronized_op(sc, 0);
if (rc != 0) {
sbuf_printf(sb, "%36d", rc);
rc = 0;
} else {
sbuf_printf(sb, " %08x %08x %08x %08x",
be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
}
} else
sbuf_printf(sb, "%36s", "");
sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
}
if (rc)
(void) sbuf_finish(sb);
else
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
MPASS(chip_id(sc) > CHELSIO_T5);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask"
" IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF"
" Replication"
" P0 P1 P2 P3 ML\n");
for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
uint8_t dip_hit, vlan_vld, lookup_type, port_num;
uint16_t ivlan;
uint64_t tcamx, tcamy, val, mask;
uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
uint8_t addr[ETHER_ADDR_LEN];
ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
if (i < 256)
ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
else
ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
tcamy = G_DMACH(val) << 32;
tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
lookup_type = G_DATALKPTYPE(data2);
port_num = G_DATAPORTNUM(data2);
if (lookup_type && lookup_type != M_DATALKPTYPE) {
/* Inner header VNI */
vniy = ((data2 & F_DATAVIDH2) << 23) |
(G_DATAVIDH1(data2) << 16) | G_VIDL(val);
dip_hit = data2 & F_DATADIPHIT;
vlan_vld = 0;
} else {
vniy = 0;
dip_hit = 0;
vlan_vld = data2 & F_DATAVIDH2;
ivlan = G_VIDL(val);
}
ctl |= V_CTLXYBITSEL(1);
t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
tcamx = G_DMACH(val) << 32;
tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
if (lookup_type && lookup_type != M_DATALKPTYPE) {
/* Inner header VNI mask */
vnix = ((data2 & F_DATAVIDH2) << 23) |
(G_DATAVIDH1(data2) << 16) | G_VIDL(val);
} else
vnix = 0;
if (tcamx & tcamy)
continue;
tcamxy2valmask(tcamx, tcamy, addr, &mask);
cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
if (lookup_type && lookup_type != M_DATALKPTYPE) {
sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
"%012jx %06x %06x - - %3c"
" 'I' %4x %3c %#x%4u%4d", i, addr[0],
addr[1], addr[2], addr[3], addr[4], addr[5],
(uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
} else {
sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
"%012jx - - ", i, addr[0], addr[1],
addr[2], addr[3], addr[4], addr[5],
(uintmax_t)mask);
if (vlan_vld)
sbuf_printf(sb, "%4u Y ", ivlan);
else
sbuf_printf(sb, " - N ");
sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d",
lookup_type ? 'I' : 'O', port_num,
cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
}
if (cls_lo & F_T6_REPLICATE) {
struct fw_ldst_cmd ldst_cmd;
memset(&ldst_cmd, 0, sizeof(ldst_cmd));
ldst_cmd.op_to_addrspace =
htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
F_FW_CMD_REQUEST | F_FW_CMD_READ |
V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
ldst_cmd.u.mps.rplc.fid_idx =
htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
V_FW_LDST_CMD_IDX(i));
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
"t6mps");
if (rc)
break;
rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
sizeof(ldst_cmd), &ldst_cmd);
end_synchronized_op(sc, 0);
if (rc != 0) {
sbuf_printf(sb, "%72d", rc);
rc = 0;
} else {
sbuf_printf(sb, " %08x %08x %08x %08x"
" %08x %08x %08x %08x",
be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
}
} else
sbuf_printf(sb, "%72s", "");
sbuf_printf(sb, "%4u%3u%3u%3u %#x",
G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
(cls_lo >> S_T6_MULTILISTEN0) & 0xf);
}
if (rc)
(void) sbuf_finish(sb);
else
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
uint16_t mtus[NMTUS];
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_read_mtu_tbl(sc, mtus, NULL);
sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
mtus[14], mtus[15]);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, i;
uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
static const char *tx_stats[MAX_PM_NSTATS] = {
"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
"Tx FIFO wait", NULL, "Tx latency"
};
static const char *rx_stats[MAX_PM_NSTATS] = {
"Read:", "Write bypass:", "Write mem:", "Flush:",
" Rx FIFO wait", NULL, "Rx latency"
};
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
sbuf_printf(sb, " Tx pcmds Tx bytes");
for (i = 0; i < 4; i++) {
sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
tx_cyc[i]);
}
sbuf_printf(sb, "\n Rx pcmds Rx bytes");
for (i = 0; i < 4; i++) {
sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
rx_cyc[i]);
}
if (chip_id(sc) > CHELSIO_T5) {
sbuf_printf(sb,
"\n Total wait Total occupancy");
sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
tx_cyc[i]);
sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
rx_cyc[i]);
i += 2;
MPASS(i < nitems(tx_stats));
sbuf_printf(sb,
"\n Reads Total wait");
sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
tx_cyc[i]);
sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
rx_cyc[i]);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_rdma_stats stats;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
mtx_lock(&sc->reg_lock);
t4_tp_get_rdma_stats(sc, &stats);
mtx_unlock(&sc->reg_lock);
sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_tcp_stats v4, v6;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
mtx_lock(&sc->reg_lock);
t4_tp_get_tcp_stats(sc, &v4, &v6);
mtx_unlock(&sc->reg_lock);
sbuf_printf(sb,
" IP IPv6\n");
sbuf_printf(sb, "OutRsts: %20u %20u\n",
v4.tcp_out_rsts, v6.tcp_out_rsts);
sbuf_printf(sb, "InSegs: %20ju %20ju\n",
v4.tcp_in_segs, v6.tcp_in_segs);
sbuf_printf(sb, "OutSegs: %20ju %20ju\n",
v4.tcp_out_segs, v6.tcp_out_segs);
sbuf_printf(sb, "RetransSegs: %20ju %20ju",
v4.tcp_retrans_segs, v6.tcp_retrans_segs);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tids(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tid_info *t = &sc->tids;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
if (t->natids) {
sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
t->atids_in_use);
}
if (t->ntids) {
if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
uint32_t b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
if (b) {
sbuf_printf(sb, "TID range: 0-%u, %u-%u", b - 1,
t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4,
t->ntids - 1);
} else {
sbuf_printf(sb, "TID range: %u-%u",
t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4,
t->ntids - 1);
}
} else
sbuf_printf(sb, "TID range: 0-%u", t->ntids - 1);
sbuf_printf(sb, ", in use: %u\n",
atomic_load_acq_int(&t->tids_in_use));
}
if (t->nstids) {
sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
t->stid_base + t->nstids - 1, t->stids_in_use);
}
if (t->nftids) {
sbuf_printf(sb, "FTID range: %u-%u\n", t->ftid_base,
t->ftid_base + t->nftids - 1);
}
if (t->netids) {
sbuf_printf(sb, "ETID range: %u-%u\n", t->etid_base,
t->etid_base + t->netids - 1);
}
sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
struct tp_err_stats stats;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
mtx_lock(&sc->reg_lock);
t4_tp_get_err_stats(sc, &stats);
mtx_unlock(&sc->reg_lock);
if (sc->chip_params->nchan > 2) {
sbuf_printf(sb, " channel 0 channel 1"
" channel 2 channel 3\n");
sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n",
stats.mac_in_errs[0], stats.mac_in_errs[1],
stats.mac_in_errs[2], stats.mac_in_errs[3]);
sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n",
stats.hdr_in_errs[0], stats.hdr_in_errs[1],
stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n",
stats.tcp_in_errs[0], stats.tcp_in_errs[1],
stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n",
stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n",
stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n",
stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n",
stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n",
stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
} else {
sbuf_printf(sb, " channel 0 channel 1\n");
sbuf_printf(sb, "macInErrs: %10u %10u\n",
stats.mac_in_errs[0], stats.mac_in_errs[1]);
sbuf_printf(sb, "hdrInErrs: %10u %10u\n",
stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
sbuf_printf(sb, "tcpInErrs: %10u %10u\n",
stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
sbuf_printf(sb, "tcp6InErrs: %10u %10u\n",
stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
sbuf_printf(sb, "tnlCongDrops: %10u %10u\n",
stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
sbuf_printf(sb, "tnlTxDrops: %10u %10u\n",
stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n",
stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n",
stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
}
sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u",
stats.ofld_no_neigh, stats.ofld_cong_defer);
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct tp_params *tpp = &sc->params.tp;
u_int mask;
int rc;
mask = tpp->la_mask >> 16;
rc = sysctl_handle_int(oidp, &mask, 0, req);
if (rc != 0 || req->newptr == NULL)
return (rc);
if (mask > 0xffff)
return (EINVAL);
tpp->la_mask = mask << 16;
t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
return (0);
}
struct field_desc {
const char *name;
u_int start;
u_int width;
};
static void
field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
{
char buf[32];
int line_size = 0;
while (f->name) {
uint64_t mask = (1ULL << f->width) - 1;
int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
((uintmax_t)v >> f->start) & mask);
if (line_size + len >= 79) {
line_size = 8;
sbuf_printf(sb, "\n ");
}
sbuf_printf(sb, "%s ", buf);
line_size += len + 1;
f++;
}
sbuf_printf(sb, "\n");
}
static const struct field_desc tp_la0[] = {
{ "RcfOpCodeOut", 60, 4 },
{ "State", 56, 4 },
{ "WcfState", 52, 4 },
{ "RcfOpcSrcOut", 50, 2 },
{ "CRxError", 49, 1 },
{ "ERxError", 48, 1 },
{ "SanityFailed", 47, 1 },
{ "SpuriousMsg", 46, 1 },
{ "FlushInputMsg", 45, 1 },
{ "FlushInputCpl", 44, 1 },
{ "RssUpBit", 43, 1 },
{ "RssFilterHit", 42, 1 },
{ "Tid", 32, 10 },
{ "InitTcb", 31, 1 },
{ "LineNumber", 24, 7 },
{ "Emsg", 23, 1 },
{ "EdataOut", 22, 1 },
{ "Cmsg", 21, 1 },
{ "CdataOut", 20, 1 },
{ "EreadPdu", 19, 1 },
{ "CreadPdu", 18, 1 },
{ "TunnelPkt", 17, 1 },
{ "RcfPeerFin", 16, 1 },
{ "RcfReasonOut", 12, 4 },
{ "TxCchannel", 10, 2 },
{ "RcfTxChannel", 8, 2 },
{ "RxEchannel", 6, 2 },
{ "RcfRxChannel", 5, 1 },
{ "RcfDataOutSrdy", 4, 1 },
{ "RxDvld", 3, 1 },
{ "RxOoDvld", 2, 1 },
{ "RxCongestion", 1, 1 },
{ "TxCongestion", 0, 1 },
{ NULL }
};
static const struct field_desc tp_la1[] = {
{ "CplCmdIn", 56, 8 },
{ "CplCmdOut", 48, 8 },
{ "ESynOut", 47, 1 },
{ "EAckOut", 46, 1 },
{ "EFinOut", 45, 1 },
{ "ERstOut", 44, 1 },
{ "SynIn", 43, 1 },
{ "AckIn", 42, 1 },
{ "FinIn", 41, 1 },
{ "RstIn", 40, 1 },
{ "DataIn", 39, 1 },
{ "DataInVld", 38, 1 },
{ "PadIn", 37, 1 },
{ "RxBufEmpty", 36, 1 },
{ "RxDdp", 35, 1 },
{ "RxFbCongestion", 34, 1 },
{ "TxFbCongestion", 33, 1 },
{ "TxPktSumSrdy", 32, 1 },
{ "RcfUlpType", 28, 4 },
{ "Eread", 27, 1 },
{ "Ebypass", 26, 1 },
{ "Esave", 25, 1 },
{ "Static0", 24, 1 },
{ "Cread", 23, 1 },
{ "Cbypass", 22, 1 },
{ "Csave", 21, 1 },
{ "CPktOut", 20, 1 },
{ "RxPagePoolFull", 18, 2 },
{ "RxLpbkPkt", 17, 1 },
{ "TxLpbkPkt", 16, 1 },
{ "RxVfValid", 15, 1 },
{ "SynLearned", 14, 1 },
{ "SetDelEntry", 13, 1 },
{ "SetInvEntry", 12, 1 },
{ "CpcmdDvld", 11, 1 },
{ "CpcmdSave", 10, 1 },
{ "RxPstructsFull", 8, 2 },
{ "EpcmdDvld", 7, 1 },
{ "EpcmdFlush", 6, 1 },
{ "EpcmdTrimPrefix", 5, 1 },
{ "EpcmdTrimPostfix", 4, 1 },
{ "ERssIp4Pkt", 3, 1 },
{ "ERssIp6Pkt", 2, 1 },
{ "ERssTcpUdpPkt", 1, 1 },
{ "ERssFceFipPkt", 0, 1 },
{ NULL }
};
static const struct field_desc tp_la2[] = {
{ "CplCmdIn", 56, 8 },
{ "MpsVfVld", 55, 1 },
{ "MpsPf", 52, 3 },
{ "MpsVf", 44, 8 },
{ "SynIn", 43, 1 },
{ "AckIn", 42, 1 },
{ "FinIn", 41, 1 },
{ "RstIn", 40, 1 },
{ "DataIn", 39, 1 },
{ "DataInVld", 38, 1 },
{ "PadIn", 37, 1 },
{ "RxBufEmpty", 36, 1 },
{ "RxDdp", 35, 1 },
{ "RxFbCongestion", 34, 1 },
{ "TxFbCongestion", 33, 1 },
{ "TxPktSumSrdy", 32, 1 },
{ "RcfUlpType", 28, 4 },
{ "Eread", 27, 1 },
{ "Ebypass", 26, 1 },
{ "Esave", 25, 1 },
{ "Static0", 24, 1 },
{ "Cread", 23, 1 },
{ "Cbypass", 22, 1 },
{ "Csave", 21, 1 },
{ "CPktOut", 20, 1 },
{ "RxPagePoolFull", 18, 2 },
{ "RxLpbkPkt", 17, 1 },
{ "TxLpbkPkt", 16, 1 },
{ "RxVfValid", 15, 1 },
{ "SynLearned", 14, 1 },
{ "SetDelEntry", 13, 1 },
{ "SetInvEntry", 12, 1 },
{ "CpcmdDvld", 11, 1 },
{ "CpcmdSave", 10, 1 },
{ "RxPstructsFull", 8, 2 },
{ "EpcmdDvld", 7, 1 },
{ "EpcmdFlush", 6, 1 },
{ "EpcmdTrimPrefix", 5, 1 },
{ "EpcmdTrimPostfix", 4, 1 },
{ "ERssIp4Pkt", 3, 1 },
{ "ERssIp6Pkt", 2, 1 },
{ "ERssTcpUdpPkt", 1, 1 },
{ "ERssFceFipPkt", 0, 1 },
{ NULL }
};
static void
tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
{
field_desc_show(sb, *p, tp_la0);
}
static void
tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
{
if (idx)
sbuf_printf(sb, "\n");
field_desc_show(sb, p[0], tp_la0);
if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
field_desc_show(sb, p[1], tp_la0);
}
static void
tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
{
if (idx)
sbuf_printf(sb, "\n");
field_desc_show(sb, p[0], tp_la0);
if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
}
static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
uint64_t *buf, *p;
int rc;
u_int i, inc;
void (*show_func)(struct sbuf *, uint64_t *, int);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
t4_tp_read_la(sc, buf, NULL);
p = buf;
switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
case 2:
inc = 2;
show_func = tp_la_show2;
break;
case 3:
inc = 2;
show_func = tp_la_show3;
break;
default:
inc = 1;
show_func = tp_la_show;
}
for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
(*show_func)(sb, p, i);
rc = sbuf_finish(sb);
sbuf_delete(sb);
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc;
u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
if (sb == NULL)
return (ENOMEM);
t4_get_chan_txrate(sc, nrate, orate);
if (sc->chip_params->nchan > 2) {
sbuf_printf(sb, " channel 0 channel 1"
" channel 2 channel 3\n");
sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n",
nrate[0], nrate[1], nrate[2], nrate[3]);
sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju",
orate[0], orate[1], orate[2], orate[3]);
} else {
sbuf_printf(sb, " channel 0 channel 1\n");
sbuf_printf(sb, "NIC B/s: %10ju %10ju\n",
nrate[0], nrate[1]);
sbuf_printf(sb, "Offload B/s: %10ju %10ju",
orate[0], orate[1]);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
uint32_t *buf, *p;
int rc, i;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
M_ZERO | M_WAITOK);
t4_ulprx_read_la(sc, buf);
p = buf;
sbuf_printf(sb, " Pcmd Type Message"
" Data");
for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x",
p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
free(buf, M_CXGBE);
return (rc);
}
static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct sbuf *sb;
int rc, v;
MPASS(chip_id(sc) >= CHELSIO_T5);
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
v = t4_read_reg(sc, A_SGE_STAT_CFG);
if (G_STATSOURCE_T5(v) == 7) {
int mode;
mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
if (mode == 0) {
sbuf_printf(sb, "total %d, incomplete %d",
t4_read_reg(sc, A_SGE_STAT_TOTAL),
t4_read_reg(sc, A_SGE_STAT_MATCH));
} else if (mode == 1) {
sbuf_printf(sb, "total %d, data overflow %d",
t4_read_reg(sc, A_SGE_STAT_TOTAL),
t4_read_reg(sc, A_SGE_STAT_MATCH));
} else {
sbuf_printf(sb, "unknown mode %d", mode);
}
}
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
static int
sysctl_tc_params(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
struct tx_sched_class *tc;
struct t4_sched_class_params p;
struct sbuf *sb;
int i, rc, port_id, flags, mbps, gbps;
rc = sysctl_wire_old_buffer(req, 0);
if (rc != 0)
return (rc);
sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
if (sb == NULL)
return (ENOMEM);
port_id = arg2 >> 16;
MPASS(port_id < sc->params.nports);
MPASS(sc->port[port_id] != NULL);
i = arg2 & 0xffff;
MPASS(i < sc->chip_params->nsched_cls);
tc = &sc->port[port_id]->tc[i];
rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
"t4tc_p");
if (rc)
goto done;
flags = tc->flags;
p = tc->params;
end_synchronized_op(sc, LOCK_HELD);
if ((flags & TX_SC_OK) == 0) {
sbuf_printf(sb, "none");
goto done;
}
if (p.level == SCHED_CLASS_LEVEL_CL_WRR) {
sbuf_printf(sb, "cl-wrr weight %u", p.weight);
goto done;
} else if (p.level == SCHED_CLASS_LEVEL_CL_RL)
sbuf_printf(sb, "cl-rl");
else if (p.level == SCHED_CLASS_LEVEL_CH_RL)
sbuf_printf(sb, "ch-rl");
else {
rc = ENXIO;
goto done;
}
if (p.ratemode == SCHED_CLASS_RATEMODE_REL) {
/* XXX: top speed or actual link speed? */
gbps = port_top_speed(sc->port[port_id]);
sbuf_printf(sb, " %u%% of %uGbps", p.maxrate, gbps);
}
else if (p.ratemode == SCHED_CLASS_RATEMODE_ABS) {
switch (p.rateunit) {
case SCHED_CLASS_RATEUNIT_BITS:
mbps = p.maxrate / 1000;
gbps = p.maxrate / 1000000;
if (p.maxrate == gbps * 1000000)
sbuf_printf(sb, " %uGbps", gbps);
else if (p.maxrate == mbps * 1000)
sbuf_printf(sb, " %uMbps", mbps);
else
sbuf_printf(sb, " %uKbps", p.maxrate);
break;
case SCHED_CLASS_RATEUNIT_PKTS:
sbuf_printf(sb, " %upps", p.maxrate);
break;
default:
rc = ENXIO;
goto done;
}
}
switch (p.mode) {
case SCHED_CLASS_MODE_CLASS:
sbuf_printf(sb, " aggregate");
break;
case SCHED_CLASS_MODE_FLOW:
sbuf_printf(sb, " per-flow");
break;
default:
rc = ENXIO;
goto done;
}
done:
if (rc == 0)
rc = sbuf_finish(sb);
sbuf_delete(sb);
return (rc);
}
#endif
#ifdef TCP_OFFLOAD
static void
unit_conv(char *buf, size_t len, u_int val, u_int factor)
{
u_int rem = val % factor;
if (rem == 0)
snprintf(buf, len, "%u", val / factor);
else {
while (rem % 10 == 0)
rem /= 10;
snprintf(buf, len, "%u.%u", val / factor, rem);
}
}
static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
char buf[16];
u_int res, re;
u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
switch (arg2) {
case 0:
/* timer_tick */
re = G_TIMERRESOLUTION(res);
break;
case 1:
/* TCP timestamp tick */
re = G_TIMESTAMPRESOLUTION(res);
break;
case 2:
/* DACK tick */
re = G_DELAYEDACKRESOLUTION(res);
break;
default:
return (EDOOFUS);
}
unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
}
static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
u_int res, dack_re, v;
u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
dack_re = G_DELAYEDACKRESOLUTION(res);
v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
return (sysctl_handle_int(oidp, &v, 0, req));
}
static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
{
struct adapter *sc = arg1;
int reg = arg2;
u_int tre;
u_long tp_tick_us, v;
u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX ||
reg == A_TP_KEEP_IDLE || A_TP_KEEP_INTVL || reg == A_TP_INIT_SRTT ||
reg == A_TP_FINWAIT2_TIMER);
tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
tp_tick_us = (cclk_ps << tre) / 1000000;
if (reg == A_TP_INIT_SRTT)
v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
else
v = tp_tick_us * t4_read_reg(sc, reg);
return (sysctl_handle_long(oidp, &v, 0, req));
}
#endif
static uint32_t
fconf_iconf_to_mode(uint32_t fconf, uint32_t iconf)
{
uint32_t mode;
mode = T4_FILTER_IPv4 | T4_FILTER_IPv6 | T4_FILTER_IP_SADDR |
T4_FILTER_IP_DADDR | T4_FILTER_IP_SPORT | T4_FILTER_IP_DPORT;
if (fconf & F_FRAGMENTATION)
mode |= T4_FILTER_IP_FRAGMENT;
if (fconf & F_MPSHITTYPE)
mode |= T4_FILTER_MPS_HIT_TYPE;
if (fconf & F_MACMATCH)
mode |= T4_FILTER_MAC_IDX;
if (fconf & F_ETHERTYPE)
mode |= T4_FILTER_ETH_TYPE;
if (fconf & F_PROTOCOL)
mode |= T4_FILTER_IP_PROTO;
if (fconf & F_TOS)
mode |= T4_FILTER_IP_TOS;
if (fconf & F_VLAN)
mode |= T4_FILTER_VLAN;
if (fconf & F_VNIC_ID) {
mode |= T4_FILTER_VNIC;
if (iconf & F_VNIC)
mode |= T4_FILTER_IC_VNIC;
}
if (fconf & F_PORT)
mode |= T4_FILTER_PORT;
if (fconf & F_FCOE)
mode |= T4_FILTER_FCoE;
return (mode);
}
static uint32_t
mode_to_fconf(uint32_t mode)
{
uint32_t fconf = 0;
if (mode & T4_FILTER_IP_FRAGMENT)
fconf |= F_FRAGMENTATION;
if (mode & T4_FILTER_MPS_HIT_TYPE)
fconf |= F_MPSHITTYPE;
if (mode & T4_FILTER_MAC_IDX)
fconf |= F_MACMATCH;
if (mode & T4_FILTER_ETH_TYPE)
fconf |= F_ETHERTYPE;
if (mode & T4_FILTER_IP_PROTO)
fconf |= F_PROTOCOL;
if (mode & T4_FILTER_IP_TOS)
fconf |= F_TOS;
if (mode & T4_FILTER_VLAN)
fconf |= F_VLAN;
if (mode & T4_FILTER_VNIC)
fconf |= F_VNIC_ID;
if (mode & T4_FILTER_PORT)
fconf |= F_PORT;
if (mode & T4_FILTER_FCoE)
fconf |= F_FCOE;
return (fconf);
}
static uint32_t
mode_to_iconf(uint32_t mode)
{
if (mode & T4_FILTER_IC_VNIC)
return (F_VNIC);
return (0);
}
static int check_fspec_against_fconf_iconf(struct adapter *sc,
struct t4_filter_specification *fs)
{
struct tp_params *tpp = &sc->params.tp;
uint32_t fconf = 0;
if (fs->val.frag || fs->mask.frag)
fconf |= F_FRAGMENTATION;
if (fs->val.matchtype || fs->mask.matchtype)
fconf |= F_MPSHITTYPE;
if (fs->val.macidx || fs->mask.macidx)
fconf |= F_MACMATCH;
if (fs->val.ethtype || fs->mask.ethtype)
fconf |= F_ETHERTYPE;
if (fs->val.proto || fs->mask.proto)
fconf |= F_PROTOCOL;
if (fs->val.tos || fs->mask.tos)
fconf |= F_TOS;
if (fs->val.vlan_vld || fs->mask.vlan_vld)
fconf |= F_VLAN;
if (fs->val.ovlan_vld || fs->mask.ovlan_vld) {
fconf |= F_VNIC_ID;
if (tpp->ingress_config & F_VNIC)
return (EINVAL);
}
if (fs->val.pfvf_vld || fs->mask.pfvf_vld) {
fconf |= F_VNIC_ID;
if ((tpp->ingress_config & F_VNIC) == 0)
return (EINVAL);
}
if (fs->val.iport || fs->mask.iport)
fconf |= F_PORT;
if (fs->val.fcoe || fs->mask.fcoe)
fconf |= F_FCOE;
if ((tpp->vlan_pri_map | fconf) != tpp->vlan_pri_map)
return (E2BIG);
return (0);
}
static int
get_filter_mode(struct adapter *sc, uint32_t *mode)
{
struct tp_params *tpp = &sc->params.tp;
/*
* We trust the cached values of the relevant TP registers. This means
* things work reliably only if writes to those registers are always via
* t4_set_filter_mode.
*/
*mode = fconf_iconf_to_mode(tpp->vlan_pri_map, tpp->ingress_config);
return (0);
}
static int
set_filter_mode(struct adapter *sc, uint32_t mode)
{
struct tp_params *tpp = &sc->params.tp;
uint32_t fconf, iconf;
int rc;
iconf = mode_to_iconf(mode);
if ((iconf ^ tpp->ingress_config) & F_VNIC) {
/*
* For now we just complain if A_TP_INGRESS_CONFIG is not
* already set to the correct value for the requested filter
* mode. It's not clear if it's safe to write to this register
* on the fly. (And we trust the cached value of the register).
*/
return (EBUSY);
}
fconf = mode_to_fconf(mode);
rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
"t4setfm");
if (rc)
return (rc);
if (sc->tids.ftids_in_use > 0) {
rc = EBUSY;
goto done;
}
#ifdef TCP_OFFLOAD
if (uld_active(sc, ULD_TOM)) {
rc = EBUSY;
goto done;
}
#endif
rc = -t4_set_filter_mode(sc, fconf);
done:
end_synchronized_op(sc, LOCK_HELD);
return (rc);
}
static inline uint64_t
get_filter_hits(struct adapter *sc, uint32_t fid)
{
uint32_t tcb_addr;
tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE) +
(fid + sc->tids.ftid_base) * TCB_SIZE;
if (is_t4(sc)) {
uint64_t hits;
read_via_memwin(sc, 0, tcb_addr + 16, (uint32_t *)&hits, 8);
return (be64toh(hits));
} else {
uint32_t hits;
read_via_memwin(sc, 0, tcb_addr + 24, &hits, 4);
return (be32toh(hits));
}
}
static int
get_filter(struct adapter *sc, struct t4_filter *t)
{
int i, rc, nfilters = sc->tids.nftids;
struct filter_entry *f;
rc = begin_synchronized_op(sc, NULL, HOLD_LOCK | SLEEP_OK | INTR_OK,
"t4getf");
if (rc)
return (rc);
if (sc->tids.ftids_in_use == 0 || sc->tids.ftid_tab == NULL ||
t->idx >= nfilters) {
t->idx = 0xffffffff;
goto done;
}
f = &sc->tids.ftid_tab[t->idx];
for (i = t->idx; i < nfilters; i++, f++) {
if (f->valid) {
t->idx = i;
t->l2tidx = f->l2t ? f->l2t->idx : 0;
t->smtidx = f->smtidx;
if (f->fs.hitcnts)
t->hits = get_filter_hits(sc, t->idx);
else
t->hits = UINT64_MAX;
t->fs = f->fs;
goto done;
}
}
t->idx = 0xffffffff;
done:
end_synchronized_op(sc, LOCK_HELD);
return (0);
}
static int
set_filter(struct adapter *sc, struct t4_filter *t)
{
unsigned int nfilters, nports;
struct filter_entry *f;
int i, rc;
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setf");
if (rc)
return (rc);
nfilters = sc->tids.nftids;
nports = sc->params.nports;
if (nfilters == 0) {
rc = ENOTSUP;
goto done;
}
if (t->idx >= nfilters) {
rc = EINVAL;
goto done;
}
/* Validate against the global filter mode and ingress config */
rc = check_fspec_against_fconf_iconf(sc, &t->fs);
if (rc != 0)
goto done;
if (t->fs.action == FILTER_SWITCH && t->fs.eport >= nports) {
rc = EINVAL;
goto done;
}
if (t->fs.val.iport >= nports) {
rc = EINVAL;
goto done;
}
/* Can't specify an iq if not steering to it */
if (!t->fs.dirsteer && t->fs.iq) {
rc = EINVAL;
goto done;
}
/* IPv6 filter idx must be 4 aligned */
if (t->fs.type == 1 &&
((t->idx & 0x3) || t->idx + 4 >= nfilters)) {
rc = EINVAL;
goto done;
}
if (!(sc->flags & FULL_INIT_DONE) &&
((rc = adapter_full_init(sc)) != 0))
goto done;
if (sc->tids.ftid_tab == NULL) {
KASSERT(sc->tids.ftids_in_use == 0,
("%s: no memory allocated but filters_in_use > 0",
__func__));
sc->tids.ftid_tab = malloc(sizeof (struct filter_entry) *
nfilters, M_CXGBE, M_NOWAIT | M_ZERO);
if (sc->tids.ftid_tab == NULL) {
rc = ENOMEM;
goto done;
}
mtx_init(&sc->tids.ftid_lock, "T4 filters", 0, MTX_DEF);
}
for (i = 0; i < 4; i++) {
f = &sc->tids.ftid_tab[t->idx + i];
if (f->pending || f->valid) {
rc = EBUSY;
goto done;
}
if (f->locked) {
rc = EPERM;
goto done;
}
if (t->fs.type == 0)
break;
}
f = &sc->tids.ftid_tab[t->idx];
f->fs = t->fs;
rc = set_filter_wr(sc, t->idx);
done:
end_synchronized_op(sc, 0);
if (rc == 0) {
mtx_lock(&sc->tids.ftid_lock);
for (;;) {
if (f->pending == 0) {
rc = f->valid ? 0 : EIO;
break;
}
if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
PCATCH, "t4setfw", 0)) {
rc = EINPROGRESS;
break;
}
}
mtx_unlock(&sc->tids.ftid_lock);
}
return (rc);
}
static int
del_filter(struct adapter *sc, struct t4_filter *t)
{
unsigned int nfilters;
struct filter_entry *f;
int rc;
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4delf");
if (rc)
return (rc);
nfilters = sc->tids.nftids;
if (nfilters == 0) {
rc = ENOTSUP;
goto done;
}
if (sc->tids.ftid_tab == NULL || sc->tids.ftids_in_use == 0 ||
t->idx >= nfilters) {
rc = EINVAL;
goto done;
}
if (!(sc->flags & FULL_INIT_DONE)) {
rc = EAGAIN;
goto done;
}
f = &sc->tids.ftid_tab[t->idx];
if (f->pending) {
rc = EBUSY;
goto done;
}
if (f->locked) {
rc = EPERM;
goto done;
}
if (f->valid) {
t->fs = f->fs; /* extra info for the caller */
rc = del_filter_wr(sc, t->idx);
}
done:
end_synchronized_op(sc, 0);
if (rc == 0) {
mtx_lock(&sc->tids.ftid_lock);
for (;;) {
if (f->pending == 0) {
rc = f->valid ? EIO : 0;
break;
}
if (mtx_sleep(&sc->tids.ftid_tab, &sc->tids.ftid_lock,
PCATCH, "t4delfw", 0)) {
rc = EINPROGRESS;
break;
}
}
mtx_unlock(&sc->tids.ftid_lock);
}
return (rc);
}
static void
clear_filter(struct filter_entry *f)
{
if (f->l2t)
t4_l2t_release(f->l2t);
bzero(f, sizeof (*f));
}
static int
set_filter_wr(struct adapter *sc, int fidx)
{
struct filter_entry *f = &sc->tids.ftid_tab[fidx];
struct fw_filter_wr *fwr;
unsigned int ftid, vnic_vld, vnic_vld_mask;
struct wrq_cookie cookie;
ASSERT_SYNCHRONIZED_OP(sc);
if (f->fs.newdmac || f->fs.newvlan) {
/* This filter needs an L2T entry; allocate one. */
f->l2t = t4_l2t_alloc_switching(sc->l2t);
if (f->l2t == NULL)
return (EAGAIN);
if (t4_l2t_set_switching(sc, f->l2t, f->fs.vlan, f->fs.eport,
f->fs.dmac)) {
t4_l2t_release(f->l2t);
f->l2t = NULL;
return (ENOMEM);
}
}
/* Already validated against fconf, iconf */
MPASS((f->fs.val.pfvf_vld & f->fs.val.ovlan_vld) == 0);
MPASS((f->fs.mask.pfvf_vld & f->fs.mask.ovlan_vld) == 0);
if (f->fs.val.pfvf_vld || f->fs.val.ovlan_vld)
vnic_vld = 1;
else
vnic_vld = 0;
if (f->fs.mask.pfvf_vld || f->fs.mask.ovlan_vld)
vnic_vld_mask = 1;
else
vnic_vld_mask = 0;
ftid = sc->tids.ftid_base + fidx;
fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
if (fwr == NULL)
return (ENOMEM);
bzero(fwr, sizeof(*fwr));
fwr->op_pkd = htobe32(V_FW_WR_OP(FW_FILTER_WR));
fwr->len16_pkd = htobe32(FW_LEN16(*fwr));
fwr->tid_to_iq =
htobe32(V_FW_FILTER_WR_TID(ftid) |
V_FW_FILTER_WR_RQTYPE(f->fs.type) |
V_FW_FILTER_WR_NOREPLY(0) |
V_FW_FILTER_WR_IQ(f->fs.iq));
fwr->del_filter_to_l2tix =
htobe32(V_FW_FILTER_WR_RPTTID(f->fs.rpttid) |
V_FW_FILTER_WR_DROP(f->fs.action == FILTER_DROP) |
V_FW_FILTER_WR_DIRSTEER(f->fs.dirsteer) |
V_FW_FILTER_WR_MASKHASH(f->fs.maskhash) |
V_FW_FILTER_WR_DIRSTEERHASH(f->fs.dirsteerhash) |
V_FW_FILTER_WR_LPBK(f->fs.action == FILTER_SWITCH) |
V_FW_FILTER_WR_DMAC(f->fs.newdmac) |
V_FW_FILTER_WR_SMAC(f->fs.newsmac) |
V_FW_FILTER_WR_INSVLAN(f->fs.newvlan == VLAN_INSERT ||
f->fs.newvlan == VLAN_REWRITE) |
V_FW_FILTER_WR_RMVLAN(f->fs.newvlan == VLAN_REMOVE ||
f->fs.newvlan == VLAN_REWRITE) |
V_FW_FILTER_WR_HITCNTS(f->fs.hitcnts) |
V_FW_FILTER_WR_TXCHAN(f->fs.eport) |
V_FW_FILTER_WR_PRIO(f->fs.prio) |
V_FW_FILTER_WR_L2TIX(f->l2t ? f->l2t->idx : 0));
fwr->ethtype = htobe16(f->fs.val.ethtype);
fwr->ethtypem = htobe16(f->fs.mask.ethtype);
fwr->frag_to_ovlan_vldm =
(V_FW_FILTER_WR_FRAG(f->fs.val.frag) |
V_FW_FILTER_WR_FRAGM(f->fs.mask.frag) |
V_FW_FILTER_WR_IVLAN_VLD(f->fs.val.vlan_vld) |
V_FW_FILTER_WR_OVLAN_VLD(vnic_vld) |
V_FW_FILTER_WR_IVLAN_VLDM(f->fs.mask.vlan_vld) |
V_FW_FILTER_WR_OVLAN_VLDM(vnic_vld_mask));
fwr->smac_sel = 0;
fwr->rx_chan_rx_rpl_iq = htobe16(V_FW_FILTER_WR_RX_CHAN(0) |
V_FW_FILTER_WR_RX_RPL_IQ(sc->sge.fwq.abs_id));
fwr->maci_to_matchtypem =
htobe32(V_FW_FILTER_WR_MACI(f->fs.val.macidx) |
V_FW_FILTER_WR_MACIM(f->fs.mask.macidx) |
V_FW_FILTER_WR_FCOE(f->fs.val.fcoe) |
V_FW_FILTER_WR_FCOEM(f->fs.mask.fcoe) |
V_FW_FILTER_WR_PORT(f->fs.val.iport) |
V_FW_FILTER_WR_PORTM(f->fs.mask.iport) |
V_FW_FILTER_WR_MATCHTYPE(f->fs.val.matchtype) |
V_FW_FILTER_WR_MATCHTYPEM(f->fs.mask.matchtype));
fwr->ptcl = f->fs.val.proto;
fwr->ptclm = f->fs.mask.proto;
fwr->ttyp = f->fs.val.tos;
fwr->ttypm = f->fs.mask.tos;
fwr->ivlan = htobe16(f->fs.val.vlan);
fwr->ivlanm = htobe16(f->fs.mask.vlan);
fwr->ovlan = htobe16(f->fs.val.vnic);
fwr->ovlanm = htobe16(f->fs.mask.vnic);
bcopy(f->fs.val.dip, fwr->lip, sizeof (fwr->lip));
bcopy(f->fs.mask.dip, fwr->lipm, sizeof (fwr->lipm));
bcopy(f->fs.val.sip, fwr->fip, sizeof (fwr->fip));
bcopy(f->fs.mask.sip, fwr->fipm, sizeof (fwr->fipm));
fwr->lp = htobe16(f->fs.val.dport);
fwr->lpm = htobe16(f->fs.mask.dport);
fwr->fp = htobe16(f->fs.val.sport);
fwr->fpm = htobe16(f->fs.mask.sport);
if (f->fs.newsmac)
bcopy(f->fs.smac, fwr->sma, sizeof (fwr->sma));
f->pending = 1;
sc->tids.ftids_in_use++;
commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
return (0);
}
static int
del_filter_wr(struct adapter *sc, int fidx)
{
struct filter_entry *f = &sc->tids.ftid_tab[fidx];
struct fw_filter_wr *fwr;
unsigned int ftid;
struct wrq_cookie cookie;
ftid = sc->tids.ftid_base + fidx;
fwr = start_wrq_wr(&sc->sge.mgmtq, howmany(sizeof(*fwr), 16), &cookie);
if (fwr == NULL)
return (ENOMEM);
bzero(fwr, sizeof (*fwr));
t4_mk_filtdelwr(ftid, fwr, sc->sge.fwq.abs_id);
f->pending = 1;
commit_wrq_wr(&sc->sge.mgmtq, fwr, &cookie);
return (0);
}
int
t4_filter_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_set_tcb_rpl *rpl = (const void *)(rss + 1);
unsigned int idx = GET_TID(rpl);
unsigned int rc;
struct filter_entry *f;
KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
rss->opcode));
MPASS(iq == &sc->sge.fwq);
MPASS(is_ftid(sc, idx));
idx -= sc->tids.ftid_base;
f = &sc->tids.ftid_tab[idx];
rc = G_COOKIE(rpl->cookie);
mtx_lock(&sc->tids.ftid_lock);
if (rc == FW_FILTER_WR_FLT_ADDED) {
KASSERT(f->pending, ("%s: filter[%u] isn't pending.",
__func__, idx));
f->smtidx = (be64toh(rpl->oldval) >> 24) & 0xff;
f->pending = 0; /* asynchronous setup completed */
f->valid = 1;
} else {
if (rc != FW_FILTER_WR_FLT_DELETED) {
/* Add or delete failed, display an error */
log(LOG_ERR,
"filter %u setup failed with error %u\n",
idx, rc);
}
clear_filter(f);
sc->tids.ftids_in_use--;
}
wakeup(&sc->tids.ftid_tab);
mtx_unlock(&sc->tids.ftid_lock);
return (0);
}
static int
set_tcb_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
MPASS(iq->set_tcb_rpl != NULL);
return (iq->set_tcb_rpl(iq, rss, m));
}
static int
l2t_write_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
MPASS(iq->l2t_write_rpl != NULL);
return (iq->l2t_write_rpl(iq, rss, m));
}
static int
get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
{
int rc;
if (cntxt->cid > M_CTXTQID)
return (EINVAL);
if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
return (EINVAL);
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
if (rc)
return (rc);
if (sc->flags & FW_OK) {
rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
&cntxt->data[0]);
if (rc == 0)
goto done;
}
/*
* Read via firmware failed or wasn't even attempted. Read directly via
* the backdoor.
*/
rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
done:
end_synchronized_op(sc, 0);
return (rc);
}
static int
load_fw(struct adapter *sc, struct t4_data *fw)
{
int rc;
uint8_t *fw_data;
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
if (rc)
return (rc);
if (sc->flags & FULL_INIT_DONE) {
rc = EBUSY;
goto done;
}
fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
if (fw_data == NULL) {
rc = ENOMEM;
goto done;
}
rc = copyin(fw->data, fw_data, fw->len);
if (rc == 0)
rc = -t4_load_fw(sc, fw_data, fw->len);
free(fw_data, M_CXGBE);
done:
end_synchronized_op(sc, 0);
return (rc);
}
#define MAX_READ_BUF_SIZE (128 * 1024)
static int
read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
{
uint32_t addr, remaining, n;
uint32_t *buf;
int rc;
uint8_t *dst;
rc = validate_mem_range(sc, mr->addr, mr->len);
if (rc != 0)
return (rc);
buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
addr = mr->addr;
remaining = mr->len;
dst = (void *)mr->data;
while (remaining) {
n = min(remaining, MAX_READ_BUF_SIZE);
read_via_memwin(sc, 2, addr, buf, n);
rc = copyout(buf, dst, n);
if (rc != 0)
break;
dst += n;
remaining -= n;
addr += n;
}
free(buf, M_CXGBE);
return (rc);
}
#undef MAX_READ_BUF_SIZE
static int
read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
{
int rc;
if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
return (EINVAL);
if (i2cd->len > sizeof(i2cd->data))
return (EFBIG);
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
if (rc)
return (rc);
rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
i2cd->offset, i2cd->len, &i2cd->data[0]);
end_synchronized_op(sc, 0);
return (rc);
}
static int
in_range(int val, int lo, int hi)
{
return (val < 0 || (val <= hi && val >= lo));
}
static int
set_sched_class_config(struct adapter *sc, int minmax)
{
int rc;
if (minmax < 0)
return (EINVAL);
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4sscc");
if (rc)
return (rc);
rc = -t4_sched_config(sc, FW_SCHED_TYPE_PKTSCHED, minmax, 1);
end_synchronized_op(sc, 0);
return (rc);
}
static int
set_sched_class_params(struct adapter *sc, struct t4_sched_class_params *p,
int sleep_ok)
{
int rc, top_speed, fw_level, fw_mode, fw_rateunit, fw_ratemode;
struct port_info *pi;
struct tx_sched_class *tc;
if (p->level == SCHED_CLASS_LEVEL_CL_RL)
fw_level = FW_SCHED_PARAMS_LEVEL_CL_RL;
else if (p->level == SCHED_CLASS_LEVEL_CL_WRR)
fw_level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
else if (p->level == SCHED_CLASS_LEVEL_CH_RL)
fw_level = FW_SCHED_PARAMS_LEVEL_CH_RL;
else
return (EINVAL);
if (p->mode == SCHED_CLASS_MODE_CLASS)
fw_mode = FW_SCHED_PARAMS_MODE_CLASS;
else if (p->mode == SCHED_CLASS_MODE_FLOW)
fw_mode = FW_SCHED_PARAMS_MODE_FLOW;
else
return (EINVAL);
if (p->rateunit == SCHED_CLASS_RATEUNIT_BITS)
fw_rateunit = FW_SCHED_PARAMS_UNIT_BITRATE;
else if (p->rateunit == SCHED_CLASS_RATEUNIT_PKTS)
fw_rateunit = FW_SCHED_PARAMS_UNIT_PKTRATE;
else
return (EINVAL);
if (p->ratemode == SCHED_CLASS_RATEMODE_REL)
fw_ratemode = FW_SCHED_PARAMS_RATE_REL;
else if (p->ratemode == SCHED_CLASS_RATEMODE_ABS)
fw_ratemode = FW_SCHED_PARAMS_RATE_ABS;
else
return (EINVAL);
/* Vet our parameters ... */
if (!in_range(p->channel, 0, sc->chip_params->nchan - 1))
return (ERANGE);
pi = sc->port[sc->chan_map[p->channel]];
if (pi == NULL)
return (ENXIO);
MPASS(pi->tx_chan == p->channel);
top_speed = port_top_speed(pi) * 1000000; /* Gbps -> Kbps */
if (!in_range(p->cl, 0, sc->chip_params->nsched_cls) ||
!in_range(p->minrate, 0, top_speed) ||
!in_range(p->maxrate, 0, top_speed) ||
!in_range(p->weight, 0, 100))
return (ERANGE);
/*
* Translate any unset parameters into the firmware's
* nomenclature and/or fail the call if the parameters
* are required ...
*/
if (p->rateunit < 0 || p->ratemode < 0 || p->channel < 0 || p->cl < 0)
return (EINVAL);
if (p->minrate < 0)
p->minrate = 0;
if (p->maxrate < 0) {
if (p->level == SCHED_CLASS_LEVEL_CL_RL ||
p->level == SCHED_CLASS_LEVEL_CH_RL)
return (EINVAL);
else
p->maxrate = 0;
}
if (p->weight < 0) {
if (p->level == SCHED_CLASS_LEVEL_CL_WRR)
return (EINVAL);
else
p->weight = 0;
}
if (p->pktsize < 0) {
if (p->level == SCHED_CLASS_LEVEL_CL_RL ||
p->level == SCHED_CLASS_LEVEL_CH_RL)
return (EINVAL);
else
p->pktsize = 0;
}
rc = begin_synchronized_op(sc, NULL,
sleep_ok ? (SLEEP_OK | INTR_OK) : HOLD_LOCK, "t4sscp");
if (rc)
return (rc);
tc = &pi->tc[p->cl];
tc->params = *p;
rc = -t4_sched_params(sc, FW_SCHED_TYPE_PKTSCHED, fw_level, fw_mode,
fw_rateunit, fw_ratemode, p->channel, p->cl, p->minrate, p->maxrate,
p->weight, p->pktsize, sleep_ok);
if (rc == 0)
tc->flags |= TX_SC_OK;
else {
/*
* Unknown state at this point, see tc->params for what was
* attempted.
*/
tc->flags &= ~TX_SC_OK;
}
end_synchronized_op(sc, sleep_ok ? 0 : LOCK_HELD);
return (rc);
}
int
t4_set_sched_class(struct adapter *sc, struct t4_sched_params *p)
{
if (p->type != SCHED_CLASS_TYPE_PACKET)
return (EINVAL);
if (p->subcmd == SCHED_CLASS_SUBCMD_CONFIG)
return (set_sched_class_config(sc, p->u.config.minmax));
if (p->subcmd == SCHED_CLASS_SUBCMD_PARAMS)
return (set_sched_class_params(sc, &p->u.params, 1));
return (EINVAL);
}
int
t4_set_sched_queue(struct adapter *sc, struct t4_sched_queue *p)
{
struct port_info *pi = NULL;
struct vi_info *vi;
struct sge_txq *txq;
uint32_t fw_mnem, fw_queue, fw_class;
int i, rc;
rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4setsq");
if (rc)
return (rc);
if (p->port >= sc->params.nports) {
rc = EINVAL;
goto done;
}
/* XXX: Only supported for the main VI. */
pi = sc->port[p->port];
vi = &pi->vi[0];
if (!(vi->flags & VI_INIT_DONE)) {
/* tx queues not set up yet */
rc = EAGAIN;
goto done;
}
if (!in_range(p->queue, 0, vi->ntxq - 1) ||
!in_range(p->cl, 0, sc->chip_params->nsched_cls - 1)) {
rc = EINVAL;
goto done;
}
/*
* Create a template for the FW_PARAMS_CMD mnemonic and value (TX
* Scheduling Class in this case).
*/
fw_mnem = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH));
fw_class = p->cl < 0 ? 0xffffffff : p->cl;
/*
* If op.queue is non-negative, then we're only changing the scheduling
* on a single specified TX queue.
*/
if (p->queue >= 0) {
txq = &sc->sge.txq[vi->first_txq + p->queue];
fw_queue = (fw_mnem | V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id));
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue,
&fw_class);
goto done;
}
/*
* Change the scheduling on all the TX queues for the
* interface.
*/
for_each_txq(vi, i, txq) {
fw_queue = (fw_mnem | V_FW_PARAMS_PARAM_YZ(txq->eq.cntxt_id));
rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &fw_queue,
&fw_class);
if (rc)
goto done;
}
rc = 0;
done:
end_synchronized_op(sc, 0);
return (rc);
}
int
t4_os_find_pci_capability(struct adapter *sc, int cap)
{
int i;
return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
}
int
t4_os_pci_save_state(struct adapter *sc)
{
device_t dev;
struct pci_devinfo *dinfo;
dev = sc->dev;
dinfo = device_get_ivars(dev);
pci_cfg_save(dev, dinfo, 0);
return (0);
}
int
t4_os_pci_restore_state(struct adapter *sc)
{
device_t dev;
struct pci_devinfo *dinfo;
dev = sc->dev;
dinfo = device_get_ivars(dev);
pci_cfg_restore(dev, dinfo);
return (0);
}
void
t4_os_portmod_changed(const struct adapter *sc, int idx)
{
struct port_info *pi = sc->port[idx];
struct vi_info *vi;
struct ifnet *ifp;
int v;
static const char *mod_str[] = {
NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
};
for_each_vi(pi, v, vi) {
build_medialist(pi, &vi->media);
}
ifp = pi->vi[0].ifp;
if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
if_printf(ifp, "transceiver unplugged.\n");
else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
if_printf(ifp, "unknown transceiver inserted.\n");
else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
if_printf(ifp, "unsupported transceiver inserted.\n");
else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
if_printf(ifp, "%s transceiver inserted.\n",
mod_str[pi->mod_type]);
} else {
if_printf(ifp, "transceiver (type %d) inserted.\n",
pi->mod_type);
}
}
void
t4_os_link_changed(struct adapter *sc, int idx, int link_stat, int reason)
{
struct port_info *pi = sc->port[idx];
struct vi_info *vi;
struct ifnet *ifp;
int v;
if (link_stat)
pi->linkdnrc = -1;
else {
if (reason >= 0)
pi->linkdnrc = reason;
}
for_each_vi(pi, v, vi) {
ifp = vi->ifp;
if (ifp == NULL)
continue;
if (link_stat) {
ifp->if_baudrate = IF_Mbps(pi->link_cfg.speed);
if_link_state_change(ifp, LINK_STATE_UP);
} else {
if_link_state_change(ifp, LINK_STATE_DOWN);
}
}
}
void
t4_iterate(void (*func)(struct adapter *, void *), void *arg)
{
struct adapter *sc;
sx_slock(&t4_list_lock);
SLIST_FOREACH(sc, &t4_list, link) {
/*
* func should not make any assumptions about what state sc is
* in - the only guarantee is that sc->sc_lock is a valid lock.
*/
func(sc, arg);
}
sx_sunlock(&t4_list_lock);
}
static int
t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
struct thread *td)
{
int rc;
struct adapter *sc = dev->si_drv1;
rc = priv_check(td, PRIV_DRIVER);
if (rc != 0)
return (rc);
switch (cmd) {
case CHELSIO_T4_GETREG: {
struct t4_reg *edata = (struct t4_reg *)data;
if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
return (EFAULT);
if (edata->size == 4)
edata->val = t4_read_reg(sc, edata->addr);
else if (edata->size == 8)
edata->val = t4_read_reg64(sc, edata->addr);
else
return (EINVAL);
break;
}
case CHELSIO_T4_SETREG: {
struct t4_reg *edata = (struct t4_reg *)data;
if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
return (EFAULT);
if (edata->size == 4) {
if (edata->val & 0xffffffff00000000)
return (EINVAL);
t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
} else if (edata->size == 8)
t4_write_reg64(sc, edata->addr, edata->val);
else
return (EINVAL);
break;
}
case CHELSIO_T4_REGDUMP: {
struct t4_regdump *regs = (struct t4_regdump *)data;
int reglen = t4_get_regs_len(sc);
uint8_t *buf;
if (regs->len < reglen) {
regs->len = reglen; /* hint to the caller */
return (ENOBUFS);
}
regs->len = reglen;
buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
get_regs(sc, regs, buf);
rc = copyout(buf, regs->data, reglen);
free(buf, M_CXGBE);
break;
}
case CHELSIO_T4_GET_FILTER_MODE:
rc = get_filter_mode(sc, (uint32_t *)data);
break;
case CHELSIO_T4_SET_FILTER_MODE:
rc = set_filter_mode(sc, *(uint32_t *)data);
break;
case CHELSIO_T4_GET_FILTER:
rc = get_filter(sc, (struct t4_filter *)data);
break;
case CHELSIO_T4_SET_FILTER:
rc = set_filter(sc, (struct t4_filter *)data);
break;
case CHELSIO_T4_DEL_FILTER:
rc = del_filter(sc, (struct t4_filter *)data);
break;
case CHELSIO_T4_GET_SGE_CONTEXT:
rc = get_sge_context(sc, (struct t4_sge_context *)data);
break;
case CHELSIO_T4_LOAD_FW:
rc = load_fw(sc, (struct t4_data *)data);
break;
case CHELSIO_T4_GET_MEM:
rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
break;
case CHELSIO_T4_GET_I2C:
rc = read_i2c(sc, (struct t4_i2c_data *)data);
break;
case CHELSIO_T4_CLEAR_STATS: {
int i, v;
u_int port_id = *(uint32_t *)data;
struct port_info *pi;
struct vi_info *vi;
if (port_id >= sc->params.nports)
return (EINVAL);
pi = sc->port[port_id];
if (pi == NULL)
return (EIO);
/* MAC stats */
t4_clr_port_stats(sc, pi->tx_chan);
pi->tx_parse_error = 0;
mtx_lock(&sc->reg_lock);
for_each_vi(pi, v, vi) {
if (vi->flags & VI_INIT_DONE)
t4_clr_vi_stats(sc, vi->viid);
}
mtx_unlock(&sc->reg_lock);
/*
* Since this command accepts a port, clear stats for
* all VIs on this port.
*/
for_each_vi(pi, v, vi) {
if (vi->flags & VI_INIT_DONE) {
struct sge_rxq *rxq;
struct sge_txq *txq;
struct sge_wrq *wrq;
for_each_rxq(vi, i, rxq) {
#if defined(INET) || defined(INET6)
rxq->lro.lro_queued = 0;
rxq->lro.lro_flushed = 0;
#endif
rxq->rxcsum = 0;
rxq->vlan_extraction = 0;
}
for_each_txq(vi, i, txq) {
txq->txcsum = 0;
txq->tso_wrs = 0;
txq->vlan_insertion = 0;
txq->imm_wrs = 0;
txq->sgl_wrs = 0;
txq->txpkt_wrs = 0;
txq->txpkts0_wrs = 0;
txq->txpkts1_wrs = 0;
txq->txpkts0_pkts = 0;
txq->txpkts1_pkts = 0;
mp_ring_reset_stats(txq->r);
}
#ifdef TCP_OFFLOAD
/* nothing to clear for each ofld_rxq */
for_each_ofld_txq(vi, i, wrq) {
wrq->tx_wrs_direct = 0;
wrq->tx_wrs_copied = 0;
}
#endif
if (IS_MAIN_VI(vi)) {
wrq = &sc->sge.ctrlq[pi->port_id];
wrq->tx_wrs_direct = 0;
wrq->tx_wrs_copied = 0;
}
}
}
break;
}
case CHELSIO_T4_SCHED_CLASS:
rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
break;
case CHELSIO_T4_SCHED_QUEUE:
rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
break;
case CHELSIO_T4_GET_TRACER:
rc = t4_get_tracer(sc, (struct t4_tracer *)data);
break;
case CHELSIO_T4_SET_TRACER:
rc = t4_set_tracer(sc, (struct t4_tracer *)data);
break;
default:
rc = ENOTTY;
}
return (rc);
}
void
t4_db_full(struct adapter *sc)
{
CXGBE_UNIMPLEMENTED(__func__);
}
void
t4_db_dropped(struct adapter *sc)
{
CXGBE_UNIMPLEMENTED(__func__);
}
#ifdef TCP_OFFLOAD
static int
toe_capability(struct vi_info *vi, int enable)
{
int rc;
struct port_info *pi = vi->pi;
struct adapter *sc = pi->adapter;
ASSERT_SYNCHRONIZED_OP(sc);
if (!is_offload(sc))
return (ENODEV);
if (enable) {
if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
/* TOE is already enabled. */
return (0);
}
/*
* We need the port's queues around so that we're able to send
* and receive CPLs to/from the TOE even if the ifnet for this
* port has never been UP'd administratively.
*/
if (!(vi->flags & VI_INIT_DONE)) {
rc = vi_full_init(vi);
if (rc)
return (rc);
}
if (!(pi->vi[0].flags & VI_INIT_DONE)) {
rc = vi_full_init(&pi->vi[0]);
if (rc)
return (rc);
}
if (isset(&sc->offload_map, pi->port_id)) {
/* TOE is enabled on another VI of this port. */
pi->uld_vis++;
return (0);
}
if (!uld_active(sc, ULD_TOM)) {
rc = t4_activate_uld(sc, ULD_TOM);
if (rc == EAGAIN) {
log(LOG_WARNING,
"You must kldload t4_tom.ko before trying "
"to enable TOE on a cxgbe interface.\n");
}
if (rc != 0)
return (rc);
KASSERT(sc->tom_softc != NULL,
("%s: TOM activated but softc NULL", __func__));
KASSERT(uld_active(sc, ULD_TOM),
("%s: TOM activated but flag not set", __func__));
}
/* Activate iWARP and iSCSI too, if the modules are loaded. */
if (!uld_active(sc, ULD_IWARP))
(void) t4_activate_uld(sc, ULD_IWARP);
if (!uld_active(sc, ULD_ISCSI))
(void) t4_activate_uld(sc, ULD_ISCSI);
pi->uld_vis++;
setbit(&sc->offload_map, pi->port_id);
} else {
pi->uld_vis--;
if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
return (0);
KASSERT(uld_active(sc, ULD_TOM),
("%s: TOM never initialized?", __func__));
clrbit(&sc->offload_map, pi->port_id);
}
return (0);
}
/*
* Add an upper layer driver to the global list.
*/
int
t4_register_uld(struct uld_info *ui)
{
int rc = 0;
struct uld_info *u;
sx_xlock(&t4_uld_list_lock);
SLIST_FOREACH(u, &t4_uld_list, link) {
if (u->uld_id == ui->uld_id) {
rc = EEXIST;
goto done;
}
}
SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
ui->refcount = 0;
done:
sx_xunlock(&t4_uld_list_lock);
return (rc);
}
int
t4_unregister_uld(struct uld_info *ui)
{
int rc = EINVAL;
struct uld_info *u;
sx_xlock(&t4_uld_list_lock);
SLIST_FOREACH(u, &t4_uld_list, link) {
if (u == ui) {
if (ui->refcount > 0) {
rc = EBUSY;
goto done;
}
SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
rc = 0;
goto done;
}
}
done:
sx_xunlock(&t4_uld_list_lock);
return (rc);
}
int
t4_activate_uld(struct adapter *sc, int id)
{
int rc;
struct uld_info *ui;
ASSERT_SYNCHRONIZED_OP(sc);
if (id < 0 || id > ULD_MAX)
return (EINVAL);
rc = EAGAIN; /* kldoad the module with this ULD and try again. */
sx_slock(&t4_uld_list_lock);
SLIST_FOREACH(ui, &t4_uld_list, link) {
if (ui->uld_id == id) {
if (!(sc->flags & FULL_INIT_DONE)) {
rc = adapter_full_init(sc);
if (rc != 0)
break;
}
rc = ui->activate(sc);
if (rc == 0) {
setbit(&sc->active_ulds, id);
ui->refcount++;
}
break;
}
}
sx_sunlock(&t4_uld_list_lock);
return (rc);
}
int
t4_deactivate_uld(struct adapter *sc, int id)
{
int rc;
struct uld_info *ui;
ASSERT_SYNCHRONIZED_OP(sc);
if (id < 0 || id > ULD_MAX)
return (EINVAL);
rc = ENXIO;
sx_slock(&t4_uld_list_lock);
SLIST_FOREACH(ui, &t4_uld_list, link) {
if (ui->uld_id == id) {
rc = ui->deactivate(sc);
if (rc == 0) {
clrbit(&sc->active_ulds, id);
ui->refcount--;
}
break;
}
}
sx_sunlock(&t4_uld_list_lock);
return (rc);
}
int
uld_active(struct adapter *sc, int uld_id)
{
MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
return (isset(&sc->active_ulds, uld_id));
}
#endif
/*
* Come up with reasonable defaults for some of the tunables, provided they're
* not set by the user (in which case we'll use the values as is).
*/
static void
tweak_tunables(void)
{
int nc = mp_ncpus; /* our snapshot of the number of CPUs */
if (t4_ntxq10g < 1) {
#ifdef RSS
t4_ntxq10g = rss_getnumbuckets();
#else
t4_ntxq10g = min(nc, NTXQ_10G);
#endif
}
if (t4_ntxq1g < 1) {
#ifdef RSS
/* XXX: way too many for 1GbE? */
t4_ntxq1g = rss_getnumbuckets();
#else
t4_ntxq1g = min(nc, NTXQ_1G);
#endif
}
if (t4_ntxq_vi < 1)
t4_ntxq_vi = min(nc, NTXQ_VI);
if (t4_nrxq10g < 1) {
#ifdef RSS
t4_nrxq10g = rss_getnumbuckets();
#else
t4_nrxq10g = min(nc, NRXQ_10G);
#endif
}
if (t4_nrxq1g < 1) {
#ifdef RSS
/* XXX: way too many for 1GbE? */
t4_nrxq1g = rss_getnumbuckets();
#else
t4_nrxq1g = min(nc, NRXQ_1G);
#endif
}
if (t4_nrxq_vi < 1)
t4_nrxq_vi = min(nc, NRXQ_VI);
#ifdef TCP_OFFLOAD
if (t4_nofldtxq10g < 1)
t4_nofldtxq10g = min(nc, NOFLDTXQ_10G);
if (t4_nofldtxq1g < 1)
t4_nofldtxq1g = min(nc, NOFLDTXQ_1G);
if (t4_nofldtxq_vi < 1)
t4_nofldtxq_vi = min(nc, NOFLDTXQ_VI);
if (t4_nofldrxq10g < 1)
t4_nofldrxq10g = min(nc, NOFLDRXQ_10G);
if (t4_nofldrxq1g < 1)
t4_nofldrxq1g = min(nc, NOFLDRXQ_1G);
if (t4_nofldrxq_vi < 1)
t4_nofldrxq_vi = min(nc, NOFLDRXQ_VI);
if (t4_toecaps_allowed == -1)
t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
if (t4_rdmacaps_allowed == -1) {
t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
FW_CAPS_CONFIG_RDMA_RDMAC;
}
if (t4_iscsicaps_allowed == -1) {
t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
FW_CAPS_CONFIG_ISCSI_T10DIF;
}
#else
if (t4_toecaps_allowed == -1)
t4_toecaps_allowed = 0;
if (t4_rdmacaps_allowed == -1)
t4_rdmacaps_allowed = 0;
if (t4_iscsicaps_allowed == -1)
t4_iscsicaps_allowed = 0;
#endif
#ifdef DEV_NETMAP
if (t4_nnmtxq_vi < 1)
t4_nnmtxq_vi = min(nc, NNMTXQ_VI);
if (t4_nnmrxq_vi < 1)
t4_nnmrxq_vi = min(nc, NNMRXQ_VI);
#endif
if (t4_tmr_idx_10g < 0 || t4_tmr_idx_10g >= SGE_NTIMERS)
t4_tmr_idx_10g = TMR_IDX_10G;
if (t4_pktc_idx_10g < -1 || t4_pktc_idx_10g >= SGE_NCOUNTERS)
t4_pktc_idx_10g = PKTC_IDX_10G;
if (t4_tmr_idx_1g < 0 || t4_tmr_idx_1g >= SGE_NTIMERS)
t4_tmr_idx_1g = TMR_IDX_1G;
if (t4_pktc_idx_1g < -1 || t4_pktc_idx_1g >= SGE_NCOUNTERS)
t4_pktc_idx_1g = PKTC_IDX_1G;
if (t4_qsize_txq < 128)
t4_qsize_txq = 128;
if (t4_qsize_rxq < 128)
t4_qsize_rxq = 128;
while (t4_qsize_rxq & 7)
t4_qsize_rxq++;
t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
}
#ifdef DDB
static void
t4_dump_tcb(struct adapter *sc, int tid)
{
uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
save = t4_read_reg(sc, reg);
base = sc->memwin[2].mw_base;
/* Dump TCB for the tid */
tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
tcb_addr += tid * TCB_SIZE;
if (is_t4(sc)) {
pf = 0;
win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */
} else {
pf = V_PFNUM(sc->pf);
win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */
}
t4_write_reg(sc, reg, win_pos | pf);
t4_read_reg(sc, reg);
off = tcb_addr - win_pos;
for (i = 0; i < 4; i++) {
uint32_t buf[8];
for (j = 0; j < 8; j++, off += 4)
buf[j] = htonl(t4_read_reg(sc, base + off));
db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
buf[7]);
}
t4_write_reg(sc, reg, save);
t4_read_reg(sc, reg);
}
static void
t4_dump_devlog(struct adapter *sc)
{
struct devlog_params *dparams = &sc->params.devlog;
struct fw_devlog_e e;
int i, first, j, m, nentries, rc;
uint64_t ftstamp = UINT64_MAX;
if (dparams->start == 0) {
db_printf("devlog params not valid\n");
return;
}
nentries = dparams->size / sizeof(struct fw_devlog_e);
m = fwmtype_to_hwmtype(dparams->memtype);
/* Find the first entry. */
first = -1;
for (i = 0; i < nentries && !db_pager_quit; i++) {
rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
sizeof(e), (void *)&e);
if (rc != 0)
break;
if (e.timestamp == 0)
break;
e.timestamp = be64toh(e.timestamp);
if (e.timestamp < ftstamp) {
ftstamp = e.timestamp;
first = i;
}
}
if (first == -1)
return;
i = first;
do {
rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
sizeof(e), (void *)&e);
if (rc != 0)
return;
if (e.timestamp == 0)
return;
e.timestamp = be64toh(e.timestamp);
e.seqno = be32toh(e.seqno);
for (j = 0; j < 8; j++)
e.params[j] = be32toh(e.params[j]);
db_printf("%10d %15ju %8s %8s ",
e.seqno, e.timestamp,
(e.level < nitems(devlog_level_strings) ?
devlog_level_strings[e.level] : "UNKNOWN"),
(e.facility < nitems(devlog_facility_strings) ?
devlog_facility_strings[e.facility] : "UNKNOWN"));
db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
e.params[3], e.params[4], e.params[5], e.params[6],
e.params[7]);
if (++i == nentries)
i = 0;
} while (i != first && !db_pager_quit);
}
static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
_DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
{
device_t dev;
int t;
bool valid;
valid = false;
t = db_read_token();
if (t == tIDENT) {
dev = device_lookup_by_name(db_tok_string);
valid = true;
}
db_skip_to_eol();
if (!valid) {
db_printf("usage: show t4 devlog <nexus>\n");
return;
}
if (dev == NULL) {
db_printf("device not found\n");
return;
}
t4_dump_devlog(device_get_softc(dev));
}
DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
{
device_t dev;
int radix, tid, t;
bool valid;
valid = false;
radix = db_radix;
db_radix = 10;
t = db_read_token();
if (t == tIDENT) {
dev = device_lookup_by_name(db_tok_string);
t = db_read_token();
if (t == tNUMBER) {
tid = db_tok_number;
valid = true;
}
}
db_radix = radix;
db_skip_to_eol();
if (!valid) {
db_printf("usage: show t4 tcb <nexus> <tid>\n");
return;
}
if (dev == NULL) {
db_printf("device not found\n");
return;
}
if (tid < 0) {
db_printf("invalid tid\n");
return;
}
t4_dump_tcb(device_get_softc(dev), tid);
}
#endif
static struct sx mlu; /* mod load unload */
SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
static int
mod_event(module_t mod, int cmd, void *arg)
{
int rc = 0;
static int loaded = 0;
switch (cmd) {
case MOD_LOAD:
sx_xlock(&mlu);
if (loaded++ == 0) {
t4_sge_modload();
t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl);
t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl);
t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
sx_init(&t4_list_lock, "T4/T5 adapters");
SLIST_INIT(&t4_list);
#ifdef TCP_OFFLOAD
sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
SLIST_INIT(&t4_uld_list);
#endif
t4_tracer_modload();
tweak_tunables();
}
sx_xunlock(&mlu);
break;
case MOD_UNLOAD:
sx_xlock(&mlu);
if (--loaded == 0) {
int tries;
sx_slock(&t4_list_lock);
if (!SLIST_EMPTY(&t4_list)) {
rc = EBUSY;
sx_sunlock(&t4_list_lock);
goto done_unload;
}
#ifdef TCP_OFFLOAD
sx_slock(&t4_uld_list_lock);
if (!SLIST_EMPTY(&t4_uld_list)) {
rc = EBUSY;
sx_sunlock(&t4_uld_list_lock);
sx_sunlock(&t4_list_lock);
goto done_unload;
}
#endif
tries = 0;
while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
uprintf("%ju clusters with custom free routine "
"still is use.\n", t4_sge_extfree_refs());
pause("t4unload", 2 * hz);
}
#ifdef TCP_OFFLOAD
sx_sunlock(&t4_uld_list_lock);
#endif
sx_sunlock(&t4_list_lock);
if (t4_sge_extfree_refs() == 0) {
t4_tracer_modunload();
#ifdef TCP_OFFLOAD
sx_destroy(&t4_uld_list_lock);
#endif
sx_destroy(&t4_list_lock);
t4_sge_modunload();
loaded = 0;
} else {
rc = EBUSY;
loaded++; /* undo earlier decrement */
}
}
done_unload:
sx_xunlock(&mlu);
break;
}
return (rc);
}
static devclass_t t4_devclass, t5_devclass;
static devclass_t cxgbe_devclass, cxl_devclass;
static devclass_t vcxgbe_devclass, vcxl_devclass;
DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
MODULE_VERSION(t4nex, 1);
MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
#ifdef DEV_NETMAP
MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
#endif /* DEV_NETMAP */
DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
MODULE_VERSION(t5nex, 1);
MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
#ifdef DEV_NETMAP
MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
#endif /* DEV_NETMAP */
DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
MODULE_VERSION(cxgbe, 1);
DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
MODULE_VERSION(cxl, 1);
DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
MODULE_VERSION(vcxgbe, 1);
DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
MODULE_VERSION(vcxl, 1);