1bffa9511f
that resides in struct ifnet. Sponsored by: Nginx, Inc.
3844 lines
102 KiB
C
3844 lines
102 KiB
C
/* $OpenBSD: if_sk.c,v 2.33 2003/08/12 05:23:06 nate Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1997, 1998, 1999, 2000
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*-
|
|
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* SysKonnect SK-NET gigabit ethernet driver for FreeBSD. Supports
|
|
* the SK-984x series adapters, both single port and dual port.
|
|
* References:
|
|
* The XaQti XMAC II datasheet,
|
|
* http://www.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
|
|
* The SysKonnect GEnesis manual, http://www.syskonnect.com
|
|
*
|
|
* Note: XaQti has been acquired by Vitesse, and Vitesse does not have the
|
|
* XMAC II datasheet online. I have put my copy at people.freebsd.org as a
|
|
* convenience to others until Vitesse corrects this problem:
|
|
*
|
|
* http://people.freebsd.org/~wpaul/SysKonnect/xmacii_datasheet_rev_c_9-29.pdf
|
|
*
|
|
* Written by Bill Paul <wpaul@ee.columbia.edu>
|
|
* Department of Electrical Engineering
|
|
* Columbia University, New York City
|
|
*/
|
|
/*
|
|
* The SysKonnect gigabit ethernet adapters consist of two main
|
|
* components: the SysKonnect GEnesis controller chip and the XaQti Corp.
|
|
* XMAC II gigabit ethernet MAC. The XMAC provides all of the MAC
|
|
* components and a PHY while the GEnesis controller provides a PCI
|
|
* interface with DMA support. Each card may have between 512K and
|
|
* 2MB of SRAM on board depending on the configuration.
|
|
*
|
|
* The SysKonnect GEnesis controller can have either one or two XMAC
|
|
* chips connected to it, allowing single or dual port NIC configurations.
|
|
* SysKonnect has the distinction of being the only vendor on the market
|
|
* with a dual port gigabit ethernet NIC. The GEnesis provides dual FIFOs,
|
|
* dual DMA queues, packet/MAC/transmit arbiters and direct access to the
|
|
* XMAC registers. This driver takes advantage of these features to allow
|
|
* both XMACs to operate as independent interfaces.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/in_cksum.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/brgphyreg.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#if 0
|
|
#define SK_USEIOSPACE
|
|
#endif
|
|
|
|
#include <dev/sk/if_skreg.h>
|
|
#include <dev/sk/xmaciireg.h>
|
|
#include <dev/sk/yukonreg.h>
|
|
|
|
MODULE_DEPEND(sk, pci, 1, 1, 1);
|
|
MODULE_DEPEND(sk, ether, 1, 1, 1);
|
|
MODULE_DEPEND(sk, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
static const struct sk_type sk_devs[] = {
|
|
{
|
|
VENDORID_SK,
|
|
DEVICEID_SK_V1,
|
|
"SysKonnect Gigabit Ethernet (V1.0)"
|
|
},
|
|
{
|
|
VENDORID_SK,
|
|
DEVICEID_SK_V2,
|
|
"SysKonnect Gigabit Ethernet (V2.0)"
|
|
},
|
|
{
|
|
VENDORID_MARVELL,
|
|
DEVICEID_SK_V2,
|
|
"Marvell Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_MARVELL,
|
|
DEVICEID_BELKIN_5005,
|
|
"Belkin F5D5005 Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_3COM,
|
|
DEVICEID_3COM_3C940,
|
|
"3Com 3C940 Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_LINKSYS,
|
|
DEVICEID_LINKSYS_EG1032,
|
|
"Linksys EG1032 Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_DLINK,
|
|
DEVICEID_DLINK_DGE530T_A1,
|
|
"D-Link DGE-530T Gigabit Ethernet"
|
|
},
|
|
{
|
|
VENDORID_DLINK,
|
|
DEVICEID_DLINK_DGE530T_B1,
|
|
"D-Link DGE-530T Gigabit Ethernet"
|
|
},
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int skc_probe(device_t);
|
|
static int skc_attach(device_t);
|
|
static int skc_detach(device_t);
|
|
static int skc_shutdown(device_t);
|
|
static int skc_suspend(device_t);
|
|
static int skc_resume(device_t);
|
|
static bus_dma_tag_t skc_get_dma_tag(device_t, device_t);
|
|
static int sk_detach(device_t);
|
|
static int sk_probe(device_t);
|
|
static int sk_attach(device_t);
|
|
static void sk_tick(void *);
|
|
static void sk_yukon_tick(void *);
|
|
static void sk_intr(void *);
|
|
static void sk_intr_xmac(struct sk_if_softc *);
|
|
static void sk_intr_bcom(struct sk_if_softc *);
|
|
static void sk_intr_yukon(struct sk_if_softc *);
|
|
static __inline void sk_rxcksum(struct ifnet *, struct mbuf *, u_int32_t);
|
|
static __inline int sk_rxvalid(struct sk_softc *, u_int32_t, u_int32_t);
|
|
static void sk_rxeof(struct sk_if_softc *);
|
|
static void sk_jumbo_rxeof(struct sk_if_softc *);
|
|
static void sk_txeof(struct sk_if_softc *);
|
|
static void sk_txcksum(struct ifnet *, struct mbuf *, struct sk_tx_desc *);
|
|
static int sk_encap(struct sk_if_softc *, struct mbuf **);
|
|
static void sk_start(struct ifnet *);
|
|
static void sk_start_locked(struct ifnet *);
|
|
static int sk_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void sk_init(void *);
|
|
static void sk_init_locked(struct sk_if_softc *);
|
|
static void sk_init_xmac(struct sk_if_softc *);
|
|
static void sk_init_yukon(struct sk_if_softc *);
|
|
static void sk_stop(struct sk_if_softc *);
|
|
static void sk_watchdog(void *);
|
|
static int sk_ifmedia_upd(struct ifnet *);
|
|
static void sk_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
static void sk_reset(struct sk_softc *);
|
|
static __inline void sk_discard_rxbuf(struct sk_if_softc *, int);
|
|
static __inline void sk_discard_jumbo_rxbuf(struct sk_if_softc *, int);
|
|
static int sk_newbuf(struct sk_if_softc *, int);
|
|
static int sk_jumbo_newbuf(struct sk_if_softc *, int);
|
|
static void sk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static int sk_dma_alloc(struct sk_if_softc *);
|
|
static int sk_dma_jumbo_alloc(struct sk_if_softc *);
|
|
static void sk_dma_free(struct sk_if_softc *);
|
|
static void sk_dma_jumbo_free(struct sk_if_softc *);
|
|
static int sk_init_rx_ring(struct sk_if_softc *);
|
|
static int sk_init_jumbo_rx_ring(struct sk_if_softc *);
|
|
static void sk_init_tx_ring(struct sk_if_softc *);
|
|
static u_int32_t sk_win_read_4(struct sk_softc *, int);
|
|
static u_int16_t sk_win_read_2(struct sk_softc *, int);
|
|
static u_int8_t sk_win_read_1(struct sk_softc *, int);
|
|
static void sk_win_write_4(struct sk_softc *, int, u_int32_t);
|
|
static void sk_win_write_2(struct sk_softc *, int, u_int32_t);
|
|
static void sk_win_write_1(struct sk_softc *, int, u_int32_t);
|
|
|
|
static int sk_miibus_readreg(device_t, int, int);
|
|
static int sk_miibus_writereg(device_t, int, int, int);
|
|
static void sk_miibus_statchg(device_t);
|
|
|
|
static int sk_xmac_miibus_readreg(struct sk_if_softc *, int, int);
|
|
static int sk_xmac_miibus_writereg(struct sk_if_softc *, int, int,
|
|
int);
|
|
static void sk_xmac_miibus_statchg(struct sk_if_softc *);
|
|
|
|
static int sk_marv_miibus_readreg(struct sk_if_softc *, int, int);
|
|
static int sk_marv_miibus_writereg(struct sk_if_softc *, int, int,
|
|
int);
|
|
static void sk_marv_miibus_statchg(struct sk_if_softc *);
|
|
|
|
static uint32_t sk_xmchash(const uint8_t *);
|
|
static void sk_setfilt(struct sk_if_softc *, u_int16_t *, int);
|
|
static void sk_rxfilter(struct sk_if_softc *);
|
|
static void sk_rxfilter_genesis(struct sk_if_softc *);
|
|
static void sk_rxfilter_yukon(struct sk_if_softc *);
|
|
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high);
|
|
static int sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS);
|
|
|
|
/* Tunables. */
|
|
static int jumbo_disable = 0;
|
|
TUNABLE_INT("hw.skc.jumbo_disable", &jumbo_disable);
|
|
|
|
/*
|
|
* It seems that SK-NET GENESIS supports very simple checksum offload
|
|
* capability for Tx and I believe it can generate 0 checksum value for
|
|
* UDP packets in Tx as the hardware can't differenciate UDP packets from
|
|
* TCP packets. 0 chcecksum value for UDP packet is an invalid one as it
|
|
* means sender didn't perforam checksum computation. For the safety I
|
|
* disabled UDP checksum offload capability at the moment. Alternatively
|
|
* we can intrduce a LINK0/LINK1 flag as hme(4) did in its Tx checksum
|
|
* offload routine.
|
|
*/
|
|
#define SK_CSUM_FEATURES (CSUM_TCP)
|
|
|
|
/*
|
|
* Note that we have newbus methods for both the GEnesis controller
|
|
* itself and the XMAC(s). The XMACs are children of the GEnesis, and
|
|
* the miibus code is a child of the XMACs. We need to do it this way
|
|
* so that the miibus drivers can access the PHY registers on the
|
|
* right PHY. It's not quite what I had in mind, but it's the only
|
|
* design that achieves the desired effect.
|
|
*/
|
|
static device_method_t skc_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, skc_probe),
|
|
DEVMETHOD(device_attach, skc_attach),
|
|
DEVMETHOD(device_detach, skc_detach),
|
|
DEVMETHOD(device_suspend, skc_suspend),
|
|
DEVMETHOD(device_resume, skc_resume),
|
|
DEVMETHOD(device_shutdown, skc_shutdown),
|
|
|
|
DEVMETHOD(bus_get_dma_tag, skc_get_dma_tag),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t skc_driver = {
|
|
"skc",
|
|
skc_methods,
|
|
sizeof(struct sk_softc)
|
|
};
|
|
|
|
static devclass_t skc_devclass;
|
|
|
|
static device_method_t sk_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, sk_probe),
|
|
DEVMETHOD(device_attach, sk_attach),
|
|
DEVMETHOD(device_detach, sk_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, sk_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, sk_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, sk_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t sk_driver = {
|
|
"sk",
|
|
sk_methods,
|
|
sizeof(struct sk_if_softc)
|
|
};
|
|
|
|
static devclass_t sk_devclass;
|
|
|
|
DRIVER_MODULE(skc, pci, skc_driver, skc_devclass, NULL, NULL);
|
|
DRIVER_MODULE(sk, skc, sk_driver, sk_devclass, NULL, NULL);
|
|
DRIVER_MODULE(miibus, sk, miibus_driver, miibus_devclass, NULL, NULL);
|
|
|
|
static struct resource_spec sk_res_spec_io[] = {
|
|
{ SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static struct resource_spec sk_res_spec_mem[] = {
|
|
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
#define SK_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) | x)
|
|
|
|
#define SK_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, CSR_READ_4(sc, reg) & ~x)
|
|
|
|
#define SK_WIN_SETBIT_4(sc, reg, x) \
|
|
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) | x)
|
|
|
|
#define SK_WIN_CLRBIT_4(sc, reg, x) \
|
|
sk_win_write_4(sc, reg, sk_win_read_4(sc, reg) & ~x)
|
|
|
|
#define SK_WIN_SETBIT_2(sc, reg, x) \
|
|
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) | x)
|
|
|
|
#define SK_WIN_CLRBIT_2(sc, reg, x) \
|
|
sk_win_write_2(sc, reg, sk_win_read_2(sc, reg) & ~x)
|
|
|
|
static u_int32_t
|
|
sk_win_read_4(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_4(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
#else
|
|
return(CSR_READ_4(sc, reg));
|
|
#endif
|
|
}
|
|
|
|
static u_int16_t
|
|
sk_win_read_2(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_2(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
#else
|
|
return(CSR_READ_2(sc, reg));
|
|
#endif
|
|
}
|
|
|
|
static u_int8_t
|
|
sk_win_read_1(sc, reg)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
return(CSR_READ_1(sc, SK_WIN_BASE + SK_REG(reg)));
|
|
#else
|
|
return(CSR_READ_1(sc, reg));
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
sk_win_write_4(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_4(sc, SK_WIN_BASE + SK_REG(reg), val);
|
|
#else
|
|
CSR_WRITE_4(sc, reg, val);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_win_write_2(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_2(sc, SK_WIN_BASE + SK_REG(reg), val);
|
|
#else
|
|
CSR_WRITE_2(sc, reg, val);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_win_write_1(sc, reg, val)
|
|
struct sk_softc *sc;
|
|
int reg;
|
|
u_int32_t val;
|
|
{
|
|
#ifdef SK_USEIOSPACE
|
|
CSR_WRITE_4(sc, SK_RAP, SK_WIN(reg));
|
|
CSR_WRITE_1(sc, SK_WIN_BASE + SK_REG(reg), val);
|
|
#else
|
|
CSR_WRITE_1(sc, reg, val);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sk_miibus_readreg(dev, phy, reg)
|
|
device_t dev;
|
|
int phy, reg;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
int v;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
|
|
SK_IF_MII_LOCK(sc_if);
|
|
switch(sc_if->sk_softc->sk_type) {
|
|
case SK_GENESIS:
|
|
v = sk_xmac_miibus_readreg(sc_if, phy, reg);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
v = sk_marv_miibus_readreg(sc_if, phy, reg);
|
|
break;
|
|
default:
|
|
v = 0;
|
|
break;
|
|
}
|
|
SK_IF_MII_UNLOCK(sc_if);
|
|
|
|
return (v);
|
|
}
|
|
|
|
static int
|
|
sk_miibus_writereg(dev, phy, reg, val)
|
|
device_t dev;
|
|
int phy, reg, val;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
int v;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
|
|
SK_IF_MII_LOCK(sc_if);
|
|
switch(sc_if->sk_softc->sk_type) {
|
|
case SK_GENESIS:
|
|
v = sk_xmac_miibus_writereg(sc_if, phy, reg, val);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
v = sk_marv_miibus_writereg(sc_if, phy, reg, val);
|
|
break;
|
|
default:
|
|
v = 0;
|
|
break;
|
|
}
|
|
SK_IF_MII_UNLOCK(sc_if);
|
|
|
|
return (v);
|
|
}
|
|
|
|
static void
|
|
sk_miibus_statchg(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
|
|
SK_IF_MII_LOCK(sc_if);
|
|
switch(sc_if->sk_softc->sk_type) {
|
|
case SK_GENESIS:
|
|
sk_xmac_miibus_statchg(sc_if);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
sk_marv_miibus_statchg(sc_if);
|
|
break;
|
|
}
|
|
SK_IF_MII_UNLOCK(sc_if);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sk_xmac_miibus_readreg(sc_if, phy, reg)
|
|
struct sk_if_softc *sc_if;
|
|
int phy, reg;
|
|
{
|
|
int i;
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
|
|
SK_XM_READ_2(sc_if, XM_PHY_DATA);
|
|
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (SK_XM_READ_2(sc_if, XM_MMUCMD) &
|
|
XM_MMUCMD_PHYDATARDY)
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT) {
|
|
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
|
|
return(0);
|
|
}
|
|
}
|
|
DELAY(1);
|
|
i = SK_XM_READ_2(sc_if, XM_PHY_DATA);
|
|
|
|
return(i);
|
|
}
|
|
|
|
static int
|
|
sk_xmac_miibus_writereg(sc_if, phy, reg, val)
|
|
struct sk_if_softc *sc_if;
|
|
int phy, reg, val;
|
|
{
|
|
int i;
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_ADDR, reg|(phy << 8));
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT) {
|
|
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
SK_XM_WRITE_2(sc_if, XM_PHY_DATA, val);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if (!(SK_XM_READ_2(sc_if, XM_MMUCMD) & XM_MMUCMD_PHYBUSY))
|
|
break;
|
|
}
|
|
if (i == SK_TIMEOUT)
|
|
if_printf(sc_if->sk_ifp, "phy write timed out\n");
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
sk_xmac_miibus_statchg(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct mii_data *mii;
|
|
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
/*
|
|
* If this is a GMII PHY, manually set the XMAC's
|
|
* duplex mode accordingly.
|
|
*/
|
|
if (sc_if->sk_phytype != SK_PHYTYPE_XMAC) {
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
|
|
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
|
|
} else {
|
|
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_GMIIFDX);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
sk_marv_miibus_readreg(sc_if, phy, reg)
|
|
struct sk_if_softc *sc_if;
|
|
int phy, reg;
|
|
{
|
|
u_int16_t val;
|
|
int i;
|
|
|
|
if (sc_if->sk_phytype != SK_PHYTYPE_MARV_COPPER &&
|
|
sc_if->sk_phytype != SK_PHYTYPE_MARV_FIBER) {
|
|
return(0);
|
|
}
|
|
|
|
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
|
|
YU_SMICR_REGAD(reg) | YU_SMICR_OP_READ);
|
|
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
val = SK_YU_READ_2(sc_if, YUKON_SMICR);
|
|
if (val & YU_SMICR_READ_VALID)
|
|
break;
|
|
}
|
|
|
|
if (i == SK_TIMEOUT) {
|
|
if_printf(sc_if->sk_ifp, "phy failed to come ready\n");
|
|
return(0);
|
|
}
|
|
|
|
val = SK_YU_READ_2(sc_if, YUKON_SMIDR);
|
|
|
|
return(val);
|
|
}
|
|
|
|
static int
|
|
sk_marv_miibus_writereg(sc_if, phy, reg, val)
|
|
struct sk_if_softc *sc_if;
|
|
int phy, reg, val;
|
|
{
|
|
int i;
|
|
|
|
SK_YU_WRITE_2(sc_if, YUKON_SMIDR, val);
|
|
SK_YU_WRITE_2(sc_if, YUKON_SMICR, YU_SMICR_PHYAD(phy) |
|
|
YU_SMICR_REGAD(reg) | YU_SMICR_OP_WRITE);
|
|
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((SK_YU_READ_2(sc_if, YUKON_SMICR) & YU_SMICR_BUSY) == 0)
|
|
break;
|
|
}
|
|
if (i == SK_TIMEOUT)
|
|
if_printf(sc_if->sk_ifp, "phy write timeout\n");
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
sk_marv_miibus_statchg(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
return;
|
|
}
|
|
|
|
#define HASH_BITS 6
|
|
|
|
static u_int32_t
|
|
sk_xmchash(addr)
|
|
const uint8_t *addr;
|
|
{
|
|
uint32_t crc;
|
|
|
|
/* Compute CRC for the address value. */
|
|
crc = ether_crc32_le(addr, ETHER_ADDR_LEN);
|
|
|
|
return (~crc & ((1 << HASH_BITS) - 1));
|
|
}
|
|
|
|
static void
|
|
sk_setfilt(sc_if, addr, slot)
|
|
struct sk_if_softc *sc_if;
|
|
u_int16_t *addr;
|
|
int slot;
|
|
{
|
|
int base;
|
|
|
|
base = XM_RXFILT_ENTRY(slot);
|
|
|
|
SK_XM_WRITE_2(sc_if, base, addr[0]);
|
|
SK_XM_WRITE_2(sc_if, base + 2, addr[1]);
|
|
SK_XM_WRITE_2(sc_if, base + 4, addr[2]);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_rxfilter(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc = sc_if->sk_softc;
|
|
if (sc->sk_type == SK_GENESIS)
|
|
sk_rxfilter_genesis(sc_if);
|
|
else
|
|
sk_rxfilter_yukon(sc_if);
|
|
}
|
|
|
|
static void
|
|
sk_rxfilter_genesis(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct ifnet *ifp = sc_if->sk_ifp;
|
|
u_int32_t hashes[2] = { 0, 0 }, mode;
|
|
int h = 0, i;
|
|
struct ifmultiaddr *ifma;
|
|
u_int16_t dummy[] = { 0, 0, 0 };
|
|
u_int16_t maddr[(ETHER_ADDR_LEN+1)/2];
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
mode = SK_XM_READ_4(sc_if, XM_MODE);
|
|
mode &= ~(XM_MODE_RX_PROMISC | XM_MODE_RX_USE_HASH |
|
|
XM_MODE_RX_USE_PERFECT);
|
|
/* First, zot all the existing perfect filters. */
|
|
for (i = 1; i < XM_RXFILT_MAX; i++)
|
|
sk_setfilt(sc_if, dummy, i);
|
|
|
|
/* Now program new ones. */
|
|
if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
|
|
if (ifp->if_flags & IFF_ALLMULTI)
|
|
mode |= XM_MODE_RX_USE_HASH;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
mode |= XM_MODE_RX_PROMISC;
|
|
hashes[0] = 0xFFFFFFFF;
|
|
hashes[1] = 0xFFFFFFFF;
|
|
} else {
|
|
i = 1;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH_REVERSE(ifma, &ifp->if_multiaddrs, ifmultihead,
|
|
ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
/*
|
|
* Program the first XM_RXFILT_MAX multicast groups
|
|
* into the perfect filter.
|
|
*/
|
|
bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
|
|
maddr, ETHER_ADDR_LEN);
|
|
if (i < XM_RXFILT_MAX) {
|
|
sk_setfilt(sc_if, maddr, i);
|
|
mode |= XM_MODE_RX_USE_PERFECT;
|
|
i++;
|
|
continue;
|
|
}
|
|
h = sk_xmchash((const uint8_t *)maddr);
|
|
if (h < 32)
|
|
hashes[0] |= (1 << h);
|
|
else
|
|
hashes[1] |= (1 << (h - 32));
|
|
mode |= XM_MODE_RX_USE_HASH;
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
}
|
|
|
|
SK_XM_WRITE_4(sc_if, XM_MODE, mode);
|
|
SK_XM_WRITE_4(sc_if, XM_MAR0, hashes[0]);
|
|
SK_XM_WRITE_4(sc_if, XM_MAR2, hashes[1]);
|
|
}
|
|
|
|
static void
|
|
sk_rxfilter_yukon(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct ifnet *ifp;
|
|
u_int32_t crc, hashes[2] = { 0, 0 }, mode;
|
|
struct ifmultiaddr *ifma;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
ifp = sc_if->sk_ifp;
|
|
mode = SK_YU_READ_2(sc_if, YUKON_RCR);
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
mode &= ~(YU_RCR_UFLEN | YU_RCR_MUFLEN);
|
|
else if (ifp->if_flags & IFF_ALLMULTI) {
|
|
mode |= YU_RCR_UFLEN | YU_RCR_MUFLEN;
|
|
hashes[0] = 0xFFFFFFFF;
|
|
hashes[1] = 0xFFFFFFFF;
|
|
} else {
|
|
mode |= YU_RCR_UFLEN;
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
/* Just want the 6 least significant bits. */
|
|
crc &= 0x3f;
|
|
/* Set the corresponding bit in the hash table. */
|
|
hashes[crc >> 5] |= 1 << (crc & 0x1f);
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
if (hashes[0] != 0 || hashes[1] != 0)
|
|
mode |= YU_RCR_MUFLEN;
|
|
}
|
|
|
|
SK_YU_WRITE_2(sc_if, YUKON_MCAH1, hashes[0] & 0xffff);
|
|
SK_YU_WRITE_2(sc_if, YUKON_MCAH2, (hashes[0] >> 16) & 0xffff);
|
|
SK_YU_WRITE_2(sc_if, YUKON_MCAH3, hashes[1] & 0xffff);
|
|
SK_YU_WRITE_2(sc_if, YUKON_MCAH4, (hashes[1] >> 16) & 0xffff);
|
|
SK_YU_WRITE_2(sc_if, YUKON_RCR, mode);
|
|
}
|
|
|
|
static int
|
|
sk_init_rx_ring(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_ring_data *rd;
|
|
bus_addr_t addr;
|
|
u_int32_t csum_start;
|
|
int i;
|
|
|
|
sc_if->sk_cdata.sk_rx_cons = 0;
|
|
|
|
csum_start = (ETHER_HDR_LEN + sizeof(struct ip)) << 16 |
|
|
ETHER_HDR_LEN;
|
|
rd = &sc_if->sk_rdata;
|
|
bzero(rd->sk_rx_ring, sizeof(struct sk_rx_desc) * SK_RX_RING_CNT);
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
if (sk_newbuf(sc_if, i) != 0)
|
|
return (ENOBUFS);
|
|
if (i == (SK_RX_RING_CNT - 1))
|
|
addr = SK_RX_RING_ADDR(sc_if, 0);
|
|
else
|
|
addr = SK_RX_RING_ADDR(sc_if, i + 1);
|
|
rd->sk_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
|
|
rd->sk_rx_ring[i].sk_csum_start = htole32(csum_start);
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
sk_init_jumbo_rx_ring(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_ring_data *rd;
|
|
bus_addr_t addr;
|
|
u_int32_t csum_start;
|
|
int i;
|
|
|
|
sc_if->sk_cdata.sk_jumbo_rx_cons = 0;
|
|
|
|
csum_start = ((ETHER_HDR_LEN + sizeof(struct ip)) << 16) |
|
|
ETHER_HDR_LEN;
|
|
rd = &sc_if->sk_rdata;
|
|
bzero(rd->sk_jumbo_rx_ring,
|
|
sizeof(struct sk_rx_desc) * SK_JUMBO_RX_RING_CNT);
|
|
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
|
|
if (sk_jumbo_newbuf(sc_if, i) != 0)
|
|
return (ENOBUFS);
|
|
if (i == (SK_JUMBO_RX_RING_CNT - 1))
|
|
addr = SK_JUMBO_RX_RING_ADDR(sc_if, 0);
|
|
else
|
|
addr = SK_JUMBO_RX_RING_ADDR(sc_if, i + 1);
|
|
rd->sk_jumbo_rx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
|
|
rd->sk_jumbo_rx_ring[i].sk_csum_start = htole32(csum_start);
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sk_init_tx_ring(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_ring_data *rd;
|
|
struct sk_txdesc *txd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
STAILQ_INIT(&sc_if->sk_cdata.sk_txfreeq);
|
|
STAILQ_INIT(&sc_if->sk_cdata.sk_txbusyq);
|
|
|
|
sc_if->sk_cdata.sk_tx_prod = 0;
|
|
sc_if->sk_cdata.sk_tx_cons = 0;
|
|
sc_if->sk_cdata.sk_tx_cnt = 0;
|
|
|
|
rd = &sc_if->sk_rdata;
|
|
bzero(rd->sk_tx_ring, sizeof(struct sk_tx_desc) * SK_TX_RING_CNT);
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
if (i == (SK_TX_RING_CNT - 1))
|
|
addr = SK_TX_RING_ADDR(sc_if, 0);
|
|
else
|
|
addr = SK_TX_RING_ADDR(sc_if, i + 1);
|
|
rd->sk_tx_ring[i].sk_next = htole32(SK_ADDR_LO(addr));
|
|
txd = &sc_if->sk_cdata.sk_txdesc[i];
|
|
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static __inline void
|
|
sk_discard_rxbuf(sc_if, idx)
|
|
struct sk_if_softc *sc_if;
|
|
int idx;
|
|
{
|
|
struct sk_rx_desc *r;
|
|
struct sk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
|
|
|
|
r = &sc_if->sk_rdata.sk_rx_ring[idx];
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
|
|
m = rxd->rx_m;
|
|
r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
|
|
}
|
|
|
|
static __inline void
|
|
sk_discard_jumbo_rxbuf(sc_if, idx)
|
|
struct sk_if_softc *sc_if;
|
|
int idx;
|
|
{
|
|
struct sk_rx_desc *r;
|
|
struct sk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
|
|
r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
|
|
rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
|
|
m = rxd->rx_m;
|
|
r->sk_ctl = htole32(m->m_len | SK_RXSTAT | SK_OPCODE_CSUM);
|
|
}
|
|
|
|
static int
|
|
sk_newbuf(sc_if, idx)
|
|
struct sk_if_softc *sc_if;
|
|
int idx;
|
|
{
|
|
struct sk_rx_desc *r;
|
|
struct sk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_rx_tag,
|
|
sc_if->sk_cdata.sk_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc_if->sk_cdata.sk_rx_sparemap;
|
|
sc_if->sk_cdata.sk_rx_sparemap = map;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
r = &sc_if->sk_rdata.sk_rx_ring[idx];
|
|
r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
|
|
r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
|
|
r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sk_jumbo_newbuf(sc_if, idx)
|
|
struct sk_if_softc *sc_if;
|
|
int idx;
|
|
{
|
|
struct sk_rx_desc *r;
|
|
struct sk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
m->m_pkthdr.len = m->m_len = MJUM9BYTES;
|
|
/*
|
|
* Adjust alignment so packet payload begins on a
|
|
* longword boundary. Mandatory for Alpha, useful on
|
|
* x86 too.
|
|
*/
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc_if->sk_cdata.sk_jumbo_rx_sparemap;
|
|
sc_if->sk_cdata.sk_jumbo_rx_sparemap = map;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
r = &sc_if->sk_rdata.sk_jumbo_rx_ring[idx];
|
|
r->sk_data_lo = htole32(SK_ADDR_LO(segs[0].ds_addr));
|
|
r->sk_data_hi = htole32(SK_ADDR_HI(segs[0].ds_addr));
|
|
r->sk_ctl = htole32(segs[0].ds_len | SK_RXSTAT | SK_OPCODE_CSUM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
sk_ifmedia_upd(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_if_softc *sc_if = ifp->if_softc;
|
|
struct mii_data *mii;
|
|
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
sk_init(sc_if);
|
|
mii_mediachg(mii);
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
sk_ifmedia_sts(ifp, ifmr)
|
|
struct ifnet *ifp;
|
|
struct ifmediareq *ifmr;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
|
|
sc_if = ifp->if_softc;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sk_ioctl(ifp, command, data)
|
|
struct ifnet *ifp;
|
|
u_long command;
|
|
caddr_t data;
|
|
{
|
|
struct sk_if_softc *sc_if = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error, mask;
|
|
struct mii_data *mii;
|
|
|
|
error = 0;
|
|
switch(command) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > SK_JUMBO_MTU)
|
|
error = EINVAL;
|
|
else if (ifp->if_mtu != ifr->ifr_mtu) {
|
|
if (sc_if->sk_jumbo_disable != 0 &&
|
|
ifr->ifr_mtu > SK_MAX_FRAMELEN)
|
|
error = EINVAL;
|
|
else {
|
|
SK_IF_LOCK(sc_if);
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sk_init_locked(sc_if);
|
|
}
|
|
SK_IF_UNLOCK(sc_if);
|
|
}
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
SK_IF_LOCK(sc_if);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if ((ifp->if_flags ^ sc_if->sk_if_flags)
|
|
& (IFF_PROMISC | IFF_ALLMULTI))
|
|
sk_rxfilter(sc_if);
|
|
} else
|
|
sk_init_locked(sc_if);
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
sk_stop(sc_if);
|
|
}
|
|
sc_if->sk_if_flags = ifp->if_flags;
|
|
SK_IF_UNLOCK(sc_if);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
SK_IF_LOCK(sc_if);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
sk_rxfilter(sc_if);
|
|
SK_IF_UNLOCK(sc_if);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
SK_IF_LOCK(sc_if);
|
|
if (sc_if->sk_softc->sk_type == SK_GENESIS) {
|
|
SK_IF_UNLOCK(sc_if);
|
|
break;
|
|
}
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
|
|
ifp->if_hwassist |= SK_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~SK_CSUM_FEATURES;
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(IFCAP_RXCSUM & ifp->if_capabilities) != 0)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
SK_IF_UNLOCK(sc_if);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Probe for a SysKonnect GEnesis chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
skc_probe(dev)
|
|
device_t dev;
|
|
{
|
|
const struct sk_type *t = sk_devs;
|
|
|
|
while(t->sk_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->sk_vid) &&
|
|
(pci_get_device(dev) == t->sk_did)) {
|
|
/*
|
|
* Only attach to rev. 2 of the Linksys EG1032 adapter.
|
|
* Rev. 3 is supported by re(4).
|
|
*/
|
|
if ((t->sk_vid == VENDORID_LINKSYS) &&
|
|
(t->sk_did == DEVICEID_LINKSYS_EG1032) &&
|
|
(pci_get_subdevice(dev) !=
|
|
SUBDEVICEID_LINKSYS_EG1032_REV2)) {
|
|
t++;
|
|
continue;
|
|
}
|
|
device_set_desc(dev, t->sk_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return(ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Force the GEnesis into reset, then bring it out of reset.
|
|
*/
|
|
static void
|
|
sk_reset(sc)
|
|
struct sk_softc *sc;
|
|
{
|
|
|
|
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_RESET);
|
|
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_RESET);
|
|
if (SK_YUKON_FAMILY(sc->sk_type))
|
|
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_SET);
|
|
|
|
DELAY(1000);
|
|
CSR_WRITE_2(sc, SK_CSR, SK_CSR_SW_UNRESET);
|
|
DELAY(2);
|
|
CSR_WRITE_2(sc, SK_CSR, SK_CSR_MASTER_UNRESET);
|
|
if (SK_YUKON_FAMILY(sc->sk_type))
|
|
CSR_WRITE_2(sc, SK_LINK_CTRL, SK_LINK_RESET_CLEAR);
|
|
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
/* Configure packet arbiter */
|
|
sk_win_write_2(sc, SK_PKTARB_CTL, SK_PKTARBCTL_UNRESET);
|
|
sk_win_write_2(sc, SK_RXPA1_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_TXPA1_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_RXPA2_TINIT, SK_PKTARB_TIMEOUT);
|
|
sk_win_write_2(sc, SK_TXPA2_TINIT, SK_PKTARB_TIMEOUT);
|
|
}
|
|
|
|
/* Enable RAM interface */
|
|
sk_win_write_4(sc, SK_RAMCTL, SK_RAMCTL_UNRESET);
|
|
|
|
/*
|
|
* Configure interrupt moderation. The moderation timer
|
|
* defers interrupts specified in the interrupt moderation
|
|
* timer mask based on the timeout specified in the interrupt
|
|
* moderation timer init register. Each bit in the timer
|
|
* register represents one tick, so to specify a timeout in
|
|
* microseconds, we have to multiply by the correct number of
|
|
* ticks-per-microsecond.
|
|
*/
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
sc->sk_int_ticks = SK_IMTIMER_TICKS_GENESIS;
|
|
break;
|
|
default:
|
|
sc->sk_int_ticks = SK_IMTIMER_TICKS_YUKON;
|
|
break;
|
|
}
|
|
if (bootverbose)
|
|
device_printf(sc->sk_dev, "interrupt moderation is %d us\n",
|
|
sc->sk_int_mod);
|
|
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
|
|
sc->sk_int_ticks));
|
|
sk_win_write_4(sc, SK_IMMR, SK_ISR_TX1_S_EOF|SK_ISR_TX2_S_EOF|
|
|
SK_ISR_RX1_EOF|SK_ISR_RX2_EOF);
|
|
sk_win_write_1(sc, SK_IMTIMERCTL, SK_IMCTL_START);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sk_probe(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
sc = device_get_softc(device_get_parent(dev));
|
|
|
|
/*
|
|
* Not much to do here. We always know there will be
|
|
* at least one XMAC present, and if there are two,
|
|
* skc_attach() will create a second device instance
|
|
* for us.
|
|
*/
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
device_set_desc(dev, "XaQti Corp. XMAC II");
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
device_set_desc(dev, "Marvell Semiconductor, Inc. Yukon");
|
|
break;
|
|
}
|
|
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
/*
|
|
* Each XMAC chip is attached as a separate logical IP interface.
|
|
* Single port cards will have only one logical interface of course.
|
|
*/
|
|
static int
|
|
sk_attach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
u_int32_t r;
|
|
int error, i, phy, port;
|
|
u_char eaddr[6];
|
|
u_char inv_mac[] = {0, 0, 0, 0, 0, 0};
|
|
|
|
if (dev == NULL)
|
|
return(EINVAL);
|
|
|
|
error = 0;
|
|
sc_if = device_get_softc(dev);
|
|
sc = device_get_softc(device_get_parent(dev));
|
|
port = *(int *)device_get_ivars(dev);
|
|
|
|
sc_if->sk_if_dev = dev;
|
|
sc_if->sk_port = port;
|
|
sc_if->sk_softc = sc;
|
|
sc->sk_if[port] = sc_if;
|
|
if (port == SK_PORT_A)
|
|
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR0;
|
|
if (port == SK_PORT_B)
|
|
sc_if->sk_tx_bmu = SK_BMU_TXS_CSR1;
|
|
|
|
callout_init_mtx(&sc_if->sk_tick_ch, &sc_if->sk_softc->sk_mtx, 0);
|
|
callout_init_mtx(&sc_if->sk_watchdog_ch, &sc_if->sk_softc->sk_mtx, 0);
|
|
|
|
if (sk_dma_alloc(sc_if) != 0) {
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
sk_dma_jumbo_alloc(sc_if);
|
|
|
|
ifp = sc_if->sk_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(sc_if->sk_if_dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
ifp->if_softc = sc_if;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
/*
|
|
* SK_GENESIS has a bug in checksum offload - From linux.
|
|
*/
|
|
if (sc_if->sk_softc->sk_type != SK_GENESIS) {
|
|
ifp->if_capabilities = IFCAP_TXCSUM | IFCAP_RXCSUM;
|
|
ifp->if_hwassist = 0;
|
|
} else {
|
|
ifp->if_capabilities = 0;
|
|
ifp->if_hwassist = 0;
|
|
}
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
/*
|
|
* Some revision of Yukon controller generates corrupted
|
|
* frame when TX checksum offloading is enabled. The
|
|
* frame has a valid checksum value so payload might be
|
|
* modified during TX checksum calculation. Disable TX
|
|
* checksum offloading but give users chance to enable it
|
|
* when they know their controller works without problems
|
|
* with TX checksum offloading.
|
|
*/
|
|
ifp->if_capenable &= ~IFCAP_TXCSUM;
|
|
ifp->if_ioctl = sk_ioctl;
|
|
ifp->if_start = sk_start;
|
|
ifp->if_init = sk_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, SK_TX_RING_CNT - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = SK_TX_RING_CNT - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* Get station address for this interface. Note that
|
|
* dual port cards actually come with three station
|
|
* addresses: one for each port, plus an extra. The
|
|
* extra one is used by the SysKonnect driver software
|
|
* as a 'virtual' station address for when both ports
|
|
* are operating in failover mode. Currently we don't
|
|
* use this extra address.
|
|
*/
|
|
SK_IF_LOCK(sc_if);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
eaddr[i] =
|
|
sk_win_read_1(sc, SK_MAC0_0 + (port * 8) + i);
|
|
|
|
/* Verify whether the station address is invalid or not. */
|
|
if (bcmp(eaddr, inv_mac, sizeof(inv_mac)) == 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"Generating random ethernet address\n");
|
|
r = arc4random();
|
|
/*
|
|
* Set OUI to convenient locally assigned address. 'b'
|
|
* is 0x62, which has the locally assigned bit set, and
|
|
* the broadcast/multicast bit clear.
|
|
*/
|
|
eaddr[0] = 'b';
|
|
eaddr[1] = 's';
|
|
eaddr[2] = 'd';
|
|
eaddr[3] = (r >> 16) & 0xff;
|
|
eaddr[4] = (r >> 8) & 0xff;
|
|
eaddr[5] = (r >> 0) & 0xff;
|
|
}
|
|
/*
|
|
* Set up RAM buffer addresses. The NIC will have a certain
|
|
* amount of SRAM on it, somewhere between 512K and 2MB. We
|
|
* need to divide this up a) between the transmitter and
|
|
* receiver and b) between the two XMACs, if this is a
|
|
* dual port NIC. Our algotithm is to divide up the memory
|
|
* evenly so that everyone gets a fair share.
|
|
*
|
|
* Just to be contrary, Yukon2 appears to have separate memory
|
|
* for each MAC.
|
|
*/
|
|
if (sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC) {
|
|
u_int32_t chunk, val;
|
|
|
|
chunk = sc->sk_ramsize / 2;
|
|
val = sc->sk_rboff / sizeof(u_int64_t);
|
|
sc_if->sk_rx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_rx_ramend = val - 1;
|
|
sc_if->sk_tx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_tx_ramend = val - 1;
|
|
} else {
|
|
u_int32_t chunk, val;
|
|
|
|
chunk = sc->sk_ramsize / 4;
|
|
val = (sc->sk_rboff + (chunk * 2 * sc_if->sk_port)) /
|
|
sizeof(u_int64_t);
|
|
sc_if->sk_rx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_rx_ramend = val - 1;
|
|
sc_if->sk_tx_ramstart = val;
|
|
val += (chunk / sizeof(u_int64_t));
|
|
sc_if->sk_tx_ramend = val - 1;
|
|
}
|
|
|
|
/* Read and save PHY type and set PHY address */
|
|
sc_if->sk_phytype = sk_win_read_1(sc, SK_EPROM1) & 0xF;
|
|
if (!SK_YUKON_FAMILY(sc->sk_type)) {
|
|
switch(sc_if->sk_phytype) {
|
|
case SK_PHYTYPE_XMAC:
|
|
sc_if->sk_phyaddr = SK_PHYADDR_XMAC;
|
|
break;
|
|
case SK_PHYTYPE_BCOM:
|
|
sc_if->sk_phyaddr = SK_PHYADDR_BCOM;
|
|
break;
|
|
default:
|
|
device_printf(sc->sk_dev, "unsupported PHY type: %d\n",
|
|
sc_if->sk_phytype);
|
|
error = ENODEV;
|
|
SK_IF_UNLOCK(sc_if);
|
|
goto fail;
|
|
}
|
|
} else {
|
|
if (sc_if->sk_phytype < SK_PHYTYPE_MARV_COPPER &&
|
|
sc->sk_pmd != 'S') {
|
|
/* not initialized, punt */
|
|
sc_if->sk_phytype = SK_PHYTYPE_MARV_COPPER;
|
|
sc->sk_coppertype = 1;
|
|
}
|
|
|
|
sc_if->sk_phyaddr = SK_PHYADDR_MARV;
|
|
|
|
if (!(sc->sk_coppertype))
|
|
sc_if->sk_phytype = SK_PHYTYPE_MARV_FIBER;
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine. Can't hold locks when calling into ether_*.
|
|
*/
|
|
SK_IF_UNLOCK(sc_if);
|
|
ether_ifattach(ifp, eaddr);
|
|
SK_IF_LOCK(sc_if);
|
|
|
|
/*
|
|
* The hardware should be ready for VLAN_MTU by default:
|
|
* XMAC II has 0x8100 in VLAN Tag Level 1 register initially;
|
|
* YU_SMR_MFL_VLAN is set by this driver in Yukon.
|
|
*
|
|
*/
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU;
|
|
ifp->if_capenable |= IFCAP_VLAN_MTU;
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
* Must appear after the call to ether_ifattach() because
|
|
* ether_ifattach() sets ifi_hdrlen to the default value.
|
|
*/
|
|
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/*
|
|
* Do miibus setup.
|
|
*/
|
|
phy = MII_PHY_ANY;
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
sk_init_xmac(sc_if);
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
|
|
phy = 0;
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
sk_init_yukon(sc_if);
|
|
phy = 0;
|
|
break;
|
|
}
|
|
|
|
SK_IF_UNLOCK(sc_if);
|
|
error = mii_attach(dev, &sc_if->sk_miibus, ifp, sk_ifmedia_upd,
|
|
sk_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev, "attaching PHYs failed\n");
|
|
ether_ifdetach(ifp);
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error) {
|
|
/* Access should be ok even though lock has been dropped */
|
|
sc->sk_if[port] = NULL;
|
|
sk_detach(dev);
|
|
}
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
skc_attach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
int error = 0, *port;
|
|
uint8_t skrs;
|
|
const char *pname = NULL;
|
|
char *revstr;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->sk_dev = dev;
|
|
|
|
mtx_init(&sc->sk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
mtx_init(&sc->sk_mii_mtx, "sk_mii_mutex", NULL, MTX_DEF);
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
/* Allocate resources */
|
|
#ifdef SK_USEIOSPACE
|
|
sc->sk_res_spec = sk_res_spec_io;
|
|
#else
|
|
sc->sk_res_spec = sk_res_spec_mem;
|
|
#endif
|
|
error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
|
|
if (error) {
|
|
if (sc->sk_res_spec == sk_res_spec_mem)
|
|
sc->sk_res_spec = sk_res_spec_io;
|
|
else
|
|
sc->sk_res_spec = sk_res_spec_mem;
|
|
error = bus_alloc_resources(dev, sc->sk_res_spec, sc->sk_res);
|
|
if (error) {
|
|
device_printf(dev, "couldn't allocate %s resources\n",
|
|
sc->sk_res_spec == sk_res_spec_mem ? "memory" :
|
|
"I/O");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
sc->sk_type = sk_win_read_1(sc, SK_CHIPVER);
|
|
sc->sk_rev = (sk_win_read_1(sc, SK_CONFIG) >> 4) & 0xf;
|
|
|
|
/* Bail out if chip is not recognized. */
|
|
if (sc->sk_type != SK_GENESIS && !SK_YUKON_FAMILY(sc->sk_type)) {
|
|
device_printf(dev, "unknown device: chipver=%02x, rev=%x\n",
|
|
sc->sk_type, sc->sk_rev);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "int_mod", CTLTYPE_INT|CTLFLAG_RW,
|
|
&sc->sk_int_mod, 0, sysctl_hw_sk_int_mod, "I",
|
|
"SK interrupt moderation");
|
|
|
|
/* Pull in device tunables. */
|
|
sc->sk_int_mod = SK_IM_DEFAULT;
|
|
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"int_mod", &sc->sk_int_mod);
|
|
if (error == 0) {
|
|
if (sc->sk_int_mod < SK_IM_MIN ||
|
|
sc->sk_int_mod > SK_IM_MAX) {
|
|
device_printf(dev, "int_mod value out of range; "
|
|
"using default: %d\n", SK_IM_DEFAULT);
|
|
sc->sk_int_mod = SK_IM_DEFAULT;
|
|
}
|
|
}
|
|
|
|
/* Reset the adapter. */
|
|
sk_reset(sc);
|
|
|
|
skrs = sk_win_read_1(sc, SK_EPROM0);
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
/* Read and save RAM size and RAMbuffer offset */
|
|
switch(skrs) {
|
|
case SK_RAMSIZE_512K_64:
|
|
sc->sk_ramsize = 0x80000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
case SK_RAMSIZE_1024K_64:
|
|
sc->sk_ramsize = 0x100000;
|
|
sc->sk_rboff = SK_RBOFF_80000;
|
|
break;
|
|
case SK_RAMSIZE_1024K_128:
|
|
sc->sk_ramsize = 0x100000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
case SK_RAMSIZE_2048K_128:
|
|
sc->sk_ramsize = 0x200000;
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown ram size: %d\n", skrs);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
} else { /* SK_YUKON_FAMILY */
|
|
if (skrs == 0x00)
|
|
sc->sk_ramsize = 0x20000;
|
|
else
|
|
sc->sk_ramsize = skrs * (1<<12);
|
|
sc->sk_rboff = SK_RBOFF_0;
|
|
}
|
|
|
|
/* Read and save physical media type */
|
|
sc->sk_pmd = sk_win_read_1(sc, SK_PMDTYPE);
|
|
|
|
if (sc->sk_pmd == 'T' || sc->sk_pmd == '1')
|
|
sc->sk_coppertype = 1;
|
|
else
|
|
sc->sk_coppertype = 0;
|
|
|
|
/* Determine whether to name it with VPD PN or just make it up.
|
|
* Marvell Yukon VPD PN seems to freqently be bogus. */
|
|
switch (pci_get_device(dev)) {
|
|
case DEVICEID_SK_V1:
|
|
case DEVICEID_BELKIN_5005:
|
|
case DEVICEID_3COM_3C940:
|
|
case DEVICEID_LINKSYS_EG1032:
|
|
case DEVICEID_DLINK_DGE530T_A1:
|
|
case DEVICEID_DLINK_DGE530T_B1:
|
|
/* Stay with VPD PN. */
|
|
(void) pci_get_vpd_ident(dev, &pname);
|
|
break;
|
|
case DEVICEID_SK_V2:
|
|
/* YUKON VPD PN might bear no resemblance to reality. */
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
/* Stay with VPD PN. */
|
|
(void) pci_get_vpd_ident(dev, &pname);
|
|
break;
|
|
case SK_YUKON:
|
|
pname = "Marvell Yukon Gigabit Ethernet";
|
|
break;
|
|
case SK_YUKON_LITE:
|
|
pname = "Marvell Yukon Lite Gigabit Ethernet";
|
|
break;
|
|
case SK_YUKON_LP:
|
|
pname = "Marvell Yukon LP Gigabit Ethernet";
|
|
break;
|
|
default:
|
|
pname = "Marvell Yukon (Unknown) Gigabit Ethernet";
|
|
break;
|
|
}
|
|
|
|
/* Yukon Lite Rev. A0 needs special test. */
|
|
if (sc->sk_type == SK_YUKON || sc->sk_type == SK_YUKON_LP) {
|
|
u_int32_t far;
|
|
u_int8_t testbyte;
|
|
|
|
/* Save flash address register before testing. */
|
|
far = sk_win_read_4(sc, SK_EP_ADDR);
|
|
|
|
sk_win_write_1(sc, SK_EP_ADDR+0x03, 0xff);
|
|
testbyte = sk_win_read_1(sc, SK_EP_ADDR+0x03);
|
|
|
|
if (testbyte != 0x00) {
|
|
/* Yukon Lite Rev. A0 detected. */
|
|
sc->sk_type = SK_YUKON_LITE;
|
|
sc->sk_rev = SK_YUKON_LITE_REV_A0;
|
|
/* Restore flash address register. */
|
|
sk_win_write_4(sc, SK_EP_ADDR, far);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
device_printf(dev, "unknown device: vendor=%04x, device=%04x, "
|
|
"chipver=%02x, rev=%x\n",
|
|
pci_get_vendor(dev), pci_get_device(dev),
|
|
sc->sk_type, sc->sk_rev);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
if (sc->sk_type == SK_YUKON_LITE) {
|
|
switch (sc->sk_rev) {
|
|
case SK_YUKON_LITE_REV_A0:
|
|
revstr = "A0";
|
|
break;
|
|
case SK_YUKON_LITE_REV_A1:
|
|
revstr = "A1";
|
|
break;
|
|
case SK_YUKON_LITE_REV_A3:
|
|
revstr = "A3";
|
|
break;
|
|
default:
|
|
revstr = "";
|
|
break;
|
|
}
|
|
} else {
|
|
revstr = "";
|
|
}
|
|
|
|
/* Announce the product name and more VPD data if there. */
|
|
if (pname != NULL)
|
|
device_printf(dev, "%s rev. %s(0x%x)\n",
|
|
pname, revstr, sc->sk_rev);
|
|
|
|
if (bootverbose) {
|
|
device_printf(dev, "chip ver = 0x%02x\n", sc->sk_type);
|
|
device_printf(dev, "chip rev = 0x%02x\n", sc->sk_rev);
|
|
device_printf(dev, "SK_EPROM0 = 0x%02x\n", skrs);
|
|
device_printf(dev, "SRAM size = 0x%06x\n", sc->sk_ramsize);
|
|
}
|
|
|
|
sc->sk_devs[SK_PORT_A] = device_add_child(dev, "sk", -1);
|
|
if (sc->sk_devs[SK_PORT_A] == NULL) {
|
|
device_printf(dev, "failed to add child for PORT_A\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
|
|
if (port == NULL) {
|
|
device_printf(dev, "failed to allocate memory for "
|
|
"ivars of PORT_A\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
*port = SK_PORT_A;
|
|
device_set_ivars(sc->sk_devs[SK_PORT_A], port);
|
|
|
|
if (!(sk_win_read_1(sc, SK_CONFIG) & SK_CONFIG_SINGLEMAC)) {
|
|
sc->sk_devs[SK_PORT_B] = device_add_child(dev, "sk", -1);
|
|
if (sc->sk_devs[SK_PORT_B] == NULL) {
|
|
device_printf(dev, "failed to add child for PORT_B\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
port = malloc(sizeof(int), M_DEVBUF, M_NOWAIT);
|
|
if (port == NULL) {
|
|
device_printf(dev, "failed to allocate memory for "
|
|
"ivars of PORT_B\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
*port = SK_PORT_B;
|
|
device_set_ivars(sc->sk_devs[SK_PORT_B], port);
|
|
}
|
|
|
|
/* Turn on the 'driver is loaded' LED. */
|
|
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_ON);
|
|
|
|
error = bus_generic_attach(dev);
|
|
if (error) {
|
|
device_printf(dev, "failed to attach port(s)\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Hook interrupt last to avoid having to lock softc */
|
|
error = bus_setup_intr(dev, sc->sk_res[1], INTR_TYPE_NET|INTR_MPSAFE,
|
|
NULL, sk_intr, sc, &sc->sk_intrhand);
|
|
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error)
|
|
skc_detach(dev);
|
|
|
|
return(error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
sk_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc_if->sk_softc->sk_mtx),
|
|
("sk mutex not initialized in sk_detach"));
|
|
SK_IF_LOCK(sc_if);
|
|
|
|
ifp = sc_if->sk_ifp;
|
|
/* These should only be active if attach_xmac succeeded */
|
|
if (device_is_attached(dev)) {
|
|
sk_stop(sc_if);
|
|
/* Can't hold locks while calling detach */
|
|
SK_IF_UNLOCK(sc_if);
|
|
callout_drain(&sc_if->sk_tick_ch);
|
|
callout_drain(&sc_if->sk_watchdog_ch);
|
|
ether_ifdetach(ifp);
|
|
SK_IF_LOCK(sc_if);
|
|
}
|
|
if (ifp)
|
|
if_free(ifp);
|
|
/*
|
|
* We're generally called from skc_detach() which is using
|
|
* device_delete_child() to get to here. It's already trashed
|
|
* miibus for us, so don't do it here or we'll panic.
|
|
*/
|
|
/*
|
|
if (sc_if->sk_miibus != NULL)
|
|
device_delete_child(dev, sc_if->sk_miibus);
|
|
*/
|
|
bus_generic_detach(dev);
|
|
sk_dma_jumbo_free(sc_if);
|
|
sk_dma_free(sc_if);
|
|
SK_IF_UNLOCK(sc_if);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static int
|
|
skc_detach(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc->sk_mtx), ("sk mutex not initialized"));
|
|
|
|
if (device_is_alive(dev)) {
|
|
if (sc->sk_devs[SK_PORT_A] != NULL) {
|
|
free(device_get_ivars(sc->sk_devs[SK_PORT_A]), M_DEVBUF);
|
|
device_delete_child(dev, sc->sk_devs[SK_PORT_A]);
|
|
}
|
|
if (sc->sk_devs[SK_PORT_B] != NULL) {
|
|
free(device_get_ivars(sc->sk_devs[SK_PORT_B]), M_DEVBUF);
|
|
device_delete_child(dev, sc->sk_devs[SK_PORT_B]);
|
|
}
|
|
bus_generic_detach(dev);
|
|
}
|
|
|
|
if (sc->sk_intrhand)
|
|
bus_teardown_intr(dev, sc->sk_res[1], sc->sk_intrhand);
|
|
bus_release_resources(dev, sc->sk_res_spec, sc->sk_res);
|
|
|
|
mtx_destroy(&sc->sk_mii_mtx);
|
|
mtx_destroy(&sc->sk_mtx);
|
|
|
|
return(0);
|
|
}
|
|
|
|
static bus_dma_tag_t
|
|
skc_get_dma_tag(device_t bus, device_t child __unused)
|
|
{
|
|
|
|
return (bus_get_dma_tag(bus));
|
|
}
|
|
|
|
struct sk_dmamap_arg {
|
|
bus_addr_t sk_busaddr;
|
|
};
|
|
|
|
static void
|
|
sk_dmamap_cb(arg, segs, nseg, error)
|
|
void *arg;
|
|
bus_dma_segment_t *segs;
|
|
int nseg;
|
|
int error;
|
|
{
|
|
struct sk_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
|
|
ctx = arg;
|
|
ctx->sk_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
/*
|
|
* Allocate jumbo buffer storage. The SysKonnect adapters support
|
|
* "jumbograms" (9K frames), although SysKonnect doesn't currently
|
|
* use them in their drivers. In order for us to use them, we need
|
|
* large 9K receive buffers, however standard mbuf clusters are only
|
|
* 2048 bytes in size. Consequently, we need to allocate and manage
|
|
* our own jumbo buffer pool. Fortunately, this does not require an
|
|
* excessive amount of additional code.
|
|
*/
|
|
static int
|
|
sk_dma_alloc(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_dmamap_arg ctx;
|
|
struct sk_txdesc *txd;
|
|
struct sk_rxdesc *rxd;
|
|
int error, i;
|
|
|
|
/* create parent tag */
|
|
/*
|
|
* XXX
|
|
* This driver should use BUS_SPACE_MAXADDR for lowaddr argument
|
|
* in bus_dma_tag_create(9) as the NIC would support DAC mode.
|
|
* However bz@ reported that it does not work on amd64 with > 4GB
|
|
* RAM. Until we have more clues of the breakage, disable DAC mode
|
|
* by limiting DMA address to be in 32bit address space.
|
|
*/
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc_if->sk_if_dev),/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Tx ring */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
SK_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SK_TX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
SK_TX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate Tx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Rx ring */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
SK_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SK_RX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
SK_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Tx buffers */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * SK_MAXTXSEGS, /* maxsize */
|
|
SK_MAXTXSEGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* create tag for Rx buffers */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* allocate DMA'able memory and load the DMA map for Tx ring */
|
|
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
(void **)&sc_if->sk_rdata.sk_tx_ring, BUS_DMA_NOWAIT |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.sk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map, sc_if->sk_rdata.sk_tx_ring,
|
|
SK_TX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to load DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
sc_if->sk_rdata.sk_tx_ring_paddr = ctx.sk_busaddr;
|
|
|
|
/* allocate DMA'able memory and load the DMA map for Rx ring */
|
|
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
(void **)&sc_if->sk_rdata.sk_rx_ring, BUS_DMA_NOWAIT |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->sk_cdata.sk_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.sk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map, sc_if->sk_rdata.sk_rx_ring,
|
|
SK_RX_RING_SZ, sk_dmamap_cb, &ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to load DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc_if->sk_rdata.sk_rx_ring_paddr = ctx.sk_busaddr;
|
|
|
|
/* create DMA maps for Tx buffers */
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->sk_cdata.sk_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->sk_cdata.sk_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create Tx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* create DMA maps for Rx buffers */
|
|
if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
|
|
&sc_if->sk_cdata.sk_rx_sparemap)) != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create spare Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->sk_cdata.sk_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
sk_dma_jumbo_alloc(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_dmamap_arg ctx;
|
|
struct sk_rxdesc *jrxd;
|
|
int error, i;
|
|
|
|
if (jumbo_disable != 0) {
|
|
device_printf(sc_if->sk_if_dev, "disabling jumbo frame support\n");
|
|
sc_if->sk_jumbo_disable = 1;
|
|
return (0);
|
|
}
|
|
/* create tag for jumbo Rx ring */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
SK_RING_ALIGN, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
SK_JUMBO_RX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
SK_JUMBO_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate jumbo Rx ring DMA tag\n");
|
|
goto jumbo_fail;
|
|
}
|
|
|
|
/* create tag for jumbo Rx buffers */
|
|
error = bus_dma_tag_create(sc_if->sk_cdata.sk_parent_tag,/* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MJUM9BYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MJUM9BYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->sk_cdata.sk_jumbo_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate jumbo Rx DMA tag\n");
|
|
goto jumbo_fail;
|
|
}
|
|
|
|
/* allocate DMA'able memory and load the DMA map for jumbo Rx ring */
|
|
error = bus_dmamem_alloc(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
(void **)&sc_if->sk_rdata.sk_jumbo_rx_ring, BUS_DMA_NOWAIT |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO,
|
|
&sc_if->sk_cdata.sk_jumbo_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to allocate DMA'able memory for jumbo Rx ring\n");
|
|
goto jumbo_fail;
|
|
}
|
|
|
|
ctx.sk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring, SK_JUMBO_RX_RING_SZ, sk_dmamap_cb,
|
|
&ctx, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to load DMA'able memory for jumbo Rx ring\n");
|
|
goto jumbo_fail;
|
|
}
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = ctx.sk_busaddr;
|
|
|
|
/* create DMA maps for jumbo Rx buffers */
|
|
if ((error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
|
|
&sc_if->sk_cdata.sk_jumbo_rx_sparemap)) != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create spare jumbo Rx dmamap\n");
|
|
goto jumbo_fail;
|
|
}
|
|
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
|
|
jrxd->rx_m = NULL;
|
|
jrxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->sk_cdata.sk_jumbo_rx_tag, 0,
|
|
&jrxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"failed to create jumbo Rx dmamap\n");
|
|
goto jumbo_fail;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
jumbo_fail:
|
|
sk_dma_jumbo_free(sc_if);
|
|
device_printf(sc_if->sk_if_dev, "disabling jumbo frame support due to "
|
|
"resource shortage\n");
|
|
sc_if->sk_jumbo_disable = 1;
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sk_dma_free(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_txdesc *txd;
|
|
struct sk_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring */
|
|
if (sc_if->sk_cdata.sk_tx_ring_tag) {
|
|
if (sc_if->sk_rdata.sk_tx_ring_paddr)
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map);
|
|
if (sc_if->sk_rdata.sk_tx_ring)
|
|
bus_dmamem_free(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_rdata.sk_tx_ring,
|
|
sc_if->sk_cdata.sk_tx_ring_map);
|
|
sc_if->sk_rdata.sk_tx_ring = NULL;
|
|
sc_if->sk_rdata.sk_tx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_ring_tag);
|
|
sc_if->sk_cdata.sk_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring */
|
|
if (sc_if->sk_cdata.sk_rx_ring_tag) {
|
|
if (sc_if->sk_rdata.sk_rx_ring_paddr)
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map);
|
|
if (sc_if->sk_rdata.sk_rx_ring)
|
|
bus_dmamem_free(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_rdata.sk_rx_ring,
|
|
sc_if->sk_cdata.sk_rx_ring_map);
|
|
sc_if->sk_rdata.sk_rx_ring = NULL;
|
|
sc_if->sk_rdata.sk_rx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_ring_tag);
|
|
sc_if->sk_cdata.sk_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers */
|
|
if (sc_if->sk_cdata.sk_tx_tag) {
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->sk_cdata.sk_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_destroy(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_tx_tag);
|
|
sc_if->sk_cdata.sk_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers */
|
|
if (sc_if->sk_cdata.sk_rx_tag) {
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
|
|
if (rxd->rx_dmamap) {
|
|
bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc_if->sk_cdata.sk_rx_sparemap) {
|
|
bus_dmamap_destroy(sc_if->sk_cdata.sk_rx_tag,
|
|
sc_if->sk_cdata.sk_rx_sparemap);
|
|
sc_if->sk_cdata.sk_rx_sparemap = NULL;
|
|
}
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_rx_tag);
|
|
sc_if->sk_cdata.sk_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc_if->sk_cdata.sk_parent_tag) {
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_parent_tag);
|
|
sc_if->sk_cdata.sk_parent_tag = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_dma_jumbo_free(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_rxdesc *jrxd;
|
|
int i;
|
|
|
|
/* jumbo Rx ring */
|
|
if (sc_if->sk_cdata.sk_jumbo_rx_ring_tag) {
|
|
if (sc_if->sk_rdata.sk_jumbo_rx_ring_paddr)
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map);
|
|
if (sc_if->sk_rdata.sk_jumbo_rx_ring)
|
|
bus_dmamem_free(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map);
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring = NULL;
|
|
sc_if->sk_rdata.sk_jumbo_rx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_ring_tag);
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_tag = NULL;
|
|
}
|
|
|
|
/* jumbo Rx buffers */
|
|
if (sc_if->sk_cdata.sk_jumbo_rx_tag) {
|
|
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
|
|
if (jrxd->rx_dmamap) {
|
|
bus_dmamap_destroy(
|
|
sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap);
|
|
jrxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc_if->sk_cdata.sk_jumbo_rx_sparemap) {
|
|
bus_dmamap_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_sparemap);
|
|
sc_if->sk_cdata.sk_jumbo_rx_sparemap = NULL;
|
|
}
|
|
bus_dma_tag_destroy(sc_if->sk_cdata.sk_jumbo_rx_tag);
|
|
sc_if->sk_cdata.sk_jumbo_rx_tag = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_txcksum(ifp, m, f)
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
struct sk_tx_desc *f;
|
|
{
|
|
struct ip *ip;
|
|
u_int16_t offset;
|
|
u_int8_t *p;
|
|
|
|
offset = sizeof(struct ip) + ETHER_HDR_LEN;
|
|
for(; m && m->m_len == 0; m = m->m_next)
|
|
;
|
|
if (m == NULL || m->m_len < ETHER_HDR_LEN) {
|
|
if_printf(ifp, "%s: m_len < ETHER_HDR_LEN\n", __func__);
|
|
/* checksum may be corrupted */
|
|
goto sendit;
|
|
}
|
|
if (m->m_len < ETHER_HDR_LEN + sizeof(u_int32_t)) {
|
|
if (m->m_len != ETHER_HDR_LEN) {
|
|
if_printf(ifp, "%s: m_len != ETHER_HDR_LEN\n",
|
|
__func__);
|
|
/* checksum may be corrupted */
|
|
goto sendit;
|
|
}
|
|
for(m = m->m_next; m && m->m_len == 0; m = m->m_next)
|
|
;
|
|
if (m == NULL) {
|
|
offset = sizeof(struct ip) + ETHER_HDR_LEN;
|
|
/* checksum may be corrupted */
|
|
goto sendit;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
} else {
|
|
p = mtod(m, u_int8_t *);
|
|
p += ETHER_HDR_LEN;
|
|
ip = (struct ip *)p;
|
|
}
|
|
offset = (ip->ip_hl << 2) + ETHER_HDR_LEN;
|
|
|
|
sendit:
|
|
f->sk_csum_startval = 0;
|
|
f->sk_csum_start = htole32(((offset + m->m_pkthdr.csum_data) & 0xffff) |
|
|
(offset << 16));
|
|
}
|
|
|
|
static int
|
|
sk_encap(sc_if, m_head)
|
|
struct sk_if_softc *sc_if;
|
|
struct mbuf **m_head;
|
|
{
|
|
struct sk_txdesc *txd;
|
|
struct sk_tx_desc *f = NULL;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t txsegs[SK_MAXTXSEGS];
|
|
u_int32_t cflags, frag, si, sk_ctl;
|
|
int error, i, nseg;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
if ((txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txfreeq)) == NULL)
|
|
return (ENOBUFS);
|
|
|
|
error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
|
|
if (error == EFBIG) {
|
|
m = m_defrag(*m_head, M_NOWAIT);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOMEM);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap, *m_head, txsegs, &nseg, 0);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nseg == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
if (sc_if->sk_cdata.sk_tx_cnt + nseg >= SK_TX_RING_CNT) {
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
m = *m_head;
|
|
if ((m->m_pkthdr.csum_flags & sc_if->sk_ifp->if_hwassist) != 0)
|
|
cflags = SK_OPCODE_CSUM;
|
|
else
|
|
cflags = SK_OPCODE_DEFAULT;
|
|
si = frag = sc_if->sk_cdata.sk_tx_prod;
|
|
for (i = 0; i < nseg; i++) {
|
|
f = &sc_if->sk_rdata.sk_tx_ring[frag];
|
|
f->sk_data_lo = htole32(SK_ADDR_LO(txsegs[i].ds_addr));
|
|
f->sk_data_hi = htole32(SK_ADDR_HI(txsegs[i].ds_addr));
|
|
sk_ctl = txsegs[i].ds_len | cflags;
|
|
if (i == 0) {
|
|
if (cflags == SK_OPCODE_CSUM)
|
|
sk_txcksum(sc_if->sk_ifp, m, f);
|
|
sk_ctl |= SK_TXCTL_FIRSTFRAG;
|
|
} else
|
|
sk_ctl |= SK_TXCTL_OWN;
|
|
f->sk_ctl = htole32(sk_ctl);
|
|
sc_if->sk_cdata.sk_tx_cnt++;
|
|
SK_INC(frag, SK_TX_RING_CNT);
|
|
}
|
|
sc_if->sk_cdata.sk_tx_prod = frag;
|
|
|
|
/* set EOF on the last desciptor */
|
|
frag = (frag + SK_TX_RING_CNT - 1) % SK_TX_RING_CNT;
|
|
f = &sc_if->sk_rdata.sk_tx_ring[frag];
|
|
f->sk_ctl |= htole32(SK_TXCTL_LASTFRAG | SK_TXCTL_EOF_INTR);
|
|
|
|
/* turn the first descriptor ownership to NIC */
|
|
f = &sc_if->sk_rdata.sk_tx_ring[si];
|
|
f->sk_ctl |= htole32(SK_TXCTL_OWN);
|
|
|
|
STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txfreeq, tx_q);
|
|
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txbusyq, txd, tx_q);
|
|
txd->tx_m = m;
|
|
|
|
/* sync descriptors */
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sk_start(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
|
|
sc_if = ifp->if_softc;
|
|
|
|
SK_IF_LOCK(sc_if);
|
|
sk_start_locked(ifp);
|
|
SK_IF_UNLOCK(sc_if);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_start_locked(ifp)
|
|
struct ifnet *ifp;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
sc_if = ifp->if_softc;
|
|
sc = sc_if->sk_softc;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc_if->sk_cdata.sk_tx_cnt < SK_TX_RING_CNT - 1; ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (sk_encap(sc_if, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
/* Transmit */
|
|
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
sc_if->sk_watchdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
sk_watchdog(arg)
|
|
void *arg;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
|
|
ifp = arg;
|
|
sc_if = ifp->if_softc;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
if (sc_if->sk_watchdog_timer == 0 || --sc_if->sk_watchdog_timer)
|
|
goto done;
|
|
|
|
/*
|
|
* Reclaim first as there is a possibility of losing Tx completion
|
|
* interrupts.
|
|
*/
|
|
sk_txeof(sc_if);
|
|
if (sc_if->sk_cdata.sk_tx_cnt != 0) {
|
|
if_printf(sc_if->sk_ifp, "watchdog timeout\n");
|
|
ifp->if_oerrors++;
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
sk_init_locked(sc_if);
|
|
}
|
|
|
|
done:
|
|
callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
skc_shutdown(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
SK_LOCK(sc);
|
|
|
|
/* Turn off the 'driver is loaded' LED. */
|
|
CSR_WRITE_2(sc, SK_LED, SK_LED_GREEN_OFF);
|
|
|
|
/*
|
|
* Reset the GEnesis controller. Doing this should also
|
|
* assert the resets on the attached XMAC(s).
|
|
*/
|
|
sk_reset(sc);
|
|
SK_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
skc_suspend(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if0, *sc_if1;
|
|
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
SK_LOCK(sc);
|
|
|
|
sc_if0 = sc->sk_if[SK_PORT_A];
|
|
sc_if1 = sc->sk_if[SK_PORT_B];
|
|
if (sc_if0 != NULL)
|
|
ifp0 = sc_if0->sk_ifp;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = sc_if1->sk_ifp;
|
|
if (ifp0 != NULL)
|
|
sk_stop(sc_if0);
|
|
if (ifp1 != NULL)
|
|
sk_stop(sc_if1);
|
|
sc->sk_suspended = 1;
|
|
|
|
SK_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
skc_resume(dev)
|
|
device_t dev;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct sk_if_softc *sc_if0, *sc_if1;
|
|
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
SK_LOCK(sc);
|
|
|
|
sc_if0 = sc->sk_if[SK_PORT_A];
|
|
sc_if1 = sc->sk_if[SK_PORT_B];
|
|
if (sc_if0 != NULL)
|
|
ifp0 = sc_if0->sk_ifp;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = sc_if1->sk_ifp;
|
|
if (ifp0 != NULL && ifp0->if_flags & IFF_UP)
|
|
sk_init_locked(sc_if0);
|
|
if (ifp1 != NULL && ifp1->if_flags & IFF_UP)
|
|
sk_init_locked(sc_if1);
|
|
sc->sk_suspended = 0;
|
|
|
|
SK_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* According to the data sheet from SK-NET GENESIS the hardware can compute
|
|
* two Rx checksums at the same time(Each checksum start position is
|
|
* programmed in Rx descriptors). However it seems that TCP/UDP checksum
|
|
* does not work at least on my Yukon hardware. I tried every possible ways
|
|
* to get correct checksum value but couldn't get correct one. So TCP/UDP
|
|
* checksum offload was disabled at the moment and only IP checksum offload
|
|
* was enabled.
|
|
* As nomral IP header size is 20 bytes I can't expect it would give an
|
|
* increase in throughput. However it seems it doesn't hurt performance in
|
|
* my testing. If there is a more detailed information for checksum secret
|
|
* of the hardware in question please contact yongari@FreeBSD.org to add
|
|
* TCP/UDP checksum offload support.
|
|
*/
|
|
static __inline void
|
|
sk_rxcksum(ifp, m, csum)
|
|
struct ifnet *ifp;
|
|
struct mbuf *m;
|
|
u_int32_t csum;
|
|
{
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
int32_t hlen, len, pktlen;
|
|
u_int16_t csum1, csum2, ipcsum;
|
|
|
|
pktlen = m->m_pkthdr.len;
|
|
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
|
|
return;
|
|
eh = mtod(m, struct ether_header *);
|
|
if (eh->ether_type != htons(ETHERTYPE_IP))
|
|
return;
|
|
ip = (struct ip *)(eh + 1);
|
|
if (ip->ip_v != IPVERSION)
|
|
return;
|
|
hlen = ip->ip_hl << 2;
|
|
pktlen -= sizeof(struct ether_header);
|
|
if (hlen < sizeof(struct ip))
|
|
return;
|
|
if (ntohs(ip->ip_len) < hlen)
|
|
return;
|
|
if (ntohs(ip->ip_len) != pktlen)
|
|
return;
|
|
|
|
csum1 = htons(csum & 0xffff);
|
|
csum2 = htons((csum >> 16) & 0xffff);
|
|
ipcsum = in_addword(csum1, ~csum2 & 0xffff);
|
|
/* checksum fixup for IP options */
|
|
len = hlen - sizeof(struct ip);
|
|
if (len > 0) {
|
|
/*
|
|
* If the second checksum value is correct we can compute IP
|
|
* checksum with simple math. Unfortunately the second checksum
|
|
* value is wrong so we can't verify the checksum from the
|
|
* value(It seems there is some magic here to get correct
|
|
* value). If the second checksum value is correct it also
|
|
* means we can get TCP/UDP checksum) here. However, it still
|
|
* needs pseudo header checksum calculation due to hardware
|
|
* limitations.
|
|
*/
|
|
return;
|
|
}
|
|
m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
|
|
if (ipcsum == 0xffff)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
}
|
|
|
|
static __inline int
|
|
sk_rxvalid(sc, stat, len)
|
|
struct sk_softc *sc;
|
|
u_int32_t stat, len;
|
|
{
|
|
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
if ((stat & XM_RXSTAT_ERRFRAME) == XM_RXSTAT_ERRFRAME ||
|
|
XM_RXSTAT_BYTES(stat) != len)
|
|
return (0);
|
|
} else {
|
|
if ((stat & (YU_RXSTAT_CRCERR | YU_RXSTAT_LONGERR |
|
|
YU_RXSTAT_MIIERR | YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC |
|
|
YU_RXSTAT_JABBER)) != 0 ||
|
|
(stat & YU_RXSTAT_RXOK) != YU_RXSTAT_RXOK ||
|
|
YU_RXSTAT_BYTES(stat) != len)
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
static void
|
|
sk_rxeof(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct sk_rx_desc *cur_rx;
|
|
struct sk_rxdesc *rxd;
|
|
int cons, prog;
|
|
u_int32_t csum, rxstat, sk_ctl;
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map, BUS_DMASYNC_POSTREAD);
|
|
|
|
prog = 0;
|
|
for (cons = sc_if->sk_cdata.sk_rx_cons; prog < SK_RX_RING_CNT;
|
|
prog++, SK_INC(cons, SK_RX_RING_CNT)) {
|
|
cur_rx = &sc_if->sk_rdata.sk_rx_ring[cons];
|
|
sk_ctl = le32toh(cur_rx->sk_ctl);
|
|
if ((sk_ctl & SK_RXCTL_OWN) != 0)
|
|
break;
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[cons];
|
|
rxstat = le32toh(cur_rx->sk_xmac_rxstat);
|
|
|
|
if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
|
|
SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
|
|
SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
|
|
SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
|
|
SK_RXBYTES(sk_ctl) > SK_MAX_FRAMELEN ||
|
|
sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
|
|
ifp->if_ierrors++;
|
|
sk_discard_rxbuf(sc_if, cons);
|
|
continue;
|
|
}
|
|
|
|
m = rxd->rx_m;
|
|
csum = le32toh(cur_rx->sk_csum);
|
|
if (sk_newbuf(sc_if, cons) != 0) {
|
|
ifp->if_iqdrops++;
|
|
/* reuse old buffer */
|
|
sk_discard_rxbuf(sc_if, cons);
|
|
continue;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
|
|
ifp->if_ipackets++;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
sk_rxcksum(ifp, m, csum);
|
|
SK_IF_UNLOCK(sc_if);
|
|
(*ifp->if_input)(ifp, m);
|
|
SK_IF_LOCK(sc_if);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc_if->sk_cdata.sk_rx_cons = cons;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_jumbo_rxeof(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct sk_rx_desc *cur_rx;
|
|
struct sk_rxdesc *jrxd;
|
|
int cons, prog;
|
|
u_int32_t csum, rxstat, sk_ctl;
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map, BUS_DMASYNC_POSTREAD);
|
|
|
|
prog = 0;
|
|
for (cons = sc_if->sk_cdata.sk_jumbo_rx_cons;
|
|
prog < SK_JUMBO_RX_RING_CNT;
|
|
prog++, SK_INC(cons, SK_JUMBO_RX_RING_CNT)) {
|
|
cur_rx = &sc_if->sk_rdata.sk_jumbo_rx_ring[cons];
|
|
sk_ctl = le32toh(cur_rx->sk_ctl);
|
|
if ((sk_ctl & SK_RXCTL_OWN) != 0)
|
|
break;
|
|
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[cons];
|
|
rxstat = le32toh(cur_rx->sk_xmac_rxstat);
|
|
|
|
if ((sk_ctl & (SK_RXCTL_STATUS_VALID | SK_RXCTL_FIRSTFRAG |
|
|
SK_RXCTL_LASTFRAG)) != (SK_RXCTL_STATUS_VALID |
|
|
SK_RXCTL_FIRSTFRAG | SK_RXCTL_LASTFRAG) ||
|
|
SK_RXBYTES(sk_ctl) < SK_MIN_FRAMELEN ||
|
|
SK_RXBYTES(sk_ctl) > SK_JUMBO_FRAMELEN ||
|
|
sk_rxvalid(sc, rxstat, SK_RXBYTES(sk_ctl)) == 0) {
|
|
ifp->if_ierrors++;
|
|
sk_discard_jumbo_rxbuf(sc_if, cons);
|
|
continue;
|
|
}
|
|
|
|
m = jrxd->rx_m;
|
|
csum = le32toh(cur_rx->sk_csum);
|
|
if (sk_jumbo_newbuf(sc_if, cons) != 0) {
|
|
ifp->if_iqdrops++;
|
|
/* reuse old buffer */
|
|
sk_discard_jumbo_rxbuf(sc_if, cons);
|
|
continue;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = SK_RXBYTES(sk_ctl);
|
|
ifp->if_ipackets++;
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
sk_rxcksum(ifp, m, csum);
|
|
SK_IF_UNLOCK(sc_if);
|
|
(*ifp->if_input)(ifp, m);
|
|
SK_IF_LOCK(sc_if);
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc_if->sk_cdata.sk_jumbo_rx_cons = cons;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_ring_tag,
|
|
sc_if->sk_cdata.sk_jumbo_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_txeof(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_txdesc *txd;
|
|
struct sk_tx_desc *cur_tx;
|
|
struct ifnet *ifp;
|
|
u_int32_t idx, sk_ctl;
|
|
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
|
|
if (txd == NULL)
|
|
return;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map, BUS_DMASYNC_POSTREAD);
|
|
/*
|
|
* Go through our tx ring and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
for (idx = sc_if->sk_cdata.sk_tx_cons;; SK_INC(idx, SK_TX_RING_CNT)) {
|
|
if (sc_if->sk_cdata.sk_tx_cnt <= 0)
|
|
break;
|
|
cur_tx = &sc_if->sk_rdata.sk_tx_ring[idx];
|
|
sk_ctl = le32toh(cur_tx->sk_ctl);
|
|
if (sk_ctl & SK_TXCTL_OWN)
|
|
break;
|
|
sc_if->sk_cdata.sk_tx_cnt--;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
if ((sk_ctl & SK_TXCTL_LASTFRAG) == 0)
|
|
continue;
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag, txd->tx_dmamap);
|
|
|
|
ifp->if_opackets++;
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
STAILQ_REMOVE_HEAD(&sc_if->sk_cdata.sk_txbusyq, tx_q);
|
|
STAILQ_INSERT_TAIL(&sc_if->sk_cdata.sk_txfreeq, txd, tx_q);
|
|
txd = STAILQ_FIRST(&sc_if->sk_cdata.sk_txbusyq);
|
|
}
|
|
sc_if->sk_cdata.sk_tx_cons = idx;
|
|
sc_if->sk_watchdog_timer = sc_if->sk_cdata.sk_tx_cnt > 0 ? 5 : 0;
|
|
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_ring_tag,
|
|
sc_if->sk_cdata.sk_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static void
|
|
sk_tick(xsc_if)
|
|
void *xsc_if;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
int i;
|
|
|
|
sc_if = xsc_if;
|
|
ifp = sc_if->sk_ifp;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
if (!(ifp->if_flags & IFF_UP))
|
|
return;
|
|
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
|
|
sk_intr_bcom(sc_if);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* According to SysKonnect, the correct way to verify that
|
|
* the link has come back up is to poll bit 0 of the GPIO
|
|
* register three times. This pin has the signal from the
|
|
* link_sync pin connected to it; if we read the same link
|
|
* state 3 times in a row, we know the link is up.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
if (SK_XM_READ_2(sc_if, XM_GPIO) & XM_GPIO_GP0_SET)
|
|
break;
|
|
}
|
|
|
|
if (i != 3) {
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
|
|
return;
|
|
}
|
|
|
|
/* Turn the GP0 interrupt back on. */
|
|
SK_XM_CLRBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
|
|
SK_XM_READ_2(sc_if, XM_ISR);
|
|
mii_tick(mii);
|
|
callout_stop(&sc_if->sk_tick_ch);
|
|
}
|
|
|
|
static void
|
|
sk_yukon_tick(xsc_if)
|
|
void *xsc_if;
|
|
{
|
|
struct sk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
|
|
sc_if = xsc_if;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
mii_tick(mii);
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
|
|
}
|
|
|
|
static void
|
|
sk_intr_bcom(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
int status;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
|
|
|
|
/*
|
|
* Read the PHY interrupt register to make sure
|
|
* we clear any pending interrupts.
|
|
*/
|
|
status = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, BRGPHY_MII_ISR);
|
|
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
sk_init_xmac(sc_if);
|
|
return;
|
|
}
|
|
|
|
if (status & (BRGPHY_ISR_LNK_CHG|BRGPHY_ISR_AN_PR)) {
|
|
int lstat;
|
|
lstat = sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM,
|
|
BRGPHY_MII_AUXSTS);
|
|
|
|
if (!(lstat & BRGPHY_AUXSTS_LINK) && sc_if->sk_link) {
|
|
mii_mediachg(mii);
|
|
/* Turn off the link LED. */
|
|
SK_IF_WRITE_1(sc_if, 0,
|
|
SK_LINKLED1_CTL, SK_LINKLED_OFF);
|
|
sc_if->sk_link = 0;
|
|
} else if (status & BRGPHY_ISR_LNK_CHG) {
|
|
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
|
|
BRGPHY_MII_IMR, 0xFF00);
|
|
mii_tick(mii);
|
|
sc_if->sk_link = 1;
|
|
/* Turn on the link LED. */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
|
|
SK_LINKLED_ON|SK_LINKLED_LINKSYNC_OFF|
|
|
SK_LINKLED_BLINK_OFF);
|
|
} else {
|
|
mii_tick(mii);
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
|
|
}
|
|
}
|
|
|
|
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_intr_xmac(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
u_int16_t status;
|
|
|
|
sc = sc_if->sk_softc;
|
|
status = SK_XM_READ_2(sc_if, XM_ISR);
|
|
|
|
/*
|
|
* Link has gone down. Start MII tick timeout to
|
|
* watch for link resync.
|
|
*/
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC) {
|
|
if (status & XM_ISR_GP0_SET) {
|
|
SK_XM_SETBIT_2(sc_if, XM_IMR, XM_IMR_GP0_SET);
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
|
|
}
|
|
|
|
if (status & XM_ISR_AUTONEG_DONE) {
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_tick, sc_if);
|
|
}
|
|
}
|
|
|
|
if (status & XM_IMR_TX_UNDERRUN)
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_TXFIFO);
|
|
|
|
if (status & XM_IMR_RX_OVERRUN)
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_FLUSH_RXFIFO);
|
|
|
|
status = SK_XM_READ_2(sc_if, XM_ISR);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_intr_yukon(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
u_int8_t status;
|
|
|
|
status = SK_IF_READ_1(sc_if, 0, SK_GMAC_ISR);
|
|
/* RX overrun */
|
|
if ((status & SK_GMAC_INT_RX_OVER) != 0) {
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
|
|
SK_RFCTL_RX_FIFO_OVER);
|
|
}
|
|
/* TX underrun */
|
|
if ((status & SK_GMAC_INT_TX_UNDER) != 0) {
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST,
|
|
SK_TFCTL_TX_FIFO_UNDER);
|
|
}
|
|
}
|
|
|
|
static void
|
|
sk_intr(xsc)
|
|
void *xsc;
|
|
{
|
|
struct sk_softc *sc = xsc;
|
|
struct sk_if_softc *sc_if0, *sc_if1;
|
|
struct ifnet *ifp0 = NULL, *ifp1 = NULL;
|
|
u_int32_t status;
|
|
|
|
SK_LOCK(sc);
|
|
|
|
status = CSR_READ_4(sc, SK_ISSR);
|
|
if (status == 0 || status == 0xffffffff || sc->sk_suspended)
|
|
goto done_locked;
|
|
|
|
sc_if0 = sc->sk_if[SK_PORT_A];
|
|
sc_if1 = sc->sk_if[SK_PORT_B];
|
|
|
|
if (sc_if0 != NULL)
|
|
ifp0 = sc_if0->sk_ifp;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = sc_if1->sk_ifp;
|
|
|
|
for (; (status &= sc->sk_intrmask) != 0;) {
|
|
/* Handle receive interrupts first. */
|
|
if (status & SK_ISR_RX1_EOF) {
|
|
if (ifp0->if_mtu > SK_MAX_FRAMELEN)
|
|
sk_jumbo_rxeof(sc_if0);
|
|
else
|
|
sk_rxeof(sc_if0);
|
|
CSR_WRITE_4(sc, SK_BMU_RX_CSR0,
|
|
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
|
|
}
|
|
if (status & SK_ISR_RX2_EOF) {
|
|
if (ifp1->if_mtu > SK_MAX_FRAMELEN)
|
|
sk_jumbo_rxeof(sc_if1);
|
|
else
|
|
sk_rxeof(sc_if1);
|
|
CSR_WRITE_4(sc, SK_BMU_RX_CSR1,
|
|
SK_RXBMU_CLR_IRQ_EOF|SK_RXBMU_RX_START);
|
|
}
|
|
|
|
/* Then transmit interrupts. */
|
|
if (status & SK_ISR_TX1_S_EOF) {
|
|
sk_txeof(sc_if0);
|
|
CSR_WRITE_4(sc, SK_BMU_TXS_CSR0, SK_TXBMU_CLR_IRQ_EOF);
|
|
}
|
|
if (status & SK_ISR_TX2_S_EOF) {
|
|
sk_txeof(sc_if1);
|
|
CSR_WRITE_4(sc, SK_BMU_TXS_CSR1, SK_TXBMU_CLR_IRQ_EOF);
|
|
}
|
|
|
|
/* Then MAC interrupts. */
|
|
if (status & SK_ISR_MAC1 &&
|
|
ifp0->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if (sc->sk_type == SK_GENESIS)
|
|
sk_intr_xmac(sc_if0);
|
|
else
|
|
sk_intr_yukon(sc_if0);
|
|
}
|
|
|
|
if (status & SK_ISR_MAC2 &&
|
|
ifp1->if_drv_flags & IFF_DRV_RUNNING) {
|
|
if (sc->sk_type == SK_GENESIS)
|
|
sk_intr_xmac(sc_if1);
|
|
else
|
|
sk_intr_yukon(sc_if1);
|
|
}
|
|
|
|
if (status & SK_ISR_EXTERNAL_REG) {
|
|
if (ifp0 != NULL &&
|
|
sc_if0->sk_phytype == SK_PHYTYPE_BCOM)
|
|
sk_intr_bcom(sc_if0);
|
|
if (ifp1 != NULL &&
|
|
sc_if1->sk_phytype == SK_PHYTYPE_BCOM)
|
|
sk_intr_bcom(sc_if1);
|
|
}
|
|
status = CSR_READ_4(sc, SK_ISSR);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
if (ifp0 != NULL && !IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
|
|
sk_start_locked(ifp0);
|
|
if (ifp1 != NULL && !IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
|
|
sk_start_locked(ifp1);
|
|
|
|
done_locked:
|
|
SK_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
sk_init_xmac(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int16_t eaddr[(ETHER_ADDR_LEN+1)/2];
|
|
static const struct sk_bcom_hack bhack[] = {
|
|
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 }, { 0x17, 0x0013 },
|
|
{ 0x15, 0x0404 }, { 0x17, 0x8006 }, { 0x15, 0x0132 }, { 0x17, 0x8006 },
|
|
{ 0x15, 0x0232 }, { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
|
|
{ 0, 0 } };
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
/* Unreset the XMAC. */
|
|
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_UNRESET);
|
|
DELAY(1000);
|
|
|
|
/* Reset the XMAC's internal state. */
|
|
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
|
|
|
|
/* Save the XMAC II revision */
|
|
sc_if->sk_xmac_rev = XM_XMAC_REV(SK_XM_READ_4(sc_if, XM_DEVID));
|
|
|
|
/*
|
|
* Perform additional initialization for external PHYs,
|
|
* namely for the 1000baseTX cards that use the XMAC's
|
|
* GMII mode.
|
|
*/
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
|
|
int i = 0;
|
|
u_int32_t val;
|
|
|
|
/* Take PHY out of reset. */
|
|
val = sk_win_read_4(sc, SK_GPIO);
|
|
if (sc_if->sk_port == SK_PORT_A)
|
|
val |= SK_GPIO_DIR0|SK_GPIO_DAT0;
|
|
else
|
|
val |= SK_GPIO_DIR2|SK_GPIO_DAT2;
|
|
sk_win_write_4(sc, SK_GPIO, val);
|
|
|
|
/* Enable GMII mode on the XMAC. */
|
|
SK_XM_SETBIT_2(sc_if, XM_HWCFG, XM_HWCFG_GMIIMODE);
|
|
|
|
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
|
|
BRGPHY_MII_BMCR, BRGPHY_BMCR_RESET);
|
|
DELAY(10000);
|
|
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
|
|
BRGPHY_MII_IMR, 0xFFF0);
|
|
|
|
/*
|
|
* Early versions of the BCM5400 apparently have
|
|
* a bug that requires them to have their reserved
|
|
* registers initialized to some magic values. I don't
|
|
* know what the numbers do, I'm just the messenger.
|
|
*/
|
|
if (sk_xmac_miibus_readreg(sc_if, SK_PHYADDR_BCOM, 0x03)
|
|
== 0x6041) {
|
|
while(bhack[i].reg) {
|
|
sk_xmac_miibus_writereg(sc_if, SK_PHYADDR_BCOM,
|
|
bhack[i].reg, bhack[i].val);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set station address */
|
|
bcopy(IF_LLADDR(sc_if->sk_ifp), eaddr, ETHER_ADDR_LEN);
|
|
SK_XM_WRITE_2(sc_if, XM_PAR0, eaddr[0]);
|
|
SK_XM_WRITE_2(sc_if, XM_PAR1, eaddr[1]);
|
|
SK_XM_WRITE_2(sc_if, XM_PAR2, eaddr[2]);
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_USE_STATION);
|
|
|
|
if (ifp->if_flags & IFF_BROADCAST) {
|
|
SK_XM_CLRBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
|
|
} else {
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_NOBROAD);
|
|
}
|
|
|
|
/* We don't need the FCS appended to the packet. */
|
|
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_STRIPFCS);
|
|
|
|
/* We want short frames padded to 60 bytes. */
|
|
SK_XM_SETBIT_2(sc_if, XM_TXCMD, XM_TXCMD_AUTOPAD);
|
|
|
|
/*
|
|
* Enable the reception of all error frames. This is is
|
|
* a necessary evil due to the design of the XMAC. The
|
|
* XMAC's receive FIFO is only 8K in size, however jumbo
|
|
* frames can be up to 9000 bytes in length. When bad
|
|
* frame filtering is enabled, the XMAC's RX FIFO operates
|
|
* in 'store and forward' mode. For this to work, the
|
|
* entire frame has to fit into the FIFO, but that means
|
|
* that jumbo frames larger than 8192 bytes will be
|
|
* truncated. Disabling all bad frame filtering causes
|
|
* the RX FIFO to operate in streaming mode, in which
|
|
* case the XMAC will start transfering frames out of the
|
|
* RX FIFO as soon as the FIFO threshold is reached.
|
|
*/
|
|
if (ifp->if_mtu > SK_MAX_FRAMELEN) {
|
|
SK_XM_SETBIT_4(sc_if, XM_MODE, XM_MODE_RX_BADFRAMES|
|
|
XM_MODE_RX_GIANTS|XM_MODE_RX_RUNTS|XM_MODE_RX_CRCERRS|
|
|
XM_MODE_RX_INRANGELEN);
|
|
SK_XM_SETBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
|
|
} else
|
|
SK_XM_CLRBIT_2(sc_if, XM_RXCMD, XM_RXCMD_BIGPKTOK);
|
|
|
|
/*
|
|
* Bump up the transmit threshold. This helps hold off transmit
|
|
* underruns when we're blasting traffic from both ports at once.
|
|
*/
|
|
SK_XM_WRITE_2(sc_if, XM_TX_REQTHRESH, SK_XM_TX_FIFOTHRESH);
|
|
|
|
/* Set Rx filter */
|
|
sk_rxfilter_genesis(sc_if);
|
|
|
|
/* Clear and enable interrupts */
|
|
SK_XM_READ_2(sc_if, XM_ISR);
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_XMAC)
|
|
SK_XM_WRITE_2(sc_if, XM_IMR, XM_INTRS);
|
|
else
|
|
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
|
|
|
|
/* Configure MAC arbiter */
|
|
switch(sc_if->sk_xmac_rev) {
|
|
case XM_XMAC_REV_B2:
|
|
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_B2);
|
|
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
|
|
break;
|
|
case XM_XMAC_REV_C1:
|
|
sk_win_write_1(sc, SK_RCINIT_RX1, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_TX1, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_RX2, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RCINIT_TX2, SK_RCINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_RX1, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_TX1, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_RX2, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_MINIT_TX2, SK_MINIT_XMAC_C1);
|
|
sk_win_write_1(sc, SK_RECOVERY_CTL, SK_RECOVERY_XMAC_B2);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
sk_win_write_2(sc, SK_MACARB_CTL,
|
|
SK_MACARBCTL_UNRESET|SK_MACARBCTL_FASTOE_OFF);
|
|
|
|
sc_if->sk_link = 1;
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_init_yukon(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
u_int32_t phy, v;
|
|
u_int16_t reg;
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
u_int8_t *eaddr;
|
|
int i;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
if (sc->sk_type == SK_YUKON_LITE &&
|
|
sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
|
|
/*
|
|
* Workaround code for COMA mode, set PHY reset.
|
|
* Otherwise it will not correctly take chip out of
|
|
* powerdown (coma)
|
|
*/
|
|
v = sk_win_read_4(sc, SK_GPIO);
|
|
v |= SK_GPIO_DIR9 | SK_GPIO_DAT9;
|
|
sk_win_write_4(sc, SK_GPIO, v);
|
|
}
|
|
|
|
/* GMAC and GPHY Reset */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, SK_GPHY_RESET_SET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_RESET_SET);
|
|
DELAY(1000);
|
|
|
|
if (sc->sk_type == SK_YUKON_LITE &&
|
|
sc->sk_rev >= SK_YUKON_LITE_REV_A3) {
|
|
/*
|
|
* Workaround code for COMA mode, clear PHY reset
|
|
*/
|
|
v = sk_win_read_4(sc, SK_GPIO);
|
|
v |= SK_GPIO_DIR9;
|
|
v &= ~SK_GPIO_DAT9;
|
|
sk_win_write_4(sc, SK_GPIO, v);
|
|
}
|
|
|
|
phy = SK_GPHY_INT_POL_HI | SK_GPHY_DIS_FC | SK_GPHY_DIS_SLEEP |
|
|
SK_GPHY_ENA_XC | SK_GPHY_ANEG_ALL | SK_GPHY_ENA_PAUSE;
|
|
|
|
if (sc->sk_coppertype)
|
|
phy |= SK_GPHY_COPPER;
|
|
else
|
|
phy |= SK_GPHY_FIBER;
|
|
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_SET);
|
|
DELAY(1000);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GPHY_CTRL, phy | SK_GPHY_RESET_CLEAR);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_GMAC_CTRL, SK_GMAC_LOOP_OFF |
|
|
SK_GMAC_PAUSE_ON | SK_GMAC_RESET_CLEAR);
|
|
|
|
/* unused read of the interrupt source register */
|
|
SK_IF_READ_2(sc_if, 0, SK_GMAC_ISR);
|
|
|
|
reg = SK_YU_READ_2(sc_if, YUKON_PAR);
|
|
|
|
/* MIB Counter Clear Mode set */
|
|
reg |= YU_PAR_MIB_CLR;
|
|
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
|
|
|
|
/* MIB Counter Clear Mode clear */
|
|
reg &= ~YU_PAR_MIB_CLR;
|
|
SK_YU_WRITE_2(sc_if, YUKON_PAR, reg);
|
|
|
|
/* receive control reg */
|
|
SK_YU_WRITE_2(sc_if, YUKON_RCR, YU_RCR_CRCR);
|
|
|
|
/* transmit parameter register */
|
|
SK_YU_WRITE_2(sc_if, YUKON_TPR, YU_TPR_JAM_LEN(0x3) |
|
|
YU_TPR_JAM_IPG(0xb) | YU_TPR_JAM2DATA_IPG(0x1a) );
|
|
|
|
/* serial mode register */
|
|
reg = YU_SMR_DATA_BLIND(0x1c) | YU_SMR_MFL_VLAN | YU_SMR_IPG_DATA(0x1e);
|
|
if (ifp->if_mtu > SK_MAX_FRAMELEN)
|
|
reg |= YU_SMR_MFL_JUMBO;
|
|
SK_YU_WRITE_2(sc_if, YUKON_SMR, reg);
|
|
|
|
/* Setup Yukon's station address */
|
|
eaddr = IF_LLADDR(sc_if->sk_ifp);
|
|
for (i = 0; i < 3; i++)
|
|
SK_YU_WRITE_2(sc_if, SK_MAC0_0 + i * 4,
|
|
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
|
|
/* Set GMAC source address of flow control. */
|
|
for (i = 0; i < 3; i++)
|
|
SK_YU_WRITE_2(sc_if, YUKON_SAL1 + i * 4,
|
|
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
|
|
/* Set GMAC virtual address. */
|
|
for (i = 0; i < 3; i++)
|
|
SK_YU_WRITE_2(sc_if, YUKON_SAL2 + i * 4,
|
|
eaddr[i * 2] | eaddr[i * 2 + 1] << 8);
|
|
|
|
/* Set Rx filter */
|
|
sk_rxfilter_yukon(sc_if);
|
|
|
|
/* enable interrupt mask for counter overflows */
|
|
SK_YU_WRITE_2(sc_if, YUKON_TIMR, 0);
|
|
SK_YU_WRITE_2(sc_if, YUKON_RIMR, 0);
|
|
SK_YU_WRITE_2(sc_if, YUKON_TRIMR, 0);
|
|
|
|
/* Configure RX MAC FIFO Flush Mask */
|
|
v = YU_RXSTAT_FOFL | YU_RXSTAT_CRCERR | YU_RXSTAT_MIIERR |
|
|
YU_RXSTAT_BADFC | YU_RXSTAT_GOODFC | YU_RXSTAT_RUNT |
|
|
YU_RXSTAT_JABBER;
|
|
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_MASK, v);
|
|
|
|
/* Disable RX MAC FIFO Flush for YUKON-Lite Rev. A0 only */
|
|
if (sc->sk_type == SK_YUKON_LITE && sc->sk_rev == SK_YUKON_LITE_REV_A0)
|
|
v = SK_TFCTL_OPERATION_ON;
|
|
else
|
|
v = SK_TFCTL_OPERATION_ON | SK_RFCTL_FIFO_FLUSH_ON;
|
|
/* Configure RX MAC FIFO */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_CLEAR);
|
|
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_CTRL_TEST, v);
|
|
|
|
/* Increase flush threshould to 64 bytes */
|
|
SK_IF_WRITE_2(sc_if, 0, SK_RXMF1_FLUSH_THRESHOLD,
|
|
SK_RFCTL_FIFO_THRESHOLD + 1);
|
|
|
|
/* Configure TX MAC FIFO */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_CLEAR);
|
|
SK_IF_WRITE_2(sc_if, 0, SK_TXMF1_CTRL_TEST, SK_TFCTL_OPERATION_ON);
|
|
}
|
|
|
|
/*
|
|
* Note that to properly initialize any part of the GEnesis chip,
|
|
* you first have to take it out of reset mode.
|
|
*/
|
|
static void
|
|
sk_init(xsc)
|
|
void *xsc;
|
|
{
|
|
struct sk_if_softc *sc_if = xsc;
|
|
|
|
SK_IF_LOCK(sc_if);
|
|
sk_init_locked(sc_if);
|
|
SK_IF_UNLOCK(sc_if);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_init_locked(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
struct sk_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
u_int16_t reg;
|
|
u_int32_t imr;
|
|
int error;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
ifp = sc_if->sk_ifp;
|
|
sc = sc_if->sk_softc;
|
|
mii = device_get_softc(sc_if->sk_miibus);
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
return;
|
|
|
|
/* Cancel pending I/O and free all RX/TX buffers. */
|
|
sk_stop(sc_if);
|
|
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
/* Configure LINK_SYNC LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_ON);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL,
|
|
SK_LINKLED_LINKSYNC_ON);
|
|
|
|
/* Configure RX LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL,
|
|
SK_RXLEDCTL_COUNTER_START);
|
|
|
|
/* Configure TX LED */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL,
|
|
SK_TXLEDCTL_COUNTER_START);
|
|
}
|
|
|
|
/*
|
|
* Configure descriptor poll timer
|
|
*
|
|
* SK-NET GENESIS data sheet says that possibility of losing Start
|
|
* transmit command due to CPU/cache related interim storage problems
|
|
* under certain conditions. The document recommends a polling
|
|
* mechanism to send a Start transmit command to initiate transfer
|
|
* of ready descriptors regulary. To cope with this issue sk(4) now
|
|
* enables descriptor poll timer to initiate descriptor processing
|
|
* periodically as defined by SK_DPT_TIMER_MAX. However sk(4) still
|
|
* issue SK_TXBMU_TX_START to Tx BMU to get fast execution of Tx
|
|
* command instead of waiting for next descriptor polling time.
|
|
* The same rule may apply to Rx side too but it seems that is not
|
|
* needed at the moment.
|
|
* Since sk(4) uses descriptor polling as a last resort there is no
|
|
* need to set smaller polling time than maximum allowable one.
|
|
*/
|
|
SK_IF_WRITE_4(sc_if, 0, SK_DPT_INIT, SK_DPT_TIMER_MAX);
|
|
|
|
/* Configure I2C registers */
|
|
|
|
/* Configure XMAC(s) */
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
sk_init_xmac(sc_if);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
sk_init_yukon(sc_if);
|
|
break;
|
|
}
|
|
mii_mediachg(mii);
|
|
|
|
if (sc->sk_type == SK_GENESIS) {
|
|
/* Configure MAC FIFOs */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_END, SK_FIFO_END);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_ON);
|
|
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_END, SK_FIFO_END);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_TXF1_CTL, SK_FIFO_ON);
|
|
}
|
|
|
|
/* Configure transmit arbiter(s) */
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL,
|
|
SK_TXARCTL_ON|SK_TXARCTL_FSYNC_ON);
|
|
|
|
/* Configure RAMbuffers */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_START, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_WR_PTR, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_RD_PTR, sc_if->sk_rx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_END, sc_if->sk_rx_ramend);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_ON);
|
|
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_UNRESET);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_STORENFWD_ON);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_START, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_WR_PTR, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_RD_PTR, sc_if->sk_tx_ramstart);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_END, sc_if->sk_tx_ramend);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_ON);
|
|
|
|
/* Configure BMUs */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_ONLINE);
|
|
if (ifp->if_mtu > SK_MAX_FRAMELEN) {
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
|
|
SK_ADDR_LO(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
|
|
SK_ADDR_HI(SK_JUMBO_RX_RING_ADDR(sc_if, 0)));
|
|
} else {
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_LO,
|
|
SK_ADDR_LO(SK_RX_RING_ADDR(sc_if, 0)));
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_CURADDR_HI,
|
|
SK_ADDR_HI(SK_RX_RING_ADDR(sc_if, 0)));
|
|
}
|
|
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_ONLINE);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_LO,
|
|
SK_ADDR_LO(SK_TX_RING_ADDR(sc_if, 0)));
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_CURADDR_HI,
|
|
SK_ADDR_HI(SK_TX_RING_ADDR(sc_if, 0)));
|
|
|
|
/* Init descriptors */
|
|
if (ifp->if_mtu > SK_MAX_FRAMELEN)
|
|
error = sk_init_jumbo_rx_ring(sc_if);
|
|
else
|
|
error = sk_init_rx_ring(sc_if);
|
|
if (error != 0) {
|
|
device_printf(sc_if->sk_if_dev,
|
|
"initialization failed: no memory for rx buffers\n");
|
|
sk_stop(sc_if);
|
|
return;
|
|
}
|
|
sk_init_tx_ring(sc_if);
|
|
|
|
/* Set interrupt moderation if changed via sysctl. */
|
|
imr = sk_win_read_4(sc, SK_IMTIMERINIT);
|
|
if (imr != SK_IM_USECS(sc->sk_int_mod, sc->sk_int_ticks)) {
|
|
sk_win_write_4(sc, SK_IMTIMERINIT, SK_IM_USECS(sc->sk_int_mod,
|
|
sc->sk_int_ticks));
|
|
if (bootverbose)
|
|
device_printf(sc_if->sk_if_dev,
|
|
"interrupt moderation is %d us.\n",
|
|
sc->sk_int_mod);
|
|
}
|
|
|
|
/* Configure interrupt handling */
|
|
CSR_READ_4(sc, SK_ISSR);
|
|
if (sc_if->sk_port == SK_PORT_A)
|
|
sc->sk_intrmask |= SK_INTRS1;
|
|
else
|
|
sc->sk_intrmask |= SK_INTRS2;
|
|
|
|
sc->sk_intrmask |= SK_ISR_EXTERNAL_REG;
|
|
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
/* Start BMUs. */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_START);
|
|
|
|
switch(sc->sk_type) {
|
|
case SK_GENESIS:
|
|
/* Enable XMACs TX and RX state machines */
|
|
SK_XM_CLRBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_IGNPAUSE);
|
|
SK_XM_SETBIT_2(sc_if, XM_MMUCMD, XM_MMUCMD_TX_ENB|XM_MMUCMD_RX_ENB);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
reg = SK_YU_READ_2(sc_if, YUKON_GPCR);
|
|
reg |= YU_GPCR_TXEN | YU_GPCR_RXEN;
|
|
#if 0
|
|
/* XXX disable 100Mbps and full duplex mode? */
|
|
reg &= ~(YU_GPCR_SPEED | YU_GPCR_DPLX_DIS);
|
|
#endif
|
|
SK_YU_WRITE_2(sc_if, YUKON_GPCR, reg);
|
|
}
|
|
|
|
/* Activate descriptor polling timer */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_START);
|
|
/* start transfer of Tx descriptors */
|
|
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_START);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
switch (sc->sk_type) {
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
callout_reset(&sc_if->sk_tick_ch, hz, sk_yukon_tick, sc_if);
|
|
break;
|
|
}
|
|
|
|
callout_reset(&sc_if->sk_watchdog_ch, hz, sk_watchdog, ifp);
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
sk_stop(sc_if)
|
|
struct sk_if_softc *sc_if;
|
|
{
|
|
int i;
|
|
struct sk_softc *sc;
|
|
struct sk_txdesc *txd;
|
|
struct sk_rxdesc *rxd;
|
|
struct sk_rxdesc *jrxd;
|
|
struct ifnet *ifp;
|
|
u_int32_t val;
|
|
|
|
SK_IF_LOCK_ASSERT(sc_if);
|
|
sc = sc_if->sk_softc;
|
|
ifp = sc_if->sk_ifp;
|
|
|
|
callout_stop(&sc_if->sk_tick_ch);
|
|
callout_stop(&sc_if->sk_watchdog_ch);
|
|
|
|
/* stop Tx descriptor polling timer */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_DPT_TIMER_CTRL, SK_DPT_TCTL_STOP);
|
|
/* stop transfer of Tx descriptors */
|
|
CSR_WRITE_4(sc, sc_if->sk_tx_bmu, SK_TXBMU_TX_STOP);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, sc_if->sk_tx_bmu);
|
|
if ((val & SK_TXBMU_TX_STOP) == 0)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == SK_TIMEOUT)
|
|
device_printf(sc_if->sk_if_dev,
|
|
"can not stop transfer of Tx descriptor\n");
|
|
/* stop transfer of Rx descriptors */
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_RX_STOP);
|
|
for (i = 0; i < SK_TIMEOUT; i++) {
|
|
val = SK_IF_READ_4(sc_if, 0, SK_RXQ1_BMU_CSR);
|
|
if ((val & SK_RXBMU_RX_STOP) == 0)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == SK_TIMEOUT)
|
|
device_printf(sc_if->sk_if_dev,
|
|
"can not stop transfer of Rx descriptor\n");
|
|
|
|
if (sc_if->sk_phytype == SK_PHYTYPE_BCOM) {
|
|
/* Put PHY back into reset. */
|
|
val = sk_win_read_4(sc, SK_GPIO);
|
|
if (sc_if->sk_port == SK_PORT_A) {
|
|
val |= SK_GPIO_DIR0;
|
|
val &= ~SK_GPIO_DAT0;
|
|
} else {
|
|
val |= SK_GPIO_DIR2;
|
|
val &= ~SK_GPIO_DAT2;
|
|
}
|
|
sk_win_write_4(sc, SK_GPIO, val);
|
|
}
|
|
|
|
/* Turn off various components of this interface. */
|
|
SK_XM_SETBIT_2(sc_if, XM_GPIO, XM_GPIO_RESETMAC);
|
|
switch (sc->sk_type) {
|
|
case SK_GENESIS:
|
|
SK_IF_WRITE_2(sc_if, 0, SK_TXF1_MACCTL, SK_TXMACCTL_XMAC_RESET);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXF1_CTL, SK_FIFO_RESET);
|
|
break;
|
|
case SK_YUKON:
|
|
case SK_YUKON_LITE:
|
|
case SK_YUKON_LP:
|
|
SK_IF_WRITE_1(sc_if,0, SK_RXMF1_CTRL_TEST, SK_RFCTL_RESET_SET);
|
|
SK_IF_WRITE_1(sc_if,0, SK_TXMF1_CTRL_TEST, SK_TFCTL_RESET_SET);
|
|
break;
|
|
}
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXQ1_BMU_CSR, SK_RXBMU_OFFLINE);
|
|
SK_IF_WRITE_4(sc_if, 0, SK_RXRB1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXQS1_BMU_CSR, SK_TXBMU_OFFLINE);
|
|
SK_IF_WRITE_4(sc_if, 1, SK_TXRBS1_CTLTST, SK_RBCTL_RESET|SK_RBCTL_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXAR1_COUNTERCTL, SK_TXARCTL_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_RXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_TXLED1_CTL, SK_RXLEDCTL_COUNTER_STOP);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_OFF);
|
|
SK_IF_WRITE_1(sc_if, 0, SK_LINKLED1_CTL, SK_LINKLED_LINKSYNC_OFF);
|
|
|
|
/* Disable interrupts */
|
|
if (sc_if->sk_port == SK_PORT_A)
|
|
sc->sk_intrmask &= ~SK_INTRS1;
|
|
else
|
|
sc->sk_intrmask &= ~SK_INTRS2;
|
|
CSR_WRITE_4(sc, SK_IMR, sc->sk_intrmask);
|
|
|
|
SK_XM_READ_2(sc_if, XM_ISR);
|
|
SK_XM_WRITE_2(sc_if, XM_IMR, 0xFFFF);
|
|
|
|
/* Free RX and TX mbufs still in the queues. */
|
|
for (i = 0; i < SK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->sk_cdata.sk_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < SK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->sk_cdata.sk_jumbo_rxdesc[i];
|
|
if (jrxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap);
|
|
m_freem(jrxd->rx_m);
|
|
jrxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < SK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->sk_cdata.sk_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc_if->sk_cdata.sk_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING|IFF_DRV_OACTIVE);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (!arg1)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_sk_int_mod(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
return (sysctl_int_range(oidp, arg1, arg2, req, SK_IM_MIN, SK_IM_MAX));
|
|
}
|