freebsd-skq/sys/dev/nvme/nvme_private.h
Warner Losh 519772814d Add CAM/NVMe support for CAM_DATA_SG
This adds support in pass(4) for data to be described with a
scatter-gather list (sglist) to augment the existing (single) virtual
address.

Differential Revision: https://reviews.freebsd.org/D11361
Submitted by: Chuck Tuffli
Reviewed by: imp@, scottl@, kenm@
2017-08-29 15:29:57 +00:00

547 lines
16 KiB
C

/*-
* Copyright (C) 2012-2014 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef __NVME_PRIVATE_H__
#define __NVME_PRIVATE_H__
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <machine/bus.h>
#include "nvme.h"
#define DEVICE2SOFTC(dev) ((struct nvme_controller *) device_get_softc(dev))
MALLOC_DECLARE(M_NVME);
#define IDT32_PCI_ID 0x80d0111d /* 32 channel board */
#define IDT8_PCI_ID 0x80d2111d /* 8 channel board */
/*
* For commands requiring more than 2 PRP entries, one PRP will be
* embedded in the command (prp1), and the rest of the PRP entries
* will be in a list pointed to by the command (prp2). This means
* that real max number of PRP entries we support is 32+1, which
* results in a max xfer size of 32*PAGE_SIZE.
*/
#define NVME_MAX_PRP_LIST_ENTRIES (NVME_MAX_XFER_SIZE / PAGE_SIZE)
#define NVME_ADMIN_TRACKERS (16)
#define NVME_ADMIN_ENTRIES (128)
/* min and max are defined in admin queue attributes section of spec */
#define NVME_MIN_ADMIN_ENTRIES (2)
#define NVME_MAX_ADMIN_ENTRIES (4096)
/*
* NVME_IO_ENTRIES defines the size of an I/O qpair's submission and completion
* queues, while NVME_IO_TRACKERS defines the maximum number of I/O that we
* will allow outstanding on an I/O qpair at any time. The only advantage in
* having IO_ENTRIES > IO_TRACKERS is for debugging purposes - when dumping
* the contents of the submission and completion queues, it will show a longer
* history of data.
*/
#define NVME_IO_ENTRIES (256)
#define NVME_IO_TRACKERS (128)
#define NVME_MIN_IO_TRACKERS (4)
#define NVME_MAX_IO_TRACKERS (1024)
/*
* NVME_MAX_IO_ENTRIES is not defined, since it is specified in CC.MQES
* for each controller.
*/
#define NVME_INT_COAL_TIME (0) /* disabled */
#define NVME_INT_COAL_THRESHOLD (0) /* 0-based */
#define NVME_MAX_NAMESPACES (16)
#define NVME_MAX_CONSUMERS (2)
#define NVME_MAX_ASYNC_EVENTS (8)
#define NVME_DEFAULT_TIMEOUT_PERIOD (30) /* in seconds */
#define NVME_MIN_TIMEOUT_PERIOD (5)
#define NVME_MAX_TIMEOUT_PERIOD (120)
#define NVME_DEFAULT_RETRY_COUNT (4)
/* Maximum log page size to fetch for AERs. */
#define NVME_MAX_AER_LOG_SIZE (4096)
/*
* Define CACHE_LINE_SIZE here for older FreeBSD versions that do not define
* it.
*/
#ifndef CACHE_LINE_SIZE
#define CACHE_LINE_SIZE (64)
#endif
/*
* Use presence of the BIO_UNMAPPED flag to determine whether unmapped I/O
* support and the bus_dmamap_load_bio API are available on the target
* kernel. This will ease porting back to earlier stable branches at a
* later point.
*/
#ifdef BIO_UNMAPPED
#define NVME_UNMAPPED_BIO_SUPPORT
#endif
extern uma_zone_t nvme_request_zone;
extern int32_t nvme_retry_count;
struct nvme_completion_poll_status {
struct nvme_completion cpl;
boolean_t done;
};
#define NVME_REQUEST_VADDR 1
#define NVME_REQUEST_NULL 2 /* For requests with no payload. */
#define NVME_REQUEST_UIO 3
#ifdef NVME_UNMAPPED_BIO_SUPPORT
#define NVME_REQUEST_BIO 4
#endif
#define NVME_REQUEST_CCB 5
struct nvme_request {
struct nvme_command cmd;
struct nvme_qpair *qpair;
union {
void *payload;
struct bio *bio;
} u;
uint32_t type;
uint32_t payload_size;
boolean_t timeout;
nvme_cb_fn_t cb_fn;
void *cb_arg;
int32_t retries;
STAILQ_ENTRY(nvme_request) stailq;
};
struct nvme_async_event_request {
struct nvme_controller *ctrlr;
struct nvme_request *req;
struct nvme_completion cpl;
uint32_t log_page_id;
uint32_t log_page_size;
uint8_t log_page_buffer[NVME_MAX_AER_LOG_SIZE];
};
struct nvme_tracker {
TAILQ_ENTRY(nvme_tracker) tailq;
struct nvme_request *req;
struct nvme_qpair *qpair;
struct callout timer;
bus_dmamap_t payload_dma_map;
uint16_t cid;
uint64_t *prp;
bus_addr_t prp_bus_addr;
};
struct nvme_qpair {
struct nvme_controller *ctrlr;
uint32_t id;
uint32_t phase;
uint16_t vector;
int rid;
struct resource *res;
void *tag;
uint32_t num_entries;
uint32_t num_trackers;
uint32_t sq_tdbl_off;
uint32_t cq_hdbl_off;
uint32_t sq_head;
uint32_t sq_tail;
uint32_t cq_head;
int64_t num_cmds;
int64_t num_intr_handler_calls;
struct nvme_command *cmd;
struct nvme_completion *cpl;
bus_dma_tag_t dma_tag;
bus_dma_tag_t dma_tag_payload;
bus_dmamap_t queuemem_map;
uint64_t cmd_bus_addr;
uint64_t cpl_bus_addr;
TAILQ_HEAD(, nvme_tracker) free_tr;
TAILQ_HEAD(, nvme_tracker) outstanding_tr;
STAILQ_HEAD(, nvme_request) queued_req;
struct nvme_tracker **act_tr;
boolean_t is_enabled;
struct mtx lock __aligned(CACHE_LINE_SIZE);
} __aligned(CACHE_LINE_SIZE);
struct nvme_namespace {
struct nvme_controller *ctrlr;
struct nvme_namespace_data data;
uint32_t id;
uint32_t flags;
struct cdev *cdev;
void *cons_cookie[NVME_MAX_CONSUMERS];
uint32_t stripesize;
struct mtx lock;
};
/*
* One of these per allocated PCI device.
*/
struct nvme_controller {
device_t dev;
struct mtx lock;
uint32_t ready_timeout_in_ms;
bus_space_tag_t bus_tag;
bus_space_handle_t bus_handle;
int resource_id;
struct resource *resource;
/*
* The NVMe spec allows for the MSI-X table to be placed in BAR 4/5,
* separate from the control registers which are in BAR 0/1. These
* members track the mapping of BAR 4/5 for that reason.
*/
int bar4_resource_id;
struct resource *bar4_resource;
uint32_t msix_enabled;
uint32_t force_intx;
uint32_t enable_aborts;
uint32_t num_io_queues;
uint32_t num_cpus_per_ioq;
uint32_t max_hw_pend_io;
/* Fields for tracking progress during controller initialization. */
struct intr_config_hook config_hook;
uint32_t ns_identified;
uint32_t queues_created;
struct task reset_task;
struct task fail_req_task;
struct taskqueue *taskqueue;
/* For shared legacy interrupt. */
int rid;
struct resource *res;
void *tag;
bus_dma_tag_t hw_desc_tag;
bus_dmamap_t hw_desc_map;
/** maximum i/o size in bytes */
uint32_t max_xfer_size;
/** minimum page size supported by this controller in bytes */
uint32_t min_page_size;
/** interrupt coalescing time period (in microseconds) */
uint32_t int_coal_time;
/** interrupt coalescing threshold */
uint32_t int_coal_threshold;
/** timeout period in seconds */
uint32_t timeout_period;
struct nvme_qpair adminq;
struct nvme_qpair *ioq;
struct nvme_registers *regs;
struct nvme_controller_data cdata;
struct nvme_namespace ns[NVME_MAX_NAMESPACES];
struct cdev *cdev;
/** bit mask of warning types currently enabled for async events */
union nvme_critical_warning_state async_event_config;
uint32_t num_aers;
struct nvme_async_event_request aer[NVME_MAX_ASYNC_EVENTS];
void *cons_cookie[NVME_MAX_CONSUMERS];
uint32_t is_resetting;
uint32_t is_initialized;
uint32_t notification_sent;
boolean_t is_failed;
STAILQ_HEAD(, nvme_request) fail_req;
};
#define nvme_mmio_offsetof(reg) \
offsetof(struct nvme_registers, reg)
#define nvme_mmio_read_4(sc, reg) \
bus_space_read_4((sc)->bus_tag, (sc)->bus_handle, \
nvme_mmio_offsetof(reg))
#define nvme_mmio_write_4(sc, reg, val) \
bus_space_write_4((sc)->bus_tag, (sc)->bus_handle, \
nvme_mmio_offsetof(reg), val)
#define nvme_mmio_write_8(sc, reg, val) \
do { \
bus_space_write_4((sc)->bus_tag, (sc)->bus_handle, \
nvme_mmio_offsetof(reg), val & 0xFFFFFFFF); \
bus_space_write_4((sc)->bus_tag, (sc)->bus_handle, \
nvme_mmio_offsetof(reg)+4, \
(val & 0xFFFFFFFF00000000UL) >> 32); \
} while (0);
#if __FreeBSD_version < 800054
#define wmb() __asm volatile("sfence" ::: "memory")
#define mb() __asm volatile("mfence" ::: "memory")
#endif
#define nvme_printf(ctrlr, fmt, args...) \
device_printf(ctrlr->dev, fmt, ##args)
void nvme_ns_test(struct nvme_namespace *ns, u_long cmd, caddr_t arg);
void nvme_ctrlr_cmd_identify_controller(struct nvme_controller *ctrlr,
void *payload,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_identify_namespace(struct nvme_controller *ctrlr,
uint32_t nsid, void *payload,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_set_interrupt_coalescing(struct nvme_controller *ctrlr,
uint32_t microseconds,
uint32_t threshold,
nvme_cb_fn_t cb_fn,
void *cb_arg);
void nvme_ctrlr_cmd_get_error_page(struct nvme_controller *ctrlr,
struct nvme_error_information_entry *payload,
uint32_t num_entries, /* 0 = max */
nvme_cb_fn_t cb_fn,
void *cb_arg);
void nvme_ctrlr_cmd_get_health_information_page(struct nvme_controller *ctrlr,
uint32_t nsid,
struct nvme_health_information_page *payload,
nvme_cb_fn_t cb_fn,
void *cb_arg);
void nvme_ctrlr_cmd_get_firmware_page(struct nvme_controller *ctrlr,
struct nvme_firmware_page *payload,
nvme_cb_fn_t cb_fn,
void *cb_arg);
void nvme_ctrlr_cmd_create_io_cq(struct nvme_controller *ctrlr,
struct nvme_qpair *io_que, uint16_t vector,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_create_io_sq(struct nvme_controller *ctrlr,
struct nvme_qpair *io_que,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_delete_io_cq(struct nvme_controller *ctrlr,
struct nvme_qpair *io_que,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_delete_io_sq(struct nvme_controller *ctrlr,
struct nvme_qpair *io_que,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_set_num_queues(struct nvme_controller *ctrlr,
uint32_t num_queues, nvme_cb_fn_t cb_fn,
void *cb_arg);
void nvme_ctrlr_cmd_set_async_event_config(struct nvme_controller *ctrlr,
union nvme_critical_warning_state state,
nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_ctrlr_cmd_abort(struct nvme_controller *ctrlr, uint16_t cid,
uint16_t sqid, nvme_cb_fn_t cb_fn, void *cb_arg);
void nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl);
int nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev);
void nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev);
void nvme_ctrlr_shutdown(struct nvme_controller *ctrlr);
int nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr);
void nvme_ctrlr_reset(struct nvme_controller *ctrlr);
/* ctrlr defined as void * to allow use with config_intrhook. */
void nvme_ctrlr_start_config_hook(void *ctrlr_arg);
void nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
struct nvme_request *req);
void nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
struct nvme_request *req);
void nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
struct nvme_request *req);
int nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
uint16_t vector, uint32_t num_entries,
uint32_t num_trackers,
struct nvme_controller *ctrlr);
void nvme_qpair_submit_tracker(struct nvme_qpair *qpair,
struct nvme_tracker *tr);
void nvme_qpair_process_completions(struct nvme_qpair *qpair);
void nvme_qpair_submit_request(struct nvme_qpair *qpair,
struct nvme_request *req);
void nvme_qpair_reset(struct nvme_qpair *qpair);
void nvme_qpair_fail(struct nvme_qpair *qpair);
void nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
struct nvme_request *req,
uint32_t sct, uint32_t sc,
boolean_t print_on_error);
void nvme_admin_qpair_enable(struct nvme_qpair *qpair);
void nvme_admin_qpair_disable(struct nvme_qpair *qpair);
void nvme_admin_qpair_destroy(struct nvme_qpair *qpair);
void nvme_io_qpair_enable(struct nvme_qpair *qpair);
void nvme_io_qpair_disable(struct nvme_qpair *qpair);
void nvme_io_qpair_destroy(struct nvme_qpair *qpair);
int nvme_ns_construct(struct nvme_namespace *ns, uint32_t id,
struct nvme_controller *ctrlr);
void nvme_ns_destruct(struct nvme_namespace *ns);
void nvme_sysctl_initialize_ctrlr(struct nvme_controller *ctrlr);
void nvme_dump_command(struct nvme_command *cmd);
void nvme_dump_completion(struct nvme_completion *cpl);
static __inline void
nvme_single_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
uint64_t *bus_addr = (uint64_t *)arg;
if (error != 0)
printf("nvme_single_map err %d\n", error);
*bus_addr = seg[0].ds_addr;
}
static __inline struct nvme_request *
_nvme_allocate_request(nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = uma_zalloc(nvme_request_zone, M_NOWAIT | M_ZERO);
if (req != NULL) {
req->cb_fn = cb_fn;
req->cb_arg = cb_arg;
req->timeout = TRUE;
}
return (req);
}
static __inline struct nvme_request *
nvme_allocate_request_vaddr(void *payload, uint32_t payload_size,
nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = _nvme_allocate_request(cb_fn, cb_arg);
if (req != NULL) {
req->type = NVME_REQUEST_VADDR;
req->u.payload = payload;
req->payload_size = payload_size;
}
return (req);
}
static __inline struct nvme_request *
nvme_allocate_request_null(nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = _nvme_allocate_request(cb_fn, cb_arg);
if (req != NULL)
req->type = NVME_REQUEST_NULL;
return (req);
}
static __inline struct nvme_request *
nvme_allocate_request_bio(struct bio *bio, nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = _nvme_allocate_request(cb_fn, cb_arg);
if (req != NULL) {
#ifdef NVME_UNMAPPED_BIO_SUPPORT
req->type = NVME_REQUEST_BIO;
req->u.bio = bio;
#else
req->type = NVME_REQUEST_VADDR;
req->u.payload = bio->bio_data;
req->payload_size = bio->bio_bcount;
#endif
}
return (req);
}
static __inline struct nvme_request *
nvme_allocate_request_ccb(union ccb *ccb, nvme_cb_fn_t cb_fn, void *cb_arg)
{
struct nvme_request *req;
req = _nvme_allocate_request(cb_fn, cb_arg);
if (req != NULL) {
req->type = NVME_REQUEST_CCB;
req->u.payload = ccb;
}
return (req);
}
#define nvme_free_request(req) uma_zfree(nvme_request_zone, req)
void nvme_notify_async_consumers(struct nvme_controller *ctrlr,
const struct nvme_completion *async_cpl,
uint32_t log_page_id, void *log_page_buffer,
uint32_t log_page_size);
void nvme_notify_fail_consumers(struct nvme_controller *ctrlr);
void nvme_notify_new_controller(struct nvme_controller *ctrlr);
void nvme_ctrlr_intx_handler(void *arg);
#endif /* __NVME_PRIVATE_H__ */