freebsd-skq/sys/dev/re/if_re.c
2016-10-27 02:20:13 +00:00

4079 lines
109 KiB
C

/*-
* Copyright (c) 1997, 1998-2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Networking Software Engineer
* Wind River Systems
*/
/*
* This driver is designed to support RealTek's next generation of
* 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
* seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
* RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
*
* The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
* with the older 8139 family, however it also supports a special
* C+ mode of operation that provides several new performance enhancing
* features. These include:
*
* o Descriptor based DMA mechanism. Each descriptor represents
* a single packet fragment. Data buffers may be aligned on
* any byte boundary.
*
* o 64-bit DMA
*
* o TCP/IP checksum offload for both RX and TX
*
* o High and normal priority transmit DMA rings
*
* o VLAN tag insertion and extraction
*
* o TCP large send (segmentation offload)
*
* Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
* programming API is fairly straightforward. The RX filtering, EEPROM
* access and PHY access is the same as it is on the older 8139 series
* chips.
*
* The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
* same programming API and feature set as the 8139C+ with the following
* differences and additions:
*
* o 1000Mbps mode
*
* o Jumbo frames
*
* o GMII and TBI ports/registers for interfacing with copper
* or fiber PHYs
*
* o RX and TX DMA rings can have up to 1024 descriptors
* (the 8139C+ allows a maximum of 64)
*
* o Slight differences in register layout from the 8139C+
*
* The TX start and timer interrupt registers are at different locations
* on the 8169 than they are on the 8139C+. Also, the status word in the
* RX descriptor has a slightly different bit layout. The 8169 does not
* have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
* copper gigE PHY.
*
* The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
* (the 'S' stands for 'single-chip'). These devices have the same
* programming API as the older 8169, but also have some vendor-specific
* registers for the on-board PHY. The 8110S is a LAN-on-motherboard
* part designed to be pin-compatible with the RealTek 8100 10/100 chip.
*
* This driver takes advantage of the RX and TX checksum offload and
* VLAN tag insertion/extraction features. It also implements TX
* interrupt moderation using the timer interrupt registers, which
* significantly reduces TX interrupt load. There is also support
* for jumbo frames, however the 8169/8169S/8110S can not transmit
* jumbo frames larger than 7440, so the max MTU possible with this
* driver is 7422 bytes.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_device_polling.h"
#endif
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <net/bpf.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/rl/if_rlreg.h>
MODULE_DEPEND(re, pci, 1, 1, 1);
MODULE_DEPEND(re, ether, 1, 1, 1);
MODULE_DEPEND(re, miibus, 1, 1, 1);
/* "device miibus" required. See GENERIC if you get errors here. */
#include "miibus_if.h"
/* Tunables. */
static int intr_filter = 0;
TUNABLE_INT("hw.re.intr_filter", &intr_filter);
static int msi_disable = 0;
TUNABLE_INT("hw.re.msi_disable", &msi_disable);
static int msix_disable = 0;
TUNABLE_INT("hw.re.msix_disable", &msix_disable);
static int prefer_iomap = 0;
TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
#define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
/*
* Various supported device vendors/types and their names.
*/
static const struct rl_type re_devs[] = {
{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
{ DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
"D-Link DGE-530(T) Gigabit Ethernet Adapter" },
{ RT_VENDORID, RT_DEVICEID_8139, 0,
"RealTek 8139C+ 10/100BaseTX" },
{ RT_VENDORID, RT_DEVICEID_8101E, 0,
"RealTek 810xE PCIe 10/100baseTX" },
{ RT_VENDORID, RT_DEVICEID_8168, 0,
"RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" },
{ NCUBE_VENDORID, RT_DEVICEID_8168, 0,
"TP-Link TG-3468 v2 (RTL8168) Gigabit Ethernet" },
{ RT_VENDORID, RT_DEVICEID_8169, 0,
"RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
{ USR_VENDORID, USR_DEVICEID_997902, 0,
"US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
};
static const struct rl_hwrev re_hwrevs[] = {
{ RL_HWREV_8139, RL_8139, "", RL_MTU },
{ RL_HWREV_8139A, RL_8139, "A", RL_MTU },
{ RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
{ RL_HWREV_8139B, RL_8139, "B", RL_MTU },
{ RL_HWREV_8130, RL_8139, "8130", RL_MTU },
{ RL_HWREV_8139C, RL_8139, "C", RL_MTU },
{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
{ RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
{ RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
{ RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
{ RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
{ RL_HWREV_8100, RL_8139, "8100", RL_MTU },
{ RL_HWREV_8101, RL_8139, "8101", RL_MTU },
{ RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
{ RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
{ RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
{ RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
{ RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
{ RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
{ RL_HWREV_8402, RL_8169, "8402", RL_MTU },
{ RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
{ RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
{ RL_HWREV_8106E, RL_8169, "8106E", RL_MTU },
{ RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
{ RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
{ RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
{ RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
{ RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
{ RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
{ RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K},
{ RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
{ RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K},
{ RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K},
{ RL_HWREV_8168H, RL_8169, "8168H/8111H", RL_JUMBO_MTU_9K},
{ RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
{ RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K},
{ 0, 0, NULL, 0 }
};
static int re_probe (device_t);
static int re_attach (device_t);
static int re_detach (device_t);
static int re_encap (struct rl_softc *, struct mbuf **);
static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int);
static int re_allocmem (device_t, struct rl_softc *);
static __inline void re_discard_rxbuf
(struct rl_softc *, int);
static int re_newbuf (struct rl_softc *, int);
static int re_jumbo_newbuf (struct rl_softc *, int);
static int re_rx_list_init (struct rl_softc *);
static int re_jrx_list_init (struct rl_softc *);
static int re_tx_list_init (struct rl_softc *);
#ifdef RE_FIXUP_RX
static __inline void re_fixup_rx
(struct mbuf *);
#endif
static int re_rxeof (struct rl_softc *, int *);
static void re_txeof (struct rl_softc *);
#ifdef DEVICE_POLLING
static int re_poll (struct ifnet *, enum poll_cmd, int);
static int re_poll_locked (struct ifnet *, enum poll_cmd, int);
#endif
static int re_intr (void *);
static void re_intr_msi (void *);
static void re_tick (void *);
static void re_int_task (void *, int);
static void re_start (struct ifnet *);
static void re_start_locked (struct ifnet *);
static int re_ioctl (struct ifnet *, u_long, caddr_t);
static void re_init (void *);
static void re_init_locked (struct rl_softc *);
static void re_stop (struct rl_softc *);
static void re_watchdog (struct rl_softc *);
static int re_suspend (device_t);
static int re_resume (device_t);
static int re_shutdown (device_t);
static int re_ifmedia_upd (struct ifnet *);
static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static void re_eeprom_putbyte (struct rl_softc *, int);
static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *);
static void re_read_eeprom (struct rl_softc *, caddr_t, int, int);
static int re_gmii_readreg (device_t, int, int);
static int re_gmii_writereg (device_t, int, int, int);
static int re_miibus_readreg (device_t, int, int);
static int re_miibus_writereg (device_t, int, int, int);
static void re_miibus_statchg (device_t);
static void re_set_jumbo (struct rl_softc *, int);
static void re_set_rxmode (struct rl_softc *);
static void re_reset (struct rl_softc *);
static void re_setwol (struct rl_softc *);
static void re_clrwol (struct rl_softc *);
static void re_set_linkspeed (struct rl_softc *);
#ifdef DEV_NETMAP /* see ixgbe.c for details */
#include <dev/netmap/if_re_netmap.h>
MODULE_DEPEND(re, netmap, 1, 1, 1);
#endif /* !DEV_NETMAP */
#ifdef RE_DIAG
static int re_diag (struct rl_softc *);
#endif
static void re_add_sysctls (struct rl_softc *);
static int re_sysctl_stats (SYSCTL_HANDLER_ARGS);
static int sysctl_int_range (SYSCTL_HANDLER_ARGS, int, int);
static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS);
static device_method_t re_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, re_probe),
DEVMETHOD(device_attach, re_attach),
DEVMETHOD(device_detach, re_detach),
DEVMETHOD(device_suspend, re_suspend),
DEVMETHOD(device_resume, re_resume),
DEVMETHOD(device_shutdown, re_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, re_miibus_readreg),
DEVMETHOD(miibus_writereg, re_miibus_writereg),
DEVMETHOD(miibus_statchg, re_miibus_statchg),
DEVMETHOD_END
};
static driver_t re_driver = {
"re",
re_methods,
sizeof(struct rl_softc)
};
static devclass_t re_devclass;
DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
#define EE_SET(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) | x)
#define EE_CLR(x) \
CSR_WRITE_1(sc, RL_EECMD, \
CSR_READ_1(sc, RL_EECMD) & ~x)
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
re_eeprom_putbyte(struct rl_softc *sc, int addr)
{
int d, i;
d = addr | (RL_9346_READ << sc->rl_eewidth);
/*
* Feed in each bit and strobe the clock.
*/
for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
if (d & i) {
EE_SET(RL_EE_DATAIN);
} else {
EE_CLR(RL_EE_DATAIN);
}
DELAY(100);
EE_SET(RL_EE_CLK);
DELAY(150);
EE_CLR(RL_EE_CLK);
DELAY(100);
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
static void
re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
{
int i;
u_int16_t word = 0;
/*
* Send address of word we want to read.
*/
re_eeprom_putbyte(sc, addr);
/*
* Start reading bits from EEPROM.
*/
for (i = 0x8000; i; i >>= 1) {
EE_SET(RL_EE_CLK);
DELAY(100);
if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
word |= i;
EE_CLR(RL_EE_CLK);
DELAY(100);
}
*dest = word;
}
/*
* Read a sequence of words from the EEPROM.
*/
static void
re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
{
int i;
u_int16_t word = 0, *ptr;
CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
DELAY(100);
for (i = 0; i < cnt; i++) {
CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
re_eeprom_getword(sc, off + i, &word);
CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
ptr = (u_int16_t *)(dest + (i * 2));
*ptr = word;
}
CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
}
static int
re_gmii_readreg(device_t dev, int phy, int reg)
{
struct rl_softc *sc;
u_int32_t rval;
int i;
sc = device_get_softc(dev);
/* Let the rgephy driver read the GMEDIASTAT register */
if (reg == RL_GMEDIASTAT) {
rval = CSR_READ_1(sc, RL_GMEDIASTAT);
return (rval);
}
CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
for (i = 0; i < RL_PHY_TIMEOUT; i++) {
rval = CSR_READ_4(sc, RL_PHYAR);
if (rval & RL_PHYAR_BUSY)
break;
DELAY(25);
}
if (i == RL_PHY_TIMEOUT) {
device_printf(sc->rl_dev, "PHY read failed\n");
return (0);
}
/*
* Controller requires a 20us delay to process next MDIO request.
*/
DELAY(20);
return (rval & RL_PHYAR_PHYDATA);
}
static int
re_gmii_writereg(device_t dev, int phy, int reg, int data)
{
struct rl_softc *sc;
u_int32_t rval;
int i;
sc = device_get_softc(dev);
CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
(data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
for (i = 0; i < RL_PHY_TIMEOUT; i++) {
rval = CSR_READ_4(sc, RL_PHYAR);
if (!(rval & RL_PHYAR_BUSY))
break;
DELAY(25);
}
if (i == RL_PHY_TIMEOUT) {
device_printf(sc->rl_dev, "PHY write failed\n");
return (0);
}
/*
* Controller requires a 20us delay to process next MDIO request.
*/
DELAY(20);
return (0);
}
static int
re_miibus_readreg(device_t dev, int phy, int reg)
{
struct rl_softc *sc;
u_int16_t rval = 0;
u_int16_t re8139_reg = 0;
sc = device_get_softc(dev);
if (sc->rl_type == RL_8169) {
rval = re_gmii_readreg(dev, phy, reg);
return (rval);
}
switch (reg) {
case MII_BMCR:
re8139_reg = RL_BMCR;
break;
case MII_BMSR:
re8139_reg = RL_BMSR;
break;
case MII_ANAR:
re8139_reg = RL_ANAR;
break;
case MII_ANER:
re8139_reg = RL_ANER;
break;
case MII_ANLPAR:
re8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
/*
* Allow the rlphy driver to read the media status
* register. If we have a link partner which does not
* support NWAY, this is the register which will tell
* us the results of parallel detection.
*/
case RL_MEDIASTAT:
rval = CSR_READ_1(sc, RL_MEDIASTAT);
return (rval);
default:
device_printf(sc->rl_dev, "bad phy register\n");
return (0);
}
rval = CSR_READ_2(sc, re8139_reg);
if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
/* 8139C+ has different bit layout. */
rval &= ~(BMCR_LOOP | BMCR_ISO);
}
return (rval);
}
static int
re_miibus_writereg(device_t dev, int phy, int reg, int data)
{
struct rl_softc *sc;
u_int16_t re8139_reg = 0;
int rval = 0;
sc = device_get_softc(dev);
if (sc->rl_type == RL_8169) {
rval = re_gmii_writereg(dev, phy, reg, data);
return (rval);
}
switch (reg) {
case MII_BMCR:
re8139_reg = RL_BMCR;
if (sc->rl_type == RL_8139CPLUS) {
/* 8139C+ has different bit layout. */
data &= ~(BMCR_LOOP | BMCR_ISO);
}
break;
case MII_BMSR:
re8139_reg = RL_BMSR;
break;
case MII_ANAR:
re8139_reg = RL_ANAR;
break;
case MII_ANER:
re8139_reg = RL_ANER;
break;
case MII_ANLPAR:
re8139_reg = RL_LPAR;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
break;
default:
device_printf(sc->rl_dev, "bad phy register\n");
return (0);
}
CSR_WRITE_2(sc, re8139_reg, data);
return (0);
}
static void
re_miibus_statchg(device_t dev)
{
struct rl_softc *sc;
struct ifnet *ifp;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->rl_miibus);
ifp = sc->rl_ifp;
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
return;
sc->rl_flags &= ~RL_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->rl_flags |= RL_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
break;
sc->rl_flags |= RL_FLAG_LINK;
break;
default:
break;
}
}
/*
* RealTek controllers do not provide any interface to the RX/TX
* MACs for resolved speed, duplex and flow-control parameters.
*/
}
/*
* Set the RX configuration and 64-bit multicast hash filter.
*/
static void
re_set_rxmode(struct rl_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
uint32_t hashes[2] = { 0, 0 };
uint32_t h, rxfilt;
RL_LOCK_ASSERT(sc);
ifp = sc->rl_ifp;
rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0)
rxfilt |= RL_RXCFG_EARLYOFF;
else if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0)
rxfilt |= RL_RXCFG_EARLYOFFV2;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
if (ifp->if_flags & IFF_PROMISC)
rxfilt |= RL_RXCFG_RX_ALLPHYS;
/*
* Unlike other hardwares, we have to explicitly set
* RL_RXCFG_RX_MULTI to receive multicast frames in
* promiscuous mode.
*/
rxfilt |= RL_RXCFG_RX_MULTI;
hashes[0] = hashes[1] = 0xffffffff;
goto done;
}
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
}
if_maddr_runlock(ifp);
if (hashes[0] != 0 || hashes[1] != 0) {
/*
* For some unfathomable reason, RealTek decided to
* reverse the order of the multicast hash registers
* in the PCI Express parts. This means we have to
* write the hash pattern in reverse order for those
* devices.
*/
if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
h = bswap32(hashes[0]);
hashes[0] = bswap32(hashes[1]);
hashes[1] = h;
}
rxfilt |= RL_RXCFG_RX_MULTI;
}
if (sc->rl_hwrev->rl_rev == RL_HWREV_8168F) {
/* Disable multicast filtering due to silicon bug. */
hashes[0] = 0xffffffff;
hashes[1] = 0xffffffff;
}
done:
CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
}
static void
re_reset(struct rl_softc *sc)
{
int i;
RL_LOCK_ASSERT(sc);
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
for (i = 0; i < RL_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
break;
}
if (i == RL_TIMEOUT)
device_printf(sc->rl_dev, "reset never completed!\n");
if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
CSR_WRITE_1(sc, 0x82, 1);
if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
}
#ifdef RE_DIAG
/*
* The following routine is designed to test for a defect on some
* 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
* lines connected to the bus, however for a 32-bit only card, they
* should be pulled high. The result of this defect is that the
* NIC will not work right if you plug it into a 64-bit slot: DMA
* operations will be done with 64-bit transfers, which will fail
* because the 64-bit data lines aren't connected.
*
* There's no way to work around this (short of talking a soldering
* iron to the board), however we can detect it. The method we use
* here is to put the NIC into digital loopback mode, set the receiver
* to promiscuous mode, and then try to send a frame. We then compare
* the frame data we sent to what was received. If the data matches,
* then the NIC is working correctly, otherwise we know the user has
* a defective NIC which has been mistakenly plugged into a 64-bit PCI
* slot. In the latter case, there's no way the NIC can work correctly,
* so we print out a message on the console and abort the device attach.
*/
static int
re_diag(struct rl_softc *sc)
{
struct ifnet *ifp = sc->rl_ifp;
struct mbuf *m0;
struct ether_header *eh;
struct rl_desc *cur_rx;
u_int16_t status;
u_int32_t rxstat;
int total_len, i, error = 0, phyaddr;
u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
/* Allocate a single mbuf */
MGETHDR(m0, M_NOWAIT, MT_DATA);
if (m0 == NULL)
return (ENOBUFS);
RL_LOCK(sc);
/*
* Initialize the NIC in test mode. This sets the chip up
* so that it can send and receive frames, but performs the
* following special functions:
* - Puts receiver in promiscuous mode
* - Enables digital loopback mode
* - Leaves interrupts turned off
*/
ifp->if_flags |= IFF_PROMISC;
sc->rl_testmode = 1;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
re_init_locked(sc);
sc->rl_flags |= RL_FLAG_LINK;
if (sc->rl_type == RL_8169)
phyaddr = 1;
else
phyaddr = 0;
re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
for (i = 0; i < RL_TIMEOUT; i++) {
status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
if (!(status & BMCR_RESET))
break;
}
re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
DELAY(100000);
/* Put some data in the mbuf */
eh = mtod(m0, struct ether_header *);
bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
eh->ether_type = htons(ETHERTYPE_IP);
m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
/*
* Queue the packet, start transmission.
* Note: IF_HANDOFF() ultimately calls re_start() for us.
*/
CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
RL_UNLOCK(sc);
/* XXX: re_diag must not be called when in ALTQ mode */
IF_HANDOFF(&ifp->if_snd, m0, ifp);
RL_LOCK(sc);
m0 = NULL;
/* Wait for it to propagate through the chip */
DELAY(100000);
for (i = 0; i < RL_TIMEOUT; i++) {
status = CSR_READ_2(sc, RL_ISR);
CSR_WRITE_2(sc, RL_ISR, status);
if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
(RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
break;
DELAY(10);
}
if (i == RL_TIMEOUT) {
device_printf(sc->rl_dev,
"diagnostic failed, failed to receive packet in"
" loopback mode\n");
error = EIO;
goto done;
}
/*
* The packet should have been dumped into the first
* entry in the RX DMA ring. Grab it from there.
*/
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
eh = mtod(m0, struct ether_header *);
cur_rx = &sc->rl_ldata.rl_rx_list[0];
total_len = RL_RXBYTES(cur_rx);
rxstat = le32toh(cur_rx->rl_cmdstat);
if (total_len != ETHER_MIN_LEN) {
device_printf(sc->rl_dev,
"diagnostic failed, received short packet\n");
error = EIO;
goto done;
}
/* Test that the received packet data matches what we sent. */
if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
ntohs(eh->ether_type) != ETHERTYPE_IP) {
device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
dst, ":", src, ":", ETHERTYPE_IP);
device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
eh->ether_dhost, ":", eh->ether_shost, ":",
ntohs(eh->ether_type));
device_printf(sc->rl_dev, "You may have a defective 32-bit "
"NIC plugged into a 64-bit PCI slot.\n");
device_printf(sc->rl_dev, "Please re-install the NIC in a "
"32-bit slot for proper operation.\n");
device_printf(sc->rl_dev, "Read the re(4) man page for more "
"details.\n");
error = EIO;
}
done:
/* Turn interface off, release resources */
sc->rl_testmode = 0;
sc->rl_flags &= ~RL_FLAG_LINK;
ifp->if_flags &= ~IFF_PROMISC;
re_stop(sc);
if (m0 != NULL)
m_freem(m0);
RL_UNLOCK(sc);
return (error);
}
#endif
/*
* Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
* IDs against our list and return a device name if we find a match.
*/
static int
re_probe(device_t dev)
{
const struct rl_type *t;
uint16_t devid, vendor;
uint16_t revid, sdevid;
int i;
vendor = pci_get_vendor(dev);
devid = pci_get_device(dev);
revid = pci_get_revid(dev);
sdevid = pci_get_subdevice(dev);
if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
/*
* Only attach to rev. 3 of the Linksys EG1032 adapter.
* Rev. 2 is supported by sk(4).
*/
return (ENXIO);
}
}
if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
if (revid != 0x20) {
/* 8139, let rl(4) take care of this device. */
return (ENXIO);
}
}
t = re_devs;
for (i = 0; i < nitems(re_devs); i++, t++) {
if (vendor == t->rl_vid && devid == t->rl_did) {
device_set_desc(dev, t->rl_name);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
/*
* Map a single buffer address.
*/
static void
re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
}
static int
re_allocmem(device_t dev, struct rl_softc *sc)
{
bus_addr_t lowaddr;
bus_size_t rx_list_size, tx_list_size;
int error;
int i;
rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
* In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
* register should be set. However some RealTek chips are known
* to be buggy on DAC handling, therefore disable DAC by limiting
* DMA address space to 32bit. PCIe variants of RealTek chips
* may not have the limitation.
*/
lowaddr = BUS_SPACE_MAXADDR;
if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
lowaddr = BUS_SPACE_MAXADDR_32BIT;
error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
NULL, NULL, &sc->rl_parent_tag);
if (error) {
device_printf(dev, "could not allocate parent DMA tag\n");
return (error);
}
/*
* Allocate map for TX mbufs.
*/
error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
if (error) {
device_printf(dev, "could not allocate TX DMA tag\n");
return (error);
}
/*
* Allocate map for RX mbufs.
*/
if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
&sc->rl_ldata.rl_jrx_mtag);
if (error) {
device_printf(dev,
"could not allocate jumbo RX DMA tag\n");
return (error);
}
}
error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
if (error) {
device_printf(dev, "could not allocate RX DMA tag\n");
return (error);
}
/*
* Allocate map for TX descriptor list.
*/
error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, tx_list_size, 1, tx_list_size, 0,
NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
if (error) {
device_printf(dev, "could not allocate TX DMA ring tag\n");
return (error);
}
/* Allocate DMA'able memory for the TX ring */
error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
(void **)&sc->rl_ldata.rl_tx_list,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->rl_ldata.rl_tx_list_map);
if (error) {
device_printf(dev, "could not allocate TX DMA ring\n");
return (error);
}
/* Load the map for the TX ring. */
sc->rl_ldata.rl_tx_list_addr = 0;
error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
tx_list_size, re_dma_map_addr,
&sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
device_printf(dev, "could not load TX DMA ring\n");
return (ENOMEM);
}
/* Create DMA maps for TX buffers */
for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
&sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
if (error) {
device_printf(dev, "could not create DMA map for TX\n");
return (error);
}
}
/*
* Allocate map for RX descriptor list.
*/
error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
NULL, rx_list_size, 1, rx_list_size, 0,
NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
if (error) {
device_printf(dev, "could not create RX DMA ring tag\n");
return (error);
}
/* Allocate DMA'able memory for the RX ring */
error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
(void **)&sc->rl_ldata.rl_rx_list,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->rl_ldata.rl_rx_list_map);
if (error) {
device_printf(dev, "could not allocate RX DMA ring\n");
return (error);
}
/* Load the map for the RX ring. */
sc->rl_ldata.rl_rx_list_addr = 0;
error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
rx_list_size, re_dma_map_addr,
&sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
device_printf(dev, "could not load RX DMA ring\n");
return (ENOMEM);
}
/* Create DMA maps for RX buffers */
if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
&sc->rl_ldata.rl_jrx_sparemap);
if (error) {
device_printf(dev,
"could not create spare DMA map for jumbo RX\n");
return (error);
}
for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
&sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
if (error) {
device_printf(dev,
"could not create DMA map for jumbo RX\n");
return (error);
}
}
}
error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
&sc->rl_ldata.rl_rx_sparemap);
if (error) {
device_printf(dev, "could not create spare DMA map for RX\n");
return (error);
}
for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
&sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
if (error) {
device_printf(dev, "could not create DMA map for RX\n");
return (error);
}
}
/* Create DMA map for statistics. */
error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
&sc->rl_ldata.rl_stag);
if (error) {
device_printf(dev, "could not create statistics DMA tag\n");
return (error);
}
/* Allocate DMA'able memory for statistics. */
error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
(void **)&sc->rl_ldata.rl_stats,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->rl_ldata.rl_smap);
if (error) {
device_printf(dev,
"could not allocate statistics DMA memory\n");
return (error);
}
/* Load the map for statistics. */
sc->rl_ldata.rl_stats_addr = 0;
error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
&sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
device_printf(dev, "could not load statistics DMA memory\n");
return (ENOMEM);
}
return (0);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
re_attach(device_t dev)
{
u_char eaddr[ETHER_ADDR_LEN];
u_int16_t as[ETHER_ADDR_LEN / 2];
struct rl_softc *sc;
struct ifnet *ifp;
const struct rl_hwrev *hw_rev;
int capmask, error = 0, hwrev, i, msic, msixc,
phy, reg, rid;
u_int32_t cap, ctl;
u_int16_t devid, re_did = 0;
uint8_t cfg;
sc = device_get_softc(dev);
sc->rl_dev = dev;
mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
/*
* Map control/status registers.
*/
pci_enable_busmaster(dev);
devid = pci_get_device(dev);
/*
* Prefer memory space register mapping over IO space.
* Because RTL8169SC does not seem to work when memory mapping
* is used always activate io mapping.
*/
if (devid == RT_DEVICEID_8169SC)
prefer_iomap = 1;
if (prefer_iomap == 0) {
sc->rl_res_id = PCIR_BAR(1);
sc->rl_res_type = SYS_RES_MEMORY;
/* RTL8168/8101E seems to use different BARs. */
if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
sc->rl_res_id = PCIR_BAR(2);
} else {
sc->rl_res_id = PCIR_BAR(0);
sc->rl_res_type = SYS_RES_IOPORT;
}
sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
&sc->rl_res_id, RF_ACTIVE);
if (sc->rl_res == NULL && prefer_iomap == 0) {
sc->rl_res_id = PCIR_BAR(0);
sc->rl_res_type = SYS_RES_IOPORT;
sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
&sc->rl_res_id, RF_ACTIVE);
}
if (sc->rl_res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
sc->rl_btag = rman_get_bustag(sc->rl_res);
sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
msic = pci_msi_count(dev);
msixc = pci_msix_count(dev);
if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
sc->rl_flags |= RL_FLAG_PCIE;
sc->rl_expcap = reg;
}
if (bootverbose) {
device_printf(dev, "MSI count : %d\n", msic);
device_printf(dev, "MSI-X count : %d\n", msixc);
}
if (msix_disable > 0)
msixc = 0;
if (msi_disable > 0)
msic = 0;
/* Prefer MSI-X to MSI. */
if (msixc > 0) {
msixc = RL_MSI_MESSAGES;
rid = PCIR_BAR(4);
sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&rid, RF_ACTIVE);
if (sc->rl_res_pba == NULL) {
device_printf(sc->rl_dev,
"could not allocate MSI-X PBA resource\n");
}
if (sc->rl_res_pba != NULL &&
pci_alloc_msix(dev, &msixc) == 0) {
if (msixc == RL_MSI_MESSAGES) {
device_printf(dev, "Using %d MSI-X message\n",
msixc);
sc->rl_flags |= RL_FLAG_MSIX;
} else
pci_release_msi(dev);
}
if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
if (sc->rl_res_pba != NULL)
bus_release_resource(dev, SYS_RES_MEMORY, rid,
sc->rl_res_pba);
sc->rl_res_pba = NULL;
msixc = 0;
}
}
/* Prefer MSI to INTx. */
if (msixc == 0 && msic > 0) {
msic = RL_MSI_MESSAGES;
if (pci_alloc_msi(dev, &msic) == 0) {
if (msic == RL_MSI_MESSAGES) {
device_printf(dev, "Using %d MSI message\n",
msic);
sc->rl_flags |= RL_FLAG_MSI;
/* Explicitly set MSI enable bit. */
CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
cfg = CSR_READ_1(sc, RL_CFG2);
cfg |= RL_CFG2_MSI;
CSR_WRITE_1(sc, RL_CFG2, cfg);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
} else
pci_release_msi(dev);
}
if ((sc->rl_flags & RL_FLAG_MSI) == 0)
msic = 0;
}
/* Allocate interrupt */
if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
rid = 0;
sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->rl_irq[0] == NULL) {
device_printf(dev, "couldn't allocate IRQ resources\n");
error = ENXIO;
goto fail;
}
} else {
for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
sc->rl_irq[i] = bus_alloc_resource_any(dev,
SYS_RES_IRQ, &rid, RF_ACTIVE);
if (sc->rl_irq[i] == NULL) {
device_printf(dev,
"couldn't allocate IRQ resources for "
"message %d\n", rid);
error = ENXIO;
goto fail;
}
}
}
if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
cfg = CSR_READ_1(sc, RL_CFG2);
if ((cfg & RL_CFG2_MSI) != 0) {
device_printf(dev, "turning off MSI enable bit.\n");
cfg &= ~RL_CFG2_MSI;
CSR_WRITE_1(sc, RL_CFG2, cfg);
}
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
}
/* Disable ASPM L0S/L1 and CLKREQ. */
if (sc->rl_expcap != 0) {
cap = pci_read_config(dev, sc->rl_expcap +
PCIER_LINK_CAP, 2);
if ((cap & PCIEM_LINK_CAP_ASPM) != 0) {
ctl = pci_read_config(dev, sc->rl_expcap +
PCIER_LINK_CTL, 2);
if ((ctl & (PCIEM_LINK_CTL_ECPM |
PCIEM_LINK_CTL_ASPMC))!= 0) {
ctl &= ~(PCIEM_LINK_CTL_ECPM |
PCIEM_LINK_CTL_ASPMC);
pci_write_config(dev, sc->rl_expcap +
PCIER_LINK_CTL, ctl, 2);
device_printf(dev, "ASPM disabled\n");
}
} else
device_printf(dev, "no ASPM capability\n");
}
hw_rev = re_hwrevs;
hwrev = CSR_READ_4(sc, RL_TXCFG);
switch (hwrev & 0x70000000) {
case 0x00000000:
case 0x10000000:
device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
hwrev &= (RL_TXCFG_HWREV | 0x80000000);
break;
default:
device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
sc->rl_macrev = hwrev & 0x00700000;
hwrev &= RL_TXCFG_HWREV;
break;
}
device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev);
while (hw_rev->rl_desc != NULL) {
if (hw_rev->rl_rev == hwrev) {
sc->rl_type = hw_rev->rl_type;
sc->rl_hwrev = hw_rev;
break;
}
hw_rev++;
}
if (hw_rev->rl_desc == NULL) {
device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
error = ENXIO;
goto fail;
}
switch (hw_rev->rl_rev) {
case RL_HWREV_8139CPLUS:
sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
break;
case RL_HWREV_8100E:
case RL_HWREV_8101E:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
break;
case RL_HWREV_8102E:
case RL_HWREV_8102EL:
case RL_HWREV_8102EL_SPIN1:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
RL_FLAG_AUTOPAD;
break;
case RL_HWREV_8103E:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
break;
case RL_HWREV_8401E:
case RL_HWREV_8105E:
case RL_HWREV_8105E_SPIN1:
case RL_HWREV_8106E:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
break;
case RL_HWREV_8402:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
RL_FLAG_CMDSTOP_WAIT_TXQ;
break;
case RL_HWREV_8168B_SPIN1:
case RL_HWREV_8168B_SPIN2:
sc->rl_flags |= RL_FLAG_WOLRXENB;
/* FALLTHROUGH */
case RL_HWREV_8168B_SPIN3:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
break;
case RL_HWREV_8168C_SPIN2:
sc->rl_flags |= RL_FLAG_MACSLEEP;
/* FALLTHROUGH */
case RL_HWREV_8168C:
if (sc->rl_macrev == 0x00200000)
sc->rl_flags |= RL_FLAG_MACSLEEP;
/* FALLTHROUGH */
case RL_HWREV_8168CP:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
break;
case RL_HWREV_8168D:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
RL_FLAG_WOL_MANLINK;
break;
case RL_HWREV_8168DP:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
break;
case RL_HWREV_8168E:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
RL_FLAG_WOL_MANLINK;
break;
case RL_HWREV_8168E_VL:
case RL_HWREV_8168F:
sc->rl_flags |= RL_FLAG_EARLYOFF;
/* FALLTHROUGH */
case RL_HWREV_8411:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
break;
case RL_HWREV_8168EP:
case RL_HWREV_8168G:
case RL_HWREV_8411B:
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK |
RL_FLAG_8168G_PLUS;
break;
case RL_HWREV_8168GU:
case RL_HWREV_8168H:
if (pci_get_device(dev) == RT_DEVICEID_8101E) {
/* RTL8106E(US), RTL8107E */
sc->rl_flags |= RL_FLAG_FASTETHER;
} else
sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ |
RL_FLAG_8168G_PLUS;
break;
case RL_HWREV_8169_8110SB:
case RL_HWREV_8169_8110SBL:
case RL_HWREV_8169_8110SC:
case RL_HWREV_8169_8110SCE:
sc->rl_flags |= RL_FLAG_PHYWAKE;
/* FALLTHROUGH */
case RL_HWREV_8169:
case RL_HWREV_8169S:
case RL_HWREV_8110S:
sc->rl_flags |= RL_FLAG_MACRESET;
break;
default:
break;
}
if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) {
sc->rl_cfg0 = RL_8139_CFG0;
sc->rl_cfg1 = RL_8139_CFG1;
sc->rl_cfg2 = 0;
sc->rl_cfg3 = RL_8139_CFG3;
sc->rl_cfg4 = RL_8139_CFG4;
sc->rl_cfg5 = RL_8139_CFG5;
} else {
sc->rl_cfg0 = RL_CFG0;
sc->rl_cfg1 = RL_CFG1;
sc->rl_cfg2 = RL_CFG2;
sc->rl_cfg3 = RL_CFG3;
sc->rl_cfg4 = RL_CFG4;
sc->rl_cfg5 = RL_CFG5;
}
/* Reset the adapter. */
RL_LOCK(sc);
re_reset(sc);
RL_UNLOCK(sc);
/* Enable PME. */
CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
cfg = CSR_READ_1(sc, sc->rl_cfg1);
cfg |= RL_CFG1_PME;
CSR_WRITE_1(sc, sc->rl_cfg1, cfg);
cfg = CSR_READ_1(sc, sc->rl_cfg5);
cfg &= RL_CFG5_PME_STS;
CSR_WRITE_1(sc, sc->rl_cfg5, cfg);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
/*
* XXX Should have a better way to extract station
* address from EEPROM.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
} else {
sc->rl_eewidth = RL_9356_ADDR_LEN;
re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
if (re_did != 0x8129)
sc->rl_eewidth = RL_9346_ADDR_LEN;
/*
* Get station address from the EEPROM.
*/
re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
as[i] = le16toh(as[i]);
bcopy(as, eaddr, ETHER_ADDR_LEN);
}
if (sc->rl_type == RL_8169) {
/* Set RX length mask and number of descriptors. */
sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
sc->rl_txstart = RL_GTXSTART;
sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
} else {
/* Set RX length mask and number of descriptors. */
sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
sc->rl_txstart = RL_TXSTART;
sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
}
error = re_allocmem(dev, sc);
if (error)
goto fail;
re_add_sysctls(sc);
ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
/* Take controller out of deep sleep mode. */
if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
CSR_WRITE_1(sc, RL_GPIO,
CSR_READ_1(sc, RL_GPIO) | 0x01);
else
CSR_WRITE_1(sc, RL_GPIO,
CSR_READ_1(sc, RL_GPIO) & ~0x01);
}
/* Take PHY out of power down mode. */
if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
if (hw_rev->rl_rev == RL_HWREV_8401E)
CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
}
if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
re_gmii_writereg(dev, 1, 0x1f, 0);
re_gmii_writereg(dev, 1, 0x0e, 0);
}
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = re_ioctl;
ifp->if_start = re_start;
/*
* RTL8168/8111C generates wrong IP checksummed frame if the
* packet has IP options so disable TX checksum offloading.
*/
if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 ||
sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) {
ifp->if_hwassist = 0;
ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TSO4;
} else {
ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
}
ifp->if_hwassist |= CSUM_TSO;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_init = re_init;
IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
IFQ_SET_READY(&ifp->if_snd);
TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
#define RE_PHYAD_INTERNAL 0
/* Do MII setup. */
phy = RE_PHYAD_INTERNAL;
if (sc->rl_type == RL_8169)
phy = 1;
capmask = BMSR_DEFCAPMASK;
if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
capmask &= ~BMSR_EXTSTAT;
error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
re_ifmedia_sts, capmask, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/*
* Call MI attach routine.
*/
ether_ifattach(ifp, eaddr);
/* VLAN capability setup */
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
if (ifp->if_capabilities & IFCAP_HWCSUM)
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
/* Enable WOL if PM is supported. */
if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
ifp->if_capabilities |= IFCAP_WOL;
ifp->if_capenable = ifp->if_capabilities;
ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
/*
* Don't enable TSO by default. It is known to generate
* corrupted TCP segments(bad TCP options) under certain
* circumstances.
*/
ifp->if_hwassist &= ~CSUM_TSO;
ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
/*
* Tell the upper layer(s) we support long frames.
* Must appear after the call to ether_ifattach() because
* ether_ifattach() sets ifi_hdrlen to the default value.
*/
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
#ifdef DEV_NETMAP
re_netmap_attach(sc);
#endif /* DEV_NETMAP */
#ifdef RE_DIAG
/*
* Perform hardware diagnostic on the original RTL8169.
* Some 32-bit cards were incorrectly wired and would
* malfunction if plugged into a 64-bit slot.
*/
if (hwrev == RL_HWREV_8169) {
error = re_diag(sc);
if (error) {
device_printf(dev,
"attach aborted due to hardware diag failure\n");
ether_ifdetach(ifp);
goto fail;
}
}
#endif
#ifdef RE_TX_MODERATION
intr_filter = 1;
#endif
/* Hook interrupt last to avoid having to lock softc */
if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
intr_filter == 0) {
error = bus_setup_intr(dev, sc->rl_irq[0],
INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
&sc->rl_intrhand[0]);
} else {
error = bus_setup_intr(dev, sc->rl_irq[0],
INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
&sc->rl_intrhand[0]);
}
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
}
fail:
if (error)
re_detach(dev);
return (error);
}
/*
* Shutdown hardware and free up resources. This can be called any
* time after the mutex has been initialized. It is called in both
* the error case in attach and the normal detach case so it needs
* to be careful about only freeing resources that have actually been
* allocated.
*/
static int
re_detach(device_t dev)
{
struct rl_softc *sc;
struct ifnet *ifp;
int i, rid;
sc = device_get_softc(dev);
ifp = sc->rl_ifp;
KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
/* These should only be active if attach succeeded */
if (device_is_attached(dev)) {
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
RL_LOCK(sc);
#if 0
sc->suspended = 1;
#endif
re_stop(sc);
RL_UNLOCK(sc);
callout_drain(&sc->rl_stat_callout);
taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
/*
* Force off the IFF_UP flag here, in case someone
* still had a BPF descriptor attached to this
* interface. If they do, ether_ifdetach() will cause
* the BPF code to try and clear the promisc mode
* flag, which will bubble down to re_ioctl(),
* which will try to call re_init() again. This will
* turn the NIC back on and restart the MII ticker,
* which will panic the system when the kernel tries
* to invoke the re_tick() function that isn't there
* anymore.
*/
ifp->if_flags &= ~IFF_UP;
ether_ifdetach(ifp);
}
if (sc->rl_miibus)
device_delete_child(dev, sc->rl_miibus);
bus_generic_detach(dev);
/*
* The rest is resource deallocation, so we should already be
* stopped here.
*/
if (sc->rl_intrhand[0] != NULL) {
bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
sc->rl_intrhand[0] = NULL;
}
if (ifp != NULL) {
#ifdef DEV_NETMAP
netmap_detach(ifp);
#endif /* DEV_NETMAP */
if_free(ifp);
}
if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
rid = 0;
else
rid = 1;
if (sc->rl_irq[0] != NULL) {
bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
sc->rl_irq[0] = NULL;
}
if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
pci_release_msi(dev);
if (sc->rl_res_pba) {
rid = PCIR_BAR(4);
bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
}
if (sc->rl_res)
bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
sc->rl_res);
/* Unload and free the RX DMA ring memory and map */
if (sc->rl_ldata.rl_rx_list_tag) {
if (sc->rl_ldata.rl_rx_list_addr)
bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map);
if (sc->rl_ldata.rl_rx_list)
bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list,
sc->rl_ldata.rl_rx_list_map);
bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
}
/* Unload and free the TX DMA ring memory and map */
if (sc->rl_ldata.rl_tx_list_tag) {
if (sc->rl_ldata.rl_tx_list_addr)
bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map);
if (sc->rl_ldata.rl_tx_list)
bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list,
sc->rl_ldata.rl_tx_list_map);
bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
}
/* Destroy all the RX and TX buffer maps */
if (sc->rl_ldata.rl_tx_mtag) {
for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
}
bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
}
if (sc->rl_ldata.rl_rx_mtag) {
for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
}
if (sc->rl_ldata.rl_rx_sparemap)
bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
sc->rl_ldata.rl_rx_sparemap);
bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
}
if (sc->rl_ldata.rl_jrx_mtag) {
for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
}
if (sc->rl_ldata.rl_jrx_sparemap)
bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
sc->rl_ldata.rl_jrx_sparemap);
bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
}
/* Unload and free the stats buffer and map */
if (sc->rl_ldata.rl_stag) {
if (sc->rl_ldata.rl_stats_addr)
bus_dmamap_unload(sc->rl_ldata.rl_stag,
sc->rl_ldata.rl_smap);
if (sc->rl_ldata.rl_stats)
bus_dmamem_free(sc->rl_ldata.rl_stag,
sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
}
if (sc->rl_parent_tag)
bus_dma_tag_destroy(sc->rl_parent_tag);
mtx_destroy(&sc->rl_mtx);
return (0);
}
static __inline void
re_discard_rxbuf(struct rl_softc *sc, int idx)
{
struct rl_desc *desc;
struct rl_rxdesc *rxd;
uint32_t cmdstat;
if (sc->rl_ifp->if_mtu > RL_MTU &&
(sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
rxd = &sc->rl_ldata.rl_jrx_desc[idx];
else
rxd = &sc->rl_ldata.rl_rx_desc[idx];
desc = &sc->rl_ldata.rl_rx_list[idx];
desc->rl_vlanctl = 0;
cmdstat = rxd->rx_size;
if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
cmdstat |= RL_RDESC_CMD_EOR;
desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
}
static int
re_newbuf(struct rl_softc *sc, int idx)
{
struct mbuf *m;
struct rl_rxdesc *rxd;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct rl_desc *desc;
uint32_t cmdstat;
int error, nsegs;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MCLBYTES;
#ifdef RE_FIXUP_RX
/*
* This is part of an evil trick to deal with non-x86 platforms.
* The RealTek chip requires RX buffers to be aligned on 64-bit
* boundaries, but that will hose non-x86 machines. To get around
* this, we leave some empty space at the start of each buffer
* and for non-x86 hosts, we copy the buffer back six bytes
* to achieve word alignment. This is slightly more efficient
* than allocating a new buffer, copying the contents, and
* discarding the old buffer.
*/
m_adj(m, RE_ETHER_ALIGN);
#endif
error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
rxd = &sc->rl_ldata.rl_rx_desc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
}
rxd->rx_m = m;
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
rxd->rx_size = segs[0].ds_len;
sc->rl_ldata.rl_rx_sparemap = map;
bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
desc = &sc->rl_ldata.rl_rx_list[idx];
desc->rl_vlanctl = 0;
desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
cmdstat = segs[0].ds_len;
if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
cmdstat |= RL_RDESC_CMD_EOR;
desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
return (0);
}
static int
re_jumbo_newbuf(struct rl_softc *sc, int idx)
{
struct mbuf *m;
struct rl_rxdesc *rxd;
bus_dma_segment_t segs[1];
bus_dmamap_t map;
struct rl_desc *desc;
uint32_t cmdstat;
int error, nsegs;
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
if (m == NULL)
return (ENOBUFS);
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
#ifdef RE_FIXUP_RX
m_adj(m, RE_ETHER_ALIGN);
#endif
error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(m);
return (ENOBUFS);
}
KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
rxd = &sc->rl_ldata.rl_jrx_desc[idx];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
}
rxd->rx_m = m;
map = rxd->rx_dmamap;
rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
rxd->rx_size = segs[0].ds_len;
sc->rl_ldata.rl_jrx_sparemap = map;
bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
BUS_DMASYNC_PREREAD);
desc = &sc->rl_ldata.rl_rx_list[idx];
desc->rl_vlanctl = 0;
desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
cmdstat = segs[0].ds_len;
if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
cmdstat |= RL_RDESC_CMD_EOR;
desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
return (0);
}
#ifdef RE_FIXUP_RX
static __inline void
re_fixup_rx(struct mbuf *m)
{
int i;
uint16_t *src, *dst;
src = mtod(m, uint16_t *);
dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
*dst++ = *src++;
m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
}
#endif
static int
re_tx_list_init(struct rl_softc *sc)
{
struct rl_desc *desc;
int i;
RL_LOCK_ASSERT(sc);
bzero(sc->rl_ldata.rl_tx_list,
sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
#ifdef DEV_NETMAP
re_netmap_tx_init(sc);
#endif /* DEV_NETMAP */
/* Set EOR. */
desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->rl_ldata.rl_tx_prodidx = 0;
sc->rl_ldata.rl_tx_considx = 0;
sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
return (0);
}
static int
re_rx_list_init(struct rl_softc *sc)
{
int error, i;
bzero(sc->rl_ldata.rl_rx_list,
sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
if ((error = re_newbuf(sc, i)) != 0)
return (error);
}
#ifdef DEV_NETMAP
re_netmap_rx_init(sc);
#endif /* DEV_NETMAP */
/* Flush the RX descriptors */
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->rl_ldata.rl_rx_prodidx = 0;
sc->rl_head = sc->rl_tail = NULL;
sc->rl_int_rx_act = 0;
return (0);
}
static int
re_jrx_list_init(struct rl_softc *sc)
{
int error, i;
bzero(sc->rl_ldata.rl_rx_list,
sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
if ((error = re_jumbo_newbuf(sc, i)) != 0)
return (error);
}
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
sc->rl_ldata.rl_rx_prodidx = 0;
sc->rl_head = sc->rl_tail = NULL;
sc->rl_int_rx_act = 0;
return (0);
}
/*
* RX handler for C+ and 8169. For the gigE chips, we support
* the reception of jumbo frames that have been fragmented
* across multiple 2K mbuf cluster buffers.
*/
static int
re_rxeof(struct rl_softc *sc, int *rx_npktsp)
{
struct mbuf *m;
struct ifnet *ifp;
int i, rxerr, total_len;
struct rl_desc *cur_rx;
u_int32_t rxstat, rxvlan;
int jumbo, maxpkt = 16, rx_npkts = 0;
RL_LOCK_ASSERT(sc);
ifp = sc->rl_ifp;
#ifdef DEV_NETMAP
if (netmap_rx_irq(ifp, 0, &rx_npkts))
return 0;
#endif /* DEV_NETMAP */
if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
jumbo = 1;
else
jumbo = 0;
/* Invalidate the descriptor memory */
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
i = RL_RX_DESC_NXT(sc, i)) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
break;
cur_rx = &sc->rl_ldata.rl_rx_list[i];
rxstat = le32toh(cur_rx->rl_cmdstat);
if ((rxstat & RL_RDESC_STAT_OWN) != 0)
break;
total_len = rxstat & sc->rl_rxlenmask;
rxvlan = le32toh(cur_rx->rl_vlanctl);
if (jumbo != 0)
m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
else
m = sc->rl_ldata.rl_rx_desc[i].rx_m;
if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
(rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
(RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
/*
* RTL8168C or later controllers do not
* support multi-fragment packet.
*/
re_discard_rxbuf(sc, i);
continue;
} else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
if (re_newbuf(sc, i) != 0) {
/*
* If this is part of a multi-fragment packet,
* discard all the pieces.
*/
if (sc->rl_head != NULL) {
m_freem(sc->rl_head);
sc->rl_head = sc->rl_tail = NULL;
}
re_discard_rxbuf(sc, i);
continue;
}
m->m_len = RE_RX_DESC_BUFLEN;
if (sc->rl_head == NULL)
sc->rl_head = sc->rl_tail = m;
else {
m->m_flags &= ~M_PKTHDR;
sc->rl_tail->m_next = m;
sc->rl_tail = m;
}
continue;
}
/*
* NOTE: for the 8139C+, the frame length field
* is always 12 bits in size, but for the gigE chips,
* it is 13 bits (since the max RX frame length is 16K).
* Unfortunately, all 32 bits in the status word
* were already used, so to make room for the extra
* length bit, RealTek took out the 'frame alignment
* error' bit and shifted the other status bits
* over one slot. The OWN, EOR, FS and LS bits are
* still in the same places. We have already extracted
* the frame length and checked the OWN bit, so rather
* than using an alternate bit mapping, we shift the
* status bits one space to the right so we can evaluate
* them using the 8169 status as though it was in the
* same format as that of the 8139C+.
*/
if (sc->rl_type == RL_8169)
rxstat >>= 1;
/*
* if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
* set, but if CRC is clear, it will still be a valid frame.
*/
if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
rxerr = 1;
if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
total_len > 8191 &&
(rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
rxerr = 0;
if (rxerr != 0) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
/*
* If this is part of a multi-fragment packet,
* discard all the pieces.
*/
if (sc->rl_head != NULL) {
m_freem(sc->rl_head);
sc->rl_head = sc->rl_tail = NULL;
}
re_discard_rxbuf(sc, i);
continue;
}
}
/*
* If allocating a replacement mbuf fails,
* reload the current one.
*/
if (jumbo != 0)
rxerr = re_jumbo_newbuf(sc, i);
else
rxerr = re_newbuf(sc, i);
if (rxerr != 0) {
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
if (sc->rl_head != NULL) {
m_freem(sc->rl_head);
sc->rl_head = sc->rl_tail = NULL;
}
re_discard_rxbuf(sc, i);
continue;
}
if (sc->rl_head != NULL) {
if (jumbo != 0)
m->m_len = total_len;
else {
m->m_len = total_len % RE_RX_DESC_BUFLEN;
if (m->m_len == 0)
m->m_len = RE_RX_DESC_BUFLEN;
}
/*
* Special case: if there's 4 bytes or less
* in this buffer, the mbuf can be discarded:
* the last 4 bytes is the CRC, which we don't
* care about anyway.
*/
if (m->m_len <= ETHER_CRC_LEN) {
sc->rl_tail->m_len -=
(ETHER_CRC_LEN - m->m_len);
m_freem(m);
} else {
m->m_len -= ETHER_CRC_LEN;
m->m_flags &= ~M_PKTHDR;
sc->rl_tail->m_next = m;
}
m = sc->rl_head;
sc->rl_head = sc->rl_tail = NULL;
m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
} else
m->m_pkthdr.len = m->m_len =
(total_len - ETHER_CRC_LEN);
#ifdef RE_FIXUP_RX
re_fixup_rx(m);
#endif
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
m->m_pkthdr.rcvif = ifp;
/* Do RX checksumming if enabled */
if (ifp->if_capenable & IFCAP_RXCSUM) {
if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
/* Check IP header checksum */
if (rxstat & RL_RDESC_STAT_PROTOID)
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED;
if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
m->m_pkthdr.csum_flags |=
CSUM_IP_VALID;
/* Check TCP/UDP checksum */
if ((RL_TCPPKT(rxstat) &&
!(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
(RL_UDPPKT(rxstat) &&
!(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
} else {
/*
* RTL8168C/RTL816CP/RTL8111C/RTL8111CP
*/
if ((rxstat & RL_RDESC_STAT_PROTOID) &&
(rxvlan & RL_RDESC_IPV4))
m->m_pkthdr.csum_flags |=
CSUM_IP_CHECKED;
if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
(rxvlan & RL_RDESC_IPV4))
m->m_pkthdr.csum_flags |=
CSUM_IP_VALID;
if (((rxstat & RL_RDESC_STAT_TCP) &&
!(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
((rxstat & RL_RDESC_STAT_UDP) &&
!(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
}
maxpkt--;
if (rxvlan & RL_RDESC_VLANCTL_TAG) {
m->m_pkthdr.ether_vtag =
bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
m->m_flags |= M_VLANTAG;
}
RL_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
RL_LOCK(sc);
rx_npkts++;
}
/* Flush the RX DMA ring */
bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
sc->rl_ldata.rl_rx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
sc->rl_ldata.rl_rx_prodidx = i;
if (rx_npktsp != NULL)
*rx_npktsp = rx_npkts;
if (maxpkt)
return (EAGAIN);
return (0);
}
static void
re_txeof(struct rl_softc *sc)
{
struct ifnet *ifp;
struct rl_txdesc *txd;
u_int32_t txstat;
int cons;
cons = sc->rl_ldata.rl_tx_considx;
if (cons == sc->rl_ldata.rl_tx_prodidx)
return;
ifp = sc->rl_ifp;
#ifdef DEV_NETMAP
if (netmap_tx_irq(ifp, 0))
return;
#endif /* DEV_NETMAP */
/* Invalidate the TX descriptor list */
bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (; cons != sc->rl_ldata.rl_tx_prodidx;
cons = RL_TX_DESC_NXT(sc, cons)) {
txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
if (txstat & RL_TDESC_STAT_OWN)
break;
/*
* We only stash mbufs in the last descriptor
* in a fragment chain, which also happens to
* be the only place where the TX status bits
* are valid.
*/
if (txstat & RL_TDESC_CMD_EOF) {
txd = &sc->rl_ldata.rl_tx_desc[cons];
bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
txd->tx_dmamap);
KASSERT(txd->tx_m != NULL,
("%s: freeing NULL mbufs!", __func__));
m_freem(txd->tx_m);
txd->tx_m = NULL;
if (txstat & (RL_TDESC_STAT_EXCESSCOL|
RL_TDESC_STAT_COLCNT))
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
if (txstat & RL_TDESC_STAT_TXERRSUM)
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
else
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
}
sc->rl_ldata.rl_tx_free++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
sc->rl_ldata.rl_tx_considx = cons;
/* No changes made to the TX ring, so no flush needed */
if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
#ifdef RE_TX_MODERATION
/*
* If not all descriptors have been reaped yet, reload
* the timer so that we will eventually get another
* interrupt that will cause us to re-enter this routine.
* This is done in case the transmitter has gone idle.
*/
CSR_WRITE_4(sc, RL_TIMERCNT, 1);
#endif
} else
sc->rl_watchdog_timer = 0;
}
static void
re_tick(void *xsc)
{
struct rl_softc *sc;
struct mii_data *mii;
sc = xsc;
RL_LOCK_ASSERT(sc);
mii = device_get_softc(sc->rl_miibus);
mii_tick(mii);
if ((sc->rl_flags & RL_FLAG_LINK) == 0)
re_miibus_statchg(sc->rl_dev);
/*
* Reclaim transmitted frames here. Technically it is not
* necessary to do here but it ensures periodic reclamation
* regardless of Tx completion interrupt which seems to be
* lost on PCIe based controllers under certain situations.
*/
re_txeof(sc);
re_watchdog(sc);
callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
}
#ifdef DEVICE_POLLING
static int
re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct rl_softc *sc = ifp->if_softc;
int rx_npkts = 0;
RL_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rx_npkts = re_poll_locked(ifp, cmd, count);
RL_UNLOCK(sc);
return (rx_npkts);
}
static int
re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct rl_softc *sc = ifp->if_softc;
int rx_npkts;
RL_LOCK_ASSERT(sc);
sc->rxcycles = count;
re_rxeof(sc, &rx_npkts);
re_txeof(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
re_start_locked(ifp);
if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
u_int16_t status;
status = CSR_READ_2(sc, RL_ISR);
if (status == 0xffff)
return (rx_npkts);
if (status)
CSR_WRITE_2(sc, RL_ISR, status);
if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
(sc->rl_flags & RL_FLAG_PCIE))
CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
/*
* XXX check behaviour on receiver stalls.
*/
if (status & RL_ISR_SYSTEM_ERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
re_init_locked(sc);
}
}
return (rx_npkts);
}
#endif /* DEVICE_POLLING */
static int
re_intr(void *arg)
{
struct rl_softc *sc;
uint16_t status;
sc = arg;
status = CSR_READ_2(sc, RL_ISR);
if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
return (FILTER_STRAY);
CSR_WRITE_2(sc, RL_IMR, 0);
taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask);
return (FILTER_HANDLED);
}
static void
re_int_task(void *arg, int npending)
{
struct rl_softc *sc;
struct ifnet *ifp;
u_int16_t status;
int rval = 0;
sc = arg;
ifp = sc->rl_ifp;
RL_LOCK(sc);
status = CSR_READ_2(sc, RL_ISR);
CSR_WRITE_2(sc, RL_ISR, status);
if (sc->suspended ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
RL_UNLOCK(sc);
return;
}
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
RL_UNLOCK(sc);
return;
}
#endif
if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
rval = re_rxeof(sc, NULL);
/*
* Some chips will ignore a second TX request issued
* while an existing transmission is in progress. If
* the transmitter goes idle but there are still
* packets waiting to be sent, we need to restart the
* channel here to flush them out. This only seems to
* be required with the PCIe devices.
*/
if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
(sc->rl_flags & RL_FLAG_PCIE))
CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
if (status & (
#ifdef RE_TX_MODERATION
RL_ISR_TIMEOUT_EXPIRED|
#else
RL_ISR_TX_OK|
#endif
RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
re_txeof(sc);
if (status & RL_ISR_SYSTEM_ERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
re_init_locked(sc);
}
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
re_start_locked(ifp);
RL_UNLOCK(sc);
if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask);
return;
}
CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
}
static void
re_intr_msi(void *xsc)
{
struct rl_softc *sc;
struct ifnet *ifp;
uint16_t intrs, status;
sc = xsc;
RL_LOCK(sc);
ifp = sc->rl_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
RL_UNLOCK(sc);
return;
}
#endif
/* Disable interrupts. */
CSR_WRITE_2(sc, RL_IMR, 0);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
RL_UNLOCK(sc);
return;
}
intrs = RL_INTRS_CPLUS;
status = CSR_READ_2(sc, RL_ISR);
CSR_WRITE_2(sc, RL_ISR, status);
if (sc->rl_int_rx_act > 0) {
intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
RL_ISR_RX_OVERRUN);
status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
RL_ISR_RX_OVERRUN);
}
if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
re_rxeof(sc, NULL);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (sc->rl_int_rx_mod != 0 &&
(status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
/* Rearm one-shot timer. */
CSR_WRITE_4(sc, RL_TIMERCNT, 1);
intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
sc->rl_int_rx_act = 1;
} else {
intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
sc->rl_int_rx_act = 0;
}
}
}
/*
* Some chips will ignore a second TX request issued
* while an existing transmission is in progress. If
* the transmitter goes idle but there are still
* packets waiting to be sent, we need to restart the
* channel here to flush them out. This only seems to
* be required with the PCIe devices.
*/
if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
(sc->rl_flags & RL_FLAG_PCIE))
CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
re_txeof(sc);
if (status & RL_ISR_SYSTEM_ERR) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
re_init_locked(sc);
}
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
re_start_locked(ifp);
CSR_WRITE_2(sc, RL_IMR, intrs);
}
RL_UNLOCK(sc);
}
static int
re_encap(struct rl_softc *sc, struct mbuf **m_head)
{
struct rl_txdesc *txd, *txd_last;
bus_dma_segment_t segs[RL_NTXSEGS];
bus_dmamap_t map;
struct mbuf *m_new;
struct rl_desc *desc;
int nsegs, prod;
int i, error, ei, si;
int padlen;
uint32_t cmdstat, csum_flags, vlanctl;
RL_LOCK_ASSERT(sc);
M_ASSERTPKTHDR((*m_head));
/*
* With some of the RealTek chips, using the checksum offload
* support in conjunction with the autopadding feature results
* in the transmission of corrupt frames. For example, if we
* need to send a really small IP fragment that's less than 60
* bytes in size, and IP header checksumming is enabled, the
* resulting ethernet frame that appears on the wire will
* have garbled payload. To work around this, if TX IP checksum
* offload is enabled, we always manually pad short frames out
* to the minimum ethernet frame size.
*/
if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
(*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
if (M_WRITABLE(*m_head) == 0) {
/* Get a writable copy. */
m_new = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
if (m_new == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m_new;
}
if ((*m_head)->m_next != NULL ||
M_TRAILINGSPACE(*m_head) < padlen) {
m_new = m_defrag(*m_head, M_NOWAIT);
if (m_new == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
} else
m_new = *m_head;
/*
* Manually pad short frames, and zero the pad space
* to avoid leaking data.
*/
bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
m_new->m_pkthdr.len += padlen;
m_new->m_len = m_new->m_pkthdr.len;
*m_head = m_new;
}
prod = sc->rl_ldata.rl_tx_prodidx;
txd = &sc->rl_ldata.rl_tx_desc[prod];
error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
*m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS);
if (m_new == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m_new;
error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/* Check for number of available descriptors. */
if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
return (ENOBUFS);
}
bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
BUS_DMASYNC_PREWRITE);
/*
* Set up checksum offload. Note: checksum offload bits must
* appear in all descriptors of a multi-descriptor transmit
* attempt. This is according to testing done with an 8169
* chip. This is a requirement.
*/
vlanctl = 0;
csum_flags = 0;
if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
csum_flags |= RL_TDESC_CMD_LGSEND;
vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
RL_TDESC_CMD_MSSVALV2_SHIFT);
} else {
csum_flags |= RL_TDESC_CMD_LGSEND |
((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
RL_TDESC_CMD_MSSVAL_SHIFT);
}
} else {
/*
* Unconditionally enable IP checksum if TCP or UDP
* checksum is required. Otherwise, TCP/UDP checksum
* doesn't make effects.
*/
if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
csum_flags |= RL_TDESC_CMD_IPCSUM;
if (((*m_head)->m_pkthdr.csum_flags &
CSUM_TCP) != 0)
csum_flags |= RL_TDESC_CMD_TCPCSUM;
if (((*m_head)->m_pkthdr.csum_flags &
CSUM_UDP) != 0)
csum_flags |= RL_TDESC_CMD_UDPCSUM;
} else {
vlanctl |= RL_TDESC_CMD_IPCSUMV2;
if (((*m_head)->m_pkthdr.csum_flags &
CSUM_TCP) != 0)
vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
if (((*m_head)->m_pkthdr.csum_flags &
CSUM_UDP) != 0)
vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
}
}
}
/*
* Set up hardware VLAN tagging. Note: vlan tag info must
* appear in all descriptors of a multi-descriptor
* transmission attempt.
*/
if ((*m_head)->m_flags & M_VLANTAG)
vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
RL_TDESC_VLANCTL_TAG;
si = prod;
for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
desc = &sc->rl_ldata.rl_tx_list[prod];
desc->rl_vlanctl = htole32(vlanctl);
desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
cmdstat = segs[i].ds_len;
if (i != 0)
cmdstat |= RL_TDESC_CMD_OWN;
if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
cmdstat |= RL_TDESC_CMD_EOR;
desc->rl_cmdstat = htole32(cmdstat | csum_flags);
sc->rl_ldata.rl_tx_free--;
}
/* Update producer index. */
sc->rl_ldata.rl_tx_prodidx = prod;
/* Set EOF on the last descriptor. */
ei = RL_TX_DESC_PRV(sc, prod);
desc = &sc->rl_ldata.rl_tx_list[ei];
desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
desc = &sc->rl_ldata.rl_tx_list[si];
/* Set SOF and transfer ownership of packet to the chip. */
desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
/*
* Insure that the map for this transmission
* is placed at the array index of the last descriptor
* in this chain. (Swap last and first dmamaps.)
*/
txd_last = &sc->rl_ldata.rl_tx_desc[ei];
map = txd->tx_dmamap;
txd->tx_dmamap = txd_last->tx_dmamap;
txd_last->tx_dmamap = map;
txd_last->tx_m = *m_head;
return (0);
}
static void
re_start(struct ifnet *ifp)
{
struct rl_softc *sc;
sc = ifp->if_softc;
RL_LOCK(sc);
re_start_locked(ifp);
RL_UNLOCK(sc);
}
/*
* Main transmit routine for C+ and gigE NICs.
*/
static void
re_start_locked(struct ifnet *ifp)
{
struct rl_softc *sc;
struct mbuf *m_head;
int queued;
sc = ifp->if_softc;
#ifdef DEV_NETMAP
/* XXX is this necessary ? */
if (ifp->if_capenable & IFCAP_NETMAP) {
struct netmap_kring *kring = &NA(ifp)->tx_rings[0];
if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
/* kick the tx unit */
CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
#ifdef RE_TX_MODERATION
CSR_WRITE_4(sc, RL_TIMERCNT, 1);
#endif
sc->rl_watchdog_timer = 5;
}
return;
}
#endif /* DEV_NETMAP */
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
return;
for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
sc->rl_ldata.rl_tx_free > 1;) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
if (re_encap(sc, &m_head) != 0) {
if (m_head == NULL)
break;
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
ETHER_BPF_MTAP(ifp, m_head);
queued++;
}
if (queued == 0) {
#ifdef RE_TX_MODERATION
if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
CSR_WRITE_4(sc, RL_TIMERCNT, 1);
#endif
return;
}
/* Flush the TX descriptors */
bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
sc->rl_ldata.rl_tx_list_map,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
#ifdef RE_TX_MODERATION
/*
* Use the countdown timer for interrupt moderation.
* 'TX done' interrupts are disabled. Instead, we reset the
* countdown timer, which will begin counting until it hits
* the value in the TIMERINT register, and then trigger an
* interrupt. Each time we write to the TIMERCNT register,
* the timer count is reset to 0.
*/
CSR_WRITE_4(sc, RL_TIMERCNT, 1);
#endif
/*
* Set a timeout in case the chip goes out to lunch.
*/
sc->rl_watchdog_timer = 5;
}
static void
re_set_jumbo(struct rl_softc *sc, int jumbo)
{
if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
pci_set_max_read_req(sc->rl_dev, 4096);
return;
}
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
if (jumbo != 0) {
CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) |
RL_CFG3_JUMBO_EN0);
switch (sc->rl_hwrev->rl_rev) {
case RL_HWREV_8168DP:
break;
case RL_HWREV_8168E:
CSR_WRITE_1(sc, sc->rl_cfg4,
CSR_READ_1(sc, sc->rl_cfg4) | 0x01);
break;
default:
CSR_WRITE_1(sc, sc->rl_cfg4,
CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1);
}
} else {
CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) &
~RL_CFG3_JUMBO_EN0);
switch (sc->rl_hwrev->rl_rev) {
case RL_HWREV_8168DP:
break;
case RL_HWREV_8168E:
CSR_WRITE_1(sc, sc->rl_cfg4,
CSR_READ_1(sc, sc->rl_cfg4) & ~0x01);
break;
default:
CSR_WRITE_1(sc, sc->rl_cfg4,
CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1);
}
}
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
switch (sc->rl_hwrev->rl_rev) {
case RL_HWREV_8168DP:
pci_set_max_read_req(sc->rl_dev, 4096);
break;
default:
if (jumbo != 0)
pci_set_max_read_req(sc->rl_dev, 512);
else
pci_set_max_read_req(sc->rl_dev, 4096);
}
}
static void
re_init(void *xsc)
{
struct rl_softc *sc = xsc;
RL_LOCK(sc);
re_init_locked(sc);
RL_UNLOCK(sc);
}
static void
re_init_locked(struct rl_softc *sc)
{
struct ifnet *ifp = sc->rl_ifp;
struct mii_data *mii;
uint32_t reg;
uint16_t cfg;
union {
uint32_t align_dummy;
u_char eaddr[ETHER_ADDR_LEN];
} eaddr;
RL_LOCK_ASSERT(sc);
mii = device_get_softc(sc->rl_miibus);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/*
* Cancel pending I/O and free all RX/TX buffers.
*/
re_stop(sc);
/* Put controller into known state. */
re_reset(sc);
/*
* For C+ mode, initialize the RX descriptors and mbufs.
*/
if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
if (ifp->if_mtu > RL_MTU) {
if (re_jrx_list_init(sc) != 0) {
device_printf(sc->rl_dev,
"no memory for jumbo RX buffers\n");
re_stop(sc);
return;
}
/* Disable checksum offloading for jumbo frames. */
ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
} else {
if (re_rx_list_init(sc) != 0) {
device_printf(sc->rl_dev,
"no memory for RX buffers\n");
re_stop(sc);
return;
}
}
re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
} else {
if (re_rx_list_init(sc) != 0) {
device_printf(sc->rl_dev, "no memory for RX buffers\n");
re_stop(sc);
return;
}
if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
if (ifp->if_mtu > RL_MTU)
pci_set_max_read_req(sc->rl_dev, 512);
else
pci_set_max_read_req(sc->rl_dev, 4096);
}
}
re_tx_list_init(sc);
/*
* Enable C+ RX and TX mode, as well as VLAN stripping and
* RX checksum offload. We must configure the C+ register
* before all others.
*/
cfg = RL_CPLUSCMD_PCI_MRW;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
cfg |= RL_CPLUSCMD_RXCSUM_ENB;
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
cfg |= RL_CPLUSCMD_VLANSTRIP;
if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
cfg |= RL_CPLUSCMD_MACSTAT_DIS;
/* XXX magic. */
cfg |= 0x0001;
} else
cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
reg = 0x000fff00;
if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0)
reg |= 0x000000ff;
if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
reg |= 0x00f00000;
CSR_WRITE_4(sc, 0x7c, reg);
/* Disable interrupt mitigation. */
CSR_WRITE_2(sc, 0xe2, 0);
}
/*
* Disable TSO if interface MTU size is greater than MSS
* allowed in controller.
*/
if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
ifp->if_capenable &= ~IFCAP_TSO4;
ifp->if_hwassist &= ~CSUM_TSO;
}
/*
* Init our MAC address. Even though the chipset
* documentation doesn't mention it, we need to enter "Config
* register write enable" mode to modify the ID registers.
*/
/* Copy MAC address on stack to align. */
bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
CSR_WRITE_4(sc, RL_IDR0,
htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
CSR_WRITE_4(sc, RL_IDR4,
htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
/*
* Load the addresses of the RX and TX lists into the chip.
*/
CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
/* Disable RXDV gate. */
CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
~0x00080000);
}
/*
* Enable transmit and receive for pre-RTL8168G controllers.
* RX/TX MACs should be enabled before RX/TX configuration.
*/
if ((sc->rl_flags & RL_FLAG_8168G_PLUS) == 0)
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
/*
* Set the initial TX configuration.
*/
if (sc->rl_testmode) {
if (sc->rl_type == RL_8169)
CSR_WRITE_4(sc, RL_TXCFG,
RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
else
CSR_WRITE_4(sc, RL_TXCFG,
RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
} else
CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
/*
* Set the initial RX configuration.
*/
re_set_rxmode(sc);
/* Configure interrupt moderation. */
if (sc->rl_type == RL_8169) {
/* Magic from vendor. */
CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
}
/*
* Enable transmit and receive for RTL8168G and later controllers.
* RX/TX MACs should be enabled after RX/TX configuration.
*/
if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0)
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB);
#ifdef DEVICE_POLLING
/*
* Disable interrupts if we are polling.
*/
if (ifp->if_capenable & IFCAP_POLLING)
CSR_WRITE_2(sc, RL_IMR, 0);
else /* otherwise ... */
#endif
/*
* Enable interrupts.
*/
if (sc->rl_testmode)
CSR_WRITE_2(sc, RL_IMR, 0);
else
CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
/* Set initial TX threshold */
sc->rl_txthresh = RL_TX_THRESH_INIT;
/* Start RX/TX process. */
CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
/*
* Initialize the timer interrupt register so that
* a timer interrupt will be generated once the timer
* reaches a certain number of ticks. The timer is
* reloaded on each transmit.
*/
#ifdef RE_TX_MODERATION
/*
* Use timer interrupt register to moderate TX interrupt
* moderation, which dramatically improves TX frame rate.
*/
if (sc->rl_type == RL_8169)
CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
else
CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
#else
/*
* Use timer interrupt register to moderate RX interrupt
* moderation.
*/
if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
intr_filter == 0) {
if (sc->rl_type == RL_8169)
CSR_WRITE_4(sc, RL_TIMERINT_8169,
RL_USECS(sc->rl_int_rx_mod));
} else {
if (sc->rl_type == RL_8169)
CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
}
#endif
/*
* For 8169 gigE NICs, set the max allowed RX packet
* size so we can receive jumbo frames.
*/
if (sc->rl_type == RL_8169) {
if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
/*
* For controllers that use new jumbo frame scheme,
* set maximum size of jumbo frame depending on
* controller revisions.
*/
if (ifp->if_mtu > RL_MTU)
CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
sc->rl_hwrev->rl_max_mtu +
ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
ETHER_CRC_LEN);
else
CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
RE_RX_DESC_BUFLEN);
} else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
sc->rl_hwrev->rl_max_mtu == RL_MTU) {
/* RTL810x has no jumbo frame support. */
CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
} else
CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
}
if (sc->rl_testmode)
return;
CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) |
RL_CFG1_DRVLOAD);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
sc->rl_flags &= ~RL_FLAG_LINK;
mii_mediachg(mii);
sc->rl_watchdog_timer = 0;
callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
}
/*
* Set media options.
*/
static int
re_ifmedia_upd(struct ifnet *ifp)
{
struct rl_softc *sc;
struct mii_data *mii;
int error;
sc = ifp->if_softc;
mii = device_get_softc(sc->rl_miibus);
RL_LOCK(sc);
error = mii_mediachg(mii);
RL_UNLOCK(sc);
return (error);
}
/*
* Report current media status.
*/
static void
re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct rl_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
mii = device_get_softc(sc->rl_miibus);
RL_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
RL_UNLOCK(sc);
}
static int
re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct rl_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int error = 0;
switch (command) {
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN ||
ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu ||
((sc->rl_flags & RL_FLAG_FASTETHER) != 0 &&
ifr->ifr_mtu > RL_MTU)) {
error = EINVAL;
break;
}
RL_LOCK(sc);
if (ifp->if_mtu != ifr->ifr_mtu) {
ifp->if_mtu = ifr->ifr_mtu;
if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
re_init_locked(sc);
}
if (ifp->if_mtu > RL_TSO_MTU &&
(ifp->if_capenable & IFCAP_TSO4) != 0) {
ifp->if_capenable &= ~(IFCAP_TSO4 |
IFCAP_VLAN_HWTSO);
ifp->if_hwassist &= ~CSUM_TSO;
}
VLAN_CAPABILITIES(ifp);
}
RL_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
RL_LOCK(sc);
if ((ifp->if_flags & IFF_UP) != 0) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
if (((ifp->if_flags ^ sc->rl_if_flags)
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
re_set_rxmode(sc);
} else
re_init_locked(sc);
} else {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
re_stop(sc);
}
sc->rl_if_flags = ifp->if_flags;
RL_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
RL_LOCK(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
re_set_rxmode(sc);
RL_UNLOCK(sc);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
mii = device_get_softc(sc->rl_miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
case SIOCSIFCAP:
{
int mask, reinit;
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
reinit = 0;
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
error = ether_poll_register(re_poll, ifp);
if (error)
return (error);
RL_LOCK(sc);
/* Disable interrupts */
CSR_WRITE_2(sc, RL_IMR, 0x0000);
ifp->if_capenable |= IFCAP_POLLING;
RL_UNLOCK(sc);
} else {
error = ether_poll_deregister(ifp);
/* Enable interrupts. */
RL_LOCK(sc);
CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
ifp->if_capenable &= ~IFCAP_POLLING;
RL_UNLOCK(sc);
}
}
#endif /* DEVICE_POLLING */
RL_LOCK(sc);
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= RE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~RE_CSUM_FEATURES;
reinit = 1;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
reinit = 1;
}
if ((mask & IFCAP_TSO4) != 0 &&
(ifp->if_capabilities & IFCAP_TSO4) != 0) {
ifp->if_capenable ^= IFCAP_TSO4;
if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
ifp->if_hwassist |= CSUM_TSO;
else
ifp->if_hwassist &= ~CSUM_TSO;
if (ifp->if_mtu > RL_TSO_MTU &&
(ifp->if_capenable & IFCAP_TSO4) != 0) {
ifp->if_capenable &= ~IFCAP_TSO4;
ifp->if_hwassist &= ~CSUM_TSO;
}
}
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
/* TSO over VLAN requires VLAN hardware tagging. */
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
reinit = 1;
}
if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
(mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
IFCAP_VLAN_HWTSO)) != 0)
reinit = 1;
if ((mask & IFCAP_WOL) != 0 &&
(ifp->if_capabilities & IFCAP_WOL) != 0) {
if ((mask & IFCAP_WOL_UCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_UCAST;
if ((mask & IFCAP_WOL_MCAST) != 0)
ifp->if_capenable ^= IFCAP_WOL_MCAST;
if ((mask & IFCAP_WOL_MAGIC) != 0)
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
}
if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
re_init_locked(sc);
}
RL_UNLOCK(sc);
VLAN_CAPABILITIES(ifp);
}
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
re_watchdog(struct rl_softc *sc)
{
struct ifnet *ifp;
RL_LOCK_ASSERT(sc);
if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
return;
ifp = sc->rl_ifp;
re_txeof(sc);
if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
"-- recovering\n");
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
re_start_locked(ifp);
return;
}
if_printf(ifp, "watchdog timeout\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
re_rxeof(sc, NULL);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
re_init_locked(sc);
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
re_start_locked(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
re_stop(struct rl_softc *sc)
{
int i;
struct ifnet *ifp;
struct rl_txdesc *txd;
struct rl_rxdesc *rxd;
RL_LOCK_ASSERT(sc);
ifp = sc->rl_ifp;
sc->rl_watchdog_timer = 0;
callout_stop(&sc->rl_stat_callout);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/*
* Disable accepting frames to put RX MAC into idle state.
* Otherwise it's possible to get frames while stop command
* execution is in progress and controller can DMA the frame
* to already freed RX buffer during that period.
*/
CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
RL_RXCFG_RX_BROAD));
if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
/* Enable RXDV gate. */
CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) |
0x00080000);
}
if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
for (i = RL_TIMEOUT; i > 0; i--) {
if ((CSR_READ_1(sc, sc->rl_txstart) &
RL_TXSTART_START) == 0)
break;
DELAY(20);
}
if (i == 0)
device_printf(sc->rl_dev,
"stopping TX poll timed out!\n");
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
} else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
RL_CMD_RX_ENB);
if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
for (i = RL_TIMEOUT; i > 0; i--) {
if ((CSR_READ_4(sc, RL_TXCFG) &
RL_TXCFG_QUEUE_EMPTY) != 0)
break;
DELAY(100);
}
if (i == 0)
device_printf(sc->rl_dev,
"stopping TXQ timed out!\n");
}
} else
CSR_WRITE_1(sc, RL_COMMAND, 0x00);
DELAY(1000);
CSR_WRITE_2(sc, RL_IMR, 0x0000);
CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
if (sc->rl_head != NULL) {
m_freem(sc->rl_head);
sc->rl_head = sc->rl_tail = NULL;
}
/* Free the TX list buffers. */
for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
txd = &sc->rl_ldata.rl_tx_desc[i];
if (txd->tx_m != NULL) {
bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
txd->tx_dmamap);
m_freem(txd->tx_m);
txd->tx_m = NULL;
}
}
/* Free the RX list buffers. */
for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
rxd = &sc->rl_ldata.rl_rx_desc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
rxd = &sc->rl_ldata.rl_jrx_desc[i];
if (rxd->rx_m != NULL) {
bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag,
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag,
rxd->rx_dmamap);
m_freem(rxd->rx_m);
rxd->rx_m = NULL;
}
}
}
}
/*
* Device suspend routine. Stop the interface and save some PCI
* settings in case the BIOS doesn't restore them properly on
* resume.
*/
static int
re_suspend(device_t dev)
{
struct rl_softc *sc;
sc = device_get_softc(dev);
RL_LOCK(sc);
re_stop(sc);
re_setwol(sc);
sc->suspended = 1;
RL_UNLOCK(sc);
return (0);
}
/*
* Device resume routine. Restore some PCI settings in case the BIOS
* doesn't, re-enable busmastering, and restart the interface if
* appropriate.
*/
static int
re_resume(device_t dev)
{
struct rl_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
RL_LOCK(sc);
ifp = sc->rl_ifp;
/* Take controller out of sleep mode. */
if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
CSR_WRITE_1(sc, RL_GPIO,
CSR_READ_1(sc, RL_GPIO) | 0x01);
}
/*
* Clear WOL matching such that normal Rx filtering
* wouldn't interfere with WOL patterns.
*/
re_clrwol(sc);
/* reinitialize interface if necessary */
if (ifp->if_flags & IFF_UP)
re_init_locked(sc);
sc->suspended = 0;
RL_UNLOCK(sc);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
re_shutdown(device_t dev)
{
struct rl_softc *sc;
sc = device_get_softc(dev);
RL_LOCK(sc);
re_stop(sc);
/*
* Mark interface as down since otherwise we will panic if
* interrupt comes in later on, which can happen in some
* cases.
*/
sc->rl_ifp->if_flags &= ~IFF_UP;
re_setwol(sc);
RL_UNLOCK(sc);
return (0);
}
static void
re_set_linkspeed(struct rl_softc *sc)
{
struct mii_softc *miisc;
struct mii_data *mii;
int aneg, i, phyno;
RL_LOCK_ASSERT(sc);
mii = device_get_softc(sc->rl_miibus);
mii_pollstat(mii);
aneg = 0;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch IFM_SUBTYPE(mii->mii_media_active) {
case IFM_10_T:
case IFM_100_TX:
return;
case IFM_1000_T:
aneg++;
break;
default:
break;
}
}
miisc = LIST_FIRST(&mii->mii_phys);
phyno = miisc->mii_phy;
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
re_miibus_writereg(sc->rl_dev, phyno,
MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
re_miibus_writereg(sc->rl_dev, phyno,
MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
DELAY(1000);
if (aneg != 0) {
/*
* Poll link state until re(4) get a 10/100Mbps link.
*/
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
mii_pollstat(mii);
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
== (IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
return;
default:
break;
}
}
RL_UNLOCK(sc);
pause("relnk", hz);
RL_LOCK(sc);
}
if (i == MII_ANEGTICKS_GIGE)
device_printf(sc->rl_dev,
"establishing a link failed, WOL may not work!");
}
/*
* No link, force MAC to have 100Mbps, full-duplex link.
* MAC does not require reprogramming on resolved speed/duplex,
* so this is just for completeness.
*/
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
}
static void
re_setwol(struct rl_softc *sc)
{
struct ifnet *ifp;
int pmc;
uint16_t pmstat;
uint8_t v;
RL_LOCK_ASSERT(sc);
if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
return;
ifp = sc->rl_ifp;
/* Put controller into sleep mode. */
if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
CSR_WRITE_1(sc, RL_GPIO,
CSR_READ_1(sc, RL_GPIO) & ~0x01);
}
if ((ifp->if_capenable & IFCAP_WOL) != 0) {
if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) {
/* Disable RXDV gate. */
CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) &
~0x00080000);
}
re_set_rxmode(sc);
if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
re_set_linkspeed(sc);
if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
}
/* Enable config register write. */
CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
/* Enable PME. */
v = CSR_READ_1(sc, sc->rl_cfg1);
v &= ~RL_CFG1_PME;
if ((ifp->if_capenable & IFCAP_WOL) != 0)
v |= RL_CFG1_PME;
CSR_WRITE_1(sc, sc->rl_cfg1, v);
v = CSR_READ_1(sc, sc->rl_cfg3);
v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
v |= RL_CFG3_WOL_MAGIC;
CSR_WRITE_1(sc, sc->rl_cfg3, v);
v = CSR_READ_1(sc, sc->rl_cfg5);
v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
RL_CFG5_WOL_LANWAKE);
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
v |= RL_CFG5_WOL_UCAST;
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
if ((ifp->if_capenable & IFCAP_WOL) != 0)
v |= RL_CFG5_WOL_LANWAKE;
CSR_WRITE_1(sc, sc->rl_cfg5, v);
/* Config register write done. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
if ((ifp->if_capenable & IFCAP_WOL) == 0 &&
(sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
/*
* It seems that hardware resets its link speed to 100Mbps in
* power down mode so switching to 100Mbps in driver is not
* needed.
*/
/* Request PME if WOL is requested. */
pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
if ((ifp->if_capenable & IFCAP_WOL) != 0)
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
}
static void
re_clrwol(struct rl_softc *sc)
{
int pmc;
uint8_t v;
RL_LOCK_ASSERT(sc);
if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
return;
/* Enable config register write. */
CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
v = CSR_READ_1(sc, sc->rl_cfg3);
v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
CSR_WRITE_1(sc, sc->rl_cfg3, v);
/* Config register write done. */
CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
v = CSR_READ_1(sc, sc->rl_cfg5);
v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
v &= ~RL_CFG5_WOL_LANWAKE;
CSR_WRITE_1(sc, sc->rl_cfg5, v);
}
static void
re_add_sysctls(struct rl_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
int error;
ctx = device_get_sysctl_ctx(sc->rl_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
"Statistics Information");
if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
return;
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
/* Pull in device tunables. */
sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
error = resource_int_value(device_get_name(sc->rl_dev),
device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
if (error == 0) {
if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
sc->rl_int_rx_mod > RL_TIMER_MAX) {
device_printf(sc->rl_dev, "int_rx_mod value out of "
"range; using default: %d\n",
RL_TIMER_DEFAULT);
sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
}
}
}
static int
re_sysctl_stats(SYSCTL_HANDLER_ARGS)
{
struct rl_softc *sc;
struct rl_stats *stats;
int error, i, result;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || req->newptr == NULL)
return (error);
if (result == 1) {
sc = (struct rl_softc *)arg1;
RL_LOCK(sc);
if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
RL_UNLOCK(sc);
goto done;
}
bus_dmamap_sync(sc->rl_ldata.rl_stag,
sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
RL_DUMPSTATS_START));
for (i = RL_TIMEOUT; i > 0; i--) {
if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
RL_DUMPSTATS_START) == 0)
break;
DELAY(1000);
}
bus_dmamap_sync(sc->rl_ldata.rl_stag,
sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
RL_UNLOCK(sc);
if (i == 0) {
device_printf(sc->rl_dev,
"DUMP statistics request timed out\n");
return (ETIMEDOUT);
}
done:
stats = sc->rl_ldata.rl_stats;
printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
printf("Tx frames : %ju\n",
(uintmax_t)le64toh(stats->rl_tx_pkts));
printf("Rx frames : %ju\n",
(uintmax_t)le64toh(stats->rl_rx_pkts));
printf("Tx errors : %ju\n",
(uintmax_t)le64toh(stats->rl_tx_errs));
printf("Rx errors : %u\n",
le32toh(stats->rl_rx_errs));
printf("Rx missed frames : %u\n",
(uint32_t)le16toh(stats->rl_missed_pkts));
printf("Rx frame alignment errs : %u\n",
(uint32_t)le16toh(stats->rl_rx_framealign_errs));
printf("Tx single collisions : %u\n",
le32toh(stats->rl_tx_onecoll));
printf("Tx multiple collisions : %u\n",
le32toh(stats->rl_tx_multicolls));
printf("Rx unicast frames : %ju\n",
(uintmax_t)le64toh(stats->rl_rx_ucasts));
printf("Rx broadcast frames : %ju\n",
(uintmax_t)le64toh(stats->rl_rx_bcasts));
printf("Rx multicast frames : %u\n",
le32toh(stats->rl_rx_mcasts));
printf("Tx aborts : %u\n",
(uint32_t)le16toh(stats->rl_tx_aborts));
printf("Tx underruns : %u\n",
(uint32_t)le16toh(stats->rl_rx_underruns));
}
return (error);
}
static int
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
{
int error, value;
if (arg1 == NULL)
return (EINVAL);
value = *(int *)arg1;
error = sysctl_handle_int(oidp, &value, 0, req);
if (error || req->newptr == NULL)
return (error);
if (value < low || value > high)
return (EINVAL);
*(int *)arg1 = value;
return (0);
}
static int
sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
{
return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
RL_TIMER_MAX));
}