bdd8e8fe81
method is used by the PCI bus driver to query the power management system to determine the proper device state to be used for a device during suspend and resume. For the ACPI PCI bridge drivers this calls acpi_device_pwr_for_sleep(). This removes ACPI-specific knowledge from the PCI and PCI-PCI bridge drivers. Reviewed by: jkim
157 lines
4.0 KiB
Objective-C
157 lines
4.0 KiB
Objective-C
#-
|
|
# Copyright (c) 2000 Doug Rabson
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions
|
|
# are met:
|
|
# 1. Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
# 2. Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
# OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
# OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
# SUCH DAMAGE.
|
|
#
|
|
# $FreeBSD$
|
|
#
|
|
|
|
#include <sys/bus.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
INTERFACE pcib;
|
|
|
|
CODE {
|
|
static int
|
|
null_route_interrupt(device_t pcib, device_t dev, int pin)
|
|
{
|
|
return (PCI_INVALID_IRQ);
|
|
}
|
|
};
|
|
|
|
#
|
|
# Return the number of slots on the attached PCI bus.
|
|
#
|
|
METHOD int maxslots {
|
|
device_t dev;
|
|
};
|
|
|
|
#
|
|
# Read configuration space on the PCI bus. The bus, slot and func
|
|
# arguments determine the device which is being read and the reg
|
|
# argument is a byte offset into configuration space for that
|
|
# device. The width argument (which should be 1, 2 or 4) specifies how
|
|
# many byte of configuration space to read from that offset.
|
|
#
|
|
METHOD u_int32_t read_config {
|
|
device_t dev;
|
|
u_int bus;
|
|
u_int slot;
|
|
u_int func;
|
|
u_int reg;
|
|
int width;
|
|
};
|
|
|
|
#
|
|
# Write configuration space on the PCI bus. The bus, slot and func
|
|
# arguments determine the device which is being written and the reg
|
|
# argument is a byte offset into configuration space for that
|
|
# device. The value field is written to the configuration space, with
|
|
# the number of bytes written depending on the width argument.
|
|
#
|
|
METHOD void write_config {
|
|
device_t dev;
|
|
u_int bus;
|
|
u_int slot;
|
|
u_int func;
|
|
u_int reg;
|
|
u_int32_t value;
|
|
int width;
|
|
};
|
|
|
|
#
|
|
# Route an interrupt. Returns a value suitable for stuffing into
|
|
# a device's interrupt register.
|
|
#
|
|
METHOD int route_interrupt {
|
|
device_t pcib;
|
|
device_t dev;
|
|
int pin;
|
|
} DEFAULT null_route_interrupt;
|
|
|
|
#
|
|
# Allocate 'count' MSI messsages mapped onto 'count' IRQs. 'irq' points
|
|
# to an array of at least 'count' ints. The max number of messages this
|
|
# device supports is included so that the MD code can take that into
|
|
# account when assigning resources so that the proper number of low bits
|
|
# are clear in the resulting message data value.
|
|
#
|
|
METHOD int alloc_msi {
|
|
device_t pcib;
|
|
device_t dev;
|
|
int count;
|
|
int maxcount;
|
|
int *irqs;
|
|
};
|
|
|
|
#
|
|
# Release 'count' MSI messages mapped onto 'count' IRQs stored in the
|
|
# array pointed to by 'irqs'.
|
|
#
|
|
METHOD int release_msi {
|
|
device_t pcib;
|
|
device_t dev;
|
|
int count;
|
|
int *irqs;
|
|
};
|
|
|
|
#
|
|
# Allocate a single MSI-X message mapped onto '*irq'.
|
|
#
|
|
METHOD int alloc_msix {
|
|
device_t pcib;
|
|
device_t dev;
|
|
int *irq;
|
|
};
|
|
|
|
#
|
|
# Release a single MSI-X message mapped onto 'irq'.
|
|
#
|
|
METHOD int release_msix {
|
|
device_t pcib;
|
|
device_t dev;
|
|
int irq;
|
|
};
|
|
|
|
#
|
|
# Determine the MSI/MSI-X message address and data for 'irq'. The address
|
|
# is returned in '*addr', and the data in '*data'.
|
|
#
|
|
METHOD int map_msi {
|
|
device_t pcib;
|
|
device_t dev;
|
|
int irq;
|
|
uint64_t *addr;
|
|
uint32_t *data;
|
|
};
|
|
|
|
#
|
|
# Return the device power state to be used during a system sleep state
|
|
# transition such as suspend and resume.
|
|
#
|
|
METHOD int power_for_sleep {
|
|
device_t pcib;
|
|
device_t dev;
|
|
int *pstate;
|
|
};
|