freebsd-skq/secure/lib/libcipher
mike bcee06d42c o Move NTOHL() and associated macros into <sys/param.h>. These are
deprecated in favor of the POSIX-defined lowercase variants.
o Change all occurrences of NTOHL() and associated marcros in the
  source tree to use the lowercase function variants.
o Add missing license bits to sparc64's <machine/endian.h>.
  Approved by: jake
o Clean up <machine/endian.h> files.
o Remove unused __uint16_swap_uint32() from i386's <machine/endian.h>.
o Remove prototypes for non-existent bswapXX() functions.
o Include <machine/endian.h> in <arpa/inet.h> to define the
  POSIX-required ntohl() family of functions.
o Do similar things to expose the ntohl() family in libstand, <netinet/in.h>,
  and <sys/param.h>.
o Prepend underscores to the ntohl() family to help deal with
  complexities associated with having MD (asm and inline) versions, and
  having to prevent exposure of these functions in other headers that
  happen to make use of endian-specific defines.
o Create weak aliases to the canonical function name to help deal with
  third-party software forgetting to include an appropriate header.
o Remove some now unneeded pollution from <sys/types.h>.
o Add missing <arpa/inet.h> includes in userland.

Tested on:	alpha, i386
Reviewed by:	bde, jake, tmm
2002-02-18 20:35:27 +00:00
..
test
cipher.3 mdoc(7) police: Use the new .In macro for #include statements. 2001-10-01 16:09:29 +00:00
crypt.c o Move NTOHL() and associated macros into <sys/param.h>. These are 2002-02-18 20:35:27 +00:00
Makefile secure/ build fixes: 2001-03-26 14:53:33 +00:00
README
README.FreeBSD

	FreeSec - NetBSD libcrypt replacement

	  David Burren <davidb@werj.com.au>
	  Release 1.0, March 1994

    Document ref: $FreeBSD$


Description
===========
This library is a drop-in replacement for the libcrypt used in U.S. copies
of NetBSD, duplicating that library's functionality.  A suite of verification
and benchmark tools is provided.

FreeSec 1.0 is an original implementation of the DES algorithm and the
crypt(3) interfaces used in Unix-style operating systems.  It was produced
in Australia and as such is not covered by U.S. export restrictions (at
least for copies that remain outside the U.S.).


History
=======
An earlier version of the FreeSec library was built using the UFC-crypt
package that is distributed as part of the GNU library.  UFC-crypt did not
support the des_cipher() or des_setkey() functions, nor the new-style
crypt with long keys.  These were implemented in FreeSec 0.2, but at least
one bug remained, where encryption would only succeed if either the salt
or the plaintext was zero.  Because of its heritage FreeSec 0.2 was covered
by the GNU Library Licence.

FreeSec 1.0 is an original implementation by myself, and has been tested
against the verification suite I'd been using with FreeSec 0.2 (this is not
encumbered by any licence).  FreeSec 1.0 is covered by a Berkeley-style
licence, which better fits into the *BSD hierarchy than the earlier GNU
licence.


Why should you use FreeSec?
===========================
FreeSec is intended as a replacement for the U.S.-only NetBSD libcrypt,
to act as a baseline for encryption functionality.

Some other packages (such as Eric Young's libdes package) are faster and
more complete than FreeSec, but typically have different licencing
arrangements.  While some applications will justify the use of these
packages, the idea here is that everyone should have access to *at least*
the functionality of FreeSec.


Performance of FreeSec 1.0
==========================
I compare below the performance of three libcrypt implementations.  As can be
seen, it's between the U.S. library and UFC-crypt.  While the performance of
FreeSec 1.0 is good enough to keep me happy for now, I hope to improve it in
future versions.  I was interested to note that while UFC-crypt is faster on
a 386, hardware characteristics can have markedly different effects on each
implementation.


386DX40, 128k cache	| U.S. BSD	| FreeSec 1.0	| FreeSec 0.2
CFLAGS=-O2		|		|		|
========================+===============+===============+==================
crypt (alternate keys)	| 317		| 341		| 395
	crypt/sec	|		|		|
------------------------+---------------+---------------+------------------
crypt (constant key)	| 317		| 368		| 436
	crypt/sec	|		|		|
------------------------+---------------+---------------+------------------
des_cipher( , , , 1)	| 6037		| 7459		| 3343
	blocks/sec	|		|		|
------------------------+---------------+---------------+------------------
des_cipher( , , , 25)	| 8871		| 9627		| 15926
	blocks/sec	|		|		|

Notes:	The results tabled here are the average over 10 runs.
	The entry/exit code for FreeSec 0.2's des_cipher() is particularly
	inefficient, thus the anomalous result for single encryptions.


As an experiment using a machine with a larger register set and an
obscenely fast CPU, I obtained the following results:

	60 MHz R4400		| FreeSec 1.0	| FreeSec 0.2
	========================+=================================
	crypt (alternate keys)	| 2545		| 2702
		crypt/sec	|		|
	------------------------+---------------------------------
	crypt (constant key)	| 2852		| 2981
		crypt/sec	|		|
	------------------------+---------------------------------
	des_cipher( , , , 1)	| 56443		| 21409
		blocks/sec	|		|
	------------------------+---------------------------------
	des_cipher( , , , 25)	| 82531		| 18276
		blocks/sec	|		|

Obviously your mileage will vary with your hardware and your compiler...