freebsd-skq/sys/dev/ed/if_ed.c

1856 lines
47 KiB
C

/*-
* Copyright (c) 1995, David Greenman
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
* adapters. By David Greenman, 29-April-1993
*
* Currently supports the Western Digital/SMC 8003 and 8013 series,
* the SMC Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000,
* and a variety of similar clones.
*
*/
#include "opt_ed.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/bus.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_mib.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <dev/ed/if_edreg.h>
#include <dev/ed/if_edvar.h>
#include <sys/kdb.h>
devclass_t ed_devclass;
static void ed_init(void *);
static void ed_init_locked(struct ed_softc *);
static int ed_ioctl(struct ifnet *, u_long, caddr_t);
static void ed_start(struct ifnet *);
static void ed_start_locked(struct ifnet *);
static void ed_reset(struct ifnet *);
static void ed_tick(void *);
static void ed_watchdog(struct ed_softc *);
static void ed_ds_getmcaf(struct ed_softc *, uint32_t *);
static void ed_get_packet(struct ed_softc *, bus_size_t, u_short);
static void ed_stop_hw(struct ed_softc *sc);
static __inline void ed_rint(struct ed_softc *);
static __inline void ed_xmit(struct ed_softc *);
static __inline void ed_ring_copy(struct ed_softc *, bus_size_t, char *,
u_short);
static void ed_setrcr(struct ed_softc *);
/*
* Generic probe routine for testing for the existance of a DS8390.
* Must be called after the NIC has just been reset. This routine
* works by looking at certain register values that are guaranteed
* to be initialized a certain way after power-up or reset. Seems
* not to currently work on the 83C690.
*
* Specifically:
*
* Register reset bits set bits
* Command Register (CR) TXP, STA RD2, STP
* Interrupt Status (ISR) RST
* Interrupt Mask (IMR) All bits
* Data Control (DCR) LAS
* Transmit Config. (TCR) LB1, LB0
*
* We only look at the CR and ISR registers, however, because looking at
* the others would require changing register pages (which would be
* intrusive if this isn't an 8390).
*
* Return 1 if 8390 was found, 0 if not.
*/
int
ed_probe_generic8390(struct ed_softc *sc)
{
if ((ed_nic_inb(sc, ED_P0_CR) &
(ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
(ED_CR_RD2 | ED_CR_STP))
return (0);
if ((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
return (0);
return (1);
}
void
ed_disable_16bit_access(struct ed_softc *sc)
{
/*
* Disable 16 bit access to shared memory
*/
if (sc->isa16bit && sc->vendor == ED_VENDOR_WD_SMC) {
if (sc->chip_type == ED_CHIP_TYPE_WD790)
ed_asic_outb(sc, ED_WD_MSR, 0x00);
ed_asic_outb(sc, ED_WD_LAAR,
sc->wd_laar_proto & ~ED_WD_LAAR_M16EN);
}
}
void
ed_enable_16bit_access(struct ed_softc *sc)
{
if (sc->isa16bit && sc->vendor == ED_VENDOR_WD_SMC) {
ed_asic_outb(sc, ED_WD_LAAR,
sc->wd_laar_proto | ED_WD_LAAR_M16EN);
if (sc->chip_type == ED_CHIP_TYPE_WD790)
ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB);
}
}
/*
* Allocate a port resource with the given resource id.
*/
int
ed_alloc_port(device_t dev, int rid, int size)
{
struct ed_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_IOPORT, &rid,
0ul, ~0ul, size, RF_ACTIVE);
if (res) {
sc->port_res = res;
sc->port_used = size;
sc->port_bst = rman_get_bustag(res);
sc->port_bsh = rman_get_bushandle(res);
return (0);
}
return (ENOENT);
}
/*
* Allocate a memory resource with the given resource id.
*/
int
ed_alloc_memory(device_t dev, int rid, int size)
{
struct ed_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource(dev, SYS_RES_MEMORY, &rid,
0ul, ~0ul, size, RF_ACTIVE);
if (res) {
sc->mem_res = res;
sc->mem_used = size;
sc->mem_bst = rman_get_bustag(res);
sc->mem_bsh = rman_get_bushandle(res);
return (0);
}
return (ENOENT);
}
/*
* Allocate an irq resource with the given resource id.
*/
int
ed_alloc_irq(device_t dev, int rid, int flags)
{
struct ed_softc *sc = device_get_softc(dev);
struct resource *res;
res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_ACTIVE | flags);
if (res) {
sc->irq_res = res;
return (0);
}
return (ENOENT);
}
/*
* Release all resources
*/
void
ed_release_resources(device_t dev)
{
struct ed_softc *sc = device_get_softc(dev);
if (sc->port_res)
bus_free_resource(dev, SYS_RES_IOPORT, sc->port_res);
if (sc->port_res2)
bus_free_resource(dev, SYS_RES_IOPORT, sc->port_res2);
if (sc->mem_res)
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
if (sc->irq_res)
bus_free_resource(dev, SYS_RES_IRQ, sc->irq_res);
sc->port_res = 0;
sc->port_res2 = 0;
sc->mem_res = 0;
sc->irq_res = 0;
if (sc->ifp)
if_free(sc->ifp);
}
/*
* Install interface into kernel networking data structures
*/
int
ed_attach(device_t dev)
{
struct ed_softc *sc = device_get_softc(dev);
struct ifnet *ifp;
sc->dev = dev;
ED_LOCK_INIT(sc);
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
ED_LOCK_DESTROY(sc);
return (ENOSPC);
}
if (sc->readmem == NULL) {
if (sc->mem_shared) {
if (sc->isa16bit)
sc->readmem = ed_shmem_readmem16;
else
sc->readmem = ed_shmem_readmem8;
} else {
sc->readmem = ed_pio_readmem;
}
}
if (sc->sc_write_mbufs == NULL) {
device_printf(dev, "No write mbufs routine set\n");
return (ENXIO);
}
callout_init_mtx(&sc->tick_ch, ED_MUTEX(sc), 0);
/*
* Set interface to stopped condition (reset)
*/
ed_stop_hw(sc);
/*
* Initialize ifnet structure
*/
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_start = ed_start;
ifp->if_ioctl = ed_ioctl;
ifp->if_init = ed_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ifp->if_linkmib = &sc->mibdata;
ifp->if_linkmiblen = sizeof sc->mibdata;
/*
* XXX - should do a better job.
*/
if (sc->chip_type == ED_CHIP_TYPE_WD790)
sc->mibdata.dot3StatsEtherChipSet =
DOT3CHIPSET(dot3VendorWesternDigital,
dot3ChipSetWesternDigital83C790);
else
sc->mibdata.dot3StatsEtherChipSet =
DOT3CHIPSET(dot3VendorNational,
dot3ChipSetNational8390);
sc->mibdata.dot3Compliance = DOT3COMPLIANCE_COLLS;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
/*
* Set default state for LINK2 flag (used to disable the
* tranceiver for AUI operation), based on config option.
* We only set this flag before we attach the device, so there's
* no race. It is convenient to allow users to turn this off
* by default in the kernel config, but given our more advanced
* boot time configuration options, this might no longer be needed.
*/
if (device_get_flags(dev) & ED_FLAGS_DISABLE_TRANCEIVER)
ifp->if_flags |= IFF_LINK2;
/*
* Attach the interface
*/
ether_ifattach(ifp, sc->enaddr);
/* device attach does transition from UNCONFIGURED to IDLE state */
sc->tx_mem = sc->txb_cnt * ED_PAGE_SIZE * ED_TXBUF_SIZE;
sc->rx_mem = (sc->rec_page_stop - sc->rec_page_start) * ED_PAGE_SIZE;
SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
0, "type", CTLFLAG_RD, sc->type_str, 0,
"Type of chip in card");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
1, "TxMem", CTLFLAG_RD, &sc->tx_mem, 0,
"Memory set aside for transmitting packets");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
2, "RxMem", CTLFLAG_RD, &sc->rx_mem, 0,
"Memory set aside for receiving packets");
SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
3, "Mem", CTLFLAG_RD, &sc->mem_size, 0,
"Total Card Memory");
if (bootverbose) {
if (sc->type_str && (*sc->type_str != 0))
device_printf(dev, "type %s ", sc->type_str);
else
device_printf(dev, "type unknown (0x%x) ", sc->type);
#ifdef ED_HPP
if (sc->vendor == ED_VENDOR_HP)
printf("(%s %s IO)",
(sc->hpp_id & ED_HPP_ID_16_BIT_ACCESS) ?
"16-bit" : "32-bit",
sc->hpp_mem_start ? "memory mapped" : "regular");
else
#endif
printf("%s", sc->isa16bit ? "(16 bit)" : "(8 bit)");
#if defined(ED_HPP) || defined(ED_3C503)
printf("%s", (((sc->vendor == ED_VENDOR_3COM) ||
(sc->vendor == ED_VENDOR_HP)) &&
(ifp->if_flags & IFF_LINK2)) ?
" tranceiver disabled" : "");
#endif
printf("\n");
}
return (0);
}
/*
* Detach the driver from the hardware and other systems in the kernel.
*/
int
ed_detach(device_t dev)
{
struct ed_softc *sc = device_get_softc(dev);
struct ifnet *ifp = sc->ifp;
if (mtx_initialized(ED_MUTEX(sc)))
ED_ASSERT_UNLOCKED(sc);
if (ifp) {
ED_LOCK(sc);
if (bus_child_present(dev))
ed_stop(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
ED_UNLOCK(sc);
ether_ifdetach(ifp);
callout_drain(&sc->tick_ch);
}
if (sc->irq_res != NULL && sc->irq_handle)
bus_teardown_intr(dev, sc->irq_res, sc->irq_handle);
ed_release_resources(dev);
if (sc->miibus)
device_delete_child(dev, sc->miibus);
if (mtx_initialized(ED_MUTEX(sc)))
ED_LOCK_DESTROY(sc);
bus_generic_detach(dev);
return (0);
}
/*
* Reset interface.
*/
static void
ed_reset(struct ifnet *ifp)
{
struct ed_softc *sc = ifp->if_softc;
ED_ASSERT_LOCKED(sc);
/*
* Stop interface and re-initialize.
*/
ed_stop(sc);
ed_init_locked(sc);
}
static void
ed_stop_hw(struct ed_softc *sc)
{
int n = 5000;
/*
* Stop everything on the interface, and select page 0 registers.
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/*
* Wait for interface to enter stopped state, but limit # of checks to
* 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
* just in case it's an old one.
*
* The AX88x90 chips don't seem to implement this behavor. The
* datasheets say it is only turned on when the chip enters a RESET
* state and is silent about behavior for the stopped state we just
* entered.
*/
if (sc->chip_type == ED_CHIP_TYPE_AX88190 ||
sc->chip_type == ED_CHIP_TYPE_AX88790)
return;
while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n)
continue;
if (n <= 0)
device_printf(sc->dev, "ed_stop_hw RST never set\n");
}
/*
* Take interface offline.
*/
void
ed_stop(struct ed_softc *sc)
{
ED_ASSERT_LOCKED(sc);
callout_stop(&sc->tick_ch);
ed_stop_hw(sc);
}
/*
* Periodic timer used to drive the watchdog and attachment-specific
* tick handler.
*/
static void
ed_tick(void *arg)
{
struct ed_softc *sc;
sc = arg;
ED_ASSERT_LOCKED(sc);
if (sc->sc_tick)
sc->sc_tick(sc);
if (sc->tx_timer != 0 && --sc->tx_timer == 0)
ed_watchdog(sc);
callout_reset(&sc->tick_ch, hz, ed_tick, sc);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to
* generate an interrupt after a transmit has been started on it.
*/
static void
ed_watchdog(struct ed_softc *sc)
{
struct ifnet *ifp;
ifp = sc->ifp;
log(LOG_ERR, "%s: device timeout\n", ifp->if_xname);
ifp->if_oerrors++;
ed_reset(ifp);
}
/*
* Initialize device.
*/
static void
ed_init(void *xsc)
{
struct ed_softc *sc = xsc;
ED_ASSERT_UNLOCKED(sc);
ED_LOCK(sc);
ed_init_locked(sc);
ED_UNLOCK(sc);
}
static void
ed_init_locked(struct ed_softc *sc)
{
struct ifnet *ifp = sc->ifp;
int i;
ED_ASSERT_LOCKED(sc);
/*
* Initialize the NIC in the exact order outlined in the NS manual.
* This init procedure is "mandatory"...don't change what or when
* things happen.
*/
/* reset transmitter flags */
sc->xmit_busy = 0;
sc->tx_timer = 0;
sc->txb_inuse = 0;
sc->txb_new = 0;
sc->txb_next_tx = 0;
/* This variable is used below - don't move this assignment */
sc->next_packet = sc->rec_page_start + 1;
/*
* Set interface for page 0, Remote DMA complete, Stopped
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (sc->isa16bit)
/*
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
* order=80x86, word-wide DMA xfers,
*/
ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
else
/*
* Same as above, but byte-wide DMA xfers
*/
ed_nic_outb(sc, ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
/*
* Clear Remote Byte Count Registers
*/
ed_nic_outb(sc, ED_P0_RBCR0, 0);
ed_nic_outb(sc, ED_P0_RBCR1, 0);
/*
* For the moment, don't store incoming packets in memory.
*/
ed_nic_outb(sc, ED_P0_RCR, ED_RCR_MON);
/*
* Place NIC in internal loopback mode
*/
ed_nic_outb(sc, ED_P0_TCR, ED_TCR_LB0);
/*
* Initialize transmit/receive (ring-buffer) Page Start
*/
ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start);
ed_nic_outb(sc, ED_P0_PSTART, sc->rec_page_start);
/* Set lower bits of byte addressable framing to 0 */
if (sc->chip_type == ED_CHIP_TYPE_WD790)
ed_nic_outb(sc, 0x09, 0);
/*
* Initialize Receiver (ring-buffer) Page Stop and Boundry
*/
ed_nic_outb(sc, ED_P0_PSTOP, sc->rec_page_stop);
ed_nic_outb(sc, ED_P0_BNRY, sc->rec_page_start);
/*
* Clear all interrupts. A '1' in each bit position clears the
* corresponding flag.
*/
ed_nic_outb(sc, ED_P0_ISR, 0xff);
/*
* Enable the following interrupts: receive/transmit complete,
* receive/transmit error, and Receiver OverWrite.
*
* Counter overflow and Remote DMA complete are *not* enabled.
*/
ed_nic_outb(sc, ED_P0_IMR,
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE | ED_IMR_OVWE);
/*
* Program Command Register for page 1
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/*
* Copy out our station address
*/
for (i = 0; i < ETHER_ADDR_LEN; ++i)
ed_nic_outb(sc, ED_P1_PAR(i), IF_LLADDR(sc->ifp)[i]);
/*
* Set Current Page pointer to next_packet (initialized above)
*/
ed_nic_outb(sc, ED_P1_CURR, sc->next_packet);
/*
* Program Receiver Configuration Register and multicast filter. CR is
* set to page 0 on return.
*/
ed_setrcr(sc);
/*
* Take interface out of loopback
*/
ed_nic_outb(sc, ED_P0_TCR, 0);
if (sc->sc_mediachg)
sc->sc_mediachg(sc);
/*
* Set 'running' flag, and clear output active flag.
*/
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/*
* ...and attempt to start output
*/
ed_start_locked(ifp);
callout_reset(&sc->tick_ch, hz, ed_tick, sc);
}
/*
* This routine actually starts the transmission on the interface
*/
static __inline void
ed_xmit(struct ed_softc *sc)
{
unsigned short len;
len = sc->txb_len[sc->txb_next_tx];
/*
* Set NIC for page 0 register access
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/*
* Set TX buffer start page
*/
ed_nic_outb(sc, ED_P0_TPSR, sc->tx_page_start +
sc->txb_next_tx * ED_TXBUF_SIZE);
/*
* Set TX length
*/
ed_nic_outb(sc, ED_P0_TBCR0, len);
ed_nic_outb(sc, ED_P0_TBCR1, len >> 8);
/*
* Set page 0, Remote DMA complete, Transmit Packet, and *Start*
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_TXP | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
sc->xmit_busy = 1;
/*
* Point to next transmit buffer slot and wrap if necessary.
*/
sc->txb_next_tx++;
if (sc->txb_next_tx == sc->txb_cnt)
sc->txb_next_tx = 0;
/*
* Set a timer just in case we never hear from the board again
*/
sc->tx_timer = 2;
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splimp _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_DRV_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
static void
ed_start(struct ifnet *ifp)
{
struct ed_softc *sc = ifp->if_softc;
ED_ASSERT_UNLOCKED(sc);
ED_LOCK(sc);
ed_start_locked(ifp);
ED_UNLOCK(sc);
}
static void
ed_start_locked(struct ifnet *ifp)
{
struct ed_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
bus_size_t buffer;
int len;
ED_ASSERT_LOCKED(sc);
outloop:
/*
* First, see if there are buffered packets and an idle transmitter -
* should never happen at this point.
*/
if (sc->txb_inuse && (sc->xmit_busy == 0)) {
printf("ed: packets buffered, but transmitter idle\n");
ed_xmit(sc);
}
/*
* See if there is room to put another packet in the buffer.
*/
if (sc->txb_inuse == sc->txb_cnt) {
/*
* No room. Indicate this to the outside world and exit.
*/
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
return;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == 0) {
/*
* We are using the !OACTIVE flag to indicate to the outside
* world that we can accept an additional packet rather than
* that the transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't filled all the
* buffers with data then we still want to accept more.
*/
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
return;
}
/*
* Copy the mbuf chain into the transmit buffer
*/
m0 = m;
/* txb_new points to next open buffer slot */
buffer = sc->mem_start + (sc->txb_new * ED_TXBUF_SIZE * ED_PAGE_SIZE);
len = sc->sc_write_mbufs(sc, m, buffer);
if (len == 0) {
m_freem(m0);
goto outloop;
}
sc->txb_len[sc->txb_new] = max(len, (ETHER_MIN_LEN-ETHER_CRC_LEN));
sc->txb_inuse++;
/*
* Point to next buffer slot and wrap if necessary.
*/
sc->txb_new++;
if (sc->txb_new == sc->txb_cnt)
sc->txb_new = 0;
if (sc->xmit_busy == 0)
ed_xmit(sc);
/*
* Tap off here if there is a bpf listener.
*/
BPF_MTAP(ifp, m0);
m_freem(m0);
/*
* Loop back to the top to possibly buffer more packets
*/
goto outloop;
}
/*
* Ethernet interface receiver interrupt.
*/
static __inline void
ed_rint(struct ed_softc *sc)
{
struct ifnet *ifp = sc->ifp;
u_char boundry;
u_short len;
struct ed_ring packet_hdr;
bus_size_t packet_ptr;
ED_ASSERT_LOCKED(sc);
/*
* Set NIC to page 1 registers to get 'current' pointer
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/*
* 'sc->next_packet' is the logical beginning of the ring-buffer -
* i.e. it points to where new data has been buffered. The 'CURR'
* (current) register points to the logical end of the ring-buffer -
* i.e. it points to where additional new data will be added. We loop
* here until the logical beginning equals the logical end (or in
* other words, until the ring-buffer is empty).
*/
while (sc->next_packet != ed_nic_inb(sc, ED_P1_CURR)) {
/* get pointer to this buffer's header structure */
packet_ptr = sc->mem_ring +
(sc->next_packet - sc->rec_page_start) * ED_PAGE_SIZE;
/*
* The byte count includes a 4 byte header that was added by
* the NIC.
*/
sc->readmem(sc, packet_ptr, (char *) &packet_hdr,
sizeof(packet_hdr));
len = packet_hdr.count;
if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring)) ||
len < (ETHER_MIN_LEN - ETHER_CRC_LEN + sizeof(struct ed_ring))) {
/*
* Length is a wild value. There's a good chance that
* this was caused by the NIC being old and buggy.
* The bug is that the length low byte is duplicated
* in the high byte. Try to recalculate the length
* based on the pointer to the next packet. Also,
* need ot preserve offset into page.
*
* NOTE: sc->next_packet is pointing at the current
* packet.
*/
len &= ED_PAGE_SIZE - 1;
if (packet_hdr.next_packet >= sc->next_packet)
len += (packet_hdr.next_packet -
sc->next_packet) * ED_PAGE_SIZE;
else
len +=
((packet_hdr.next_packet - sc->rec_page_start) +
(sc->rec_page_stop - sc->next_packet)) * ED_PAGE_SIZE;
/*
* because buffers are aligned on 256-byte boundary,
* the length computed above is off by 256 in almost
* all cases. Fix it...
*/
if (len & 0xff)
len -= 256;
if (len > (ETHER_MAX_LEN - ETHER_CRC_LEN
+ sizeof(struct ed_ring)))
sc->mibdata.dot3StatsFrameTooLongs++;
}
/*
* Be fairly liberal about what we allow as a "reasonable"
* length so that a [crufty] packet will make it to BPF (and
* can thus be analyzed). Note that all that is really
* important is that we have a length that will fit into one
* mbuf cluster or less; the upper layer protocols can then
* figure out the length from their own length field(s). But
* make sure that we have at least a full ethernet header or
* we would be unable to call ether_input() later.
*/
if ((len >= sizeof(struct ed_ring) + ETHER_HDR_LEN) &&
(len <= MCLBYTES) &&
(packet_hdr.next_packet >= sc->rec_page_start) &&
(packet_hdr.next_packet < sc->rec_page_stop)) {
/*
* Go get packet.
*/
ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring),
len - sizeof(struct ed_ring));
ifp->if_ipackets++;
} else {
/*
* Really BAD. The ring pointers are corrupted.
*/
log(LOG_ERR,
"%s: NIC memory corrupt - invalid packet length %d\n",
ifp->if_xname, len);
ifp->if_ierrors++;
ed_reset(ifp);
return;
}
/*
* Update next packet pointer
*/
sc->next_packet = packet_hdr.next_packet;
/*
* Update NIC boundry pointer - being careful to keep it one
* buffer behind. (as recommended by NS databook)
*/
boundry = sc->next_packet - 1;
if (boundry < sc->rec_page_start)
boundry = sc->rec_page_stop - 1;
/*
* Set NIC to page 0 registers to update boundry register
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_BNRY, boundry);
/*
* Set NIC to page 1 registers before looping to top (prepare
* to get 'CURR' current pointer)
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
}
/*
* Ethernet interface interrupt processor
*/
void
edintr(void *arg)
{
struct ed_softc *sc = (struct ed_softc*) arg;
struct ifnet *ifp = sc->ifp;
u_char isr;
int count;
ED_LOCK(sc);
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
ED_UNLOCK(sc);
return;
}
/*
* Set NIC to page 0 registers
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/*
* loop until there are no more new interrupts. When the card goes
* away, the hardware will read back 0xff. Looking at the interrupts,
* it would appear that 0xff is impossible, or at least extremely
* unlikely.
*/
while ((isr = ed_nic_inb(sc, ED_P0_ISR)) != 0 && isr != 0xff) {
/*
* reset all the bits that we are 'acknowledging' by writing a
* '1' to each bit position that was set (writing a '1'
* *clears* the bit)
*/
ed_nic_outb(sc, ED_P0_ISR, isr);
/*
* The AX88190 and AX88190A has problems acking an interrupt
* and having them clear. This interferes with top-level loop
* here. Wait for all the bits to clear.
*
* We limit this to 5000 iterations. At 1us per inb/outb,
* this translates to about 15ms, which should be plenty of
* time, and also gives protection in the card eject case.
*/
if (sc->chip_type == ED_CHIP_TYPE_AX88190) {
count = 5000; /* 15ms */
while (count-- && (ed_nic_inb(sc, ED_P0_ISR) & isr)) {
ed_nic_outb(sc, ED_P0_ISR,0);
ed_nic_outb(sc, ED_P0_ISR,isr);
}
if (count == 0)
break;
}
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
u_char collisions = ed_nic_inb(sc, ED_P0_NCR) & 0x0f;
/*
* Check for transmit error. If a TX completed with an
* error, we end up throwing the packet away. Really
* the only error that is possible is excessive
* collisions, and in this case it is best to allow
* the automatic mechanisms of TCP to backoff the
* flow. Of course, with UDP we're screwed, but this
* is expected when a network is heavily loaded.
*/
(void) ed_nic_inb(sc, ED_P0_TSR);
if (isr & ED_ISR_TXE) {
u_char tsr;
/*
* Excessive collisions (16)
*/
tsr = ed_nic_inb(sc, ED_P0_TSR);
if ((tsr & ED_TSR_ABT)
&& (collisions == 0)) {
/*
* When collisions total 16, the
* P0_NCR will indicate 0, and the
* TSR_ABT is set.
*/
collisions = 16;
sc->mibdata.dot3StatsExcessiveCollisions++;
sc->mibdata.dot3StatsCollFrequencies[15]++;
}
if (tsr & ED_TSR_OWC)
sc->mibdata.dot3StatsLateCollisions++;
if (tsr & ED_TSR_CDH)
sc->mibdata.dot3StatsSQETestErrors++;
if (tsr & ED_TSR_CRS)
sc->mibdata.dot3StatsCarrierSenseErrors++;
if (tsr & ED_TSR_FU)
sc->mibdata.dot3StatsInternalMacTransmitErrors++;
/*
* update output errors counter
*/
ifp->if_oerrors++;
} else {
/*
* Update total number of successfully
* transmitted packets.
*/
ifp->if_opackets++;
}
/*
* reset tx busy and output active flags
*/
sc->xmit_busy = 0;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/*
* clear watchdog timer
*/
sc->tx_timer = 0;
/*
* Add in total number of collisions on last
* transmission.
*/
ifp->if_collisions += collisions;
switch(collisions) {
case 0:
case 16:
break;
case 1:
sc->mibdata.dot3StatsSingleCollisionFrames++;
sc->mibdata.dot3StatsCollFrequencies[0]++;
break;
default:
sc->mibdata.dot3StatsMultipleCollisionFrames++;
sc->mibdata.
dot3StatsCollFrequencies[collisions-1]
++;
break;
}
/*
* Decrement buffer in-use count if not zero (can only
* be zero if a transmitter interrupt occured while
* not actually transmitting). If data is ready to
* transmit, start it transmitting, otherwise defer
* until after handling receiver
*/
if (sc->txb_inuse && --sc->txb_inuse)
ed_xmit(sc);
}
/*
* Handle receiver interrupts
*/
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
/*
* Overwrite warning. In order to make sure that a
* lockup of the local DMA hasn't occurred, we reset
* and re-init the NIC. The NSC manual suggests only a
* partial reset/re-init is necessary - but some chips
* seem to want more. The DMA lockup has been seen
* only with early rev chips - Methinks this bug was
* fixed in later revs. -DG
*/
if (isr & ED_ISR_OVW) {
ifp->if_ierrors++;
#ifdef DIAGNOSTIC
log(LOG_WARNING,
"%s: warning - receiver ring buffer overrun\n",
ifp->if_xname);
#endif
/*
* Stop/reset/re-init NIC
*/
ed_reset(ifp);
} else {
/*
* Receiver Error. One or more of: CRC error,
* frame alignment error FIFO overrun, or
* missed packet.
*/
if (isr & ED_ISR_RXE) {
u_char rsr;
rsr = ed_nic_inb(sc, ED_P0_RSR);
if (rsr & ED_RSR_CRC)
sc->mibdata.dot3StatsFCSErrors++;
if (rsr & ED_RSR_FAE)
sc->mibdata.dot3StatsAlignmentErrors++;
if (rsr & ED_RSR_FO)
sc->mibdata.dot3StatsInternalMacReceiveErrors++;
ifp->if_ierrors++;
#ifdef ED_DEBUG
if_printf(ifp, "receive error %x\n",
ed_nic_inb(sc, ED_P0_RSR));
#endif
}
/*
* Go get the packet(s) XXX - Doing this on an
* error is dubious because there shouldn't be
* any data to get (we've configured the
* interface to not accept packets with
* errors).
*/
/*
* Enable 16bit access to shared memory first
* on WD/SMC boards.
*/
ed_enable_16bit_access(sc);
ed_rint(sc);
ed_disable_16bit_access(sc);
}
}
/*
* If it looks like the transmitter can take more data,
* attempt to start output on the interface. This is done
* after handling the receiver to give the receiver priority.
*/
if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0)
ed_start_locked(ifp);
/*
* return NIC CR to standard state: page 0, remote DMA
* complete, start (toggling the TXP bit off, even if was just
* set in the transmit routine, is *okay* - it is 'edge'
* triggered from low to high)
*/
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/*
* If the Network Talley Counters overflow, read them to reset
* them. It appears that old 8390's won't clear the ISR flag
* otherwise - resulting in an infinite loop.
*/
if (isr & ED_ISR_CNT) {
(void) ed_nic_inb(sc, ED_P0_CNTR0);
(void) ed_nic_inb(sc, ED_P0_CNTR1);
(void) ed_nic_inb(sc, ED_P0_CNTR2);
}
}
ED_UNLOCK(sc);
}
/*
* Process an ioctl request.
*/
static int
ed_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct ed_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0;
switch (command) {
case SIOCSIFFLAGS:
/*
* If the interface is marked up and stopped, then start it.
* If we're up and already running, then it may be a mediachg.
* If it is marked down and running, then stop it.
*/
ED_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
ed_init_locked(sc);
else if (sc->sc_mediachg)
sc->sc_mediachg(sc);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
ed_stop(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
}
}
/*
* Promiscuous flag may have changed, so reprogram the RCR.
*/
ed_setrcr(sc);
ED_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
ED_LOCK(sc);
ed_setrcr(sc);
ED_UNLOCK(sc);
error = 0;
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
if (sc->sc_media_ioctl == NULL) {
error = EINVAL;
break;
}
sc->sc_media_ioctl(sc, ifr, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
/*
* Given a source and destination address, copy 'amount' of a packet from
* the ring buffer into a linear destination buffer. Takes into account
* ring-wrap.
*/
static __inline void
ed_ring_copy(struct ed_softc *sc, bus_size_t src, char *dst, u_short amount)
{
u_short tmp_amount;
/* does copy wrap to lower addr in ring buffer? */
if (src + amount > sc->mem_end) {
tmp_amount = sc->mem_end - src;
/* copy amount up to end of NIC memory */
sc->readmem(sc, src, dst, tmp_amount);
amount -= tmp_amount;
src = sc->mem_ring;
dst += tmp_amount;
}
sc->readmem(sc, src, dst, amount);
}
/*
* Retreive packet from shared memory and send to the next level up via
* ether_input().
*/
static void
ed_get_packet(struct ed_softc *sc, bus_size_t buf, u_short len)
{
struct ifnet *ifp = sc->ifp;
struct ether_header *eh;
struct mbuf *m;
/* Allocate a header mbuf */
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m == NULL)
return;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
/*
* We always put the received packet in a single buffer -
* either with just an mbuf header or in a cluster attached
* to the header. The +2 is to compensate for the alignment
* fixup below.
*/
if ((len + 2) > MHLEN) {
/* Attach an mbuf cluster */
MCLGET(m, M_NOWAIT);
/* Insist on getting a cluster */
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return;
}
}
/*
* The +2 is to longword align the start of the real packet.
* This is important for NFS.
*/
m->m_data += 2;
eh = mtod(m, struct ether_header *);
/*
* Get packet, including link layer address, from interface.
*/
ed_ring_copy(sc, buf, (char *)eh, len);
m->m_pkthdr.len = m->m_len = len;
ED_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
ED_LOCK(sc);
}
/*
* Supporting routines
*/
/*
* Given a NIC memory source address and a host memory destination
* address, copy 'amount' from NIC to host using shared memory.
* The 'amount' is rounded up to a word - okay as long as mbufs
* are word sized. That's what the +1 is below.
* This routine accesses things as 16 bit quantities.
*/
void
ed_shmem_readmem16(struct ed_softc *sc, bus_size_t src, uint8_t *dst,
uint16_t amount)
{
bus_space_read_region_2(sc->mem_bst, sc->mem_bsh, src, (uint16_t *)dst,
(amount + 1) / 2);
}
/*
* Given a NIC memory source address and a host memory destination
* address, copy 'amount' from NIC to host using shared memory.
* This routine accesses things as 8 bit quantities.
*/
void
ed_shmem_readmem8(struct ed_softc *sc, bus_size_t src, uint8_t *dst,
uint16_t amount)
{
bus_space_read_region_1(sc->mem_bst, sc->mem_bsh, src, dst, amount);
}
/*
* Given a NIC memory source address and a host memory destination
* address, copy 'amount' from NIC to host using Programmed I/O.
* The 'amount' is rounded up to a word - okay as long as mbufs
* are word sized.
* This routine is currently Novell-specific.
*/
void
ed_pio_readmem(struct ed_softc *sc, bus_size_t src, uint8_t *dst,
uint16_t amount)
{
/* Regular Novell cards */
/* select page 0 registers */
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/* round up to a word */
if (amount & 1)
++amount;
/* set up DMA byte count */
ed_nic_outb(sc, ED_P0_RBCR0, amount);
ed_nic_outb(sc, ED_P0_RBCR1, amount >> 8);
/* set up source address in NIC mem */
ed_nic_outb(sc, ED_P0_RSAR0, src);
ed_nic_outb(sc, ED_P0_RSAR1, src >> 8);
ed_nic_outb(sc, ED_P0_CR, ED_CR_RD0 | ED_CR_STA);
if (sc->isa16bit)
ed_asic_insw(sc, ED_NOVELL_DATA, dst, amount / 2);
else
ed_asic_insb(sc, ED_NOVELL_DATA, dst, amount);
}
/*
* Stripped down routine for writing a linear buffer to NIC memory.
* Only used in the probe routine to test the memory. 'len' must
* be even.
*/
void
ed_pio_writemem(struct ed_softc *sc, uint8_t *src, uint16_t dst, uint16_t len)
{
int maxwait = 200; /* about 240us */
/* select page 0 registers */
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/* reset remote DMA complete flag */
ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
/* set up DMA byte count */
ed_nic_outb(sc, ED_P0_RBCR0, len);
ed_nic_outb(sc, ED_P0_RBCR1, len >> 8);
/* set up destination address in NIC mem */
ed_nic_outb(sc, ED_P0_RSAR0, dst);
ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8);
/* set remote DMA write */
ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
if (sc->isa16bit)
ed_asic_outsw(sc, ED_NOVELL_DATA, src, len / 2);
else
ed_asic_outsb(sc, ED_NOVELL_DATA, src, len);
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) &&
--maxwait)
continue;
}
/*
* Write an mbuf chain to the destination NIC memory address using
* programmed I/O.
*/
u_short
ed_pio_write_mbufs(struct ed_softc *sc, struct mbuf *m, bus_size_t dst)
{
struct ifnet *ifp = sc->ifp;
unsigned short total_len, dma_len;
struct mbuf *mp;
int maxwait = 200; /* about 240us */
ED_ASSERT_LOCKED(sc);
/* Regular Novell cards */
/* First, count up the total number of bytes to copy */
for (total_len = 0, mp = m; mp; mp = mp->m_next)
total_len += mp->m_len;
dma_len = total_len;
if (sc->isa16bit && (dma_len & 1))
dma_len++;
/* select page 0 registers */
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, ED_CR_RD2 | ED_CR_STA);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/* reset remote DMA complete flag */
ed_nic_outb(sc, ED_P0_ISR, ED_ISR_RDC);
/* set up DMA byte count */
ed_nic_outb(sc, ED_P0_RBCR0, dma_len);
ed_nic_outb(sc, ED_P0_RBCR1, dma_len >> 8);
/* set up destination address in NIC mem */
ed_nic_outb(sc, ED_P0_RSAR0, dst);
ed_nic_outb(sc, ED_P0_RSAR1, dst >> 8);
/* set remote DMA write */
ed_nic_outb(sc, ED_P0_CR, ED_CR_RD1 | ED_CR_STA);
/*
* Transfer the mbuf chain to the NIC memory.
* 16-bit cards require that data be transferred as words, and only words.
* So that case requires some extra code to patch over odd-length mbufs.
*/
if (!sc->isa16bit) {
/* NE1000s are easy */
while (m) {
if (m->m_len)
ed_asic_outsb(sc, ED_NOVELL_DATA,
m->m_data, m->m_len);
m = m->m_next;
}
} else {
/* NE2000s are a pain */
uint8_t *data;
int len, wantbyte;
union {
uint16_t w;
uint8_t b[2];
} saveword;
wantbyte = 0;
while (m) {
len = m->m_len;
if (len) {
data = mtod(m, caddr_t);
/* finish the last word */
if (wantbyte) {
saveword.b[1] = *data;
ed_asic_outw(sc, ED_NOVELL_DATA,
saveword.w);
data++;
len--;
wantbyte = 0;
}
/* output contiguous words */
if (len > 1) {
ed_asic_outsw(sc, ED_NOVELL_DATA,
data, len >> 1);
data += len & ~1;
len &= 1;
}
/* save last byte, if necessary */
if (len == 1) {
saveword.b[0] = *data;
wantbyte = 1;
}
}
m = m->m_next;
}
/* spit last byte */
if (wantbyte)
ed_asic_outw(sc, ED_NOVELL_DATA, saveword.w);
}
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((ed_nic_inb(sc, ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) &&
--maxwait)
continue;
if (!maxwait) {
log(LOG_WARNING, "%s: remote transmit DMA failed to complete\n",
ifp->if_xname);
ed_reset(ifp);
return(0);
}
return (total_len);
}
static void
ed_setrcr(struct ed_softc *sc)
{
struct ifnet *ifp = sc->ifp;
int i;
u_char reg1;
ED_ASSERT_LOCKED(sc);
/* Bit 6 in AX88190 RCR register must be set. */
if (sc->chip_type == ED_CHIP_TYPE_AX88190 ||
sc->chip_type == ED_CHIP_TYPE_AX88790)
reg1 = ED_RCR_INTT;
else
reg1 = 0x00;
/* set page 1 registers */
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (ifp->if_flags & IFF_PROMISC) {
/*
* Reconfigure the multicast filter.
*/
for (i = 0; i < 8; i++)
ed_nic_outb(sc, ED_P1_MAR(i), 0xff);
/*
* And turn on promiscuous mode. Also enable reception of
* runts and packets with CRC & alignment errors.
*/
/* Set page 0 registers */
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_RCR, ED_RCR_PRO | ED_RCR_AM |
ED_RCR_AB | ED_RCR_AR | ED_RCR_SEP | reg1);
} else {
/* set up multicast addresses and filter modes */
if (ifp->if_flags & IFF_MULTICAST) {
uint32_t mcaf[2];
if (ifp->if_flags & IFF_ALLMULTI) {
mcaf[0] = 0xffffffff;
mcaf[1] = 0xffffffff;
} else
ed_ds_getmcaf(sc, mcaf);
/*
* Set multicast filter on chip.
*/
for (i = 0; i < 8; i++)
ed_nic_outb(sc, ED_P1_MAR(i), ((u_char *) mcaf)[i]);
/* Set page 0 registers */
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AM | ED_RCR_AB | reg1);
} else {
/*
* Initialize multicast address hashing registers to
* not accept multicasts.
*/
for (i = 0; i < 8; ++i)
ed_nic_outb(sc, ED_P1_MAR(i), 0x00);
/* Set page 0 registers */
ed_nic_barrier(sc, ED_P0_CR, 1,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STP);
ed_nic_outb(sc, ED_P0_RCR, ED_RCR_AB | reg1);
}
}
/*
* Start interface.
*/
ed_nic_outb(sc, ED_P0_CR, sc->cr_proto | ED_CR_STA);
}
/*
* Compute the multicast address filter from the
* list of multicast addresses we need to listen to.
*/
static void
ed_ds_getmcaf(struct ed_softc *sc, uint32_t *mcaf)
{
uint32_t index;
u_char *af = (u_char *) mcaf;
struct ifmultiaddr *ifma;
mcaf[0] = 0;
mcaf[1] = 0;
if_maddr_rlock(sc->ifp);
TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
index = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
af[index >> 3] |= 1 << (index & 7);
}
if_maddr_runlock(sc->ifp);
}
int
ed_isa_mem_ok(device_t dev, u_long pmem, u_int memsize)
{
if (pmem < 0xa0000 || pmem + memsize > 0x1000000) {
device_printf(dev, "Invalid ISA memory address range "
"configured: 0x%lx - 0x%lx\n", pmem, pmem + memsize);
return (ENXIO);
}
return (0);
}
int
ed_clear_memory(device_t dev)
{
struct ed_softc *sc = device_get_softc(dev);
bus_size_t i;
bus_space_set_region_1(sc->mem_bst, sc->mem_bsh, sc->mem_start,
0, sc->mem_size);
for (i = 0; i < sc->mem_size; i++) {
if (bus_space_read_1(sc->mem_bst, sc->mem_bsh,
sc->mem_start + i)) {
device_printf(dev, "failed to clear shared memory at "
"0x%jx - check configuration\n",
(uintmax_t)rman_get_start(sc->mem_res) + i);
return (ENXIO);
}
}
return (0);
}
u_short
ed_shmem_write_mbufs(struct ed_softc *sc, struct mbuf *m, bus_size_t dst)
{
u_short len;
/*
* Special case setup for 16 bit boards...
*/
if (sc->isa16bit) {
switch (sc->vendor) {
#ifdef ED_3C503
/*
* For 16bit 3Com boards (which have 16k of
* memory), we have the xmit buffers in a
* different page of memory ('page 0') - so
* change pages.
*/
case ED_VENDOR_3COM:
ed_asic_outb(sc, ED_3COM_GACFR, ED_3COM_GACFR_RSEL);
break;
#endif
/*
* Enable 16bit access to shared memory on
* WD/SMC boards.
*
* XXX - same as ed_enable_16bit_access()
*/
case ED_VENDOR_WD_SMC:
ed_asic_outb(sc, ED_WD_LAAR,
sc->wd_laar_proto | ED_WD_LAAR_M16EN);
if (sc->chip_type == ED_CHIP_TYPE_WD790)
ed_asic_outb(sc, ED_WD_MSR, ED_WD_MSR_MENB);
break;
}
}
for (len = 0; m != NULL; m = m->m_next) {
if (m->m_len == 0)
continue;
if (sc->isa16bit) {
if (m->m_len > 1)
bus_space_write_region_2(sc->mem_bst,
sc->mem_bsh, dst,
mtod(m, uint16_t *), m->m_len / 2);
if ((m->m_len & 1) != 0)
bus_space_write_1(sc->mem_bst, sc->mem_bsh,
dst + m->m_len - 1,
*(mtod(m, uint8_t *) + m->m_len - 1));
} else
bus_space_write_region_1(sc->mem_bst,
sc->mem_bsh, dst,
mtod(m, uint8_t *), m->m_len);
dst += m->m_len;
len += m->m_len;
}
/*
* Restore previous shared memory access
*/
if (sc->isa16bit) {
switch (sc->vendor) {
#ifdef ED_3C503
case ED_VENDOR_3COM:
ed_asic_outb(sc, ED_3COM_GACFR,
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
break;
#endif
case ED_VENDOR_WD_SMC:
/* XXX - same as ed_disable_16bit_access() */
if (sc->chip_type == ED_CHIP_TYPE_WD790)
ed_asic_outb(sc, ED_WD_MSR, 0x00);
ed_asic_outb(sc, ED_WD_LAAR,
sc->wd_laar_proto & ~ED_WD_LAAR_M16EN);
break;
}
}
return (len);
}
/*
* Generic ifmedia support. By default, the DP8390-based cards don't know
* what their network attachment really is, or even if it is valid (except
* upon successful transmission of a packet). To play nicer with dhclient, as
* well as to fit in with a framework where some cards can provde more
* detailed information, make sure that we use this as a fallback.
*/
static int
ed_gen_ifmedia_ioctl(struct ed_softc *sc, struct ifreq *ifr, u_long command)
{
return (ifmedia_ioctl(sc->ifp, ifr, &sc->ifmedia, command));
}
static int
ed_gen_ifmedia_upd(struct ifnet *ifp)
{
return 0;
}
static void
ed_gen_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
ifmr->ifm_active = IFM_ETHER | IFM_AUTO;
ifmr->ifm_status = IFM_AVALID | IFM_ACTIVE;
}
void
ed_gen_ifmedia_init(struct ed_softc *sc)
{
sc->sc_media_ioctl = &ed_gen_ifmedia_ioctl;
ifmedia_init(&sc->ifmedia, 0, ed_gen_ifmedia_upd, ed_gen_ifmedia_sts);
ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_AUTO, 0, 0);
ifmedia_set(&sc->ifmedia, IFM_ETHER | IFM_AUTO);
}