2530 lines
68 KiB
C
2530 lines
68 KiB
C
/* Language-dependent node constructors for parse phase of GNU compiler.
|
||
Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
Hacked by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "cp-tree.h"
|
||
#include "flags.h"
|
||
#include "real.h"
|
||
#include "rtl.h"
|
||
#include "toplev.h"
|
||
#include "insn-config.h"
|
||
#include "integrate.h"
|
||
#include "tree-inline.h"
|
||
#include "target.h"
|
||
|
||
static tree bot_manip (tree *, int *, void *);
|
||
static tree bot_replace (tree *, int *, void *);
|
||
static tree build_cplus_array_type_1 (tree, tree);
|
||
static int list_hash_eq (const void *, const void *);
|
||
static hashval_t list_hash_pieces (tree, tree, tree);
|
||
static hashval_t list_hash (const void *);
|
||
static cp_lvalue_kind lvalue_p_1 (tree, int);
|
||
static tree no_linkage_helper (tree *, int *, void *);
|
||
static tree mark_local_for_remap_r (tree *, int *, void *);
|
||
static tree cp_unsave_r (tree *, int *, void *);
|
||
static tree build_target_expr (tree, tree);
|
||
static tree count_trees_r (tree *, int *, void *);
|
||
static tree verify_stmt_tree_r (tree *, int *, void *);
|
||
static tree find_tree_r (tree *, int *, void *);
|
||
static tree build_local_temp (tree);
|
||
|
||
static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
|
||
static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
|
||
|
||
/* If REF is an lvalue, returns the kind of lvalue that REF is.
|
||
Otherwise, returns clk_none. If TREAT_CLASS_RVALUES_AS_LVALUES is
|
||
nonzero, rvalues of class type are considered lvalues. */
|
||
|
||
static cp_lvalue_kind
|
||
lvalue_p_1 (tree ref,
|
||
int treat_class_rvalues_as_lvalues)
|
||
{
|
||
cp_lvalue_kind op1_lvalue_kind = clk_none;
|
||
cp_lvalue_kind op2_lvalue_kind = clk_none;
|
||
|
||
if (TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
|
||
return clk_ordinary;
|
||
|
||
if (ref == current_class_ptr)
|
||
return clk_none;
|
||
|
||
switch (TREE_CODE (ref))
|
||
{
|
||
/* preincrements and predecrements are valid lvals, provided
|
||
what they refer to are valid lvals. */
|
||
case PREINCREMENT_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case SAVE_EXPR:
|
||
case UNSAVE_EXPR:
|
||
case TRY_CATCH_EXPR:
|
||
case WITH_CLEANUP_EXPR:
|
||
case REALPART_EXPR:
|
||
case IMAGPART_EXPR:
|
||
return lvalue_p_1 (TREE_OPERAND (ref, 0),
|
||
treat_class_rvalues_as_lvalues);
|
||
|
||
case COMPONENT_REF:
|
||
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
|
||
treat_class_rvalues_as_lvalues);
|
||
/* In an expression of the form "X.Y", the packed-ness of the
|
||
expression does not depend on "X". */
|
||
op1_lvalue_kind &= ~clk_packed;
|
||
/* Look at the member designator. */
|
||
if (!op1_lvalue_kind
|
||
/* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
|
||
situations. */
|
||
|| TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
|
||
;
|
||
else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
|
||
{
|
||
/* Clear the ordinary bit. If this object was a class
|
||
rvalue we want to preserve that information. */
|
||
op1_lvalue_kind &= ~clk_ordinary;
|
||
/* The lvalue is for a bitfield. */
|
||
op1_lvalue_kind |= clk_bitfield;
|
||
}
|
||
else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
|
||
op1_lvalue_kind |= clk_packed;
|
||
|
||
return op1_lvalue_kind;
|
||
|
||
case STRING_CST:
|
||
return clk_ordinary;
|
||
|
||
case VAR_DECL:
|
||
if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
|
||
&& DECL_LANG_SPECIFIC (ref)
|
||
&& DECL_IN_AGGR_P (ref))
|
||
return clk_none;
|
||
case INDIRECT_REF:
|
||
case ARRAY_REF:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
if (TREE_CODE (TREE_TYPE (ref)) != METHOD_TYPE)
|
||
return clk_ordinary;
|
||
break;
|
||
|
||
/* A currently unresolved scope ref. */
|
||
case SCOPE_REF:
|
||
abort ();
|
||
case MAX_EXPR:
|
||
case MIN_EXPR:
|
||
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 0),
|
||
treat_class_rvalues_as_lvalues);
|
||
op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
|
||
treat_class_rvalues_as_lvalues);
|
||
break;
|
||
|
||
case COND_EXPR:
|
||
op1_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 1),
|
||
treat_class_rvalues_as_lvalues);
|
||
op2_lvalue_kind = lvalue_p_1 (TREE_OPERAND (ref, 2),
|
||
treat_class_rvalues_as_lvalues);
|
||
break;
|
||
|
||
case MODIFY_EXPR:
|
||
return clk_ordinary;
|
||
|
||
case COMPOUND_EXPR:
|
||
return lvalue_p_1 (TREE_OPERAND (ref, 1),
|
||
treat_class_rvalues_as_lvalues);
|
||
|
||
case TARGET_EXPR:
|
||
return treat_class_rvalues_as_lvalues ? clk_class : clk_none;
|
||
|
||
case CALL_EXPR:
|
||
case VA_ARG_EXPR:
|
||
/* Any class-valued call would be wrapped in a TARGET_EXPR. */
|
||
return clk_none;
|
||
|
||
case FUNCTION_DECL:
|
||
/* All functions (except non-static-member functions) are
|
||
lvalues. */
|
||
return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
|
||
? clk_none : clk_ordinary);
|
||
|
||
case NON_DEPENDENT_EXPR:
|
||
/* We must consider NON_DEPENDENT_EXPRs to be lvalues so that
|
||
things like "&E" where "E" is an expression with a
|
||
non-dependent type work. It is safe to be lenient because an
|
||
error will be issued when the template is instantiated if "E"
|
||
is not an lvalue. */
|
||
return clk_ordinary;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If one operand is not an lvalue at all, then this expression is
|
||
not an lvalue. */
|
||
if (!op1_lvalue_kind || !op2_lvalue_kind)
|
||
return clk_none;
|
||
|
||
/* Otherwise, it's an lvalue, and it has all the odd properties
|
||
contributed by either operand. */
|
||
op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
|
||
/* It's not an ordinary lvalue if it involves either a bit-field or
|
||
a class rvalue. */
|
||
if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
|
||
op1_lvalue_kind &= ~clk_ordinary;
|
||
return op1_lvalue_kind;
|
||
}
|
||
|
||
/* Returns the kind of lvalue that REF is, in the sense of
|
||
[basic.lval]. This function should really be named lvalue_p; it
|
||
computes the C++ definition of lvalue. */
|
||
|
||
cp_lvalue_kind
|
||
real_lvalue_p (tree ref)
|
||
{
|
||
return lvalue_p_1 (ref,
|
||
/*treat_class_rvalues_as_lvalues=*/0);
|
||
}
|
||
|
||
/* This differs from real_lvalue_p in that class rvalues are
|
||
considered lvalues. */
|
||
|
||
int
|
||
lvalue_p (tree ref)
|
||
{
|
||
return
|
||
(lvalue_p_1 (ref, /*class rvalue ok*/ 1) != clk_none);
|
||
}
|
||
|
||
/* Return nonzero if REF is an lvalue valid for this language;
|
||
otherwise, print an error message and return zero. */
|
||
|
||
int
|
||
lvalue_or_else (tree ref, const char* string)
|
||
{
|
||
if (!lvalue_p (ref))
|
||
{
|
||
error ("non-lvalue in %s", string);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
|
||
|
||
static tree
|
||
build_target_expr (tree decl, tree value)
|
||
{
|
||
tree t;
|
||
|
||
t = build (TARGET_EXPR, TREE_TYPE (decl), decl, value,
|
||
cxx_maybe_build_cleanup (decl), NULL_TREE);
|
||
/* We always set TREE_SIDE_EFFECTS so that expand_expr does not
|
||
ignore the TARGET_EXPR. If there really turn out to be no
|
||
side-effects, then the optimizer should be able to get rid of
|
||
whatever code is generated anyhow. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return an undeclared local temporary of type TYPE for use in building a
|
||
TARGET_EXPR. */
|
||
|
||
static tree
|
||
build_local_temp (tree type)
|
||
{
|
||
tree slot = build_decl (VAR_DECL, NULL_TREE, type);
|
||
DECL_ARTIFICIAL (slot) = 1;
|
||
DECL_CONTEXT (slot) = current_function_decl;
|
||
layout_decl (slot, 0);
|
||
return slot;
|
||
}
|
||
|
||
/* INIT is a CALL_EXPR which needs info about its target.
|
||
TYPE is the type that this initialization should appear to have.
|
||
|
||
Build an encapsulation of the initialization to perform
|
||
and return it so that it can be processed by language-independent
|
||
and language-specific expression expanders. */
|
||
|
||
tree
|
||
build_cplus_new (tree type, tree init)
|
||
{
|
||
tree fn;
|
||
tree slot;
|
||
tree rval;
|
||
int is_ctor;
|
||
|
||
/* Make sure that we're not trying to create an instance of an
|
||
abstract class. */
|
||
abstract_virtuals_error (NULL_TREE, type);
|
||
|
||
if (TREE_CODE (init) != CALL_EXPR && TREE_CODE (init) != AGGR_INIT_EXPR)
|
||
return convert (type, init);
|
||
|
||
fn = TREE_OPERAND (init, 0);
|
||
is_ctor = (TREE_CODE (fn) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
|
||
&& DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
|
||
|
||
slot = build_local_temp (type);
|
||
|
||
/* We split the CALL_EXPR into its function and its arguments here.
|
||
Then, in expand_expr, we put them back together. The reason for
|
||
this is that this expression might be a default argument
|
||
expression. In that case, we need a new temporary every time the
|
||
expression is used. That's what break_out_target_exprs does; it
|
||
replaces every AGGR_INIT_EXPR with a copy that uses a fresh
|
||
temporary slot. Then, expand_expr builds up a call-expression
|
||
using the new slot. */
|
||
|
||
/* If we don't need to use a constructor to create an object of this
|
||
type, don't mess with AGGR_INIT_EXPR. */
|
||
if (is_ctor || TREE_ADDRESSABLE (type))
|
||
{
|
||
rval = build (AGGR_INIT_EXPR, type, fn, TREE_OPERAND (init, 1), slot);
|
||
TREE_SIDE_EFFECTS (rval) = 1;
|
||
AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
|
||
}
|
||
else
|
||
rval = init;
|
||
|
||
rval = build_target_expr (slot, rval);
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* Build a TARGET_EXPR using INIT to initialize a new temporary of the
|
||
indicated TYPE. */
|
||
|
||
tree
|
||
build_target_expr_with_type (tree init, tree type)
|
||
{
|
||
tree slot;
|
||
|
||
if (TREE_CODE (init) == TARGET_EXPR)
|
||
return init;
|
||
else if (CLASS_TYPE_P (type) && !TYPE_HAS_TRIVIAL_INIT_REF (type)
|
||
&& TREE_CODE (init) != COND_EXPR
|
||
&& TREE_CODE (init) != CONSTRUCTOR
|
||
&& TREE_CODE (init) != VA_ARG_EXPR)
|
||
/* We need to build up a copy constructor call. COND_EXPR is a special
|
||
case because we already have copies on the arms and we don't want
|
||
another one here. A CONSTRUCTOR is aggregate initialization, which
|
||
is handled separately. A VA_ARG_EXPR is magic creation of an
|
||
aggregate; there's no additional work to be done. */
|
||
return force_rvalue (init);
|
||
|
||
slot = build_local_temp (type);
|
||
return build_target_expr (slot, init);
|
||
}
|
||
|
||
/* Like the above function, but without the checking. This function should
|
||
only be used by code which is deliberately trying to subvert the type
|
||
system, such as call_builtin_trap. */
|
||
|
||
tree
|
||
force_target_expr (tree type, tree init)
|
||
{
|
||
tree slot = build_local_temp (type);
|
||
return build_target_expr (slot, init);
|
||
}
|
||
|
||
/* Like build_target_expr_with_type, but use the type of INIT. */
|
||
|
||
tree
|
||
get_target_expr (tree init)
|
||
{
|
||
return build_target_expr_with_type (init, TREE_TYPE (init));
|
||
}
|
||
|
||
|
||
static tree
|
||
build_cplus_array_type_1 (tree elt_type, tree index_type)
|
||
{
|
||
tree t;
|
||
|
||
if (elt_type == error_mark_node || index_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (dependent_type_p (elt_type)
|
||
|| (index_type
|
||
&& value_dependent_expression_p (TYPE_MAX_VALUE (index_type))))
|
||
{
|
||
t = make_node (ARRAY_TYPE);
|
||
TREE_TYPE (t) = elt_type;
|
||
TYPE_DOMAIN (t) = index_type;
|
||
}
|
||
else
|
||
t = build_array_type (elt_type, index_type);
|
||
|
||
/* Push these needs up so that initialization takes place
|
||
more easily. */
|
||
TYPE_NEEDS_CONSTRUCTING (t)
|
||
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
|
||
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
||
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build_cplus_array_type (tree elt_type, tree index_type)
|
||
{
|
||
tree t;
|
||
int type_quals = cp_type_quals (elt_type);
|
||
|
||
if (type_quals != TYPE_UNQUALIFIED)
|
||
elt_type = cp_build_qualified_type (elt_type, TYPE_UNQUALIFIED);
|
||
|
||
t = build_cplus_array_type_1 (elt_type, index_type);
|
||
|
||
if (type_quals != TYPE_UNQUALIFIED)
|
||
t = cp_build_qualified_type (t, type_quals);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
|
||
arrays correctly. In particular, if TYPE is an array of T's, and
|
||
TYPE_QUALS is non-empty, returns an array of qualified T's.
|
||
|
||
FLAGS determines how to deal with illformed qualifications. If
|
||
tf_ignore_bad_quals is set, then bad qualifications are dropped
|
||
(this is permitted if TYPE was introduced via a typedef or template
|
||
type parameter). If bad qualifications are dropped and tf_warning
|
||
is set, then a warning is issued for non-const qualifications. If
|
||
tf_ignore_bad_quals is not set and tf_error is not set, we
|
||
return error_mark_node. Otherwise, we issue an error, and ignore
|
||
the qualifications.
|
||
|
||
Qualification of a reference type is valid when the reference came
|
||
via a typedef or template type argument. [dcl.ref] No such
|
||
dispensation is provided for qualifying a function type. [dcl.fct]
|
||
DR 295 queries this and the proposed resolution brings it into line
|
||
with qualifying a reference. We implement the DR. We also behave
|
||
in a similar manner for restricting non-pointer types. */
|
||
|
||
tree
|
||
cp_build_qualified_type_real (tree type,
|
||
int type_quals,
|
||
tsubst_flags_t complain)
|
||
{
|
||
tree result;
|
||
int bad_quals = TYPE_UNQUALIFIED;
|
||
|
||
if (type == error_mark_node)
|
||
return type;
|
||
|
||
if (type_quals == cp_type_quals (type))
|
||
return type;
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* In C++, the qualification really applies to the array element
|
||
type. Obtain the appropriately qualified element type. */
|
||
tree t;
|
||
tree element_type
|
||
= cp_build_qualified_type_real (TREE_TYPE (type),
|
||
type_quals,
|
||
complain);
|
||
|
||
if (element_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* See if we already have an identically qualified type. */
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
if (cp_type_quals (t) == type_quals
|
||
&& TYPE_NAME (t) == TYPE_NAME (type)
|
||
&& TYPE_CONTEXT (t) == TYPE_CONTEXT (type))
|
||
break;
|
||
|
||
if (!t)
|
||
{
|
||
/* Make a new array type, just like the old one, but with the
|
||
appropriately qualified element type. */
|
||
t = build_type_copy (type);
|
||
TREE_TYPE (t) = element_type;
|
||
}
|
||
|
||
/* Even if we already had this variant, we update
|
||
TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
|
||
they changed since the variant was originally created.
|
||
|
||
This seems hokey; if there is some way to use a previous
|
||
variant *without* coming through here,
|
||
TYPE_NEEDS_CONSTRUCTING will never be updated. */
|
||
TYPE_NEEDS_CONSTRUCTING (t)
|
||
= TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
|
||
TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
|
||
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
|
||
return t;
|
||
}
|
||
else if (TYPE_PTRMEMFUNC_P (type))
|
||
{
|
||
/* For a pointer-to-member type, we can't just return a
|
||
cv-qualified version of the RECORD_TYPE. If we do, we
|
||
haven't changed the field that contains the actual pointer to
|
||
a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
|
||
tree t;
|
||
|
||
t = TYPE_PTRMEMFUNC_FN_TYPE (type);
|
||
t = cp_build_qualified_type_real (t, type_quals, complain);
|
||
return build_ptrmemfunc_type (t);
|
||
}
|
||
|
||
/* A reference, function or method type shall not be cv qualified.
|
||
[dcl.ref], [dct.fct] */
|
||
if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
|
||
&& (TREE_CODE (type) == REFERENCE_TYPE
|
||
|| TREE_CODE (type) == FUNCTION_TYPE
|
||
|| TREE_CODE (type) == METHOD_TYPE))
|
||
{
|
||
bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
|
||
type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
|
||
}
|
||
|
||
/* A restrict-qualified type must be a pointer (or reference)
|
||
to object or incomplete type. */
|
||
if ((type_quals & TYPE_QUAL_RESTRICT)
|
||
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (type) != TYPENAME_TYPE
|
||
&& !POINTER_TYPE_P (type))
|
||
{
|
||
bad_quals |= TYPE_QUAL_RESTRICT;
|
||
type_quals &= ~TYPE_QUAL_RESTRICT;
|
||
}
|
||
|
||
if (bad_quals == TYPE_UNQUALIFIED)
|
||
/*OK*/;
|
||
else if (!(complain & (tf_error | tf_ignore_bad_quals)))
|
||
return error_mark_node;
|
||
else
|
||
{
|
||
if (complain & tf_ignore_bad_quals)
|
||
/* We're not going to warn about constifying things that can't
|
||
be constified. */
|
||
bad_quals &= ~TYPE_QUAL_CONST;
|
||
if (bad_quals)
|
||
{
|
||
tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
|
||
|
||
if (!(complain & tf_ignore_bad_quals))
|
||
error ("`%V' qualifiers cannot be applied to `%T'",
|
||
bad_type, type);
|
||
}
|
||
}
|
||
|
||
/* Retrieve (or create) the appropriately qualified variant. */
|
||
result = build_qualified_type (type, type_quals);
|
||
|
||
/* If this was a pointer-to-method type, and we just made a copy,
|
||
then we need to unshare the record that holds the cached
|
||
pointer-to-member-function type, because these will be distinct
|
||
between the unqualified and qualified types. */
|
||
if (result != type
|
||
&& TREE_CODE (type) == POINTER_TYPE
|
||
&& TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE)
|
||
TYPE_LANG_SPECIFIC (result) = NULL;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Returns the canonical version of TYPE. In other words, if TYPE is
|
||
a typedef, returns the underlying type. The cv-qualification of
|
||
the type returned matches the type input; they will always be
|
||
compatible types. */
|
||
|
||
tree
|
||
canonical_type_variant (tree t)
|
||
{
|
||
return cp_build_qualified_type (TYPE_MAIN_VARIANT (t), cp_type_quals (t));
|
||
}
|
||
|
||
/* Makes new binfos for the indirect bases under BINFO. T is the most
|
||
derived TYPE. PREV is the previous binfo, whose TREE_CHAIN we make
|
||
point to this binfo. We return the last BINFO created.
|
||
|
||
The CLASSTYPE_VBASECLASSES list of T is constructed in reverse
|
||
order (pre-order, depth-first, right-to-left). You must nreverse it.
|
||
|
||
The BINFO_INHERITANCE of a virtual base class points to the binfo
|
||
og the most derived type.
|
||
|
||
The binfo's TREE_CHAIN is set to inheritance graph order, but bases
|
||
for non-class types are not included (i.e. those which are
|
||
dependent bases in non-instantiated templates). */
|
||
|
||
tree
|
||
copy_base_binfos (tree binfo, tree t, tree prev)
|
||
{
|
||
tree binfos = BINFO_BASETYPES (binfo);
|
||
int n, ix;
|
||
|
||
if (prev)
|
||
TREE_CHAIN (prev) = binfo;
|
||
prev = binfo;
|
||
|
||
if (binfos == NULL_TREE)
|
||
return prev;
|
||
|
||
n = TREE_VEC_LENGTH (binfos);
|
||
|
||
/* Now copy the structure beneath BINFO. */
|
||
for (ix = 0; ix != n; ix++)
|
||
{
|
||
tree base_binfo = TREE_VEC_ELT (binfos, ix);
|
||
tree new_binfo = NULL_TREE;
|
||
|
||
if (!CLASS_TYPE_P (BINFO_TYPE (base_binfo)))
|
||
{
|
||
my_friendly_assert (binfo == TYPE_BINFO (t), 20030204);
|
||
|
||
new_binfo = base_binfo;
|
||
TREE_CHAIN (prev) = new_binfo;
|
||
prev = new_binfo;
|
||
BINFO_INHERITANCE_CHAIN (new_binfo) = binfo;
|
||
BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
|
||
}
|
||
else if (TREE_VIA_VIRTUAL (base_binfo))
|
||
{
|
||
new_binfo = purpose_member (BINFO_TYPE (base_binfo),
|
||
CLASSTYPE_VBASECLASSES (t));
|
||
if (new_binfo)
|
||
new_binfo = TREE_VALUE (new_binfo);
|
||
}
|
||
|
||
if (!new_binfo)
|
||
{
|
||
new_binfo = make_binfo (BINFO_OFFSET (base_binfo),
|
||
base_binfo, NULL_TREE,
|
||
BINFO_VIRTUALS (base_binfo));
|
||
prev = copy_base_binfos (new_binfo, t, prev);
|
||
if (TREE_VIA_VIRTUAL (base_binfo))
|
||
{
|
||
CLASSTYPE_VBASECLASSES (t)
|
||
= tree_cons (BINFO_TYPE (new_binfo), new_binfo,
|
||
CLASSTYPE_VBASECLASSES (t));
|
||
TREE_VIA_VIRTUAL (new_binfo) = 1;
|
||
BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
|
||
}
|
||
else
|
||
BINFO_INHERITANCE_CHAIN (new_binfo) = binfo;
|
||
}
|
||
TREE_VEC_ELT (binfos, ix) = new_binfo;
|
||
}
|
||
|
||
return prev;
|
||
}
|
||
|
||
|
||
/* Hashing of lists so that we don't make duplicates.
|
||
The entry point is `list_hash_canon'. */
|
||
|
||
/* Now here is the hash table. When recording a list, it is added
|
||
to the slot whose index is the hash code mod the table size.
|
||
Note that the hash table is used for several kinds of lists.
|
||
While all these live in the same table, they are completely independent,
|
||
and the hash code is computed differently for each of these. */
|
||
|
||
static GTY ((param_is (union tree_node))) htab_t list_hash_table;
|
||
|
||
struct list_proxy
|
||
{
|
||
tree purpose;
|
||
tree value;
|
||
tree chain;
|
||
};
|
||
|
||
/* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
|
||
for a node we are thinking about adding). */
|
||
|
||
static int
|
||
list_hash_eq (const void* entry, const void* data)
|
||
{
|
||
tree t = (tree) entry;
|
||
struct list_proxy *proxy = (struct list_proxy *) data;
|
||
|
||
return (TREE_VALUE (t) == proxy->value
|
||
&& TREE_PURPOSE (t) == proxy->purpose
|
||
&& TREE_CHAIN (t) == proxy->chain);
|
||
}
|
||
|
||
/* Compute a hash code for a list (chain of TREE_LIST nodes
|
||
with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
|
||
TREE_COMMON slots), by adding the hash codes of the individual entries. */
|
||
|
||
static hashval_t
|
||
list_hash_pieces (tree purpose, tree value, tree chain)
|
||
{
|
||
hashval_t hashcode = 0;
|
||
|
||
if (chain)
|
||
hashcode += TYPE_HASH (chain);
|
||
|
||
if (value)
|
||
hashcode += TYPE_HASH (value);
|
||
else
|
||
hashcode += 1007;
|
||
if (purpose)
|
||
hashcode += TYPE_HASH (purpose);
|
||
else
|
||
hashcode += 1009;
|
||
return hashcode;
|
||
}
|
||
|
||
/* Hash an already existing TREE_LIST. */
|
||
|
||
static hashval_t
|
||
list_hash (const void* p)
|
||
{
|
||
tree t = (tree) p;
|
||
return list_hash_pieces (TREE_PURPOSE (t),
|
||
TREE_VALUE (t),
|
||
TREE_CHAIN (t));
|
||
}
|
||
|
||
/* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
|
||
object for an identical list if one already exists. Otherwise, build a
|
||
new one, and record it as the canonical object. */
|
||
|
||
tree
|
||
hash_tree_cons (tree purpose, tree value, tree chain)
|
||
{
|
||
int hashcode = 0;
|
||
void **slot;
|
||
struct list_proxy proxy;
|
||
|
||
/* Hash the list node. */
|
||
hashcode = list_hash_pieces (purpose, value, chain);
|
||
/* Create a proxy for the TREE_LIST we would like to create. We
|
||
don't actually create it so as to avoid creating garbage. */
|
||
proxy.purpose = purpose;
|
||
proxy.value = value;
|
||
proxy.chain = chain;
|
||
/* See if it is already in the table. */
|
||
slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
|
||
INSERT);
|
||
/* If not, create a new node. */
|
||
if (!*slot)
|
||
*slot = tree_cons (purpose, value, chain);
|
||
return *slot;
|
||
}
|
||
|
||
/* Constructor for hashed lists. */
|
||
|
||
tree
|
||
hash_tree_chain (tree value, tree chain)
|
||
{
|
||
return hash_tree_cons (NULL_TREE, value, chain);
|
||
}
|
||
|
||
/* Similar, but used for concatenating two lists. */
|
||
|
||
tree
|
||
hash_chainon (tree list1, tree list2)
|
||
{
|
||
if (list2 == 0)
|
||
return list1;
|
||
if (list1 == 0)
|
||
return list2;
|
||
if (TREE_CHAIN (list1) == NULL_TREE)
|
||
return hash_tree_chain (TREE_VALUE (list1), list2);
|
||
return hash_tree_chain (TREE_VALUE (list1),
|
||
hash_chainon (TREE_CHAIN (list1), list2));
|
||
}
|
||
|
||
/* Build an association between TYPE and some parameters:
|
||
|
||
OFFSET is the offset added to `this' to convert it to a pointer
|
||
of type `TYPE *'
|
||
|
||
BINFO is the base binfo to use, if we are deriving from one. This
|
||
is necessary, as we want specialized parent binfos from base
|
||
classes, so that the VTABLE_NAMEs of bases are for the most derived
|
||
type, instead of the simple type.
|
||
|
||
VTABLE is the virtual function table with which to initialize
|
||
sub-objects of type TYPE.
|
||
|
||
VIRTUALS are the virtual functions sitting in VTABLE. */
|
||
|
||
tree
|
||
make_binfo (tree offset, tree binfo, tree vtable, tree virtuals)
|
||
{
|
||
tree new_binfo = make_tree_vec (BINFO_LANG_ELTS);
|
||
tree type;
|
||
|
||
if (TREE_CODE (binfo) == TREE_VEC)
|
||
{
|
||
type = BINFO_TYPE (binfo);
|
||
BINFO_DEPENDENT_BASE_P (new_binfo) = BINFO_DEPENDENT_BASE_P (binfo);
|
||
}
|
||
else
|
||
{
|
||
type = binfo;
|
||
binfo = NULL_TREE;
|
||
BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
|
||
}
|
||
|
||
TREE_TYPE (new_binfo) = TYPE_MAIN_VARIANT (type);
|
||
BINFO_OFFSET (new_binfo) = offset;
|
||
BINFO_VTABLE (new_binfo) = vtable;
|
||
BINFO_VIRTUALS (new_binfo) = virtuals;
|
||
|
||
if (binfo && !BINFO_DEPENDENT_BASE_P (binfo)
|
||
&& BINFO_BASETYPES (binfo) != NULL_TREE)
|
||
{
|
||
BINFO_BASETYPES (new_binfo) = copy_node (BINFO_BASETYPES (binfo));
|
||
/* We do not need to copy the accesses, as they are read only. */
|
||
BINFO_BASEACCESSES (new_binfo) = BINFO_BASEACCESSES (binfo);
|
||
}
|
||
return new_binfo;
|
||
}
|
||
|
||
void
|
||
debug_binfo (tree elem)
|
||
{
|
||
HOST_WIDE_INT n;
|
||
tree virtuals;
|
||
|
||
fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
|
||
"\nvtable type:\n",
|
||
TYPE_NAME_STRING (BINFO_TYPE (elem)),
|
||
TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
|
||
debug_tree (BINFO_TYPE (elem));
|
||
if (BINFO_VTABLE (elem))
|
||
fprintf (stderr, "vtable decl \"%s\"\n",
|
||
IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
|
||
else
|
||
fprintf (stderr, "no vtable decl yet\n");
|
||
fprintf (stderr, "virtuals:\n");
|
||
virtuals = BINFO_VIRTUALS (elem);
|
||
n = 0;
|
||
|
||
while (virtuals)
|
||
{
|
||
tree fndecl = TREE_VALUE (virtuals);
|
||
fprintf (stderr, "%s [%ld =? %ld]\n",
|
||
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
|
||
(long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
|
||
++n;
|
||
virtuals = TREE_CHAIN (virtuals);
|
||
}
|
||
}
|
||
|
||
int
|
||
count_functions (tree t)
|
||
{
|
||
int i;
|
||
if (TREE_CODE (t) == FUNCTION_DECL)
|
||
return 1;
|
||
else if (TREE_CODE (t) == OVERLOAD)
|
||
{
|
||
for (i = 0; t; t = OVL_CHAIN (t))
|
||
i++;
|
||
return i;
|
||
}
|
||
|
||
abort ();
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
is_overloaded_fn (tree x)
|
||
{
|
||
/* A baselink is also considered an overloaded function. */
|
||
if (TREE_CODE (x) == OFFSET_REF)
|
||
x = TREE_OPERAND (x, 1);
|
||
if (BASELINK_P (x))
|
||
x = BASELINK_FUNCTIONS (x);
|
||
return (TREE_CODE (x) == FUNCTION_DECL
|
||
|| TREE_CODE (x) == TEMPLATE_ID_EXPR
|
||
|| DECL_FUNCTION_TEMPLATE_P (x)
|
||
|| TREE_CODE (x) == OVERLOAD);
|
||
}
|
||
|
||
int
|
||
really_overloaded_fn (tree x)
|
||
{
|
||
/* A baselink is also considered an overloaded function. */
|
||
if (TREE_CODE (x) == OFFSET_REF)
|
||
x = TREE_OPERAND (x, 1);
|
||
if (BASELINK_P (x))
|
||
x = BASELINK_FUNCTIONS (x);
|
||
|
||
return ((TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x))
|
||
|| DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
|
||
|| TREE_CODE (x) == TEMPLATE_ID_EXPR);
|
||
}
|
||
|
||
tree
|
||
get_first_fn (tree from)
|
||
{
|
||
my_friendly_assert (is_overloaded_fn (from), 9);
|
||
/* A baselink is also considered an overloaded function. */
|
||
if (BASELINK_P (from))
|
||
from = BASELINK_FUNCTIONS (from);
|
||
return OVL_CURRENT (from);
|
||
}
|
||
|
||
/* Returns nonzero if T is a ->* or .* expression that refers to a
|
||
member function. */
|
||
|
||
int
|
||
bound_pmf_p (tree t)
|
||
{
|
||
return (TREE_CODE (t) == OFFSET_REF
|
||
&& TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (t, 1))));
|
||
}
|
||
|
||
/* Return a new OVL node, concatenating it with the old one. */
|
||
|
||
tree
|
||
ovl_cons (tree decl, tree chain)
|
||
{
|
||
tree result = make_node (OVERLOAD);
|
||
TREE_TYPE (result) = unknown_type_node;
|
||
OVL_FUNCTION (result) = decl;
|
||
TREE_CHAIN (result) = chain;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Build a new overloaded function. If this is the first one,
|
||
just return it; otherwise, ovl_cons the _DECLs */
|
||
|
||
tree
|
||
build_overload (tree decl, tree chain)
|
||
{
|
||
if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
|
||
return decl;
|
||
if (chain && TREE_CODE (chain) != OVERLOAD)
|
||
chain = ovl_cons (chain, NULL_TREE);
|
||
return ovl_cons (decl, chain);
|
||
}
|
||
|
||
|
||
#define PRINT_RING_SIZE 4
|
||
|
||
const char *
|
||
cxx_printable_name (tree decl, int v)
|
||
{
|
||
static tree decl_ring[PRINT_RING_SIZE];
|
||
static char *print_ring[PRINT_RING_SIZE];
|
||
static int ring_counter;
|
||
int i;
|
||
|
||
/* Only cache functions. */
|
||
if (v < 2
|
||
|| TREE_CODE (decl) != FUNCTION_DECL
|
||
|| DECL_LANG_SPECIFIC (decl) == 0)
|
||
return lang_decl_name (decl, v);
|
||
|
||
/* See if this print name is lying around. */
|
||
for (i = 0; i < PRINT_RING_SIZE; i++)
|
||
if (decl_ring[i] == decl)
|
||
/* yes, so return it. */
|
||
return print_ring[i];
|
||
|
||
if (++ring_counter == PRINT_RING_SIZE)
|
||
ring_counter = 0;
|
||
|
||
if (current_function_decl != NULL_TREE)
|
||
{
|
||
if (decl_ring[ring_counter] == current_function_decl)
|
||
ring_counter += 1;
|
||
if (ring_counter == PRINT_RING_SIZE)
|
||
ring_counter = 0;
|
||
if (decl_ring[ring_counter] == current_function_decl)
|
||
abort ();
|
||
}
|
||
|
||
if (print_ring[ring_counter])
|
||
free (print_ring[ring_counter]);
|
||
|
||
print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v));
|
||
decl_ring[ring_counter] = decl;
|
||
return print_ring[ring_counter];
|
||
}
|
||
|
||
/* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
|
||
listed in RAISES. */
|
||
|
||
tree
|
||
build_exception_variant (tree type, tree raises)
|
||
{
|
||
tree v = TYPE_MAIN_VARIANT (type);
|
||
int type_quals = TYPE_QUALS (type);
|
||
|
||
for (; v; v = TYPE_NEXT_VARIANT (v))
|
||
if (TYPE_QUALS (v) == type_quals
|
||
&& comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), 1)
|
||
&& (*targetm.comp_type_attributes) (type, v))
|
||
return v;
|
||
|
||
/* Need to build a new variant. */
|
||
v = build_type_copy (type);
|
||
TYPE_RAISES_EXCEPTIONS (v) = raises;
|
||
return v;
|
||
}
|
||
|
||
/* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
|
||
BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
|
||
arguments. */
|
||
|
||
tree
|
||
bind_template_template_parm (tree t, tree newargs)
|
||
{
|
||
tree decl = TYPE_NAME (t);
|
||
tree t2;
|
||
|
||
t2 = make_aggr_type (BOUND_TEMPLATE_TEMPLATE_PARM);
|
||
decl = build_decl (TYPE_DECL, DECL_NAME (decl), NULL_TREE);
|
||
|
||
/* These nodes have to be created to reflect new TYPE_DECL and template
|
||
arguments. */
|
||
TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
|
||
TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
|
||
TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
|
||
= tree_cons (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t),
|
||
newargs, NULL_TREE);
|
||
|
||
TREE_TYPE (decl) = t2;
|
||
TYPE_NAME (t2) = decl;
|
||
TYPE_STUB_DECL (t2) = decl;
|
||
TYPE_SIZE (t2) = 0;
|
||
|
||
return t2;
|
||
}
|
||
|
||
/* Called from count_trees via walk_tree. */
|
||
|
||
static tree
|
||
count_trees_r (tree* tp ATTRIBUTE_UNUSED ,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data)
|
||
{
|
||
++ *((int*) data);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Debugging function for measuring the rough complexity of a tree
|
||
representation. */
|
||
|
||
int
|
||
count_trees (tree t)
|
||
{
|
||
int n_trees = 0;
|
||
walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
|
||
return n_trees;
|
||
}
|
||
|
||
/* Called from verify_stmt_tree via walk_tree. */
|
||
|
||
static tree
|
||
verify_stmt_tree_r (tree* tp,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data)
|
||
{
|
||
tree t = *tp;
|
||
htab_t *statements = (htab_t *) data;
|
||
void **slot;
|
||
|
||
if (!STATEMENT_CODE_P (TREE_CODE (t)))
|
||
return NULL_TREE;
|
||
|
||
/* If this statement is already present in the hash table, then
|
||
there is a circularity in the statement tree. */
|
||
if (htab_find (*statements, t))
|
||
abort ();
|
||
|
||
slot = htab_find_slot (*statements, t, INSERT);
|
||
*slot = t;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Debugging function to check that the statement T has not been
|
||
corrupted. For now, this function simply checks that T contains no
|
||
circularities. */
|
||
|
||
void
|
||
verify_stmt_tree (tree t)
|
||
{
|
||
htab_t statements;
|
||
statements = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
|
||
walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
|
||
htab_delete (statements);
|
||
}
|
||
|
||
/* Called from find_tree via walk_tree. */
|
||
|
||
static tree
|
||
find_tree_r (tree* tp,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data)
|
||
{
|
||
if (*tp == (tree) data)
|
||
return (tree) data;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns X if X appears in the tree structure rooted at T. */
|
||
|
||
tree
|
||
find_tree (tree t, tree x)
|
||
{
|
||
return walk_tree_without_duplicates (&t, find_tree_r, x);
|
||
}
|
||
|
||
/* Passed to walk_tree. Checks for the use of types with no linkage. */
|
||
|
||
static tree
|
||
no_linkage_helper (tree* tp,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data ATTRIBUTE_UNUSED )
|
||
{
|
||
tree t = *tp;
|
||
|
||
if (TYPE_P (t)
|
||
&& (CLASS_TYPE_P (t) || TREE_CODE (t) == ENUMERAL_TYPE)
|
||
&& (decl_function_context (TYPE_MAIN_DECL (t))
|
||
|| TYPE_ANONYMOUS_P (t)))
|
||
return t;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Check if the type T depends on a type with no linkage and if so, return
|
||
it. */
|
||
|
||
tree
|
||
no_linkage_check (tree t)
|
||
{
|
||
/* There's no point in checking linkage on template functions; we
|
||
can't know their complete types. */
|
||
if (processing_template_decl)
|
||
return NULL_TREE;
|
||
|
||
t = walk_tree_without_duplicates (&t, no_linkage_helper, NULL);
|
||
if (t != error_mark_node)
|
||
return t;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
#ifdef GATHER_STATISTICS
|
||
extern int depth_reached;
|
||
#endif
|
||
|
||
void
|
||
cxx_print_statistics (void)
|
||
{
|
||
print_search_statistics ();
|
||
print_class_statistics ();
|
||
#ifdef GATHER_STATISTICS
|
||
fprintf (stderr, "maximum template instantiation depth reached: %d\n",
|
||
depth_reached);
|
||
#endif
|
||
}
|
||
|
||
/* Return, as an INTEGER_CST node, the number of elements for TYPE
|
||
(which is an ARRAY_TYPE). This counts only elements of the top
|
||
array. */
|
||
|
||
tree
|
||
array_type_nelts_top (tree type)
|
||
{
|
||
return fold (build (PLUS_EXPR, sizetype,
|
||
array_type_nelts (type),
|
||
integer_one_node));
|
||
}
|
||
|
||
/* Return, as an INTEGER_CST node, the number of elements for TYPE
|
||
(which is an ARRAY_TYPE). This one is a recursive count of all
|
||
ARRAY_TYPEs that are clumped together. */
|
||
|
||
tree
|
||
array_type_nelts_total (tree type)
|
||
{
|
||
tree sz = array_type_nelts_top (type);
|
||
type = TREE_TYPE (type);
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
tree n = array_type_nelts_top (type);
|
||
sz = fold (build (MULT_EXPR, sizetype, sz, n));
|
||
type = TREE_TYPE (type);
|
||
}
|
||
return sz;
|
||
}
|
||
|
||
/* Called from break_out_target_exprs via mapcar. */
|
||
|
||
static tree
|
||
bot_manip (tree* tp, int* walk_subtrees, void* data)
|
||
{
|
||
splay_tree target_remap = ((splay_tree) data);
|
||
tree t = *tp;
|
||
|
||
if (TREE_CONSTANT (t))
|
||
{
|
||
/* There can't be any TARGET_EXPRs or their slot variables below
|
||
this point. We used to check !TREE_SIDE_EFFECTS, but then we
|
||
failed to copy an ADDR_EXPR of the slot VAR_DECL. */
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
if (TREE_CODE (t) == TARGET_EXPR)
|
||
{
|
||
tree u;
|
||
|
||
if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
|
||
{
|
||
mark_used (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 1), 0), 0));
|
||
u = build_cplus_new
|
||
(TREE_TYPE (t), break_out_target_exprs (TREE_OPERAND (t, 1)));
|
||
}
|
||
else
|
||
{
|
||
u = build_target_expr_with_type
|
||
(break_out_target_exprs (TREE_OPERAND (t, 1)), TREE_TYPE (t));
|
||
}
|
||
|
||
/* Map the old variable to the new one. */
|
||
splay_tree_insert (target_remap,
|
||
(splay_tree_key) TREE_OPERAND (t, 0),
|
||
(splay_tree_value) TREE_OPERAND (u, 0));
|
||
|
||
/* Replace the old expression with the new version. */
|
||
*tp = u;
|
||
/* We don't have to go below this point; the recursive call to
|
||
break_out_target_exprs will have handled anything below this
|
||
point. */
|
||
*walk_subtrees = 0;
|
||
return NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (t) == CALL_EXPR)
|
||
mark_used (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
|
||
|
||
/* Make a copy of this node. */
|
||
return copy_tree_r (tp, walk_subtrees, NULL);
|
||
}
|
||
|
||
/* Replace all remapped VAR_DECLs in T with their new equivalents.
|
||
DATA is really a splay-tree mapping old variables to new
|
||
variables. */
|
||
|
||
static tree
|
||
bot_replace (tree* t,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data)
|
||
{
|
||
splay_tree target_remap = ((splay_tree) data);
|
||
|
||
if (TREE_CODE (*t) == VAR_DECL)
|
||
{
|
||
splay_tree_node n = splay_tree_lookup (target_remap,
|
||
(splay_tree_key) *t);
|
||
if (n)
|
||
*t = (tree) n->value;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* When we parse a default argument expression, we may create
|
||
temporary variables via TARGET_EXPRs. When we actually use the
|
||
default-argument expression, we make a copy of the expression, but
|
||
we must replace the temporaries with appropriate local versions. */
|
||
|
||
tree
|
||
break_out_target_exprs (tree t)
|
||
{
|
||
static int target_remap_count;
|
||
static splay_tree target_remap;
|
||
|
||
if (!target_remap_count++)
|
||
target_remap = splay_tree_new (splay_tree_compare_pointers,
|
||
/*splay_tree_delete_key_fn=*/NULL,
|
||
/*splay_tree_delete_value_fn=*/NULL);
|
||
walk_tree (&t, bot_manip, target_remap, NULL);
|
||
walk_tree (&t, bot_replace, target_remap, NULL);
|
||
|
||
if (!--target_remap_count)
|
||
{
|
||
splay_tree_delete (target_remap);
|
||
target_remap = NULL;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Similar to `build_nt', but for template definitions of dependent
|
||
expressions */
|
||
|
||
tree
|
||
build_min_nt (enum tree_code code, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
va_start (p, code);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
TREE_COMPLEXITY (t) = input_line;
|
||
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
tree x = va_arg (p, tree);
|
||
TREE_OPERAND (t, i) = x;
|
||
}
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Similar to `build', but for template definitions. */
|
||
|
||
tree
|
||
build_min (enum tree_code code, tree tt, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
va_start (p, tt);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
TREE_TYPE (t) = tt;
|
||
TREE_COMPLEXITY (t) = input_line;
|
||
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
tree x = va_arg (p, tree);
|
||
TREE_OPERAND (t, i) = x;
|
||
if (x && TREE_SIDE_EFFECTS (x))
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
}
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Similar to `build', but for template definitions of non-dependent
|
||
expressions. NON_DEP is the non-dependent expression that has been
|
||
built. */
|
||
|
||
tree
|
||
build_min_non_dep (enum tree_code code, tree non_dep, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
va_start (p, non_dep);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
TREE_TYPE (t) = TREE_TYPE (non_dep);
|
||
TREE_COMPLEXITY (t) = input_line;
|
||
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
|
||
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
tree x = va_arg (p, tree);
|
||
TREE_OPERAND (t, i) = x;
|
||
}
|
||
|
||
if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
|
||
/* This should not be considered a COMPOUND_EXPR, because it
|
||
resolves to an overload. */
|
||
COMPOUND_EXPR_OVERLOADED (t) = 1;
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Returns an INTEGER_CST (of type `int') corresponding to I.
|
||
Multiple calls with the same value of I may or may not yield the
|
||
same node; therefore, callers should never modify the node
|
||
returned. */
|
||
|
||
static GTY(()) tree shared_int_cache[256];
|
||
|
||
tree
|
||
build_shared_int_cst (int i)
|
||
{
|
||
if (i >= 256)
|
||
return build_int_2 (i, 0);
|
||
|
||
if (!shared_int_cache[i])
|
||
shared_int_cache[i] = build_int_2 (i, 0);
|
||
|
||
return shared_int_cache[i];
|
||
}
|
||
|
||
tree
|
||
get_type_decl (tree t)
|
||
{
|
||
if (TREE_CODE (t) == TYPE_DECL)
|
||
return t;
|
||
if (TYPE_P (t))
|
||
return TYPE_STUB_DECL (t);
|
||
if (t == error_mark_node)
|
||
return t;
|
||
|
||
abort ();
|
||
|
||
/* Stop compiler from complaining control reaches end of non-void function. */
|
||
return 0;
|
||
}
|
||
|
||
/* Return first vector element whose BINFO_TYPE is ELEM.
|
||
Return 0 if ELEM is not in VEC. VEC may be NULL_TREE. */
|
||
|
||
tree
|
||
vec_binfo_member (tree elem, tree vec)
|
||
{
|
||
int i;
|
||
|
||
if (vec)
|
||
for (i = 0; i < TREE_VEC_LENGTH (vec); ++i)
|
||
if (same_type_p (elem, BINFO_TYPE (TREE_VEC_ELT (vec, i))))
|
||
return TREE_VEC_ELT (vec, i);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns the namespace that contains DECL, whether directly or
|
||
indirectly. */
|
||
|
||
tree
|
||
decl_namespace_context (tree decl)
|
||
{
|
||
while (1)
|
||
{
|
||
if (TREE_CODE (decl) == NAMESPACE_DECL)
|
||
return decl;
|
||
else if (TYPE_P (decl))
|
||
decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
|
||
else
|
||
decl = CP_DECL_CONTEXT (decl);
|
||
}
|
||
}
|
||
|
||
/* Return truthvalue of whether T1 is the same tree structure as T2.
|
||
Return 1 if they are the same. Return 0 if they are different. */
|
||
|
||
bool
|
||
cp_tree_equal (tree t1, tree t2)
|
||
{
|
||
enum tree_code code1, code2;
|
||
|
||
if (t1 == t2)
|
||
return true;
|
||
if (!t1 || !t2)
|
||
return false;
|
||
|
||
for (code1 = TREE_CODE (t1);
|
||
code1 == NOP_EXPR || code1 == CONVERT_EXPR
|
||
|| code1 == NON_LVALUE_EXPR;
|
||
code1 = TREE_CODE (t1))
|
||
t1 = TREE_OPERAND (t1, 0);
|
||
for (code2 = TREE_CODE (t2);
|
||
code2 == NOP_EXPR || code2 == CONVERT_EXPR
|
||
|| code1 == NON_LVALUE_EXPR;
|
||
code2 = TREE_CODE (t2))
|
||
t2 = TREE_OPERAND (t2, 0);
|
||
|
||
/* They might have become equal now. */
|
||
if (t1 == t2)
|
||
return true;
|
||
|
||
if (code1 != code2)
|
||
return false;
|
||
|
||
switch (code1)
|
||
{
|
||
case INTEGER_CST:
|
||
return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
|
||
&& TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
|
||
|
||
case REAL_CST:
|
||
return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
|
||
|
||
case STRING_CST:
|
||
return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
|
||
&& !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
||
TREE_STRING_LENGTH (t1));
|
||
|
||
case CONSTRUCTOR:
|
||
/* We need to do this when determining whether or not two
|
||
non-type pointer to member function template arguments
|
||
are the same. */
|
||
if (!(same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
|
||
/* The first operand is RTL. */
|
||
&& TREE_OPERAND (t1, 0) == TREE_OPERAND (t2, 0)))
|
||
return false;
|
||
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case TREE_LIST:
|
||
if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
|
||
return false;
|
||
if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
|
||
return false;
|
||
return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
|
||
|
||
case SAVE_EXPR:
|
||
return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
case CALL_EXPR:
|
||
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
||
return false;
|
||
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case TARGET_EXPR:
|
||
{
|
||
tree o1 = TREE_OPERAND (t1, 0);
|
||
tree o2 = TREE_OPERAND (t2, 0);
|
||
|
||
/* Special case: if either target is an unallocated VAR_DECL,
|
||
it means that it's going to be unified with whatever the
|
||
TARGET_EXPR is really supposed to initialize, so treat it
|
||
as being equivalent to anything. */
|
||
if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (o1))
|
||
/*Nop*/;
|
||
else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (o2))
|
||
/*Nop*/;
|
||
else if (!cp_tree_equal (o1, o2))
|
||
return false;
|
||
|
||
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
}
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
||
return false;
|
||
return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
|
||
return false;
|
||
return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case CONST_DECL:
|
||
case FUNCTION_DECL:
|
||
case TEMPLATE_DECL:
|
||
case IDENTIFIER_NODE:
|
||
return false;
|
||
|
||
case TEMPLATE_PARM_INDEX:
|
||
return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
|
||
&& TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
|
||
&& same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
|
||
TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
|
||
|
||
case TEMPLATE_ID_EXPR:
|
||
{
|
||
unsigned ix;
|
||
tree vec1, vec2;
|
||
|
||
if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
|
||
return false;
|
||
vec1 = TREE_OPERAND (t1, 1);
|
||
vec2 = TREE_OPERAND (t2, 1);
|
||
|
||
if (!vec1 || !vec2)
|
||
return !vec1 && !vec2;
|
||
|
||
if (TREE_VEC_LENGTH (vec1) != TREE_VEC_LENGTH (vec2))
|
||
return false;
|
||
|
||
for (ix = TREE_VEC_LENGTH (vec1); ix--;)
|
||
if (!cp_tree_equal (TREE_VEC_ELT (vec1, ix),
|
||
TREE_VEC_ELT (vec2, ix)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
case SIZEOF_EXPR:
|
||
case ALIGNOF_EXPR:
|
||
{
|
||
tree o1 = TREE_OPERAND (t1, 0);
|
||
tree o2 = TREE_OPERAND (t2, 0);
|
||
|
||
if (TREE_CODE (o1) != TREE_CODE (o2))
|
||
return false;
|
||
if (TYPE_P (o1))
|
||
return same_type_p (o1, o2);
|
||
else
|
||
return cp_tree_equal (o1, o2);
|
||
}
|
||
|
||
case PTRMEM_CST:
|
||
/* Two pointer-to-members are the same if they point to the same
|
||
field or function in the same class. */
|
||
if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
|
||
return false;
|
||
|
||
return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (TREE_CODE_CLASS (code1))
|
||
{
|
||
case '1':
|
||
case '2':
|
||
case '<':
|
||
case 'e':
|
||
case 'r':
|
||
case 's':
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TREE_CODE_LENGTH (code1); ++i)
|
||
if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
case 't':
|
||
return same_type_p (t1, t2);
|
||
}
|
||
|
||
my_friendly_assert (0, 20030617);
|
||
return false;
|
||
}
|
||
|
||
/* Build a wrapper around a 'struct z_candidate' so we can use it as a
|
||
tree. */
|
||
|
||
tree
|
||
build_zc_wrapper (struct z_candidate* ptr)
|
||
{
|
||
tree t = make_node (WRAPPER);
|
||
WRAPPER_ZC (t) = ptr;
|
||
return t;
|
||
}
|
||
|
||
/* The type of ARG when used as an lvalue. */
|
||
|
||
tree
|
||
lvalue_type (tree arg)
|
||
{
|
||
tree type = TREE_TYPE (arg);
|
||
return type;
|
||
}
|
||
|
||
/* The type of ARG for printing error messages; denote lvalues with
|
||
reference types. */
|
||
|
||
tree
|
||
error_type (tree arg)
|
||
{
|
||
tree type = TREE_TYPE (arg);
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
;
|
||
else if (TREE_CODE (type) == ERROR_MARK)
|
||
;
|
||
else if (real_lvalue_p (arg))
|
||
type = build_reference_type (lvalue_type (arg));
|
||
else if (IS_AGGR_TYPE (type))
|
||
type = lvalue_type (arg);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Does FUNCTION use a variable-length argument list? */
|
||
|
||
int
|
||
varargs_function_p (tree function)
|
||
{
|
||
tree parm = TYPE_ARG_TYPES (TREE_TYPE (function));
|
||
for (; parm; parm = TREE_CHAIN (parm))
|
||
if (TREE_VALUE (parm) == void_type_node)
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Returns 1 if decl is a member of a class. */
|
||
|
||
int
|
||
member_p (tree decl)
|
||
{
|
||
const tree ctx = DECL_CONTEXT (decl);
|
||
return (ctx && TYPE_P (ctx));
|
||
}
|
||
|
||
/* Create a placeholder for member access where we don't actually have an
|
||
object that the access is against. */
|
||
|
||
tree
|
||
build_dummy_object (tree type)
|
||
{
|
||
tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
|
||
return build_indirect_ref (decl, NULL);
|
||
}
|
||
|
||
/* We've gotten a reference to a member of TYPE. Return *this if appropriate,
|
||
or a dummy object otherwise. If BINFOP is non-0, it is filled with the
|
||
binfo path from current_class_type to TYPE, or 0. */
|
||
|
||
tree
|
||
maybe_dummy_object (tree type, tree* binfop)
|
||
{
|
||
tree decl, context;
|
||
tree binfo;
|
||
|
||
if (current_class_type
|
||
&& (binfo = lookup_base (current_class_type, type,
|
||
ba_ignore | ba_quiet, NULL)))
|
||
context = current_class_type;
|
||
else
|
||
{
|
||
/* Reference from a nested class member function. */
|
||
context = type;
|
||
binfo = TYPE_BINFO (type);
|
||
}
|
||
|
||
if (binfop)
|
||
*binfop = binfo;
|
||
|
||
if (current_class_ref && context == current_class_type
|
||
/* Kludge: Make sure that current_class_type is actually
|
||
correct. It might not be if we're in the middle of
|
||
tsubst_default_argument. */
|
||
&& same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (current_class_ref)),
|
||
current_class_type))
|
||
decl = current_class_ref;
|
||
else
|
||
decl = build_dummy_object (context);
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Returns 1 if OB is a placeholder object, or a pointer to one. */
|
||
|
||
int
|
||
is_dummy_object (tree ob)
|
||
{
|
||
if (TREE_CODE (ob) == INDIRECT_REF)
|
||
ob = TREE_OPERAND (ob, 0);
|
||
return (TREE_CODE (ob) == NOP_EXPR
|
||
&& TREE_OPERAND (ob, 0) == void_zero_node);
|
||
}
|
||
|
||
/* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
|
||
|
||
int
|
||
pod_type_p (tree t)
|
||
{
|
||
t = strip_array_types (t);
|
||
|
||
if (t == error_mark_node)
|
||
return 1;
|
||
if (INTEGRAL_TYPE_P (t))
|
||
return 1; /* integral, character or enumeral type */
|
||
if (FLOAT_TYPE_P (t))
|
||
return 1;
|
||
if (TYPE_PTR_P (t))
|
||
return 1; /* pointer to non-member */
|
||
if (TYPE_PTR_TO_MEMBER_P (t))
|
||
return 1; /* pointer to member */
|
||
|
||
if (! CLASS_TYPE_P (t))
|
||
return 0; /* other non-class type (reference or function) */
|
||
if (CLASSTYPE_NON_POD_P (t))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Returns 1 iff zero initialization of type T means actually storing
|
||
zeros in it. */
|
||
|
||
int
|
||
zero_init_p (tree t)
|
||
{
|
||
t = strip_array_types (t);
|
||
|
||
if (t == error_mark_node)
|
||
return 1;
|
||
|
||
/* NULL pointers to data members are initialized with -1. */
|
||
if (TYPE_PTRMEM_P (t))
|
||
return 0;
|
||
|
||
/* Classes that contain types that can't be zero-initialized, cannot
|
||
be zero-initialized themselves. */
|
||
if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Table of valid C++ attributes. */
|
||
const struct attribute_spec cxx_attribute_table[] =
|
||
{
|
||
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
|
||
{ "java_interface", 0, 0, false, false, false, handle_java_interface_attribute },
|
||
{ "com_interface", 0, 0, false, false, false, handle_com_interface_attribute },
|
||
{ "init_priority", 1, 1, true, false, false, handle_init_priority_attribute },
|
||
{ NULL, 0, 0, false, false, false, NULL }
|
||
};
|
||
|
||
/* Handle a "java_interface" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
static tree
|
||
handle_java_interface_attribute (tree* node,
|
||
tree name,
|
||
tree args ATTRIBUTE_UNUSED ,
|
||
int flags,
|
||
bool* no_add_attrs)
|
||
{
|
||
if (DECL_P (*node)
|
||
|| !CLASS_TYPE_P (*node)
|
||
|| !TYPE_FOR_JAVA (*node))
|
||
{
|
||
error ("`%s' attribute can only be applied to Java class definitions",
|
||
IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
|
||
*node = build_type_copy (*node);
|
||
TYPE_JAVA_INTERFACE (*node) = 1;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle a "com_interface" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
static tree
|
||
handle_com_interface_attribute (tree* node,
|
||
tree name,
|
||
tree args ATTRIBUTE_UNUSED ,
|
||
int flags ATTRIBUTE_UNUSED ,
|
||
bool* no_add_attrs)
|
||
{
|
||
static int warned;
|
||
|
||
*no_add_attrs = true;
|
||
|
||
if (DECL_P (*node)
|
||
|| !CLASS_TYPE_P (*node)
|
||
|| *node != TYPE_MAIN_VARIANT (*node))
|
||
{
|
||
warning ("`%s' attribute can only be applied to class definitions",
|
||
IDENTIFIER_POINTER (name));
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (!warned++)
|
||
warning ("`%s' is obsolete; g++ vtables are now COM-compatible by default",
|
||
IDENTIFIER_POINTER (name));
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Handle an "init_priority" attribute; arguments as in
|
||
struct attribute_spec.handler. */
|
||
static tree
|
||
handle_init_priority_attribute (tree* node,
|
||
tree name,
|
||
tree args,
|
||
int flags ATTRIBUTE_UNUSED ,
|
||
bool* no_add_attrs)
|
||
{
|
||
tree initp_expr = TREE_VALUE (args);
|
||
tree decl = *node;
|
||
tree type = TREE_TYPE (decl);
|
||
int pri;
|
||
|
||
STRIP_NOPS (initp_expr);
|
||
|
||
if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
|
||
{
|
||
error ("requested init_priority is not an integer constant");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
pri = TREE_INT_CST_LOW (initp_expr);
|
||
|
||
type = strip_array_types (type);
|
||
|
||
if (decl == NULL_TREE
|
||
|| TREE_CODE (decl) != VAR_DECL
|
||
|| !TREE_STATIC (decl)
|
||
|| DECL_EXTERNAL (decl)
|
||
|| (TREE_CODE (type) != RECORD_TYPE
|
||
&& TREE_CODE (type) != UNION_TYPE)
|
||
/* Static objects in functions are initialized the
|
||
first time control passes through that
|
||
function. This is not precise enough to pin down an
|
||
init_priority value, so don't allow it. */
|
||
|| current_function_decl)
|
||
{
|
||
error ("can only use `%s' attribute on file-scope definitions of objects of class type",
|
||
IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (pri > MAX_INIT_PRIORITY || pri <= 0)
|
||
{
|
||
error ("requested init_priority is out of range");
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Check for init_priorities that are reserved for
|
||
language and runtime support implementations.*/
|
||
if (pri <= MAX_RESERVED_INIT_PRIORITY)
|
||
{
|
||
warning
|
||
("requested init_priority is reserved for internal use");
|
||
}
|
||
|
||
if (SUPPORTS_INIT_PRIORITY)
|
||
{
|
||
DECL_INIT_PRIORITY (decl) = pri;
|
||
return NULL_TREE;
|
||
}
|
||
else
|
||
{
|
||
error ("`%s' attribute is not supported on this platform",
|
||
IDENTIFIER_POINTER (name));
|
||
*no_add_attrs = true;
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
|
||
/* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
|
||
thing pointed to by the constant. */
|
||
|
||
tree
|
||
make_ptrmem_cst (tree type, tree member)
|
||
{
|
||
tree ptrmem_cst = make_node (PTRMEM_CST);
|
||
/* If would seem a great convenience if make_node would set
|
||
TREE_CONSTANT for things of class `c', but it does not. */
|
||
TREE_CONSTANT (ptrmem_cst) = 1;
|
||
TREE_TYPE (ptrmem_cst) = type;
|
||
PTRMEM_CST_MEMBER (ptrmem_cst) = member;
|
||
return ptrmem_cst;
|
||
}
|
||
|
||
/* Build a variant of TYPE that has the indicated ATTRIBUTES. May
|
||
return an existing type of an appropriate type already exists. */
|
||
|
||
tree
|
||
cp_build_type_attribute_variant (tree type, tree attributes)
|
||
{
|
||
tree new_type;
|
||
|
||
new_type = build_type_attribute_variant (type, attributes);
|
||
if (TREE_CODE (new_type) == FUNCTION_TYPE
|
||
&& (TYPE_RAISES_EXCEPTIONS (new_type)
|
||
!= TYPE_RAISES_EXCEPTIONS (type)))
|
||
new_type = build_exception_variant (new_type,
|
||
TYPE_RAISES_EXCEPTIONS (type));
|
||
return new_type;
|
||
}
|
||
|
||
/* Apply FUNC to all language-specific sub-trees of TP in a pre-order
|
||
traversal. Called from walk_tree(). */
|
||
|
||
tree
|
||
cp_walk_subtrees (tree* tp,
|
||
int* walk_subtrees_p,
|
||
walk_tree_fn func,
|
||
void* data,
|
||
void* htab)
|
||
{
|
||
enum tree_code code = TREE_CODE (*tp);
|
||
tree result;
|
||
|
||
#define WALK_SUBTREE(NODE) \
|
||
do \
|
||
{ \
|
||
result = walk_tree (&(NODE), func, data, htab); \
|
||
if (result) \
|
||
return result; \
|
||
} \
|
||
while (0)
|
||
|
||
/* Not one of the easy cases. We must explicitly go through the
|
||
children. */
|
||
switch (code)
|
||
{
|
||
case DEFAULT_ARG:
|
||
case TEMPLATE_TEMPLATE_PARM:
|
||
case BOUND_TEMPLATE_TEMPLATE_PARM:
|
||
case UNBOUND_CLASS_TEMPLATE:
|
||
case TEMPLATE_PARM_INDEX:
|
||
case TEMPLATE_TYPE_PARM:
|
||
case TYPENAME_TYPE:
|
||
case TYPEOF_TYPE:
|
||
case BASELINK:
|
||
/* None of these have subtrees other than those already walked
|
||
above. */
|
||
*walk_subtrees_p = 0;
|
||
break;
|
||
|
||
case PTRMEM_CST:
|
||
WALK_SUBTREE (TREE_TYPE (*tp));
|
||
*walk_subtrees_p = 0;
|
||
break;
|
||
|
||
case TREE_LIST:
|
||
WALK_SUBTREE (TREE_PURPOSE (*tp));
|
||
break;
|
||
|
||
case OVERLOAD:
|
||
WALK_SUBTREE (OVL_FUNCTION (*tp));
|
||
WALK_SUBTREE (OVL_CHAIN (*tp));
|
||
*walk_subtrees_p = 0;
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
if (TYPE_PTRMEMFUNC_P (*tp))
|
||
WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* We didn't find what we were looking for. */
|
||
return NULL_TREE;
|
||
|
||
#undef WALK_SUBTREE
|
||
}
|
||
|
||
/* Decide whether there are language-specific reasons to not inline a
|
||
function as a tree. */
|
||
|
||
int
|
||
cp_cannot_inline_tree_fn (tree* fnp)
|
||
{
|
||
tree fn = *fnp;
|
||
|
||
/* We can inline a template instantiation only if it's fully
|
||
instantiated. */
|
||
if (DECL_TEMPLATE_INFO (fn)
|
||
&& TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
|
||
{
|
||
/* Don't instantiate functions that are not going to be
|
||
inlined. */
|
||
if (!DECL_INLINE (DECL_TEMPLATE_RESULT
|
||
(template_for_substitution (fn))))
|
||
return 1;
|
||
|
||
fn = *fnp = instantiate_decl (fn, /*defer_ok=*/0);
|
||
|
||
if (TI_PENDING_TEMPLATE_FLAG (DECL_TEMPLATE_INFO (fn)))
|
||
return 1;
|
||
}
|
||
|
||
if (flag_really_no_inline
|
||
&& lookup_attribute ("always_inline", DECL_ATTRIBUTES (fn)) == NULL)
|
||
return 1;
|
||
|
||
/* Don't auto-inline anything that might not be bound within
|
||
this unit of translation. */
|
||
if (!DECL_DECLARED_INLINE_P (fn) && !(*targetm.binds_local_p) (fn))
|
||
{
|
||
DECL_UNINLINABLE (fn) = 1;
|
||
return 1;
|
||
}
|
||
|
||
if (varargs_function_p (fn))
|
||
{
|
||
DECL_UNINLINABLE (fn) = 1;
|
||
return 1;
|
||
}
|
||
|
||
if (! function_attribute_inlinable_p (fn))
|
||
{
|
||
DECL_UNINLINABLE (fn) = 1;
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Add any pending functions other than the current function (already
|
||
handled by the caller), that thus cannot be inlined, to FNS_P, then
|
||
return the latest function added to the array, PREV_FN. */
|
||
|
||
tree
|
||
cp_add_pending_fn_decls (void* fns_p, tree prev_fn)
|
||
{
|
||
varray_type *fnsp = (varray_type *)fns_p;
|
||
struct saved_scope *s;
|
||
|
||
for (s = scope_chain; s; s = s->prev)
|
||
if (s->function_decl && s->function_decl != prev_fn)
|
||
{
|
||
VARRAY_PUSH_TREE (*fnsp, s->function_decl);
|
||
prev_fn = s->function_decl;
|
||
}
|
||
|
||
return prev_fn;
|
||
}
|
||
|
||
/* Determine whether a tree node is an OVERLOAD node. Used to decide
|
||
whether to copy a node or to preserve its chain when inlining a
|
||
function. */
|
||
|
||
int
|
||
cp_is_overload_p (tree t)
|
||
{
|
||
return TREE_CODE (t) == OVERLOAD;
|
||
}
|
||
|
||
/* Determine whether VAR is a declaration of an automatic variable in
|
||
function FN. */
|
||
|
||
int
|
||
cp_auto_var_in_fn_p (tree var, tree fn)
|
||
{
|
||
return (DECL_P (var) && DECL_CONTEXT (var) == fn
|
||
&& nonstatic_local_decl_p (var));
|
||
}
|
||
|
||
/* Tell whether a declaration is needed for the RESULT of a function
|
||
FN being inlined into CALLER or if the top node of target_exprs is
|
||
to be used. */
|
||
|
||
tree
|
||
cp_copy_res_decl_for_inlining (tree result,
|
||
tree fn,
|
||
tree caller,
|
||
void* decl_map_,
|
||
int* need_decl,
|
||
tree return_slot_addr)
|
||
{
|
||
splay_tree decl_map = (splay_tree)decl_map_;
|
||
tree var;
|
||
|
||
/* If FN returns an aggregate then the caller will always pass the
|
||
address of the return slot explicitly. If we were just to
|
||
create a new VAR_DECL here, then the result of this function
|
||
would be copied (bitwise) into the variable initialized by the
|
||
TARGET_EXPR. That's incorrect, so we must transform any
|
||
references to the RESULT into references to the target. */
|
||
|
||
/* We should have an explicit return slot iff the return type is
|
||
TREE_ADDRESSABLE. See simplify_aggr_init_expr. */
|
||
if (TREE_ADDRESSABLE (TREE_TYPE (result))
|
||
!= (return_slot_addr != NULL_TREE))
|
||
abort ();
|
||
|
||
*need_decl = !return_slot_addr;
|
||
if (return_slot_addr)
|
||
{
|
||
var = build_indirect_ref (return_slot_addr, "");
|
||
if (! same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (var),
|
||
TREE_TYPE (result)))
|
||
abort ();
|
||
}
|
||
/* Otherwise, make an appropriate copy. */
|
||
else
|
||
var = copy_decl_for_inlining (result, fn, caller);
|
||
|
||
if (DECL_SAVED_FUNCTION_DATA (fn))
|
||
{
|
||
tree nrv = DECL_SAVED_FUNCTION_DATA (fn)->x_return_value;
|
||
if (nrv)
|
||
{
|
||
/* We have a named return value; copy the name and source
|
||
position so we can get reasonable debugging information, and
|
||
register the return variable as its equivalent. */
|
||
if (TREE_CODE (var) == VAR_DECL
|
||
/* But not if we're initializing a variable from the
|
||
enclosing function which already has its own name. */
|
||
&& DECL_NAME (var) == NULL_TREE)
|
||
{
|
||
DECL_NAME (var) = DECL_NAME (nrv);
|
||
DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (nrv);
|
||
DECL_ABSTRACT_ORIGIN (var) = DECL_ORIGIN (nrv);
|
||
/* Don't lose initialization info. */
|
||
DECL_INITIAL (var) = DECL_INITIAL (nrv);
|
||
/* Don't forget that it needs to go in the stack. */
|
||
TREE_ADDRESSABLE (var) = TREE_ADDRESSABLE (nrv);
|
||
}
|
||
|
||
splay_tree_insert (decl_map,
|
||
(splay_tree_key) nrv,
|
||
(splay_tree_value) var);
|
||
}
|
||
}
|
||
|
||
return var;
|
||
}
|
||
|
||
/* Initialize tree.c. */
|
||
|
||
void
|
||
init_tree (void)
|
||
{
|
||
list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
|
||
}
|
||
|
||
/* Called via walk_tree. If *TP points to a DECL_STMT for a local
|
||
declaration, copies the declaration and enters it in the splay_tree
|
||
pointed to by DATA (which is really a `splay_tree *'). */
|
||
|
||
static tree
|
||
mark_local_for_remap_r (tree* tp,
|
||
int* walk_subtrees ATTRIBUTE_UNUSED ,
|
||
void* data)
|
||
{
|
||
tree t = *tp;
|
||
splay_tree st = (splay_tree) data;
|
||
tree decl;
|
||
|
||
|
||
if (TREE_CODE (t) == DECL_STMT
|
||
&& nonstatic_local_decl_p (DECL_STMT_DECL (t)))
|
||
decl = DECL_STMT_DECL (t);
|
||
else if (TREE_CODE (t) == LABEL_STMT)
|
||
decl = LABEL_STMT_LABEL (t);
|
||
else if (TREE_CODE (t) == TARGET_EXPR
|
||
&& nonstatic_local_decl_p (TREE_OPERAND (t, 0)))
|
||
decl = TREE_OPERAND (t, 0);
|
||
else if (TREE_CODE (t) == CASE_LABEL)
|
||
decl = CASE_LABEL_DECL (t);
|
||
else
|
||
decl = NULL_TREE;
|
||
|
||
if (decl)
|
||
{
|
||
tree copy;
|
||
|
||
/* Make a copy. */
|
||
copy = copy_decl_for_inlining (decl,
|
||
DECL_CONTEXT (decl),
|
||
DECL_CONTEXT (decl));
|
||
|
||
/* Remember the copy. */
|
||
splay_tree_insert (st,
|
||
(splay_tree_key) decl,
|
||
(splay_tree_value) copy);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Called via walk_tree when an expression is unsaved. Using the
|
||
splay_tree pointed to by ST (which is really a `splay_tree'),
|
||
remaps all local declarations to appropriate replacements. */
|
||
|
||
static tree
|
||
cp_unsave_r (tree* tp,
|
||
int* walk_subtrees,
|
||
void* data)
|
||
{
|
||
splay_tree st = (splay_tree) data;
|
||
splay_tree_node n;
|
||
|
||
/* Only a local declaration (variable or label). */
|
||
if (nonstatic_local_decl_p (*tp))
|
||
{
|
||
/* Lookup the declaration. */
|
||
n = splay_tree_lookup (st, (splay_tree_key) *tp);
|
||
|
||
/* If it's there, remap it. */
|
||
if (n)
|
||
*tp = (tree) n->value;
|
||
}
|
||
else if (TREE_CODE (*tp) == SAVE_EXPR)
|
||
remap_save_expr (tp, st, current_function_decl, walk_subtrees);
|
||
else
|
||
{
|
||
copy_tree_r (tp, walk_subtrees, NULL);
|
||
|
||
/* Do whatever unsaving is required. */
|
||
unsave_expr_1 (*tp);
|
||
}
|
||
|
||
/* Keep iterating. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Called whenever an expression needs to be unsaved. */
|
||
|
||
tree
|
||
cxx_unsave_expr_now (tree tp)
|
||
{
|
||
splay_tree st;
|
||
|
||
/* Create a splay-tree to map old local variable declarations to new
|
||
ones. */
|
||
st = splay_tree_new (splay_tree_compare_pointers, NULL, NULL);
|
||
|
||
/* Walk the tree once figuring out what needs to be remapped. */
|
||
walk_tree (&tp, mark_local_for_remap_r, st, NULL);
|
||
|
||
/* Walk the tree again, copying, remapping, and unsaving. */
|
||
walk_tree (&tp, cp_unsave_r, st, NULL);
|
||
|
||
/* Clean up. */
|
||
splay_tree_delete (st);
|
||
|
||
return tp;
|
||
}
|
||
|
||
/* Returns the kind of special function that DECL (a FUNCTION_DECL)
|
||
is. Note that sfk_none is zero, so this function can be used as a
|
||
predicate to test whether or not DECL is a special function. */
|
||
|
||
special_function_kind
|
||
special_function_p (tree decl)
|
||
{
|
||
/* Rather than doing all this stuff with magic names, we should
|
||
probably have a field of type `special_function_kind' in
|
||
DECL_LANG_SPECIFIC. */
|
||
if (DECL_COPY_CONSTRUCTOR_P (decl))
|
||
return sfk_copy_constructor;
|
||
if (DECL_CONSTRUCTOR_P (decl))
|
||
return sfk_constructor;
|
||
if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
|
||
return sfk_assignment_operator;
|
||
if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
|
||
return sfk_destructor;
|
||
if (DECL_COMPLETE_DESTRUCTOR_P (decl))
|
||
return sfk_complete_destructor;
|
||
if (DECL_BASE_DESTRUCTOR_P (decl))
|
||
return sfk_base_destructor;
|
||
if (DECL_DELETING_DESTRUCTOR_P (decl))
|
||
return sfk_deleting_destructor;
|
||
if (DECL_CONV_FN_P (decl))
|
||
return sfk_conversion;
|
||
|
||
return sfk_none;
|
||
}
|
||
|
||
/* Returns true if and only if NODE is a name, i.e., a node created
|
||
by the parser when processing an id-expression. */
|
||
|
||
bool
|
||
name_p (tree node)
|
||
{
|
||
if (TREE_CODE (node) == TEMPLATE_ID_EXPR)
|
||
node = TREE_OPERAND (node, 0);
|
||
return (/* An ordinary unqualified name. */
|
||
TREE_CODE (node) == IDENTIFIER_NODE
|
||
/* A destructor name. */
|
||
|| TREE_CODE (node) == BIT_NOT_EXPR
|
||
/* A qualified name. */
|
||
|| TREE_CODE (node) == SCOPE_REF);
|
||
}
|
||
|
||
/* Returns nonzero if TYPE is a character type, including wchar_t. */
|
||
|
||
int
|
||
char_type_p (tree type)
|
||
{
|
||
return (same_type_p (type, char_type_node)
|
||
|| same_type_p (type, unsigned_char_type_node)
|
||
|| same_type_p (type, signed_char_type_node)
|
||
|| same_type_p (type, wchar_type_node));
|
||
}
|
||
|
||
/* Returns the kind of linkage associated with the indicated DECL. Th
|
||
value returned is as specified by the language standard; it is
|
||
independent of implementation details regarding template
|
||
instantiation, etc. For example, it is possible that a declaration
|
||
to which this function assigns external linkage would not show up
|
||
as a global symbol when you run `nm' on the resulting object file. */
|
||
|
||
linkage_kind
|
||
decl_linkage (tree decl)
|
||
{
|
||
/* This function doesn't attempt to calculate the linkage from first
|
||
principles as given in [basic.link]. Instead, it makes use of
|
||
the fact that we have already set TREE_PUBLIC appropriately, and
|
||
then handles a few special cases. Ideally, we would calculate
|
||
linkage first, and then transform that into a concrete
|
||
implementation. */
|
||
|
||
/* Things that don't have names have no linkage. */
|
||
if (!DECL_NAME (decl))
|
||
return lk_none;
|
||
|
||
/* Things that are TREE_PUBLIC have external linkage. */
|
||
if (TREE_PUBLIC (decl))
|
||
return lk_external;
|
||
|
||
/* Some things that are not TREE_PUBLIC have external linkage, too.
|
||
For example, on targets that don't have weak symbols, we make all
|
||
template instantiations have internal linkage (in the object
|
||
file), but the symbols should still be treated as having external
|
||
linkage from the point of view of the language. */
|
||
if (DECL_LANG_SPECIFIC (decl) && DECL_COMDAT (decl))
|
||
return lk_external;
|
||
|
||
/* Things in local scope do not have linkage, if they don't have
|
||
TREE_PUBLIC set. */
|
||
if (decl_function_context (decl))
|
||
return lk_none;
|
||
|
||
/* Everything else has internal linkage. */
|
||
return lk_internal;
|
||
}
|
||
|
||
/* EXP is an expression that we want to pre-evaluate. Returns via INITP an
|
||
expression to perform the pre-evaluation, and returns directly an
|
||
expression to use the precalculated result. */
|
||
|
||
tree
|
||
stabilize_expr (tree exp, tree* initp)
|
||
{
|
||
tree init_expr;
|
||
|
||
if (!TREE_SIDE_EFFECTS (exp))
|
||
{
|
||
init_expr = NULL_TREE;
|
||
}
|
||
else if (!real_lvalue_p (exp)
|
||
|| !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (exp)))
|
||
{
|
||
init_expr = get_target_expr (exp);
|
||
exp = TARGET_EXPR_SLOT (init_expr);
|
||
}
|
||
else
|
||
{
|
||
exp = build_unary_op (ADDR_EXPR, exp, 1);
|
||
init_expr = get_target_expr (exp);
|
||
exp = TARGET_EXPR_SLOT (init_expr);
|
||
exp = build_indirect_ref (exp, 0);
|
||
}
|
||
|
||
*initp = init_expr;
|
||
return exp;
|
||
}
|
||
|
||
/* Like stabilize_expr, but for a call whose args we want to
|
||
pre-evaluate. */
|
||
|
||
void
|
||
stabilize_call (tree call, tree *initp)
|
||
{
|
||
tree inits = NULL_TREE;
|
||
tree t;
|
||
|
||
if (call == error_mark_node)
|
||
return;
|
||
|
||
if (TREE_CODE (call) != CALL_EXPR
|
||
&& TREE_CODE (call) != AGGR_INIT_EXPR)
|
||
abort ();
|
||
|
||
for (t = TREE_OPERAND (call, 1); t; t = TREE_CHAIN (t))
|
||
if (TREE_SIDE_EFFECTS (TREE_VALUE (t)))
|
||
{
|
||
tree init;
|
||
TREE_VALUE (t) = stabilize_expr (TREE_VALUE (t), &init);
|
||
if (!init)
|
||
/* Nothing. */;
|
||
else if (inits)
|
||
inits = build (COMPOUND_EXPR, void_type_node, inits, init);
|
||
else
|
||
inits = init;
|
||
}
|
||
|
||
*initp = inits;
|
||
}
|
||
|
||
/* Like stabilize_expr, but for an initialization. If we are initializing
|
||
an object of class type, we don't want to introduce an extra temporary,
|
||
so we look past the TARGET_EXPR and stabilize the arguments of the call
|
||
instead. */
|
||
|
||
bool
|
||
stabilize_init (tree init, tree *initp)
|
||
{
|
||
tree t = init;
|
||
|
||
if (t == error_mark_node)
|
||
return true;
|
||
|
||
if (TREE_CODE (t) == INIT_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (t, 1)) != TARGET_EXPR)
|
||
TREE_OPERAND (t, 1) = stabilize_expr (TREE_OPERAND (t, 1), initp);
|
||
else
|
||
{
|
||
if (TREE_CODE (t) == INIT_EXPR)
|
||
t = TREE_OPERAND (t, 1);
|
||
if (TREE_CODE (t) == TARGET_EXPR)
|
||
t = TARGET_EXPR_INITIAL (t);
|
||
if (TREE_CODE (t) == CONSTRUCTOR
|
||
&& CONSTRUCTOR_ELTS (t) == NULL_TREE)
|
||
{
|
||
/* Default-initialization. */
|
||
*initp = NULL_TREE;
|
||
return true;
|
||
}
|
||
|
||
/* If the initializer is a COND_EXPR, we can't preevaluate
|
||
anything. */
|
||
if (TREE_CODE (t) == COND_EXPR)
|
||
return false;
|
||
|
||
stabilize_call (t, initp);
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
||
/* Complain that some language-specific thing hanging off a tree
|
||
node has been accessed improperly. */
|
||
|
||
void
|
||
lang_check_failed (const char* file, int line, const char* function)
|
||
{
|
||
internal_error ("lang_* check: failed in %s, at %s:%d",
|
||
function, trim_filename (file), line);
|
||
}
|
||
#endif /* ENABLE_TREE_CHECKING */
|
||
|
||
#include "gt-cp-tree.h"
|