2005-06-13 16:43:14 +00:00

2458 lines
69 KiB
C

/*
* WPA Supplicant
* Copyright (c) 2003-2005, Jouni Malinen <jkmaline@cc.hut.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Alternatively, this software may be distributed under the terms of BSD
* license.
*
* See README and COPYING for more details.
*/
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#ifndef CONFIG_NATIVE_WINDOWS
#include <netinet/in.h>
#endif /* CONFIG_NATIVE_WINDOWS */
#include <string.h>
#include <time.h>
#include "common.h"
#include "md5.h"
#include "sha1.h"
#include "rc4.h"
#include "aes_wrap.h"
#include "wpa.h"
#include "driver.h"
#include "eloop.h"
#include "wpa_supplicant.h"
#include "config.h"
#include "l2_packet.h"
#include "eapol_sm.h"
#include "wpa_supplicant_i.h"
static void rsn_preauth_candidate_process(struct wpa_supplicant *wpa_s);
#define PMKID_CANDIDATE_PRIO_SCAN 1000
/* TODO: make these configurable */
static const int dot11RSNAConfigPMKLifetime = 43200;
static const int dot11RSNAConfigPMKReauthThreshold = 70;
static const int dot11RSNAConfigSATimeout = 60;
static const int pmksa_cache_max_entries = 32;
static const int WPA_SELECTOR_LEN = 4;
static const u8 WPA_OUI_TYPE[] = { 0x00, 0x50, 0xf2, 1 };
static const u16 WPA_VERSION = 1;
static const u8 WPA_AUTH_KEY_MGMT_NONE[] = { 0x00, 0x50, 0xf2, 0 };
static const u8 WPA_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x50, 0xf2, 1 };
static const u8 WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x50, 0xf2, 2 };
static const u8 WPA_CIPHER_SUITE_NONE[] = { 0x00, 0x50, 0xf2, 0 };
static const u8 WPA_CIPHER_SUITE_WEP40[] = { 0x00, 0x50, 0xf2, 1 };
static const u8 WPA_CIPHER_SUITE_TKIP[] = { 0x00, 0x50, 0xf2, 2 };
static const u8 WPA_CIPHER_SUITE_WRAP[] = { 0x00, 0x50, 0xf2, 3 };
static const u8 WPA_CIPHER_SUITE_CCMP[] = { 0x00, 0x50, 0xf2, 4 };
static const u8 WPA_CIPHER_SUITE_WEP104[] = { 0x00, 0x50, 0xf2, 5 };
/* WPA IE version 1
* 00-50-f2:1 (OUI:OUI type)
* 0x01 0x00 (version; little endian)
* (all following fields are optional:)
* Group Suite Selector (4 octets) (default: TKIP)
* Pairwise Suite Count (2 octets, little endian) (default: 1)
* Pairwise Suite List (4 * n octets) (default: TKIP)
* Authenticated Key Management Suite Count (2 octets, little endian)
* (default: 1)
* Authenticated Key Management Suite List (4 * n octets)
* (default: unspec 802.1x)
* WPA Capabilities (2 octets, little endian) (default: 0)
*/
struct wpa_ie_hdr {
u8 elem_id;
u8 len;
u8 oui[3];
u8 oui_type;
u16 version;
} __attribute__ ((packed));
static const int RSN_SELECTOR_LEN = 4;
static const u16 RSN_VERSION = 1;
static const u8 RSN_AUTH_KEY_MGMT_UNSPEC_802_1X[] = { 0x00, 0x0f, 0xac, 1 };
static const u8 RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X[] = { 0x00, 0x0f, 0xac, 2 };
static const u8 RSN_CIPHER_SUITE_NONE[] = { 0x00, 0x0f, 0xac, 0 };
static const u8 RSN_CIPHER_SUITE_WEP40[] = { 0x00, 0x0f, 0xac, 1 };
static const u8 RSN_CIPHER_SUITE_TKIP[] = { 0x00, 0x0f, 0xac, 2 };
static const u8 RSN_CIPHER_SUITE_WRAP[] = { 0x00, 0x0f, 0xac, 3 };
static const u8 RSN_CIPHER_SUITE_CCMP[] = { 0x00, 0x0f, 0xac, 4 };
static const u8 RSN_CIPHER_SUITE_WEP104[] = { 0x00, 0x0f, 0xac, 5 };
/* EAPOL-Key Key Data Encapsulation
* GroupKey and STAKey require encryption, otherwise, encryption is optional.
*/
static const u8 RSN_KEY_DATA_GROUPKEY[] = { 0x00, 0x0f, 0xac, 1 };
static const u8 RSN_KEY_DATA_STAKEY[] = { 0x00, 0x0f, 0xac, 2 };
static const u8 RSN_KEY_DATA_MAC_ADDR[] = { 0x00, 0x0f, 0xac, 3 };
static const u8 RSN_KEY_DATA_PMKID[] = { 0x00, 0x0f, 0xac, 4 };
/* 1/4: PMKID
* 2/4: RSN IE
* 3/4: one or two RSN IEs + GTK IE (encrypted)
* 4/4: empty
* 1/2: GTK IE (encrypted)
* 2/2: empty
*/
/* RSN IE version 1
* 0x01 0x00 (version; little endian)
* (all following fields are optional:)
* Group Suite Selector (4 octets) (default: CCMP)
* Pairwise Suite Count (2 octets, little endian) (default: 1)
* Pairwise Suite List (4 * n octets) (default: CCMP)
* Authenticated Key Management Suite Count (2 octets, little endian)
* (default: 1)
* Authenticated Key Management Suite List (4 * n octets)
* (default: unspec 802.1x)
* RSN Capabilities (2 octets, little endian) (default: 0)
* PMKID Count (2 octets) (default: 0)
* PMKID List (16 * n octets)
*/
struct rsn_ie_hdr {
u8 elem_id; /* WLAN_EID_RSN */
u8 len;
u16 version;
} __attribute__ ((packed));
static int wpa_selector_to_bitfield(u8 *s)
{
if (memcmp(s, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_NONE;
if (memcmp(s, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP40;
if (memcmp(s, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_TKIP;
if (memcmp(s, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_CCMP;
if (memcmp(s, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP104;
return 0;
}
static int wpa_key_mgmt_to_bitfield(u8 *s)
{
if (memcmp(s, WPA_AUTH_KEY_MGMT_UNSPEC_802_1X, WPA_SELECTOR_LEN) == 0)
return WPA_KEY_MGMT_IEEE8021X;
if (memcmp(s, WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X, WPA_SELECTOR_LEN) ==
0)
return WPA_KEY_MGMT_PSK;
if (memcmp(s, WPA_AUTH_KEY_MGMT_NONE, WPA_SELECTOR_LEN) == 0)
return WPA_KEY_MGMT_WPA_NONE;
return 0;
}
static int rsn_selector_to_bitfield(u8 *s)
{
if (memcmp(s, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_NONE;
if (memcmp(s, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP40;
if (memcmp(s, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_TKIP;
if (memcmp(s, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_CCMP;
if (memcmp(s, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN) == 0)
return WPA_CIPHER_WEP104;
return 0;
}
static int rsn_key_mgmt_to_bitfield(u8 *s)
{
if (memcmp(s, RSN_AUTH_KEY_MGMT_UNSPEC_802_1X, RSN_SELECTOR_LEN) == 0)
return WPA_KEY_MGMT_IEEE8021X;
if (memcmp(s, RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X, RSN_SELECTOR_LEN) ==
0)
return WPA_KEY_MGMT_PSK;
return 0;
}
static void rsn_pmkid(u8 *pmk, u8 *aa, u8 *spa, u8 *pmkid)
{
char *title = "PMK Name";
const unsigned char *addr[3];
const size_t len[3] = { 8, ETH_ALEN, ETH_ALEN };
unsigned char hash[SHA1_MAC_LEN];
addr[0] = (unsigned char *) title;
addr[1] = aa;
addr[2] = spa;
hmac_sha1_vector(pmk, PMK_LEN, 3, addr, len, hash);
memcpy(pmkid, hash, PMKID_LEN);
}
static void pmksa_cache_set_expiration(struct wpa_supplicant *wpa_s);
static void pmksa_cache_free_entry(struct wpa_supplicant *wpa_s,
struct rsn_pmksa_cache *entry)
{
free(entry);
wpa_s->pmksa_count--;
if (wpa_s->cur_pmksa == entry) {
wpa_printf(MSG_DEBUG, "RSN: removed current PMKSA entry");
/* TODO: should drop PMK and PTK and trigger new key
* negotiation */
wpa_s->cur_pmksa = NULL;
}
}
static void pmksa_cache_expire(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_supplicant *wpa_s = eloop_ctx;
time_t now;
time(&now);
while (wpa_s->pmksa && wpa_s->pmksa->expiration <= now) {
struct rsn_pmksa_cache *entry = wpa_s->pmksa;
wpa_s->pmksa = entry->next;
wpa_printf(MSG_DEBUG, "RSN: expired PMKSA cache entry for "
MACSTR, MAC2STR(entry->aa));
pmksa_cache_free_entry(wpa_s, entry);
}
pmksa_cache_set_expiration(wpa_s);
}
static void pmksa_cache_set_expiration(struct wpa_supplicant *wpa_s)
{
int sec;
eloop_cancel_timeout(pmksa_cache_expire, wpa_s, NULL);
if (wpa_s->pmksa == NULL)
return;
sec = wpa_s->pmksa->expiration - time(NULL);
if (sec < 0)
sec = 0;
eloop_register_timeout(sec + 1, 0, pmksa_cache_expire, wpa_s, NULL);
}
static void pmksa_cache_add(struct wpa_supplicant *wpa_s, u8 *pmk,
size_t pmk_len, u8 *aa, u8 *spa)
{
struct rsn_pmksa_cache *entry, *pos, *prev;
if (wpa_s->proto != WPA_PROTO_RSN || pmk_len > PMK_LEN)
return;
entry = malloc(sizeof(*entry));
if (entry == NULL)
return;
memset(entry, 0, sizeof(*entry));
memcpy(entry->pmk, pmk, pmk_len);
entry->pmk_len = pmk_len;
rsn_pmkid(pmk, aa, spa, entry->pmkid);
entry->expiration = time(NULL) + dot11RSNAConfigPMKLifetime;
entry->akmp = WPA_KEY_MGMT_IEEE8021X;
memcpy(entry->aa, aa, ETH_ALEN);
/* Replace an old entry for the same Authenticator (if found) with the
* new entry */
pos = wpa_s->pmksa;
prev = NULL;
while (pos) {
if (memcmp(aa, pos->aa, ETH_ALEN) == 0) {
if (prev == NULL)
wpa_s->pmksa = pos->next;
else
prev->next = pos->next;
pmksa_cache_free_entry(wpa_s, pos);
break;
}
prev = pos;
pos = pos->next;
}
if (wpa_s->pmksa_count >= pmksa_cache_max_entries && wpa_s->pmksa) {
/* Remove the oldest entry to make room for the new entry */
pos = wpa_s->pmksa;
wpa_s->pmksa = pos->next;
wpa_printf(MSG_DEBUG, "RSN: removed the oldest PMKSA cache "
"entry (for " MACSTR ") to make room for new one",
MAC2STR(pos->aa));
wpa_drv_remove_pmkid(wpa_s, pos->aa, pos->pmkid);
pmksa_cache_free_entry(wpa_s, pos);
}
/* Add the new entry; order by expiration time */
pos = wpa_s->pmksa;
prev = NULL;
while (pos) {
if (pos->expiration > entry->expiration)
break;
prev = pos;
pos = pos->next;
}
if (prev == NULL) {
entry->next = wpa_s->pmksa;
wpa_s->pmksa = entry;
} else {
entry->next = prev->next;
prev->next = entry;
}
wpa_s->pmksa_count++;
wpa_printf(MSG_DEBUG, "RSN: added PMKSA cache entry for " MACSTR,
MAC2STR(entry->aa));
wpa_drv_add_pmkid(wpa_s, entry->aa, entry->pmkid);
}
void pmksa_cache_free(struct wpa_supplicant *wpa_s)
{
struct rsn_pmksa_cache *entry, *prev;
entry = wpa_s->pmksa;
wpa_s->pmksa = NULL;
while (entry) {
prev = entry;
entry = entry->next;
free(prev);
}
pmksa_cache_set_expiration(wpa_s);
wpa_s->cur_pmksa = NULL;
}
struct rsn_pmksa_cache * pmksa_cache_get(struct wpa_supplicant *wpa_s,
u8 *aa, u8 *pmkid)
{
struct rsn_pmksa_cache *entry = wpa_s->pmksa;
while (entry) {
if ((aa == NULL || memcmp(entry->aa, aa, ETH_ALEN) == 0) &&
(pmkid == NULL ||
memcmp(entry->pmkid, pmkid, PMKID_LEN) == 0))
return entry;
entry = entry->next;
}
return NULL;
}
int pmksa_cache_list(struct wpa_supplicant *wpa_s, char *buf, size_t len)
{
int i, j;
char *pos = buf;
struct rsn_pmksa_cache *entry;
time_t now;
time(&now);
pos += snprintf(pos, buf + len - pos,
"Index / AA / PMKID / expiration (in seconds)\n");
i = 0;
entry = wpa_s->pmksa;
while (entry) {
i++;
pos += snprintf(pos, buf + len - pos, "%d " MACSTR " ",
i, MAC2STR(entry->aa));
for (j = 0; j < PMKID_LEN; j++)
pos += snprintf(pos, buf + len - pos, "%02x",
entry->pmkid[j]);
pos += snprintf(pos, buf + len - pos, " %d\n",
(int) (entry->expiration - now));
entry = entry->next;
}
return pos - buf;
}
void pmksa_candidate_free(struct wpa_supplicant *wpa_s)
{
struct rsn_pmksa_candidate *entry, *prev;
entry = wpa_s->pmksa_candidates;
wpa_s->pmksa_candidates = NULL;
while (entry) {
prev = entry;
entry = entry->next;
free(prev);
}
}
static int wpa_parse_wpa_ie_wpa(struct wpa_supplicant *wpa_s, u8 *wpa_ie,
size_t wpa_ie_len, struct wpa_ie_data *data)
{
struct wpa_ie_hdr *hdr;
u8 *pos;
int left;
int i, count;
data->proto = WPA_PROTO_WPA;
data->pairwise_cipher = WPA_CIPHER_TKIP;
data->group_cipher = WPA_CIPHER_TKIP;
data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
data->capabilities = 0;
data->pmkid = NULL;
data->num_pmkid = 0;
if (wpa_ie_len == 0) {
/* No WPA IE - fail silently */
return -1;
}
if (wpa_ie_len < sizeof(struct wpa_ie_hdr)) {
wpa_printf(MSG_DEBUG, "%s: ie len too short %lu",
__func__, (unsigned long) wpa_ie_len);
return -1;
}
hdr = (struct wpa_ie_hdr *) wpa_ie;
if (hdr->elem_id != GENERIC_INFO_ELEM ||
hdr->len != wpa_ie_len - 2 ||
memcmp(&hdr->oui, WPA_OUI_TYPE, WPA_SELECTOR_LEN) != 0 ||
le_to_host16(hdr->version) != WPA_VERSION) {
wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version",
__func__);
return -1;
}
pos = (u8 *) (hdr + 1);
left = wpa_ie_len - sizeof(*hdr);
if (left >= WPA_SELECTOR_LEN) {
data->group_cipher = wpa_selector_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
} else if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much",
__func__, left);
return -1;
}
if (left >= 2) {
data->pairwise_cipher = 0;
count = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (count == 0 || left < count * WPA_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), "
"count %u left %u", __func__, count, left);
return -1;
}
for (i = 0; i < count; i++) {
data->pairwise_cipher |= wpa_selector_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)",
__func__);
return -1;
}
if (left >= 2) {
data->key_mgmt = 0;
count = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (count == 0 || left < count * WPA_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), "
"count %u left %u", __func__, count, left);
return -1;
}
for (i = 0; i < count; i++) {
data->key_mgmt |= wpa_key_mgmt_to_bitfield(pos);
pos += WPA_SELECTOR_LEN;
left -= WPA_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)",
__func__);
return -1;
}
if (left >= 2) {
data->capabilities = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
}
if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie has %u trailing bytes",
__func__, left);
return -1;
}
return 0;
}
static int wpa_parse_wpa_ie_rsn(struct wpa_supplicant *wpa_s, u8 *rsn_ie,
size_t rsn_ie_len, struct wpa_ie_data *data)
{
struct rsn_ie_hdr *hdr;
u8 *pos;
int left;
int i, count;
data->proto = WPA_PROTO_RSN;
data->pairwise_cipher = WPA_CIPHER_CCMP;
data->group_cipher = WPA_CIPHER_CCMP;
data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
data->capabilities = 0;
data->pmkid = NULL;
data->num_pmkid = 0;
if (rsn_ie_len == 0) {
/* No RSN IE - fail silently */
return -1;
}
if (rsn_ie_len < sizeof(struct rsn_ie_hdr)) {
wpa_printf(MSG_DEBUG, "%s: ie len too short %lu",
__func__, (unsigned long) rsn_ie_len);
return -1;
}
hdr = (struct rsn_ie_hdr *) rsn_ie;
if (hdr->elem_id != RSN_INFO_ELEM ||
hdr->len != rsn_ie_len - 2 ||
le_to_host16(hdr->version) != RSN_VERSION) {
wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version",
__func__);
return -1;
}
pos = (u8 *) (hdr + 1);
left = rsn_ie_len - sizeof(*hdr);
if (left >= RSN_SELECTOR_LEN) {
data->group_cipher = rsn_selector_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
} else if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much",
__func__, left);
return -1;
}
if (left >= 2) {
data->pairwise_cipher = 0;
count = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (count == 0 || left < count * RSN_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), "
"count %u left %u", __func__, count, left);
return -1;
}
for (i = 0; i < count; i++) {
data->pairwise_cipher |= rsn_selector_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)",
__func__);
return -1;
}
if (left >= 2) {
data->key_mgmt = 0;
count = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (count == 0 || left < count * RSN_SELECTOR_LEN) {
wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), "
"count %u left %u", __func__, count, left);
return -1;
}
for (i = 0; i < count; i++) {
data->key_mgmt |= rsn_key_mgmt_to_bitfield(pos);
pos += RSN_SELECTOR_LEN;
left -= RSN_SELECTOR_LEN;
}
} else if (left == 1) {
wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)",
__func__);
return -1;
}
if (left >= 2) {
data->capabilities = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
}
if (left >= 2) {
data->num_pmkid = pos[0] | (pos[1] << 8);
pos += 2;
left -= 2;
if (left < data->num_pmkid * PMKID_LEN) {
wpa_printf(MSG_DEBUG, "%s: PMKID underflow "
"(num_pmkid=%d left=%d)",
__func__, data->num_pmkid, left);
data->num_pmkid = 0;
} else {
data->pmkid = pos;
pos += data->num_pmkid * PMKID_LEN;
left -= data->num_pmkid * PMKID_LEN;
}
}
if (left > 0) {
wpa_printf(MSG_DEBUG, "%s: ie has %u trailing bytes - ignored",
__func__, left);
}
return 0;
}
int wpa_parse_wpa_ie(struct wpa_supplicant *wpa_s, u8 *wpa_ie,
size_t wpa_ie_len, struct wpa_ie_data *data)
{
if (wpa_ie_len >= 1 && wpa_ie[0] == RSN_INFO_ELEM)
return wpa_parse_wpa_ie_rsn(wpa_s, wpa_ie, wpa_ie_len, data);
else
return wpa_parse_wpa_ie_wpa(wpa_s, wpa_ie, wpa_ie_len, data);
}
static int wpa_gen_wpa_ie_wpa(struct wpa_supplicant *wpa_s, u8 *wpa_ie)
{
u8 *pos;
struct wpa_ie_hdr *hdr;
hdr = (struct wpa_ie_hdr *) wpa_ie;
hdr->elem_id = GENERIC_INFO_ELEM;
memcpy(&hdr->oui, WPA_OUI_TYPE, WPA_SELECTOR_LEN);
hdr->version = host_to_le16(WPA_VERSION);
pos = (u8 *) (hdr + 1);
if (wpa_s->group_cipher == WPA_CIPHER_CCMP) {
memcpy(pos, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN);
} else if (wpa_s->group_cipher == WPA_CIPHER_TKIP) {
memcpy(pos, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN);
} else if (wpa_s->group_cipher == WPA_CIPHER_WEP104) {
memcpy(pos, WPA_CIPHER_SUITE_WEP104, WPA_SELECTOR_LEN);
} else if (wpa_s->group_cipher == WPA_CIPHER_WEP40) {
memcpy(pos, WPA_CIPHER_SUITE_WEP40, WPA_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid group cipher (%d).",
wpa_s->group_cipher);
return -1;
}
pos += WPA_SELECTOR_LEN;
*pos++ = 1;
*pos++ = 0;
if (wpa_s->pairwise_cipher == WPA_CIPHER_CCMP) {
memcpy(pos, WPA_CIPHER_SUITE_CCMP, WPA_SELECTOR_LEN);
} else if (wpa_s->pairwise_cipher == WPA_CIPHER_TKIP) {
memcpy(pos, WPA_CIPHER_SUITE_TKIP, WPA_SELECTOR_LEN);
} else if (wpa_s->pairwise_cipher == WPA_CIPHER_NONE) {
memcpy(pos, WPA_CIPHER_SUITE_NONE, WPA_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid pairwise cipher (%d).",
wpa_s->pairwise_cipher);
return -1;
}
pos += WPA_SELECTOR_LEN;
*pos++ = 1;
*pos++ = 0;
if (wpa_s->key_mgmt == WPA_KEY_MGMT_IEEE8021X) {
memcpy(pos, WPA_AUTH_KEY_MGMT_UNSPEC_802_1X, WPA_SELECTOR_LEN);
} else if (wpa_s->key_mgmt == WPA_KEY_MGMT_PSK) {
memcpy(pos, WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X,
WPA_SELECTOR_LEN);
} else if (wpa_s->key_mgmt == WPA_KEY_MGMT_WPA_NONE) {
memcpy(pos, WPA_AUTH_KEY_MGMT_NONE, WPA_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid key management type (%d).",
wpa_s->key_mgmt);
return -1;
}
pos += WPA_SELECTOR_LEN;
/* WPA Capabilities; use defaults, so no need to include it */
hdr->len = (pos - wpa_ie) - 2;
return pos - wpa_ie;
}
static int wpa_gen_wpa_ie_rsn(struct wpa_supplicant *wpa_s, u8 *rsn_ie)
{
u8 *pos;
struct rsn_ie_hdr *hdr;
hdr = (struct rsn_ie_hdr *) rsn_ie;
hdr->elem_id = RSN_INFO_ELEM;
hdr->version = host_to_le16(RSN_VERSION);
pos = (u8 *) (hdr + 1);
if (wpa_s->group_cipher == WPA_CIPHER_CCMP) {
memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
} else if (wpa_s->group_cipher == WPA_CIPHER_TKIP) {
memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN);
} else if (wpa_s->group_cipher == WPA_CIPHER_WEP104) {
memcpy(pos, RSN_CIPHER_SUITE_WEP104, RSN_SELECTOR_LEN);
} else if (wpa_s->group_cipher == WPA_CIPHER_WEP40) {
memcpy(pos, RSN_CIPHER_SUITE_WEP40, RSN_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid group cipher (%d).",
wpa_s->group_cipher);
return -1;
}
pos += RSN_SELECTOR_LEN;
*pos++ = 1;
*pos++ = 0;
if (wpa_s->pairwise_cipher == WPA_CIPHER_CCMP) {
memcpy(pos, RSN_CIPHER_SUITE_CCMP, RSN_SELECTOR_LEN);
} else if (wpa_s->pairwise_cipher == WPA_CIPHER_TKIP) {
memcpy(pos, RSN_CIPHER_SUITE_TKIP, RSN_SELECTOR_LEN);
} else if (wpa_s->pairwise_cipher == WPA_CIPHER_NONE) {
memcpy(pos, RSN_CIPHER_SUITE_NONE, RSN_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid pairwise cipher (%d).",
wpa_s->pairwise_cipher);
return -1;
}
pos += RSN_SELECTOR_LEN;
*pos++ = 1;
*pos++ = 0;
if (wpa_s->key_mgmt == WPA_KEY_MGMT_IEEE8021X) {
memcpy(pos, RSN_AUTH_KEY_MGMT_UNSPEC_802_1X, RSN_SELECTOR_LEN);
} else if (wpa_s->key_mgmt == WPA_KEY_MGMT_PSK) {
memcpy(pos, RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X,
RSN_SELECTOR_LEN);
} else {
wpa_printf(MSG_WARNING, "Invalid key management type (%d).",
wpa_s->key_mgmt);
return -1;
}
pos += RSN_SELECTOR_LEN;
/* RSN Capabilities */
*pos++ = 0;
*pos++ = 0;
if (wpa_s->cur_pmksa) {
/* PMKID Count (2 octets, little endian) */
*pos++ = 1;
*pos++ = 0;
/* PMKID */
memcpy(pos, wpa_s->cur_pmksa->pmkid, PMKID_LEN);
pos += PMKID_LEN;
}
hdr->len = (pos - rsn_ie) - 2;
return pos - rsn_ie;
}
int wpa_gen_wpa_ie(struct wpa_supplicant *wpa_s, u8 *wpa_ie)
{
if (wpa_s->proto == WPA_PROTO_RSN)
return wpa_gen_wpa_ie_rsn(wpa_s, wpa_ie);
else
return wpa_gen_wpa_ie_wpa(wpa_s, wpa_ie);
}
static void wpa_pmk_to_ptk(u8 *pmk, size_t pmk_len, u8 *addr1, u8 *addr2,
u8 *nonce1, u8 *nonce2, u8 *ptk, size_t ptk_len)
{
u8 data[2 * ETH_ALEN + 2 * 32];
/* PTK = PRF-X(PMK, "Pairwise key expansion",
* Min(AA, SA) || Max(AA, SA) ||
* Min(ANonce, SNonce) || Max(ANonce, SNonce)) */
if (memcmp(addr1, addr2, ETH_ALEN) < 0) {
memcpy(data, addr1, ETH_ALEN);
memcpy(data + ETH_ALEN, addr2, ETH_ALEN);
} else {
memcpy(data, addr2, ETH_ALEN);
memcpy(data + ETH_ALEN, addr1, ETH_ALEN);
}
if (memcmp(nonce1, nonce2, 32) < 0) {
memcpy(data + 2 * ETH_ALEN, nonce1, 32);
memcpy(data + 2 * ETH_ALEN + 32, nonce2, 32);
} else {
memcpy(data + 2 * ETH_ALEN, nonce2, 32);
memcpy(data + 2 * ETH_ALEN + 32, nonce1, 32);
}
sha1_prf(pmk, pmk_len, "Pairwise key expansion", data, sizeof(data),
ptk, ptk_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: PMK", pmk, pmk_len);
wpa_hexdump_key(MSG_DEBUG, "WPA: PTK", ptk, ptk_len);
}
struct wpa_ssid * wpa_supplicant_get_ssid(struct wpa_supplicant *wpa_s)
{
struct wpa_ssid *entry;
u8 ssid[MAX_SSID_LEN];
int ssid_len;
u8 bssid[ETH_ALEN];
ssid_len = wpa_drv_get_ssid(wpa_s, ssid);
if (ssid_len < 0) {
wpa_printf(MSG_WARNING, "Could not read SSID from driver.");
return NULL;
}
if (wpa_drv_get_bssid(wpa_s, bssid) < 0) {
wpa_printf(MSG_WARNING, "Could not read BSSID from driver.");
return NULL;
}
entry = wpa_s->conf->ssid;
while (entry) {
if (ssid_len == entry->ssid_len &&
memcmp(ssid, entry->ssid, ssid_len) == 0 &&
(!entry->bssid_set ||
memcmp(bssid, entry->bssid, ETH_ALEN) == 0))
return entry;
entry = entry->next;
}
return NULL;
}
static void wpa_eapol_key_mic(u8 *key, int ver, u8 *buf, size_t len, u8 *mic)
{
if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) {
hmac_md5(key, 16, buf, len, mic);
} else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
u8 hash[SHA1_MAC_LEN];
hmac_sha1(key, 16, buf, len, hash);
memcpy(mic, hash, MD5_MAC_LEN);
}
}
void wpa_supplicant_key_request(struct wpa_supplicant *wpa_s,
int error, int pairwise)
{
int rlen;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *reply;
unsigned char *rbuf;
struct l2_ethhdr *ethhdr;
int key_info, ver;
u8 bssid[ETH_ALEN];
if (wpa_s->pairwise_cipher == WPA_CIPHER_CCMP)
ver = WPA_KEY_INFO_TYPE_HMAC_SHA1_AES;
else
ver = WPA_KEY_INFO_TYPE_HMAC_MD5_RC4;
if (wpa_drv_get_bssid(wpa_s, bssid) < 0) {
wpa_printf(MSG_WARNING, "Failed to read BSSID for EAPOL-Key "
"request");
return;
}
rlen = sizeof(*ethhdr) + sizeof(*hdr) + sizeof(*reply);
rbuf = malloc(rlen);
if (rbuf == NULL)
return;
memset(rbuf, 0, rlen);
ethhdr = (struct l2_ethhdr *) rbuf;
memcpy(ethhdr->h_dest, bssid, ETH_ALEN);
memcpy(ethhdr->h_source, wpa_s->own_addr, ETH_ALEN);
ethhdr->h_proto = htons(ETH_P_EAPOL);
hdr = (struct ieee802_1x_hdr *) (ethhdr + 1);
hdr->version = wpa_s->conf->eapol_version;
hdr->type = IEEE802_1X_TYPE_EAPOL_KEY;
hdr->length = htons(sizeof(*reply));
reply = (struct wpa_eapol_key *) (hdr + 1);
reply->type = wpa_s->proto == WPA_PROTO_RSN ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
key_info = WPA_KEY_INFO_REQUEST | ver;
if (wpa_s->ptk_set)
key_info |= WPA_KEY_INFO_MIC;
if (error)
key_info |= WPA_KEY_INFO_ERROR;
if (pairwise)
key_info |= WPA_KEY_INFO_KEY_TYPE;
reply->key_info = host_to_be16(key_info);
reply->key_length = 0;
memcpy(reply->replay_counter, wpa_s->request_counter,
WPA_REPLAY_COUNTER_LEN);
inc_byte_array(wpa_s->request_counter, WPA_REPLAY_COUNTER_LEN);
reply->key_data_length = host_to_be16(0);
if (key_info & WPA_KEY_INFO_MIC) {
wpa_eapol_key_mic(wpa_s->ptk.mic_key, ver, (u8 *) hdr,
rlen - sizeof(*ethhdr), reply->key_mic);
}
wpa_printf(MSG_INFO, "WPA: Sending EAPOL-Key Request (error=%d "
"pairwise=%d ptk_set=%d len=%d)",
error, pairwise, wpa_s->ptk_set, rlen);
wpa_hexdump(MSG_MSGDUMP, "WPA: TX EAPOL-Key Request", rbuf, rlen);
l2_packet_send(wpa_s->l2, rbuf, rlen);
eapol_sm_notify_tx_eapol_key(wpa_s->eapol);
free(rbuf);
}
static void wpa_supplicant_process_1_of_4(struct wpa_supplicant *wpa_s,
unsigned char *src_addr,
struct wpa_eapol_key *key, int ver)
{
int rlen;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *reply;
unsigned char *rbuf;
struct l2_ethhdr *ethhdr;
struct wpa_ssid *ssid;
struct wpa_ptk *ptk;
u8 buf[8], wpa_ie_buf[80], *wpa_ie, *pmkid = NULL;
int wpa_ie_len;
int abort_cached = 0;
wpa_s->wpa_state = WPA_4WAY_HANDSHAKE;
wpa_printf(MSG_DEBUG, "WPA: RX message 1 of 4-Way Handshake from "
MACSTR " (ver=%d)", MAC2STR(src_addr), ver);
ssid = wpa_supplicant_get_ssid(wpa_s);
if (ssid == NULL) {
wpa_printf(MSG_WARNING, "WPA: No SSID info found (msg 1 of "
"4).");
return;
}
if (wpa_s->proto == WPA_PROTO_RSN) {
/* RSN: msg 1/4 should contain PMKID for the selected PMK */
u8 *pos = (u8 *) (key + 1);
u8 *end = pos + be_to_host16(key->key_data_length);
wpa_hexdump(MSG_DEBUG, "RSN: msg 1/4 key data",
pos, be_to_host16(key->key_data_length));
while (pos + 1 < end) {
if (pos + 2 + pos[1] > end) {
wpa_printf(MSG_DEBUG, "RSN: key data "
"underflow (ie=%d len=%d)",
pos[0], pos[1]);
break;
}
if (pos[0] == GENERIC_INFO_ELEM &&
pos + 1 + RSN_SELECTOR_LEN < end &&
pos[1] >= RSN_SELECTOR_LEN + PMKID_LEN &&
memcmp(pos + 2, RSN_KEY_DATA_PMKID,
RSN_SELECTOR_LEN) == 0) {
pmkid = pos + 2 + RSN_SELECTOR_LEN;
wpa_hexdump(MSG_DEBUG, "RSN: PMKID from "
"Authenticator", pmkid, PMKID_LEN);
break;
} else if (pos[0] == GENERIC_INFO_ELEM &&
pos[1] == 0)
break;
pos += 2 + pos[1];
}
}
if (wpa_s->assoc_wpa_ie) {
/* The driver reported a WPA IE that may be different from the
* one that the Supplicant would use. Message 2/4 has to use
* the exact copy of the WPA IE from the Association Request,
* so use the value reported by the driver. */
wpa_ie = wpa_s->assoc_wpa_ie;
wpa_ie_len = wpa_s->assoc_wpa_ie_len;
} else {
wpa_ie = wpa_ie_buf;
wpa_ie_len = wpa_gen_wpa_ie(wpa_s, wpa_ie);
if (wpa_ie_len < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to generate "
"WPA IE (for msg 2 of 4).");
return;
}
wpa_hexdump(MSG_DEBUG, "WPA: WPA IE for msg 2/4",
wpa_ie, wpa_ie_len);
}
rlen = sizeof(*ethhdr) + sizeof(*hdr) + sizeof(*reply) + wpa_ie_len;
rbuf = malloc(rlen);
if (rbuf == NULL)
return;
memset(rbuf, 0, rlen);
ethhdr = (struct l2_ethhdr *) rbuf;
memcpy(ethhdr->h_dest, src_addr, ETH_ALEN);
memcpy(ethhdr->h_source, wpa_s->own_addr, ETH_ALEN);
ethhdr->h_proto = htons(ETH_P_EAPOL);
hdr = (struct ieee802_1x_hdr *) (ethhdr + 1);
hdr->version = wpa_s->conf->eapol_version;
hdr->type = IEEE802_1X_TYPE_EAPOL_KEY;
hdr->length = htons(sizeof(*reply) + wpa_ie_len);
reply = (struct wpa_eapol_key *) (hdr + 1);
reply->type = wpa_s->proto == WPA_PROTO_RSN ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
reply->key_info = host_to_be16(ver | WPA_KEY_INFO_KEY_TYPE |
WPA_KEY_INFO_MIC);
reply->key_length = key->key_length;
memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
reply->key_data_length = host_to_be16(wpa_ie_len);
memcpy(reply + 1, wpa_ie, wpa_ie_len);
if (wpa_s->renew_snonce) {
if (hostapd_get_rand(wpa_s->snonce, WPA_NONCE_LEN)) {
wpa_msg(wpa_s, MSG_WARNING, "WPA: Failed to get "
"random data for SNonce");
free(rbuf);
return;
}
wpa_s->renew_snonce = 0;
wpa_hexdump(MSG_DEBUG, "WPA: Renewed SNonce",
wpa_s->snonce, WPA_NONCE_LEN);
}
memcpy(reply->key_nonce, wpa_s->snonce, WPA_NONCE_LEN);
ptk = &wpa_s->tptk;
memcpy(wpa_s->anonce, key->key_nonce, WPA_NONCE_LEN);
if (pmkid && !wpa_s->cur_pmksa) {
/* When using drivers that generate RSN IE, wpa_supplicant may
* not have enough time to get the association information
* event before receiving this 1/4 message, so try to find a
* matching PMKSA cache entry here. */
wpa_s->cur_pmksa = pmksa_cache_get(wpa_s, src_addr, pmkid);
if (wpa_s->cur_pmksa) {
wpa_printf(MSG_DEBUG, "RSN: found matching PMKID from "
"PMKSA cache");
} else {
wpa_printf(MSG_DEBUG, "RSN: no matching PMKID found");
abort_cached = 1;
}
}
if (pmkid && wpa_s->cur_pmksa &&
memcmp(pmkid, wpa_s->cur_pmksa->pmkid, PMKID_LEN) == 0) {
wpa_hexdump(MSG_DEBUG, "RSN: matched PMKID", pmkid, PMKID_LEN);
memcpy(wpa_s->pmk, wpa_s->cur_pmksa->pmk, PMK_LEN);
wpa_hexdump_key(MSG_DEBUG, "RSN: PMK from PMKSA cache",
wpa_s->pmk, PMK_LEN);
eapol_sm_notify_cached(wpa_s->eapol);
} else if (wpa_s->key_mgmt == WPA_KEY_MGMT_IEEE8021X && wpa_s->eapol) {
int res, pmk_len;
pmk_len = PMK_LEN;
res = eapol_sm_get_key(wpa_s->eapol, wpa_s->pmk, PMK_LEN);
#ifdef EAP_LEAP
if (res) {
res = eapol_sm_get_key(wpa_s->eapol, wpa_s->pmk, 16);
pmk_len = 16;
}
#endif /* EAP_LEAP */
if (res == 0) {
wpa_hexdump_key(MSG_DEBUG, "WPA: PMK from EAPOL state "
"machines", wpa_s->pmk, pmk_len);
wpa_s->pmk_len = pmk_len;
pmksa_cache_add(wpa_s, wpa_s->pmk, pmk_len, src_addr,
wpa_s->own_addr);
if (!wpa_s->cur_pmksa && pmkid &&
pmksa_cache_get(wpa_s, src_addr, pmkid)) {
wpa_printf(MSG_DEBUG, "RSN: the new PMK "
"matches with the PMKID");
abort_cached = 0;
}
} else {
wpa_msg(wpa_s, MSG_WARNING,
"WPA: Failed to get master session key from "
"EAPOL state machines");
wpa_msg(wpa_s, MSG_WARNING,
"WPA: Key handshake aborted");
if (wpa_s->cur_pmksa) {
wpa_printf(MSG_DEBUG, "RSN: Cancelled PMKSA "
"caching attempt");
wpa_s->cur_pmksa = NULL;
abort_cached = 1;
} else {
free(rbuf);
return;
}
}
#ifdef CONFIG_XSUPPLICANT_IFACE
} else if (wpa_s->key_mgmt == WPA_KEY_MGMT_IEEE8021X &&
!wpa_s->ext_pmk_received) {
wpa_printf(MSG_INFO, "WPA: Master session has not yet "
"been received from the external IEEE "
"802.1X Supplicant - ignoring WPA "
"EAPOL-Key frame");
free(rbuf);
return;
#endif /* CONFIG_XSUPPLICANT_IFACE */
}
if (abort_cached && wpa_s->key_mgmt == WPA_KEY_MGMT_IEEE8021X) {
/* Send EAPOL-Start to trigger full EAP authentication. */
wpa_printf(MSG_DEBUG, "RSN: no PMKSA entry found - trigger "
"full EAP authenication");
wpa_eapol_send(wpa_s, IEEE802_1X_TYPE_EAPOL_START,
(u8 *) "", 0);
free(rbuf);
return;
}
wpa_pmk_to_ptk(wpa_s->pmk, wpa_s->pmk_len, wpa_s->own_addr, src_addr,
wpa_s->snonce, key->key_nonce,
(u8 *) ptk, sizeof(*ptk));
/* Supplicant: swap tx/rx Mic keys */
memcpy(buf, ptk->u.auth.tx_mic_key, 8);
memcpy(ptk->u.auth.tx_mic_key, ptk->u.auth.rx_mic_key, 8);
memcpy(ptk->u.auth.rx_mic_key, buf, 8);
wpa_s->tptk_set = 1;
wpa_eapol_key_mic(wpa_s->tptk.mic_key, ver, (u8 *) hdr,
rlen - sizeof(*ethhdr), reply->key_mic);
wpa_hexdump(MSG_DEBUG, "WPA: EAPOL-Key MIC", reply->key_mic, 16);
wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 2/4");
wpa_hexdump(MSG_MSGDUMP, "WPA: TX EAPOL-Key 2/4", rbuf, rlen);
l2_packet_send(wpa_s->l2, rbuf, rlen);
eapol_sm_notify_tx_eapol_key(wpa_s->eapol);
free(rbuf);
}
static void wpa_supplicant_key_neg_complete(struct wpa_supplicant *wpa_s,
u8 *addr, int secure)
{
wpa_msg(wpa_s, MSG_INFO, "WPA: Key negotiation completed with "
MACSTR " [PTK=%s GTK=%s]", MAC2STR(addr),
wpa_cipher_txt(wpa_s->pairwise_cipher),
wpa_cipher_txt(wpa_s->group_cipher));
eloop_cancel_timeout(wpa_supplicant_scan, wpa_s, NULL);
wpa_supplicant_cancel_auth_timeout(wpa_s);
wpa_s->wpa_state = WPA_COMPLETED;
if (secure) {
/* MLME.SETPROTECTION.request(TA, Tx_Rx) */
eapol_sm_notify_portValid(wpa_s->eapol, TRUE);
if (wpa_s->key_mgmt == WPA_KEY_MGMT_PSK)
eapol_sm_notify_eap_success(wpa_s->eapol, TRUE);
rsn_preauth_candidate_process(wpa_s);
}
}
static int wpa_supplicant_install_ptk(struct wpa_supplicant *wpa_s,
unsigned char *src_addr,
struct wpa_eapol_key *key)
{
int alg, keylen, rsclen;
u8 *key_rsc;
u8 null_rsc[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
wpa_printf(MSG_DEBUG, "WPA: Installing PTK to the driver.");
switch (wpa_s->pairwise_cipher) {
case WPA_CIPHER_CCMP:
alg = WPA_ALG_CCMP;
keylen = 16;
rsclen = 6;
break;
case WPA_CIPHER_TKIP:
alg = WPA_ALG_TKIP;
keylen = 32;
rsclen = 6;
break;
case WPA_CIPHER_NONE:
wpa_printf(MSG_DEBUG, "WPA: Pairwise Cipher Suite: "
"NONE - do not use pairwise keys");
return 0;
default:
wpa_printf(MSG_WARNING, "WPA: Unsupported pairwise cipher %d",
wpa_s->pairwise_cipher);
return -1;
}
if (wpa_s->proto == WPA_PROTO_RSN) {
key_rsc = null_rsc;
} else {
key_rsc = key->key_rsc;
wpa_hexdump(MSG_DEBUG, "WPA: RSC", key_rsc, rsclen);
}
wpa_s->keys_cleared = 0;
if (wpa_drv_set_key(wpa_s, alg, src_addr, 0, 1, key_rsc, rsclen,
(u8 *) &wpa_s->ptk.tk1, keylen) < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to set PTK to the "
"driver.");
return -1;
}
return 0;
}
static int wpa_supplicant_check_group_cipher(struct wpa_supplicant *wpa_s,
int keylen, int maxkeylen,
int *key_rsc_len, int *alg)
{
switch (wpa_s->group_cipher) {
case WPA_CIPHER_CCMP:
if (keylen != 16 || maxkeylen < 16) {
wpa_printf(MSG_WARNING, "WPA: Unsupported CCMP Group "
"Cipher key length %d (%d).",
keylen, maxkeylen);
return -1;
}
*key_rsc_len = 6;
*alg = WPA_ALG_CCMP;
break;
case WPA_CIPHER_TKIP:
if (keylen != 32 || maxkeylen < 32) {
wpa_printf(MSG_WARNING, "WPA: Unsupported TKIP Group "
"Cipher key length %d (%d).",
keylen, maxkeylen);
return -1;
}
*key_rsc_len = 6;
*alg = WPA_ALG_TKIP;
break;
case WPA_CIPHER_WEP104:
if (keylen != 13 || maxkeylen < 13) {
wpa_printf(MSG_WARNING, "WPA: Unsupported WEP104 Group"
" Cipher key length %d (%d).",
keylen, maxkeylen);
return -1;
}
*key_rsc_len = 0;
*alg = WPA_ALG_WEP;
break;
case WPA_CIPHER_WEP40:
if (keylen != 5 || maxkeylen < 5) {
wpa_printf(MSG_WARNING, "WPA: Unsupported WEP40 Group "
"Cipher key length %d (%d).",
keylen, maxkeylen);
return -1;
}
*key_rsc_len = 0;
*alg = WPA_ALG_WEP;
break;
default:
wpa_printf(MSG_WARNING, "WPA: Unsupport Group Cipher %d",
wpa_s->group_cipher);
return -1;
}
return 0;
}
static int wpa_supplicant_install_gtk(struct wpa_supplicant *wpa_s,
struct wpa_eapol_key *key, int alg,
u8 *gtk, int gtk_len, int keyidx,
int key_rsc_len, int tx)
{
wpa_hexdump_key(MSG_DEBUG, "WPA: Group Key", gtk, gtk_len);
wpa_printf(MSG_DEBUG, "WPA: Installing GTK to the driver "
"(keyidx=%d tx=%d).", keyidx, tx);
wpa_hexdump(MSG_DEBUG, "WPA: RSC", key->key_rsc, key_rsc_len);
if (wpa_s->group_cipher == WPA_CIPHER_TKIP) {
/* Swap Tx/Rx keys for Michael MIC */
u8 tmpbuf[8];
memcpy(tmpbuf, gtk + 16, 8);
memcpy(gtk + 16, gtk + 24, 8);
memcpy(gtk + 24, tmpbuf, 8);
}
wpa_s->keys_cleared = 0;
if (wpa_s->pairwise_cipher == WPA_CIPHER_NONE) {
if (wpa_drv_set_key(wpa_s, alg,
(u8 *) "\xff\xff\xff\xff\xff\xff",
keyidx, 1, key->key_rsc, key_rsc_len,
gtk, gtk_len) < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to set "
"GTK to the driver (Group only).");
return -1;
}
} else if (wpa_drv_set_key(wpa_s, alg,
(u8 *) "\xff\xff\xff\xff\xff\xff",
keyidx, tx, key->key_rsc, key_rsc_len,
gtk, gtk_len) < 0) {
wpa_printf(MSG_WARNING, "WPA: Failed to set GTK to "
"the driver.");
return -1;
}
return 0;
}
static int wpa_supplicant_pairwise_gtk(struct wpa_supplicant *wpa_s,
unsigned char *src_addr,
struct wpa_eapol_key *key,
u8 *gtk, int gtk_len, int key_info)
{
int keyidx, tx, key_rsc_len = 0, alg;
wpa_hexdump_key(MSG_DEBUG, "RSN: received GTK in pairwise handshake",
gtk, gtk_len);
keyidx = gtk[0] & 0x3;
tx = !!(gtk[0] & BIT(2));
if (tx && wpa_s->pairwise_cipher != WPA_CIPHER_NONE) {
/* Ignore Tx bit in GTK IE if a pairwise key is used. One AP
* seemed to set this bit (incorrectly, since Tx is only when
* doing Group Key only APs) and without this workaround, the
* data connection does not work because wpa_supplicant
* configured non-zero keyidx to be used for unicast. */
wpa_printf(MSG_INFO, "RSN: Tx bit set for GTK IE, but "
"pairwise keys are used - ignore Tx bit");
tx = 0;
}
gtk += 2;
gtk_len -= 2;
if (wpa_supplicant_check_group_cipher(wpa_s, gtk_len, gtk_len,
&key_rsc_len, &alg)) {
return -1;
}
if (wpa_supplicant_install_gtk(wpa_s, key, alg, gtk, gtk_len, keyidx,
key_rsc_len, tx)) {
return -1;
}
wpa_supplicant_key_neg_complete(wpa_s, src_addr,
key_info & WPA_KEY_INFO_SECURE);
return 0;
}
static void wpa_report_ie_mismatch(struct wpa_supplicant *wpa_s,
const char *reason, const u8 *src_addr,
const u8 *wpa_ie, size_t wpa_ie_len,
const u8 *rsn_ie, size_t rsn_ie_len)
{
wpa_msg(wpa_s, MSG_WARNING, "WPA: %s (src=" MACSTR ")",
reason, MAC2STR(src_addr));
if (wpa_s->ap_wpa_ie) {
wpa_hexdump(MSG_INFO, "WPA: WPA IE in Beacon/ProbeResp",
wpa_s->ap_wpa_ie, wpa_s->ap_wpa_ie_len);
}
if (wpa_ie) {
if (!wpa_s->ap_wpa_ie) {
wpa_printf(MSG_INFO, "WPA: No WPA IE in "
"Beacon/ProbeResp");
}
wpa_hexdump(MSG_INFO, "WPA: WPA IE in 3/4 msg",
wpa_ie, wpa_ie_len);
}
if (wpa_s->ap_rsn_ie) {
wpa_hexdump(MSG_INFO, "WPA: RSN IE in Beacon/ProbeResp",
wpa_s->ap_rsn_ie, wpa_s->ap_rsn_ie_len);
}
if (rsn_ie) {
if (!wpa_s->ap_rsn_ie) {
wpa_printf(MSG_INFO, "WPA: No RSN IE in "
"Beacon/ProbeResp");
}
wpa_hexdump(MSG_INFO, "WPA: RSN IE in 3/4 msg",
rsn_ie, rsn_ie_len);
}
wpa_supplicant_disassociate(wpa_s, REASON_IE_IN_4WAY_DIFFERS);
wpa_supplicant_req_scan(wpa_s, 0, 0);
}
static void wpa_supplicant_process_3_of_4(struct wpa_supplicant *wpa_s,
unsigned char *src_addr,
struct wpa_eapol_key *key,
int extra_len, int ver)
{
int rlen;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *reply;
unsigned char *rbuf;
struct l2_ethhdr *ethhdr;
int key_info, wpa_ie_len = 0, rsn_ie_len = 0, keylen, gtk_len = 0;
u8 *wpa_ie = NULL, *rsn_ie = NULL, *gtk = NULL;
u8 *pos, *end;
u16 len;
struct wpa_ssid *ssid = wpa_s->current_ssid;
wpa_s->wpa_state = WPA_4WAY_HANDSHAKE;
wpa_printf(MSG_DEBUG, "WPA: RX message 3 of 4-Way Handshake from "
MACSTR " (ver=%d)", MAC2STR(src_addr), ver);
key_info = be_to_host16(key->key_info);
pos = (u8 *) (key + 1);
len = be_to_host16(key->key_data_length);
end = pos + len;
wpa_hexdump(MSG_DEBUG, "WPA: IE KeyData", pos, len);
while (pos + 1 < end) {
if (pos + 2 + pos[1] > end) {
wpa_printf(MSG_DEBUG, "WPA: key data underflow (ie=%d "
"len=%d)", pos[0], pos[1]);
break;
}
if (*pos == RSN_INFO_ELEM) {
rsn_ie = pos;
rsn_ie_len = pos[1] + 2;
} else if (*pos == GENERIC_INFO_ELEM && pos[1] >= 6 &&
memcmp(pos + 2, WPA_OUI_TYPE, WPA_SELECTOR_LEN) == 0
&& pos[2 + WPA_SELECTOR_LEN] == 1 &&
pos[2 + WPA_SELECTOR_LEN + 1] == 0) {
wpa_ie = pos;
wpa_ie_len = pos[1] + 2;
} else if (pos[0] == GENERIC_INFO_ELEM &&
pos[1] > RSN_SELECTOR_LEN + 2 &&
memcmp(pos + 2, RSN_KEY_DATA_GROUPKEY,
RSN_SELECTOR_LEN) == 0) {
if (!(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_printf(MSG_WARNING, "WPA: GTK IE in "
"unencrypted key data");
return;
}
gtk = pos + 2 + RSN_SELECTOR_LEN;
gtk_len = pos[1] - RSN_SELECTOR_LEN;
} else if (pos[0] == GENERIC_INFO_ELEM && pos[1] == 0)
break;
pos += 2 + pos[1];
}
if (wpa_s->ap_wpa_ie == NULL && wpa_s->ap_rsn_ie == NULL) {
wpa_printf(MSG_DEBUG, "WPA: No WPA/RSN IE for this AP known. "
"Trying to get from scan results");
if (wpa_supplicant_get_beacon_ie(wpa_s) < 0) {
wpa_printf(MSG_WARNING, "WPA: Could not find AP from "
"the scan results");
} else {
wpa_printf(MSG_DEBUG, "WPA: Found the current AP from "
"updated scan results");
}
}
if ((wpa_ie && wpa_s->ap_wpa_ie &&
(wpa_ie_len != wpa_s->ap_wpa_ie_len ||
memcmp(wpa_ie, wpa_s->ap_wpa_ie, wpa_ie_len) != 0)) ||
(rsn_ie && wpa_s->ap_rsn_ie &&
(rsn_ie_len != wpa_s->ap_rsn_ie_len ||
memcmp(rsn_ie, wpa_s->ap_rsn_ie, rsn_ie_len) != 0))) {
wpa_report_ie_mismatch(wpa_s, "IE in 3/4 msg does not match "
"with IE in Beacon/ProbeResp",
src_addr, wpa_ie, wpa_ie_len,
rsn_ie, rsn_ie_len);
return;
}
if (wpa_s->proto == WPA_PROTO_WPA &&
rsn_ie && wpa_s->ap_rsn_ie == NULL &&
ssid && (ssid->proto & WPA_PROTO_RSN)) {
wpa_report_ie_mismatch(wpa_s, "Possible downgrade attack "
"detected - RSN was enabled and RSN IE "
"was in msg 3/4, but not in "
"Beacon/ProbeResp",
src_addr, wpa_ie, wpa_ie_len,
rsn_ie, rsn_ie_len);
return;
}
if (memcmp(wpa_s->anonce, key->key_nonce, WPA_NONCE_LEN) != 0) {
wpa_printf(MSG_WARNING, "WPA: ANonce from message 1 of 4-Way "
"Handshake differs from 3 of 4-Way Handshake - drop"
" packet (src=" MACSTR ")", MAC2STR(src_addr));
return;
}
keylen = be_to_host16(key->key_length);
switch (wpa_s->pairwise_cipher) {
case WPA_CIPHER_CCMP:
if (keylen != 16) {
wpa_printf(MSG_WARNING, "WPA: Invalid CCMP key length "
"%d (src=" MACSTR ")",
keylen, MAC2STR(src_addr));
return;
}
break;
case WPA_CIPHER_TKIP:
if (keylen != 32) {
wpa_printf(MSG_WARNING, "WPA: Invalid TKIP key length "
"%d (src=" MACSTR ")",
keylen, MAC2STR(src_addr));
return;
}
break;
}
rlen = sizeof(*ethhdr) + sizeof(*hdr) + sizeof(*reply);
rbuf = malloc(rlen);
if (rbuf == NULL)
return;
memset(rbuf, 0, rlen);
ethhdr = (struct l2_ethhdr *) rbuf;
memcpy(ethhdr->h_dest, src_addr, ETH_ALEN);
memcpy(ethhdr->h_source, wpa_s->own_addr, ETH_ALEN);
ethhdr->h_proto = htons(ETH_P_EAPOL);
hdr = (struct ieee802_1x_hdr *) (ethhdr + 1);
hdr->version = wpa_s->conf->eapol_version;
hdr->type = IEEE802_1X_TYPE_EAPOL_KEY;
hdr->length = htons(sizeof(*reply));
reply = (struct wpa_eapol_key *) (hdr + 1);
reply->type = wpa_s->proto == WPA_PROTO_RSN ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
reply->key_info = host_to_be16(ver | WPA_KEY_INFO_KEY_TYPE |
WPA_KEY_INFO_MIC |
(key_info & WPA_KEY_INFO_SECURE));
reply->key_length = key->key_length;
memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
reply->key_data_length = host_to_be16(0);
memcpy(reply->key_nonce, wpa_s->snonce, WPA_NONCE_LEN);
wpa_eapol_key_mic(wpa_s->ptk.mic_key, ver, (u8 *) hdr,
rlen - sizeof(*ethhdr), reply->key_mic);
wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 4/4");
wpa_hexdump(MSG_MSGDUMP, "WPA: TX EAPOL-Key 4/4", rbuf, rlen);
l2_packet_send(wpa_s->l2, rbuf, rlen);
eapol_sm_notify_tx_eapol_key(wpa_s->eapol);
free(rbuf);
/* SNonce was successfully used in msg 3/4, so mark it to be renewed
* for the next 4-Way Handshake. If msg 3 is received again, the old
* SNonce will still be used to avoid changing PTK. */
wpa_s->renew_snonce = 1;
if (key_info & WPA_KEY_INFO_INSTALL) {
wpa_supplicant_install_ptk(wpa_s, src_addr, key);
}
if (key_info & WPA_KEY_INFO_SECURE) {
/* MLME.SETPROTECTION.request(TA, Tx_Rx) */
eapol_sm_notify_portValid(wpa_s->eapol, TRUE);
}
wpa_s->wpa_state = WPA_GROUP_HANDSHAKE;
if (gtk) {
wpa_supplicant_pairwise_gtk(wpa_s, src_addr, key,
gtk, gtk_len, key_info);
}
}
static void wpa_supplicant_process_1_of_2(struct wpa_supplicant *wpa_s,
unsigned char *src_addr,
struct wpa_eapol_key *key,
int extra_len, int ver)
{
int rlen;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *reply;
unsigned char *rbuf;
struct l2_ethhdr *ethhdr;
int key_info, keylen, keydatalen, maxkeylen, keyidx, key_rsc_len = 0;
int alg, tx, rekey;
u8 ek[32], gtk[32];
u8 *gtk_ie = NULL;
size_t gtk_ie_len = 0;
rekey = wpa_s->wpa_state == WPA_COMPLETED;
wpa_s->wpa_state = WPA_GROUP_HANDSHAKE;
wpa_printf(MSG_DEBUG, "WPA: RX message 1 of Group Key Handshake from "
MACSTR " (ver=%d)", MAC2STR(src_addr), ver);
key_info = be_to_host16(key->key_info);
keydatalen = be_to_host16(key->key_data_length);
if (wpa_s->proto == WPA_PROTO_RSN) {
u8 *pos = (u8 *) (key + 1);
u8 *end = pos + keydatalen;
while (pos + 1 < end) {
if (pos + 2 + pos[1] > end) {
wpa_printf(MSG_DEBUG, "RSN: key data "
"underflow (ie=%d len=%d)",
pos[0], pos[1]);
break;
}
if (pos[0] == GENERIC_INFO_ELEM &&
pos + 1 + RSN_SELECTOR_LEN < end &&
pos[1] > RSN_SELECTOR_LEN + 2 &&
memcmp(pos + 2, RSN_KEY_DATA_GROUPKEY,
RSN_SELECTOR_LEN) == 0) {
if (!(key_info & WPA_KEY_INFO_ENCR_KEY_DATA)) {
wpa_printf(MSG_WARNING, "WPA: GTK IE "
"in unencrypted key data");
return;
}
gtk_ie = pos + 2 + RSN_SELECTOR_LEN;
gtk_ie_len = pos[1] - RSN_SELECTOR_LEN;
break;
} else if (pos[0] == GENERIC_INFO_ELEM &&
pos[1] == 0)
break;
pos += 2 + pos[1];
}
if (gtk_ie == NULL) {
wpa_printf(MSG_INFO, "WPA: No GTK IE in Group Key "
"message 1/2");
return;
}
maxkeylen = keylen = gtk_ie_len - 2;
} else {
keylen = be_to_host16(key->key_length);
maxkeylen = keydatalen;
if (keydatalen > extra_len) {
wpa_printf(MSG_INFO, "WPA: Truncated EAPOL-Key packet:"
" key_data_length=%d > extra_len=%d",
keydatalen, extra_len);
return;
}
if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES)
maxkeylen -= 8;
}
if (wpa_supplicant_check_group_cipher(wpa_s, keylen, maxkeylen,
&key_rsc_len, &alg)) {
return;
}
if (wpa_s->proto == WPA_PROTO_RSN) {
wpa_hexdump(MSG_DEBUG,
"RSN: received GTK in group key handshake",
gtk_ie, gtk_ie_len);
keyidx = gtk_ie[0] & 0x3;
tx = !!(gtk_ie[0] & BIT(2));
if (gtk_ie_len - 2 > sizeof(gtk)) {
wpa_printf(MSG_INFO, "RSN: Too long GTK in GTK IE "
"(len=%lu)",
(unsigned long) gtk_ie_len - 2);
return;
}
memcpy(gtk, gtk_ie + 2, gtk_ie_len - 2);
} else {
keyidx = (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) >>
WPA_KEY_INFO_KEY_INDEX_SHIFT;
if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) {
memcpy(ek, key->key_iv, 16);
memcpy(ek + 16, wpa_s->ptk.encr_key, 16);
rc4_skip(ek, 32, 256, (u8 *) (key + 1), keydatalen);
memcpy(gtk, key + 1, keylen);
} else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
if (keydatalen % 8) {
wpa_printf(MSG_WARNING, "WPA: Unsupported "
"AES-WRAP len %d", keydatalen);
return;
}
if (aes_unwrap(wpa_s->ptk.encr_key, maxkeylen / 8,
(u8 *) (key + 1), gtk)) {
wpa_printf(MSG_WARNING, "WPA: AES unwrap "
"failed - could not decrypt GTK");
return;
}
}
tx = !!(key_info & WPA_KEY_INFO_TXRX);
}
if (tx && wpa_s->pairwise_cipher != WPA_CIPHER_NONE) {
/* Ignore Tx bit in Group Key message if a pairwise key
* is used. Some APs seem to setting this bit
* (incorrectly, since Tx is only when doing Group Key
* only APs) and without this workaround, the data
* connection does not work because wpa_supplicant
* configured non-zero keyidx to be used for unicast.
*/
wpa_printf(MSG_INFO, "WPA: Tx bit set for GTK, but "
"pairwise keys are used - ignore Tx bit");
tx = 0;
}
wpa_supplicant_install_gtk(wpa_s, key, alg, gtk, keylen, keyidx,
key_rsc_len, tx);
rlen = sizeof(*ethhdr) + sizeof(*hdr) + sizeof(*reply);
rbuf = malloc(rlen);
if (rbuf == NULL)
return;
memset(rbuf, 0, rlen);
ethhdr = (struct l2_ethhdr *) rbuf;
memcpy(ethhdr->h_dest, src_addr, ETH_ALEN);
memcpy(ethhdr->h_source, wpa_s->own_addr, ETH_ALEN);
ethhdr->h_proto = htons(ETH_P_EAPOL);
hdr = (struct ieee802_1x_hdr *) (ethhdr + 1);
hdr->version = wpa_s->conf->eapol_version;
hdr->type = IEEE802_1X_TYPE_EAPOL_KEY;
hdr->length = htons(sizeof(*reply));
reply = (struct wpa_eapol_key *) (hdr + 1);
reply->type = wpa_s->proto == WPA_PROTO_RSN ?
EAPOL_KEY_TYPE_RSN : EAPOL_KEY_TYPE_WPA;
reply->key_info =
host_to_be16(ver | WPA_KEY_INFO_MIC | WPA_KEY_INFO_SECURE |
(key_info & WPA_KEY_INFO_KEY_INDEX_MASK));
reply->key_length = key->key_length;
memcpy(reply->replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
reply->key_data_length = host_to_be16(0);
wpa_eapol_key_mic(wpa_s->ptk.mic_key, ver, (u8 *) hdr,
rlen - sizeof(*ethhdr), reply->key_mic);
wpa_printf(MSG_DEBUG, "WPA: Sending EAPOL-Key 2/2");
wpa_hexdump(MSG_MSGDUMP, "WPA: TX EAPOL-Key 2/2", rbuf, rlen);
l2_packet_send(wpa_s->l2, rbuf, rlen);
eapol_sm_notify_tx_eapol_key(wpa_s->eapol);
free(rbuf);
if (rekey) {
wpa_msg(wpa_s, MSG_INFO, "WPA: Group rekeying completed with "
MACSTR " [GTK=%s]", MAC2STR(src_addr),
wpa_cipher_txt(wpa_s->group_cipher));
wpa_s->wpa_state = WPA_COMPLETED;
} else {
wpa_supplicant_key_neg_complete(wpa_s, src_addr,
key_info &
WPA_KEY_INFO_SECURE);
}
}
static int wpa_supplicant_verify_eapol_key_mic(struct wpa_supplicant *wpa_s,
struct wpa_eapol_key *key,
int ver, u8 *buf, size_t len)
{
u8 mic[16];
int ok = 0;
memcpy(mic, key->key_mic, 16);
if (wpa_s->tptk_set) {
memset(key->key_mic, 0, 16);
wpa_eapol_key_mic(wpa_s->tptk.mic_key, ver, buf, len,
key->key_mic);
if (memcmp(mic, key->key_mic, 16) != 0) {
wpa_printf(MSG_WARNING, "WPA: Invalid EAPOL-Key MIC "
"when using TPTK - ignoring TPTK");
} else {
ok = 1;
wpa_s->tptk_set = 0;
wpa_s->ptk_set = 1;
memcpy(&wpa_s->ptk, &wpa_s->tptk, sizeof(wpa_s->ptk));
}
}
if (!ok && wpa_s->ptk_set) {
memset(key->key_mic, 0, 16);
wpa_eapol_key_mic(wpa_s->ptk.mic_key, ver, buf, len,
key->key_mic);
if (memcmp(mic, key->key_mic, 16) != 0) {
wpa_printf(MSG_WARNING, "WPA: Invalid EAPOL-Key MIC "
"- dropping packet");
return -1;
}
ok = 1;
}
if (!ok) {
wpa_printf(MSG_WARNING, "WPA: Could not verify EAPOL-Key MIC "
"- dropping packet");
return -1;
}
memcpy(wpa_s->rx_replay_counter, key->replay_counter,
WPA_REPLAY_COUNTER_LEN);
wpa_s->rx_replay_counter_set = 1;
return 0;
}
/* Decrypt RSN EAPOL-Key key data (RC4 or AES-WRAP) */
static int wpa_supplicant_decrypt_key_data(struct wpa_supplicant *wpa_s,
struct wpa_eapol_key *key, int ver)
{
int keydatalen = be_to_host16(key->key_data_length);
wpa_hexdump(MSG_DEBUG, "RSN: encrypted key data",
(u8 *) (key + 1), keydatalen);
if (!wpa_s->ptk_set) {
wpa_printf(MSG_WARNING, "WPA: PTK not available, "
"cannot decrypt EAPOL-Key key data.");
return -1;
}
/* Decrypt key data here so that this operation does not need
* to be implemented separately for each message type. */
if (ver == WPA_KEY_INFO_TYPE_HMAC_MD5_RC4) {
u8 ek[32];
memcpy(ek, key->key_iv, 16);
memcpy(ek + 16, wpa_s->ptk.encr_key, 16);
rc4_skip(ek, 32, 256, (u8 *) (key + 1), keydatalen);
} else if (ver == WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
u8 *buf;
if (keydatalen % 8) {
wpa_printf(MSG_WARNING, "WPA: Unsupported "
"AES-WRAP len %d", keydatalen);
return -1;
}
keydatalen -= 8; /* AES-WRAP adds 8 bytes */
buf = malloc(keydatalen);
if (buf == NULL) {
wpa_printf(MSG_WARNING, "WPA: No memory for "
"AES-UNWRAP buffer");
return -1;
}
if (aes_unwrap(wpa_s->ptk.encr_key, keydatalen / 8,
(u8 *) (key + 1), buf)) {
free(buf);
wpa_printf(MSG_WARNING, "WPA: AES unwrap failed - "
"could not decrypt EAPOL-Key key data");
return -1;
}
memcpy(key + 1, buf, keydatalen);
free(buf);
key->key_data_length = host_to_be16(keydatalen);
}
wpa_hexdump_key(MSG_DEBUG, "WPA: decrypted EAPOL-Key key data",
(u8 *) (key + 1), keydatalen);
return 0;
}
static void wpa_sm_rx_eapol(struct wpa_supplicant *wpa_s,
unsigned char *src_addr, unsigned char *buf,
size_t len)
{
size_t plen, data_len, extra_len;
struct ieee802_1x_hdr *hdr;
struct wpa_eapol_key *key;
int key_info, ver;
hdr = (struct ieee802_1x_hdr *) buf;
key = (struct wpa_eapol_key *) (hdr + 1);
if (len < sizeof(*hdr) + sizeof(*key)) {
wpa_printf(MSG_DEBUG, "WPA: EAPOL frame too short, len %lu, "
"expecting at least %lu",
(unsigned long) len,
(unsigned long) sizeof(*hdr) + sizeof(*key));
return;
}
plen = ntohs(hdr->length);
data_len = plen + sizeof(*hdr);
wpa_printf(MSG_DEBUG, "IEEE 802.1X RX: version=%d type=%d length=%lu",
hdr->version, hdr->type, (unsigned long) plen);
wpa_drv_poll(wpa_s);
if (hdr->version < EAPOL_VERSION) {
/* TODO: backwards compatibility */
}
if (hdr->type != IEEE802_1X_TYPE_EAPOL_KEY) {
wpa_printf(MSG_DEBUG, "WPA: EAPOL frame (type %u) discarded, "
"not a Key frame", hdr->type);
if (wpa_s->cur_pmksa) {
wpa_printf(MSG_DEBUG, "WPA: Cancelling PMKSA caching "
"attempt - attempt full EAP "
"authentication");
eapol_sm_notify_pmkid_attempt(wpa_s->eapol, 0);
}
return;
}
if (plen > len - sizeof(*hdr) || plen < sizeof(*key)) {
wpa_printf(MSG_DEBUG, "WPA: EAPOL frame payload size %lu "
"invalid (frame size %lu)",
(unsigned long) plen, (unsigned long) len);
return;
}
wpa_printf(MSG_DEBUG, " EAPOL-Key type=%d", key->type);
if (key->type != EAPOL_KEY_TYPE_WPA && key->type != EAPOL_KEY_TYPE_RSN)
{
wpa_printf(MSG_DEBUG, "WPA: EAPOL-Key type (%d) unknown, "
"discarded", key->type);
return;
}
wpa_hexdump(MSG_MSGDUMP, "WPA: RX EAPOL-Key", buf, len);
if (data_len < len) {
wpa_printf(MSG_DEBUG, "WPA: ignoring %lu bytes after the IEEE "
"802.1X data", (unsigned long) len - data_len);
}
key_info = be_to_host16(key->key_info);
ver = key_info & WPA_KEY_INFO_TYPE_MASK;
if (ver != WPA_KEY_INFO_TYPE_HMAC_MD5_RC4 &&
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
wpa_printf(MSG_INFO, "WPA: Unsupported EAPOL-Key descriptor "
"version %d.", ver);
return;
}
if (wpa_s->pairwise_cipher == WPA_CIPHER_CCMP &&
ver != WPA_KEY_INFO_TYPE_HMAC_SHA1_AES) {
wpa_printf(MSG_INFO, "WPA: CCMP is used, but EAPOL-Key "
"descriptor version (%d) is not 2.", ver);
if (wpa_s->group_cipher != WPA_CIPHER_CCMP &&
!(key_info & WPA_KEY_INFO_KEY_TYPE)) {
/* Earlier versions of IEEE 802.11i did not explicitly
* require version 2 descriptor for all EAPOL-Key
* packets, so allow group keys to use version 1 if
* CCMP is not used for them. */
wpa_printf(MSG_INFO, "WPA: Backwards compatibility: "
"allow invalid version for non-CCMP group "
"keys");
} else
return;
}
if (wpa_s->rx_replay_counter_set &&
memcmp(key->replay_counter, wpa_s->rx_replay_counter,
WPA_REPLAY_COUNTER_LEN) <= 0) {
wpa_printf(MSG_WARNING, "WPA: EAPOL-Key Replay Counter did not"
" increase - dropping packet");
return;
}
if (!(key_info & WPA_KEY_INFO_ACK)) {
wpa_printf(MSG_INFO, "WPA: No Ack bit in key_info");
return;
}
if (key_info & WPA_KEY_INFO_REQUEST) {
wpa_printf(MSG_INFO, "WPA: EAPOL-Key with Request bit - "
"dropped");
return;
}
if ((key_info & WPA_KEY_INFO_MIC) &&
wpa_supplicant_verify_eapol_key_mic(wpa_s, key, ver, buf,
data_len))
return;
extra_len = data_len - sizeof(*hdr) - sizeof(*key);
if (be_to_host16(key->key_data_length) > extra_len) {
wpa_msg(wpa_s, MSG_INFO, "WPA: Invalid EAPOL-Key frame - "
"key_data overflow (%d > %lu)",
be_to_host16(key->key_data_length),
(unsigned long) extra_len);
return;
}
if (wpa_s->proto == WPA_PROTO_RSN &&
(key_info & WPA_KEY_INFO_ENCR_KEY_DATA) &&
wpa_supplicant_decrypt_key_data(wpa_s, key, ver))
return;
if (key_info & WPA_KEY_INFO_KEY_TYPE) {
if (key_info & WPA_KEY_INFO_KEY_INDEX_MASK) {
wpa_printf(MSG_WARNING, "WPA: Ignored EAPOL-Key "
"(Pairwise) with non-zero key index");
return;
}
if (key_info & WPA_KEY_INFO_MIC) {
/* 3/4 4-Way Handshake */
wpa_supplicant_process_3_of_4(wpa_s, src_addr, key,
extra_len, ver);
} else {
/* 1/4 4-Way Handshake */
wpa_supplicant_process_1_of_4(wpa_s, src_addr, key,
ver);
}
} else {
if (key_info & WPA_KEY_INFO_MIC) {
/* 1/2 Group Key Handshake */
wpa_supplicant_process_1_of_2(wpa_s, src_addr, key,
extra_len, ver);
} else {
wpa_printf(MSG_WARNING, "WPA: EAPOL-Key (Group) "
"without Mic bit - dropped");
}
}
}
void wpa_supplicant_rx_eapol(void *ctx, unsigned char *src_addr,
unsigned char *buf, size_t len)
{
struct wpa_supplicant *wpa_s = ctx;
wpa_printf(MSG_DEBUG, "RX EAPOL from " MACSTR, MAC2STR(src_addr));
wpa_hexdump(MSG_MSGDUMP, "RX EAPOL", buf, len);
if (wpa_s->key_mgmt == WPA_KEY_MGMT_NONE) {
wpa_printf(MSG_DEBUG, "Ignored received EAPOL frame since "
"no key management is configured");
return;
}
if (wpa_s->eapol_received == 0) {
/* Timeout for completing IEEE 802.1X and WPA authentication */
wpa_supplicant_req_auth_timeout(
wpa_s,
(wpa_s->key_mgmt == WPA_KEY_MGMT_IEEE8021X ||
wpa_s->key_mgmt == WPA_KEY_MGMT_IEEE8021X_NO_WPA) ?
70 : 10, 0);
}
wpa_s->eapol_received++;
if (wpa_s->countermeasures) {
wpa_printf(MSG_INFO, "WPA: Countermeasures - dropped EAPOL "
"packet");
return;
}
/* Source address of the incoming EAPOL frame could be compared to the
* current BSSID. However, it is possible that a centralized
* Authenticator could be using another MAC address than the BSSID of
* an AP, so just allow any address to be used for now. The replies are
* still sent to the current BSSID (if available), though. */
memcpy(wpa_s->last_eapol_src, src_addr, ETH_ALEN);
eapol_sm_rx_eapol(wpa_s->eapol, src_addr, buf, len);
wpa_sm_rx_eapol(wpa_s, src_addr, buf, len);
}
static int wpa_cipher_bits(int cipher)
{
switch (cipher) {
case WPA_CIPHER_CCMP:
return 128;
case WPA_CIPHER_TKIP:
return 256;
case WPA_CIPHER_WEP104:
return 104;
case WPA_CIPHER_WEP40:
return 40;
default:
return 0;
}
}
static const u8 * wpa_key_mgmt_suite(struct wpa_supplicant *wpa_s)
{
static const u8 *dummy = (u8 *) "\x00\x00\x00\x00";
switch (wpa_s->key_mgmt) {
case WPA_KEY_MGMT_IEEE8021X:
return (wpa_s->proto == WPA_PROTO_RSN ?
RSN_AUTH_KEY_MGMT_UNSPEC_802_1X :
WPA_AUTH_KEY_MGMT_UNSPEC_802_1X);
case WPA_KEY_MGMT_PSK:
return (wpa_s->proto == WPA_PROTO_RSN ?
RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X :
WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X);
case WPA_KEY_MGMT_WPA_NONE:
return WPA_AUTH_KEY_MGMT_NONE;
default:
return dummy;
}
}
static const u8 * wpa_cipher_suite(struct wpa_supplicant *wpa_s, int cipher)
{
static const u8 *dummy = (u8 *) "\x00\x00\x00\x00";
switch (cipher) {
case WPA_CIPHER_CCMP:
return (wpa_s->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_CCMP : WPA_CIPHER_SUITE_CCMP);
case WPA_CIPHER_TKIP:
return (wpa_s->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_TKIP : WPA_CIPHER_SUITE_TKIP);
case WPA_CIPHER_WEP104:
return (wpa_s->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_WEP104 : WPA_CIPHER_SUITE_WEP104);
case WPA_CIPHER_WEP40:
return (wpa_s->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_WEP40 : WPA_CIPHER_SUITE_WEP40);
case WPA_CIPHER_NONE:
return (wpa_s->proto == WPA_PROTO_RSN ?
RSN_CIPHER_SUITE_NONE : WPA_CIPHER_SUITE_NONE);
default:
return dummy;
}
}
#define RSN_SUITE "%02x-%02x-%02x-%d"
#define RSN_SUITE_ARG(s) (s)[0], (s)[1], (s)[2], (s)[3]
int wpa_get_mib(struct wpa_supplicant *wpa_s, char *buf, size_t buflen)
{
int len, i;
char pmkid_txt[PMKID_LEN * 2 + 1];
if (wpa_s->cur_pmksa) {
char *pos = pmkid_txt;
for (i = 0; i < PMKID_LEN; i++) {
pos += sprintf(pos, "%02x",
wpa_s->cur_pmksa->pmkid[i]);
}
} else
pmkid_txt[0] = '\0';
len = snprintf(buf, buflen,
"dot11RSNAConfigVersion=%d\n"
"dot11RSNAConfigPairwiseKeysSupported=5\n"
"dot11RSNAConfigGroupCipherSize=%d\n"
"dot11RSNAConfigPMKLifetime=%d\n"
"dot11RSNAConfigPMKReauthThreshold=%d\n"
"dot11RSNAConfigNumberOfPTKSAReplayCounters=1\n"
"dot11RSNAConfigSATimeout=%d\n"
"dot11RSNAAuthenticationSuiteSelected=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherSelected=" RSN_SUITE "\n"
"dot11RSNAGroupCipherSelected=" RSN_SUITE "\n"
"dot11RSNAPMKIDUsed=%s\n"
"dot11RSNAAuthenticationSuiteRequested=" RSN_SUITE "\n"
"dot11RSNAPairwiseCipherRequested=" RSN_SUITE "\n"
"dot11RSNAGroupCipherRequested=" RSN_SUITE "\n"
"dot11RSNAConfigNumberOfGTKSAReplayCounters=0\n",
RSN_VERSION,
wpa_cipher_bits(wpa_s->group_cipher),
dot11RSNAConfigPMKLifetime,
dot11RSNAConfigPMKReauthThreshold,
dot11RSNAConfigSATimeout,
RSN_SUITE_ARG(wpa_key_mgmt_suite(wpa_s)),
RSN_SUITE_ARG(wpa_cipher_suite(wpa_s,
wpa_s->pairwise_cipher)),
RSN_SUITE_ARG(wpa_cipher_suite(wpa_s,
wpa_s->group_cipher)),
pmkid_txt,
RSN_SUITE_ARG(wpa_key_mgmt_suite(wpa_s)),
RSN_SUITE_ARG(wpa_cipher_suite(wpa_s,
wpa_s->pairwise_cipher)),
RSN_SUITE_ARG(wpa_cipher_suite(wpa_s,
wpa_s->group_cipher)));
return len;
}
#ifdef IEEE8021X_EAPOL
static void rsn_preauth_receive(void *ctx, unsigned char *src_addr,
unsigned char *buf, size_t len)
{
struct wpa_supplicant *wpa_s = ctx;
wpa_printf(MSG_DEBUG, "RX pre-auth from " MACSTR, MAC2STR(src_addr));
wpa_hexdump(MSG_MSGDUMP, "RX pre-auth", buf, len);
if (wpa_s->preauth_eapol == NULL ||
memcmp(wpa_s->preauth_bssid, "\x00\x00\x00\x00\x00\x00",
ETH_ALEN) == 0 ||
memcmp(wpa_s->preauth_bssid, src_addr, ETH_ALEN) != 0) {
wpa_printf(MSG_WARNING, "RSN pre-auth frame received from "
"unexpected source " MACSTR " - dropped",
MAC2STR(src_addr));
return;
}
eapol_sm_rx_eapol(wpa_s->preauth_eapol, src_addr, buf, len);
}
static void rsn_preauth_eapol_cb(struct eapol_sm *eapol, int success,
void *ctx)
{
struct wpa_supplicant *wpa_s = ctx;
u8 pmk[PMK_LEN];
wpa_msg(wpa_s, MSG_INFO, "RSN: pre-authentication with " MACSTR
" %s", MAC2STR(wpa_s->preauth_bssid),
success ? "completed successfully" : "failed");
if (success) {
int res, pmk_len;
pmk_len = PMK_LEN;
res = eapol_sm_get_key(eapol, pmk, PMK_LEN);
#ifdef EAP_LEAP
if (res) {
res = eapol_sm_get_key(eapol, pmk, 16);
pmk_len = 16;
}
#endif /* EAP_LEAP */
if (res == 0) {
wpa_hexdump_key(MSG_DEBUG, "RSN: PMK from pre-auth",
pmk, pmk_len);
wpa_s->pmk_len = pmk_len;
pmksa_cache_add(wpa_s, pmk, pmk_len,
wpa_s->preauth_bssid, wpa_s->own_addr);
} else {
wpa_msg(wpa_s, MSG_INFO, "RSN: failed to get master "
"session key from pre-auth EAPOL state "
"machines");
}
}
rsn_preauth_deinit(wpa_s);
rsn_preauth_candidate_process(wpa_s);
}
static void rsn_preauth_timeout(void *eloop_ctx, void *timeout_ctx)
{
struct wpa_supplicant *wpa_s = eloop_ctx;
wpa_msg(wpa_s, MSG_INFO, "RSN: pre-authentication with " MACSTR
" timed out", MAC2STR(wpa_s->preauth_bssid));
rsn_preauth_deinit(wpa_s);
rsn_preauth_candidate_process(wpa_s);
}
int rsn_preauth_init(struct wpa_supplicant *wpa_s, u8 *dst)
{
struct eapol_config eapol_conf;
struct eapol_ctx *ctx;
if (wpa_s->preauth_eapol)
return -1;
wpa_msg(wpa_s, MSG_DEBUG, "RSN: starting pre-authentication with "
MACSTR, MAC2STR(dst));
wpa_s->l2_preauth = l2_packet_init(wpa_s->ifname,
wpa_drv_get_mac_addr(wpa_s),
ETH_P_RSN_PREAUTH,
rsn_preauth_receive, wpa_s);
if (wpa_s->l2_preauth == NULL) {
wpa_printf(MSG_WARNING, "RSN: Failed to initialize L2 packet "
"processing for pre-authentication");
return -2;
}
ctx = malloc(sizeof(*ctx));
if (ctx == NULL) {
wpa_printf(MSG_WARNING, "Failed to allocate EAPOL context.");
return -4;
}
memset(ctx, 0, sizeof(*ctx));
ctx->ctx = wpa_s;
ctx->msg_ctx = wpa_s;
ctx->preauth = 1;
ctx->cb = rsn_preauth_eapol_cb;
ctx->cb_ctx = wpa_s;
ctx->scard_ctx = wpa_s->scard;
ctx->eapol_done_cb = wpa_supplicant_notify_eapol_done;
ctx->eapol_send = wpa_eapol_send_preauth;
wpa_s->preauth_eapol = eapol_sm_init(ctx);
if (wpa_s->preauth_eapol == NULL) {
free(ctx);
wpa_printf(MSG_WARNING, "RSN: Failed to initialize EAPOL "
"state machines for pre-authentication");
return -3;
}
memset(&eapol_conf, 0, sizeof(eapol_conf));
eapol_conf.accept_802_1x_keys = 0;
eapol_conf.required_keys = 0;
eapol_conf.fast_reauth = wpa_s->conf->fast_reauth;
if (wpa_s->current_ssid)
eapol_conf.workaround = wpa_s->current_ssid->eap_workaround;
eapol_sm_notify_config(wpa_s->preauth_eapol, wpa_s->current_ssid,
&eapol_conf);
memcpy(wpa_s->preauth_bssid, dst, ETH_ALEN);
eapol_sm_notify_portValid(wpa_s->preauth_eapol, TRUE);
/* 802.1X::portControl = Auto */
eapol_sm_notify_portEnabled(wpa_s->preauth_eapol, TRUE);
eloop_register_timeout(60, 0, rsn_preauth_timeout, wpa_s, NULL);
return 0;
}
void rsn_preauth_deinit(struct wpa_supplicant *wpa_s)
{
if (!wpa_s->preauth_eapol)
return;
eloop_cancel_timeout(rsn_preauth_timeout, wpa_s, NULL);
eapol_sm_deinit(wpa_s->preauth_eapol);
wpa_s->preauth_eapol = NULL;
memset(wpa_s->preauth_bssid, 0, ETH_ALEN);
l2_packet_deinit(wpa_s->l2_preauth);
wpa_s->l2_preauth = NULL;
}
static void rsn_preauth_candidate_process(struct wpa_supplicant *wpa_s)
{
struct rsn_pmksa_candidate *candidate;
if (wpa_s->pmksa_candidates == NULL)
return;
/* TODO: drop priority for old candidate entries */
wpa_msg(wpa_s, MSG_DEBUG, "RSN: processing PMKSA candidate list");
if (wpa_s->preauth_eapol ||
wpa_s->proto != WPA_PROTO_RSN ||
wpa_s->wpa_state != WPA_COMPLETED ||
wpa_s->key_mgmt != WPA_KEY_MGMT_IEEE8021X) {
wpa_msg(wpa_s, MSG_DEBUG, "RSN: not in suitable state for new "
"pre-authentication");
return; /* invalid state for new pre-auth */
}
while (wpa_s->pmksa_candidates) {
struct rsn_pmksa_cache *p = NULL;
candidate = wpa_s->pmksa_candidates;
p = pmksa_cache_get(wpa_s, candidate->bssid, NULL);
if (memcmp(wpa_s->bssid, candidate->bssid, ETH_ALEN) != 0 &&
p == NULL) {
wpa_msg(wpa_s, MSG_DEBUG, "RSN: PMKSA candidate "
MACSTR " selected for pre-authentication",
MAC2STR(candidate->bssid));
wpa_s->pmksa_candidates = candidate->next;
rsn_preauth_init(wpa_s, candidate->bssid);
free(candidate);
return;
}
wpa_msg(wpa_s, MSG_DEBUG, "RSN: PMKSA candidate " MACSTR
" does not need pre-authentication anymore",
MAC2STR(candidate->bssid));
/* Some drivers (e.g., NDIS) expect to get notified about the
* PMKIDs again, so report the existing data now. */
if (p)
wpa_drv_add_pmkid(wpa_s, candidate->bssid, p->pmkid);
wpa_s->pmksa_candidates = candidate->next;
free(candidate);
}
wpa_msg(wpa_s, MSG_DEBUG, "RSN: no more pending PMKSA candidates");
}
void pmksa_candidate_add(struct wpa_supplicant *wpa_s, const u8 *bssid,
int prio)
{
struct rsn_pmksa_candidate *cand, *prev, *pos;
/* If BSSID already on candidate list, update the priority of the old
* entry. Do not override priority based on normal scan results. */
prev = NULL;
cand = wpa_s->pmksa_candidates;
while (cand) {
if (memcmp(cand->bssid, bssid, ETH_ALEN) == 0) {
if (prev)
prev->next = cand->next;
else
wpa_s->pmksa_candidates = cand->next;
break;
}
prev = cand;
cand = cand->next;
}
if (cand) {
if (prio < PMKID_CANDIDATE_PRIO_SCAN)
cand->priority = prio;
} else {
cand = malloc(sizeof(*cand));
if (cand == NULL)
return;
memset(cand, 0, sizeof(*cand));
memcpy(cand->bssid, bssid, ETH_ALEN);
cand->priority = prio;
}
/* Add candidate to the list; order by increasing priority value. i.e.,
* highest priority (smallest value) first. */
prev = NULL;
pos = wpa_s->pmksa_candidates;
while (pos) {
if (cand->priority <= pos->priority)
break;
prev = pos;
pos = pos->next;
}
cand->next = pos;
if (prev)
prev->next = cand;
else
wpa_s->pmksa_candidates = cand;
wpa_msg(wpa_s, MSG_DEBUG, "RSN: added PMKSA cache "
"candidate " MACSTR " prio %d", MAC2STR(bssid), prio);
rsn_preauth_candidate_process(wpa_s);
}
/* TODO: schedule periodic scans if current AP supports preauth */
void rsn_preauth_scan_results(struct wpa_supplicant *wpa_s,
struct wpa_scan_result *results, int count)
{
struct wpa_scan_result *r;
struct wpa_ie_data ie;
int i;
if (wpa_s->current_ssid == NULL)
return;
pmksa_candidate_free(wpa_s);
for (i = count - 1; i >= 0; i--) {
r = &results[i];
if (r->ssid_len == wpa_s->current_ssid->ssid_len &&
memcmp(r->ssid, wpa_s->current_ssid->ssid, r->ssid_len) ==
0 &&
memcmp(r->bssid, wpa_s->bssid, ETH_ALEN) != 0 &&
r->rsn_ie_len > 0 &&
wpa_parse_wpa_ie(wpa_s, r->rsn_ie, r->rsn_ie_len, &ie) ==
0 &&
(ie.capabilities & WPA_CAPABILITY_PREAUTH) &&
pmksa_cache_get(wpa_s, r->bssid, NULL) == NULL) {
/* Give less priority to candidates found from normal
* scan results. */
pmksa_candidate_add(wpa_s, r->bssid,
PMKID_CANDIDATE_PRIO_SCAN);
}
}
}
#else /* IEEE8021X_EAPOL */
static void rsn_preauth_candidate_process(struct wpa_supplicant *wpa_s)
{
}
#endif /* IEEE8021X_EAPOL */