91046e9c5f
* Add ah_ratesArray[] to the ar5416 HAL state - this stores the maximum values permissable per rate. * Since different chip EEPROM formats store this value in a different place, store the HT40 power detector increment value in the ar5416 HAL state. * Modify the target power setup code to store the maximum values in the ar5416 HAL state rather than using a local variable. * Add ar5416RateToRateTable() - to convert a hardware rate code to the ratesArray enum / index. * Add ar5416GetTxRatePower() - which goes through the gymnastics required to correctly calculate the target TX power: + Add the power detector increment for ht40; + Take the power offset into account for AR9280 and later; + Offset the TX power correctly when doing open-loop TX power control; + Enforce the per-rate maximum value allowable. Note - setting a TPC value of 0x0 in the TX descriptor on (at least) the AR9160 resulted in the TX power being very high indeed. This didn't happen on the AR9220. I'm guessing it's a chip bug that was fixed at some point. So for now, just assume the AR5416/AR5418 and AR9130 are also suspect and clamp the minimum value here at 1. Tested: * AR5416, AR9160, AR9220 hostap, verified using (2GHz) spectrum analyser * Looked at target TX power in TX descriptor (using athalq) as well as TX power on the spectrum analyser. TODO: * The TX descriptor code sets the target TX power to 0 for AR9285 chips. I'm not yet sure why. Disable this for TPC and ensure that the TPC TX power is set. * AR9280, AR9285, AR9227, AR9287 testing! * 5GHz testing! Quirks: * The per-packet TPC code is only exercised when the tpc sysctl is set to 1. (dev.ath.X.tpc=1.) This needs to be done before you bring the interface up. * When TPC is enabled, setting the TX power doesn't end up with a call through to the HAL to update the maximum TX power. So ensure that you set the TPC sysctl before you bring the interface up and configure a lower TX power or the hardware will be clamped by the lower TX power (at least until the next channel change.) Thanks to Qualcomm Atheros for all the hardware, and Sam Leffler for use of his spectrum analyser to verify the TX channel power.
587 lines
20 KiB
C
587 lines
20 KiB
C
/*
|
|
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2002-2008 Atheros Communications, Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include "opt_ah.h"
|
|
|
|
#include "ah.h"
|
|
#include "ah_internal.h"
|
|
#include "ah_devid.h"
|
|
|
|
#include "ah_eeprom_v14.h"
|
|
#include "ah_eeprom_9287.h"
|
|
|
|
#include "ar5416/ar5416.h"
|
|
#include "ar5416/ar5416reg.h"
|
|
#include "ar5416/ar5416phy.h"
|
|
|
|
#include "ar9002/ar9287phy.h"
|
|
#include "ar9002/ar9287an.h"
|
|
|
|
#include "ar9002/ar9287_olc.h"
|
|
#include "ar9002/ar9287_reset.h"
|
|
|
|
/*
|
|
* Set the TX power calibration table per-chain.
|
|
*
|
|
* This only supports open-loop TX power control for the AR9287.
|
|
*/
|
|
static void
|
|
ar9287SetPowerCalTable(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
|
|
{
|
|
struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
|
|
uint8_t *pCalBChans = NULL;
|
|
uint16_t pdGainOverlap_t2;
|
|
uint16_t numPiers = 0, i;
|
|
uint16_t numXpdGain, xpdMask;
|
|
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
|
|
uint32_t regChainOffset;
|
|
HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ar9287_eeprom *pEepData = &ee->ee_base;
|
|
|
|
xpdMask = pEepData->modalHeader.xpdGain;
|
|
|
|
if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
|
|
AR9287_EEP_MINOR_VER_2)
|
|
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
|
|
else
|
|
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
|
|
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
|
|
|
|
/* Note: Kiwi should only be 2ghz.. */
|
|
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
|
|
pCalBChans = pEepData->calFreqPier2G;
|
|
numPiers = AR9287_NUM_2G_CAL_PIERS;
|
|
pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
|
|
AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
|
|
}
|
|
numXpdGain = 0;
|
|
|
|
/* Calculate the value of xpdgains from the xpdGain Mask */
|
|
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
|
|
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
|
|
if (numXpdGain >= AR5416_NUM_PD_GAINS)
|
|
break;
|
|
xpdGainValues[numXpdGain] =
|
|
(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
|
|
numXpdGain++;
|
|
}
|
|
}
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
|
|
(numXpdGain - 1) & 0x3);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
|
|
xpdGainValues[0]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
|
|
xpdGainValues[1]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
|
|
xpdGainValues[2]);
|
|
|
|
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
|
|
regChainOffset = i * 0x1000;
|
|
|
|
if (pEepData->baseEepHeader.txMask & (1 << i)) {
|
|
int8_t txPower;
|
|
pRawDatasetOpenLoop =
|
|
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
|
|
ar9287olcGetTxGainIndex(ah, chan,
|
|
pRawDatasetOpenLoop,
|
|
pCalBChans, numPiers,
|
|
&txPower);
|
|
ar9287olcSetPDADCs(ah, txPower, i);
|
|
}
|
|
}
|
|
|
|
*pTxPowerIndexOffset = 0;
|
|
}
|
|
|
|
|
|
/* XXX hard-coded values? */
|
|
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
|
|
|
|
/*
|
|
* ar9287SetPowerPerRateTable
|
|
*
|
|
* Sets the transmit power in the baseband for the given
|
|
* operating channel and mode.
|
|
*
|
|
* This is like the v14 EEPROM table except the 5GHz code.
|
|
*/
|
|
static HAL_BOOL
|
|
ar9287SetPowerPerRateTable(struct ath_hal *ah,
|
|
struct ar9287_eeprom *pEepData,
|
|
const struct ieee80211_channel *chan,
|
|
int16_t *ratesArray, uint16_t cfgCtl,
|
|
uint16_t AntennaReduction,
|
|
uint16_t twiceMaxRegulatoryPower,
|
|
uint16_t powerLimit)
|
|
{
|
|
#define N(a) (sizeof(a)/sizeof(a[0]))
|
|
/* Local defines to distinguish between extension and control CTL's */
|
|
#define EXT_ADDITIVE (0x8000)
|
|
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
|
|
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
|
|
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
|
|
|
|
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
|
|
int i;
|
|
int16_t twiceLargestAntenna;
|
|
struct cal_ctl_data_ar9287 *rep;
|
|
CAL_TARGET_POWER_LEG targetPowerOfdm;
|
|
CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
|
|
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
|
|
CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
|
|
CAL_TARGET_POWER_HT targetPowerHt20;
|
|
CAL_TARGET_POWER_HT targetPowerHt40 = {0, {0, 0, 0, 0}};
|
|
int16_t scaledPower, minCtlPower;
|
|
|
|
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
|
|
static const uint16_t ctlModesFor11g[] = {
|
|
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
|
|
};
|
|
const uint16_t *pCtlMode;
|
|
uint16_t numCtlModes, ctlMode, freq;
|
|
CHAN_CENTERS centers;
|
|
|
|
ar5416GetChannelCenters(ah, chan, ¢ers);
|
|
|
|
/* Compute TxPower reduction due to Antenna Gain */
|
|
|
|
twiceLargestAntenna = AH_MAX(
|
|
pEepData->modalHeader.antennaGainCh[0],
|
|
pEepData->modalHeader.antennaGainCh[1]);
|
|
|
|
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
|
|
|
|
/* XXX setup for 5212 use (really used?) */
|
|
ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
|
|
|
|
/*
|
|
* scaledPower is the minimum of the user input power level and
|
|
* the regulatory allowed power level
|
|
*/
|
|
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
|
|
|
|
/* Reduce scaled Power by number of chains active to get to per chain tx power level */
|
|
/* TODO: better value than these? */
|
|
switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
|
|
case 1:
|
|
break;
|
|
case 2:
|
|
scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
|
|
break;
|
|
default:
|
|
return AH_FALSE; /* Unsupported number of chains */
|
|
}
|
|
|
|
scaledPower = AH_MAX(0, scaledPower);
|
|
|
|
/* Get target powers from EEPROM - our baseline for TX Power */
|
|
/* XXX assume channel is 2ghz */
|
|
if (1) {
|
|
/* Setup for CTL modes */
|
|
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
|
|
pCtlMode = ctlModesFor11g;
|
|
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
|
|
AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
|
|
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
|
|
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
|
|
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
|
|
|
|
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
|
|
AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
|
|
/* Get target powers for extension channels */
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
|
|
AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
|
|
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
|
|
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For MIMO, need to apply regulatory caps individually across dynamically
|
|
* running modes: CCK, OFDM, HT20, HT40
|
|
*
|
|
* The outer loop walks through each possible applicable runtime mode.
|
|
* The inner loop walks through each ctlIndex entry in EEPROM.
|
|
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
|
|
*
|
|
*/
|
|
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
|
|
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
|
|
(pCtlMode[ctlMode] == CTL_2GHT40);
|
|
if (isHt40CtlMode) {
|
|
freq = centers.ctl_center;
|
|
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
|
|
freq = centers.ext_center;
|
|
} else {
|
|
freq = centers.ctl_center;
|
|
}
|
|
|
|
/* walk through each CTL index stored in EEPROM */
|
|
for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
|
|
uint16_t twiceMinEdgePower;
|
|
|
|
/* compare test group from regulatory channel list with test mode from pCtlMode list */
|
|
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
|
|
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
|
|
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
|
|
rep = &(pEepData->ctlData[i]);
|
|
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
|
|
rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
|
|
IEEE80211_IS_CHAN_2GHZ(chan));
|
|
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
|
|
/* Find the minimum of all CTL edge powers that apply to this channel */
|
|
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
|
|
} else {
|
|
/* specific */
|
|
twiceMaxEdgePower = twiceMinEdgePower;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
|
|
/* Apply ctl mode to correct target power set */
|
|
switch(pCtlMode[ctlMode]) {
|
|
case CTL_11B:
|
|
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
|
|
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11A:
|
|
case CTL_11G:
|
|
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
|
|
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_5GHT20:
|
|
case CTL_2GHT20:
|
|
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
|
|
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
case CTL_11B_EXT:
|
|
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
|
|
break;
|
|
case CTL_11A_EXT:
|
|
case CTL_11G_EXT:
|
|
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
|
|
break;
|
|
case CTL_5GHT40:
|
|
case CTL_2GHT40:
|
|
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
|
|
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
|
|
}
|
|
break;
|
|
default:
|
|
return AH_FALSE;
|
|
break;
|
|
}
|
|
} /* end ctl mode checking */
|
|
|
|
/* Set rates Array from collected data */
|
|
ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
|
|
&targetPowerCck,
|
|
&targetPowerCckExt,
|
|
&targetPowerOfdm,
|
|
&targetPowerOfdmExt,
|
|
&targetPowerHt20,
|
|
&targetPowerHt40);
|
|
return AH_TRUE;
|
|
#undef EXT_ADDITIVE
|
|
#undef CTL_11A_EXT
|
|
#undef CTL_11G_EXT
|
|
#undef CTL_11B_EXT
|
|
#undef SUB_NUM_CTL_MODES_AT_5G_40
|
|
#undef SUB_NUM_CTL_MODES_AT_2G_40
|
|
#undef N
|
|
}
|
|
|
|
#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
|
|
|
|
/*
|
|
* This is based off of the AR5416/AR9285 code and likely could
|
|
* be unified in the future.
|
|
*/
|
|
HAL_BOOL
|
|
ar9287SetTransmitPower(struct ath_hal *ah,
|
|
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
|
|
{
|
|
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
|
|
#define N(a) (sizeof (a) / sizeof (a[0]))
|
|
|
|
const struct modal_eep_ar9287_header *pModal;
|
|
struct ath_hal_5212 *ahp = AH5212(ah);
|
|
int16_t txPowerIndexOffset = 0;
|
|
int i;
|
|
|
|
uint16_t cfgCtl;
|
|
uint16_t powerLimit;
|
|
uint16_t twiceAntennaReduction;
|
|
uint16_t twiceMaxRegulatoryPower;
|
|
int16_t maxPower;
|
|
HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
struct ar9287_eeprom *pEepData = &ee->ee_base;
|
|
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
|
|
|
|
/* Setup info for the actual eeprom */
|
|
OS_MEMZERO(AH5416(ah)->ah_ratesArray,
|
|
sizeof(AH5416(ah)->ah_ratesArray));
|
|
cfgCtl = ath_hal_getctl(ah, chan);
|
|
powerLimit = chan->ic_maxregpower * 2;
|
|
twiceAntennaReduction = chan->ic_maxantgain;
|
|
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
|
|
AH_PRIVATE(ah)->ah_powerLimit);
|
|
pModal = &pEepData->modalHeader;
|
|
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
|
|
__func__,chan->ic_freq, cfgCtl );
|
|
|
|
/* XXX Assume Minor is v2 or later */
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
|
|
|
|
/* Fetch per-rate power table for the given channel */
|
|
if (! ar9287SetPowerPerRateTable(ah, pEepData, chan,
|
|
&AH5416(ah)->ah_ratesArray[0],
|
|
cfgCtl,
|
|
twiceAntennaReduction,
|
|
twiceMaxRegulatoryPower, powerLimit)) {
|
|
HALDEBUG(ah, HAL_DEBUG_ANY,
|
|
"%s: unable to set tx power per rate table\n", __func__);
|
|
return AH_FALSE;
|
|
}
|
|
|
|
/* Set TX power control calibration curves for each TX chain */
|
|
ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
|
|
|
|
/* Calculate maximum power level */
|
|
maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
|
|
AH5416(ah)->ah_ratesArray[rateHt20_0]);
|
|
maxPower = AH_MAX(maxPower,
|
|
AH5416(ah)->ah_ratesArray[rate1l]);
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan))
|
|
maxPower = AH_MAX(maxPower,
|
|
AH5416(ah)->ah_ratesArray[rateHt40_0]);
|
|
|
|
ahp->ah_tx6PowerInHalfDbm = maxPower;
|
|
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
|
|
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
|
|
|
|
/*
|
|
* txPowerIndexOffset is set by the SetPowerTable() call -
|
|
* adjust the rate table (0 offset if rates EEPROM not loaded)
|
|
*/
|
|
/* XXX what about the pwrTableOffset? */
|
|
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
|
|
AH5416(ah)->ah_ratesArray[i] =
|
|
(int16_t)(txPowerIndexOffset +
|
|
AH5416(ah)->ah_ratesArray[i]);
|
|
/* -5 dBm offset for Merlin and later; this includes Kiwi */
|
|
AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
|
|
if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
|
|
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
|
|
if (AH5416(ah)->ah_ratesArray[i] < 0)
|
|
AH5416(ah)->ah_ratesArray[i] = 0;
|
|
}
|
|
|
|
#ifdef AH_EEPROM_DUMP
|
|
ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
|
|
#endif
|
|
|
|
/*
|
|
* Adjust the HT40 power to meet the correct target TX power
|
|
* for 40MHz mode, based on TX power curves that are established
|
|
* for 20MHz mode.
|
|
*
|
|
* XXX handle overflow/too high power level?
|
|
*/
|
|
if (IEEE80211_IS_CHAN_HT40(chan)) {
|
|
AH5416(ah)->ah_ratesArray[rateHt40_0] +=
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc;
|
|
AH5416(ah)->ah_ratesArray[rateHt40_1] +=
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc;
|
|
AH5416(ah)->ah_ratesArray[rateHt40_2] +=
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc;
|
|
AH5416(ah)->ah_ratesArray[rateHt40_3] +=
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc;
|
|
AH5416(ah)->ah_ratesArray[rateHt40_4] +=
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc;
|
|
AH5416(ah)->ah_ratesArray[rateHt40_5] +=
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc;
|
|
AH5416(ah)->ah_ratesArray[rateHt40_6] +=
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc;
|
|
AH5416(ah)->ah_ratesArray[rateHt40_7] +=
|
|
AH5416(ah)->ah_ht40PowerIncForPdadc;
|
|
}
|
|
|
|
/* Write the TX power rate registers */
|
|
ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
|
|
|
|
return AH_TRUE;
|
|
#undef POW_SM
|
|
#undef N
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM header info and program the device for correct operation
|
|
* given the channel value.
|
|
*/
|
|
HAL_BOOL
|
|
ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
|
|
{
|
|
const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
|
|
const struct ar9287_eeprom *eep = &ee->ee_base;
|
|
const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
|
|
uint16_t antWrites[AR9287_ANT_16S];
|
|
uint32_t regChainOffset, regval;
|
|
uint8_t txRxAttenLocal;
|
|
int i, j, offset_num;
|
|
|
|
pModal = &eep->modalHeader;
|
|
|
|
antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
|
|
antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
|
|
antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
|
|
antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
|
|
antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
|
|
antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
|
|
antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4) & 0xF);
|
|
antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
|
|
|
|
offset_num = 8;
|
|
|
|
for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
|
|
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
|
|
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
|
|
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
|
|
antWrites[j++] = 0;
|
|
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
|
|
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
|
|
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
|
|
antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
|
|
}
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
|
|
|
|
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
|
|
regChainOffset = i * 0x1000;
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
|
|
pModal->antCtrlChain[i]);
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
|
|
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
|
|
+ regChainOffset)
|
|
& ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
|
|
SM(pModal->iqCalICh[i],
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
|
|
SM(pModal->iqCalQCh[i],
|
|
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
|
|
|
|
txRxAttenLocal = pModal->txRxAttenCh[i];
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
|
|
pModal->bswMargin[i]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
|
|
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
|
|
pModal->bswAtten[i]);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
|
|
AR9280_PHY_RXGAIN_TXRX_ATTEN,
|
|
txRxAttenLocal);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
|
|
AR9280_PHY_RXGAIN_TXRX_MARGIN,
|
|
pModal->rxTxMarginCh[i]);
|
|
}
|
|
|
|
if (IEEE80211_IS_CHAN_HT40(chan))
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
|
|
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
|
|
else
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
|
|
AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
|
|
AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
|
|
|
|
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
|
|
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
|
|
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
|
|
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
|
|
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
|
|
AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
|
|
AR9280_PHY_CCA_THRESH62, pModal->thresh62);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
|
|
AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
|
|
|
|
regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
|
|
regval &= ~(AR9287_AN_RF2G3_DB1 |
|
|
AR9287_AN_RF2G3_DB2 |
|
|
AR9287_AN_RF2G3_OB_CCK |
|
|
AR9287_AN_RF2G3_OB_PSK |
|
|
AR9287_AN_RF2G3_OB_QAM |
|
|
AR9287_AN_RF2G3_OB_PAL_OFF);
|
|
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
|
|
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
|
|
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
|
|
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
|
|
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
|
|
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
|
|
|
|
/* Analog write - requires a 100usec delay */
|
|
OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
|
|
|
|
regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
|
|
regval &= ~(AR9287_AN_RF2G3_DB1 |
|
|
AR9287_AN_RF2G3_DB2 |
|
|
AR9287_AN_RF2G3_OB_CCK |
|
|
AR9287_AN_RF2G3_OB_PSK |
|
|
AR9287_AN_RF2G3_OB_QAM |
|
|
AR9287_AN_RF2G3_OB_PAL_OFF);
|
|
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
|
|
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
|
|
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
|
|
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
|
|
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
|
|
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
|
|
|
|
OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
|
|
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
|
|
AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
|
|
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
|
|
AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
|
|
|
|
OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
|
|
AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
|
|
|
|
return AH_TRUE;
|
|
}
|