freebsd-skq/sys/powerpc/ofw/ofw_machdep.c
Nathan Whitehorn 8bab0d80ca Prevent an error resulting from signed/unsigned comparison on systems
that do not comply with the OF spec.

Submitted by:	Anders Gavare
MFC after:	1 week
2012-01-20 22:24:39 +00:00

769 lines
18 KiB
C

/*-
* Copyright (C) 1996 Wolfgang Solfrank.
* Copyright (C) 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $NetBSD: ofw_machdep.c,v 1.5 2000/05/23 13:25:43 tsubai Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/smp.h>
#include <sys/stat.h>
#include <net/ethernet.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_pci.h>
#include <dev/ofw/ofw_bus.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_page.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/md_var.h>
#include <machine/platform.h>
#include <machine/ofw_machdep.h>
static struct mem_region OFmem[PHYS_AVAIL_SZ], OFavail[PHYS_AVAIL_SZ];
static struct mem_region OFfree[PHYS_AVAIL_SZ];
extern register_t ofmsr[5];
extern void *openfirmware_entry;
static void *fdt;
int ofw_real_mode;
int ofwcall(void *);
static void ofw_quiesce(void);
static int openfirmware(void *args);
/*
* Saved SPRG0-3 from OpenFirmware. Will be restored prior to the callback.
*/
register_t ofw_sprg0_save;
static __inline void
ofw_sprg_prepare(void)
{
/*
* Assume that interrupt are disabled at this point, or
* SPRG1-3 could be trashed
*/
__asm __volatile("mfsprg0 %0\n\t"
"mtsprg0 %1\n\t"
"mtsprg1 %2\n\t"
"mtsprg2 %3\n\t"
"mtsprg3 %4\n\t"
: "=&r"(ofw_sprg0_save)
: "r"(ofmsr[1]),
"r"(ofmsr[2]),
"r"(ofmsr[3]),
"r"(ofmsr[4]));
}
static __inline void
ofw_sprg_restore(void)
{
/*
* Note that SPRG1-3 contents are irrelevant. They are scratch
* registers used in the early portion of trap handling when
* interrupts are disabled.
*
* PCPU data cannot be used until this routine is called !
*/
__asm __volatile("mtsprg0 %0" :: "r"(ofw_sprg0_save));
}
/*
* Memory region utilities: determine if two regions overlap,
* and merge two overlapping regions into one
*/
static int
memr_overlap(struct mem_region *r1, struct mem_region *r2)
{
if ((r1->mr_start + r1->mr_size) < r2->mr_start ||
(r2->mr_start + r2->mr_size) < r1->mr_start)
return (FALSE);
return (TRUE);
}
static void
memr_merge(struct mem_region *from, struct mem_region *to)
{
vm_offset_t end;
end = ulmax(to->mr_start + to->mr_size, from->mr_start + from->mr_size);
to->mr_start = ulmin(from->mr_start, to->mr_start);
to->mr_size = end - to->mr_start;
}
/*
* Quick sort callout for comparing memory regions.
*/
static int mr_cmp(const void *a, const void *b);
static int
mr_cmp(const void *a, const void *b)
{
const struct mem_region *regiona;
const struct mem_region *regionb;
regiona = a;
regionb = b;
if (regiona->mr_start < regionb->mr_start)
return (-1);
else if (regiona->mr_start > regionb->mr_start)
return (1);
else
return (0);
}
static int
parse_ofw_memory(phandle_t node, const char *prop, struct mem_region *output)
{
cell_t address_cells, size_cells;
cell_t OFmem[4 * PHYS_AVAIL_SZ];
int sz, i, j;
int apple_hack_mode;
phandle_t phandle;
sz = 0;
apple_hack_mode = 0;
/*
* Get #address-cells from root node, defaulting to 1 if it cannot
* be found.
*/
phandle = OF_finddevice("/");
if (OF_getprop(phandle, "#address-cells", &address_cells,
sizeof(address_cells)) < (ssize_t)sizeof(address_cells))
address_cells = 1;
if (OF_getprop(phandle, "#size-cells", &size_cells,
sizeof(size_cells)) < (ssize_t)sizeof(size_cells))
size_cells = 1;
/*
* On Apple hardware, address_cells is always 1 for "available",
* even when it is explicitly set to 2. Then all memory above 4 GB
* should be added by hand to the available list. Detect Apple hardware
* by seeing if ofw_real_mode is set -- only Apple seems to use
* virtual-mode OF.
*/
if (strcmp(prop, "available") == 0 && !ofw_real_mode)
apple_hack_mode = 1;
if (apple_hack_mode)
address_cells = 1;
/*
* Get memory.
*/
if (node == -1 || (sz = OF_getprop(node, prop,
OFmem, sizeof(OFmem))) <= 0)
panic("Physical memory map not found");
i = 0;
j = 0;
while (i < sz/sizeof(cell_t)) {
#ifndef __powerpc64__
/* On 32-bit PPC, ignore regions starting above 4 GB */
if (address_cells > 1 && OFmem[i] > 0) {
i += address_cells + size_cells;
continue;
}
#endif
output[j].mr_start = OFmem[i++];
if (address_cells == 2) {
#ifdef __powerpc64__
output[j].mr_start <<= 32;
#endif
output[j].mr_start += OFmem[i++];
}
output[j].mr_size = OFmem[i++];
if (size_cells == 2) {
#ifdef __powerpc64__
output[j].mr_size <<= 32;
#endif
output[j].mr_size += OFmem[i++];
}
#ifndef __powerpc64__
/*
* Check for memory regions extending above 32-bit
* memory space, and restrict them to stay there.
*/
if (((uint64_t)output[j].mr_start +
(uint64_t)output[j].mr_size) >
BUS_SPACE_MAXADDR_32BIT) {
output[j].mr_size = BUS_SPACE_MAXADDR_32BIT -
output[j].mr_start;
}
#endif
j++;
}
sz = j*sizeof(output[0]);
#ifdef __powerpc64__
if (apple_hack_mode) {
/* Add in regions above 4 GB to the available list */
struct mem_region himem[16];
int hisz;
hisz = parse_ofw_memory(node, "reg", himem);
for (i = 0; i < hisz/sizeof(himem[0]); i++) {
if (himem[i].mr_start > BUS_SPACE_MAXADDR_32BIT) {
output[j].mr_start = himem[i].mr_start;
output[j].mr_size = himem[i].mr_size;
j++;
}
}
sz = j*sizeof(output[0]);
}
#endif
return (sz);
}
static int
parse_drconf_memory(int *msz, int *asz, struct mem_region *ofmem,
struct mem_region *ofavail)
{
phandle_t phandle;
vm_offset_t base;
int i, idx, len, lasz, lmsz, res;
uint32_t lmb_size[2];
unsigned long *dmem, flags;
lmsz = *msz;
lasz = *asz;
phandle = OF_finddevice("/ibm,dynamic-reconfiguration-memory");
if (phandle == -1)
/* No drconf node, return. */
return (0);
res = OF_getprop(phandle, "ibm,lmb-size", lmb_size, sizeof(lmb_size));
if (res == -1)
return (0);
/* Parse the /ibm,dynamic-memory.
The first position gives the # of entries. The next two words
reflect the address of the memory block. The next four words are
the DRC index, reserved, list index and flags.
(see PAPR C.6.6.2 ibm,dynamic-reconfiguration-memory)
#el Addr DRC-idx res list-idx flags
-------------------------------------------------
| 4 | 8 | 4 | 4 | 4 | 4 |....
-------------------------------------------------
*/
len = OF_getproplen(phandle, "ibm,dynamic-memory");
if (len > 0) {
/* We have to use a variable length array on the stack
since we have very limited stack space.
*/
cell_t arr[len/sizeof(cell_t)];
res = OF_getprop(phandle, "ibm,dynamic-memory", &arr,
sizeof(arr));
if (res == -1)
return (0);
/* Number of elements */
idx = arr[0];
/* First address. */
dmem = (void*)&arr[1];
for (i = 0; i < idx; i++) {
base = *dmem;
dmem += 2;
flags = *dmem;
/* Use region only if available and not reserved. */
if ((flags & 0x8) && !(flags & 0x80)) {
ofmem[lmsz].mr_start = base;
ofmem[lmsz].mr_size = (vm_size_t)lmb_size[1];
ofavail[lasz].mr_start = base;
ofavail[lasz].mr_size = (vm_size_t)lmb_size[1];
lmsz++;
lasz++;
}
dmem++;
}
}
*msz = lmsz;
*asz = lasz;
return (1);
}
/*
* This is called during powerpc_init, before the system is really initialized.
* It shall provide the total and the available regions of RAM.
* Both lists must have a zero-size entry as terminator.
* The available regions need not take the kernel into account, but needs
* to provide space for two additional entry beyond the terminating one.
*/
void
ofw_mem_regions(struct mem_region **memp, int *memsz,
struct mem_region **availp, int *availsz)
{
phandle_t phandle;
vm_offset_t maxphysaddr;
int asz, msz, fsz;
int i, j, res;
int still_merging;
char name[31];
asz = msz = 0;
/*
* Get memory from all the /memory nodes.
*/
for (phandle = OF_child(OF_peer(0)); phandle != 0;
phandle = OF_peer(phandle)) {
if (OF_getprop(phandle, "name", name, sizeof(name)) <= 0)
continue;
if (strncmp(name, "memory", sizeof(name)) != 0)
continue;
res = parse_ofw_memory(phandle, "reg", &OFmem[msz]);
msz += res/sizeof(struct mem_region);
if (OF_getproplen(phandle, "available") >= 0)
res = parse_ofw_memory(phandle, "available",
&OFavail[asz]);
else
res = parse_ofw_memory(phandle, "reg", &OFavail[asz]);
asz += res/sizeof(struct mem_region);
}
/* Check for memory in ibm,dynamic-reconfiguration-memory */
parse_drconf_memory(&msz, &asz, OFmem, OFavail);
qsort(OFmem, msz, sizeof(*OFmem), mr_cmp);
qsort(OFavail, asz, sizeof(*OFavail), mr_cmp);
*memp = OFmem;
*memsz = msz;
/*
* On some firmwares (SLOF), some memory may be marked available that
* doesn't actually exist. This manifests as an extension of the last
* available segment past the end of physical memory, so truncate that
* one.
*/
maxphysaddr = 0;
for (i = 0; i < msz; i++)
if (OFmem[i].mr_start + OFmem[i].mr_size > maxphysaddr)
maxphysaddr = OFmem[i].mr_start + OFmem[i].mr_size;
if (OFavail[asz - 1].mr_start + OFavail[asz - 1].mr_size > maxphysaddr)
OFavail[asz - 1].mr_size = maxphysaddr -
OFavail[asz - 1].mr_start;
/*
* OFavail may have overlapping regions - collapse these
* and copy out remaining regions to OFfree
*/
do {
still_merging = FALSE;
for (i = 0; i < asz; i++) {
if (OFavail[i].mr_size == 0)
continue;
for (j = i+1; j < asz; j++) {
if (OFavail[j].mr_size == 0)
continue;
if (memr_overlap(&OFavail[j], &OFavail[i])) {
memr_merge(&OFavail[j], &OFavail[i]);
/* mark inactive */
OFavail[j].mr_size = 0;
still_merging = TRUE;
}
}
}
} while (still_merging == TRUE);
/* evict inactive ranges */
for (i = 0, fsz = 0; i < asz; i++) {
if (OFavail[i].mr_size != 0) {
OFfree[fsz] = OFavail[i];
fsz++;
}
}
*availp = OFfree;
*availsz = fsz;
}
void
OF_initial_setup(void *fdt_ptr, void *junk, int (*openfirm)(void *))
{
if (ofmsr[0] & PSL_DR)
ofw_real_mode = 0;
else
ofw_real_mode = 1;
fdt = fdt_ptr;
#ifdef FDT_DTB_STATIC
/* Check for a statically included blob */
if (fdt == NULL)
fdt = &fdt_static_dtb;
#endif
}
boolean_t
OF_bootstrap()
{
boolean_t status = FALSE;
if (openfirmware_entry != NULL) {
if (ofw_real_mode) {
status = OF_install(OFW_STD_REAL, 0);
} else {
#ifdef __powerpc64__
status = OF_install(OFW_STD_32BIT, 0);
#else
status = OF_install(OFW_STD_DIRECT, 0);
#endif
}
if (status != TRUE)
return status;
OF_init(openfirmware);
/*
* On some machines, we need to quiesce OF to turn off
* background processes.
*/
ofw_quiesce();
} else if (fdt != NULL) {
status = OF_install(OFW_FDT, 0);
if (status != TRUE)
return status;
OF_init(fdt);
}
return (status);
}
static void
ofw_quiesce(void)
{
phandle_t rootnode;
char model[32];
struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
} args;
/*
* Only quiesce Open Firmware on PowerMac11,2 and 12,1. It is
* necessary there to shut down a background thread doing fan
* management, and is harmful on other machines.
*
* Note: we don't need to worry about which OF module we are
* using since this is called only from very early boot, within
* OF's boot context.
*/
rootnode = OF_finddevice("/");
if (OF_getprop(rootnode, "model", model, sizeof(model)) > 0) {
if (strcmp(model, "PowerMac11,2") == 0 ||
strcmp(model, "PowerMac12,1") == 0) {
args.name = (cell_t)(uintptr_t)"quiesce";
args.nargs = 0;
args.nreturns = 0;
openfirmware(&args);
}
}
}
static int
openfirmware_core(void *args)
{
int result;
register_t oldmsr;
/*
* Turn off exceptions - we really don't want to end up
* anywhere unexpected with PCPU set to something strange
* or the stack pointer wrong.
*/
oldmsr = intr_disable();
ofw_sprg_prepare();
#if defined(AIM) && !defined(__powerpc64__)
/*
* Clear battable[] translations
*/
if (!(cpu_features & PPC_FEATURE_64))
__asm __volatile("mtdbatu 2, %0\n"
"mtdbatu 3, %0" : : "r" (0));
isync();
#endif
result = ofwcall(args);
ofw_sprg_restore();
intr_restore(oldmsr);
return (result);
}
#ifdef SMP
struct ofw_rv_args {
void *args;
int retval;
volatile int in_progress;
};
static void
ofw_rendezvous_dispatch(void *xargs)
{
struct ofw_rv_args *rv_args = xargs;
/* NOTE: Interrupts are disabled here */
if (PCPU_GET(cpuid) == 0) {
/*
* Execute all OF calls on CPU 0
*/
rv_args->retval = openfirmware_core(rv_args->args);
rv_args->in_progress = 0;
} else {
/*
* Spin with interrupts off on other CPUs while OF has
* control of the machine.
*/
while (rv_args->in_progress)
cpu_spinwait();
}
}
#endif
static int
openfirmware(void *args)
{
int result;
#ifdef SMP
struct ofw_rv_args rv_args;
rv_args.args = args;
rv_args.in_progress = 1;
smp_rendezvous(smp_no_rendevous_barrier, ofw_rendezvous_dispatch,
smp_no_rendevous_barrier, &rv_args);
result = rv_args.retval;
#else
result = openfirmware_core(args);
#endif
return (result);
}
void
OF_reboot()
{
struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
cell_t arg;
} args;
args.name = (cell_t)(uintptr_t)"interpret";
args.nargs = 1;
args.nreturns = 0;
args.arg = (cell_t)(uintptr_t)"reset-all";
openfirmware_core(&args); /* Don't do rendezvous! */
for (;;); /* just in case */
}
void
OF_getetheraddr(device_t dev, u_char *addr)
{
phandle_t node;
node = ofw_bus_get_node(dev);
OF_getprop(node, "local-mac-address", addr, ETHER_ADDR_LEN);
}
/*
* Return a bus handle and bus tag that corresponds to the register
* numbered regno for the device referenced by the package handle
* dev. This function is intended to be used by console drivers in
* early boot only. It works by mapping the address of the device's
* register in the address space of its parent and recursively walk
* the device tree upward this way.
*/
static void
OF_get_addr_props(phandle_t node, uint32_t *addrp, uint32_t *sizep, int *pcip)
{
char name[16];
uint32_t addr, size;
int pci, res;
res = OF_getprop(node, "#address-cells", &addr, sizeof(addr));
if (res == -1)
addr = 2;
res = OF_getprop(node, "#size-cells", &size, sizeof(size));
if (res == -1)
size = 1;
pci = 0;
if (addr == 3 && size == 2) {
res = OF_getprop(node, "name", name, sizeof(name));
if (res != -1) {
name[sizeof(name) - 1] = '\0';
pci = (strcmp(name, "pci") == 0) ? 1 : 0;
}
}
if (addrp != NULL)
*addrp = addr;
if (sizep != NULL)
*sizep = size;
if (pcip != NULL)
*pcip = pci;
}
int
OF_decode_addr(phandle_t dev, int regno, bus_space_tag_t *tag,
bus_space_handle_t *handle)
{
uint32_t cell[32];
bus_addr_t addr, raddr, baddr;
bus_size_t size, rsize;
uint32_t c, nbridge, naddr, nsize;
phandle_t bridge, parent;
u_int spc, rspc;
int pci, pcib, res;
/* Sanity checking. */
if (dev == 0)
return (EINVAL);
bridge = OF_parent(dev);
if (bridge == 0)
return (EINVAL);
if (regno < 0)
return (EINVAL);
if (tag == NULL || handle == NULL)
return (EINVAL);
/* Get the requested register. */
OF_get_addr_props(bridge, &naddr, &nsize, &pci);
res = OF_getprop(dev, (pci) ? "assigned-addresses" : "reg",
cell, sizeof(cell));
if (res == -1)
return (ENXIO);
if (res % sizeof(cell[0]))
return (ENXIO);
res /= sizeof(cell[0]);
regno *= naddr + nsize;
if (regno + naddr + nsize > res)
return (EINVAL);
spc = (pci) ? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK : ~0;
addr = 0;
for (c = 0; c < naddr; c++)
addr = ((uint64_t)addr << 32) | cell[regno++];
size = 0;
for (c = 0; c < nsize; c++)
size = ((uint64_t)size << 32) | cell[regno++];
/*
* Map the address range in the bridge's decoding window as given
* by the "ranges" property. If a node doesn't have such property
* then no mapping is done.
*/
parent = OF_parent(bridge);
while (parent != 0) {
OF_get_addr_props(parent, &nbridge, NULL, &pcib);
res = OF_getprop(bridge, "ranges", cell, sizeof(cell));
if (res == -1)
goto next;
if (res % sizeof(cell[0]))
return (ENXIO);
res /= sizeof(cell[0]);
regno = 0;
while (regno < res) {
rspc = (pci)
? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK
: ~0;
if (rspc != spc) {
regno += naddr + nbridge + nsize;
continue;
}
raddr = 0;
for (c = 0; c < naddr; c++)
raddr = ((uint64_t)raddr << 32) | cell[regno++];
rspc = (pcib)
? cell[regno] & OFW_PCI_PHYS_HI_SPACEMASK
: ~0;
baddr = 0;
for (c = 0; c < nbridge; c++)
baddr = ((uint64_t)baddr << 32) | cell[regno++];
rsize = 0;
for (c = 0; c < nsize; c++)
rsize = ((uint64_t)rsize << 32) | cell[regno++];
if (addr < raddr || addr >= raddr + rsize)
continue;
addr = addr - raddr + baddr;
if (rspc != ~0)
spc = rspc;
}
next:
bridge = parent;
parent = OF_parent(bridge);
OF_get_addr_props(bridge, &naddr, &nsize, &pci);
}
*tag = &bs_le_tag;
return (bus_space_map(*tag, addr, size, 0, handle));
}