36ad8372d4
Reviewed by: hps, erj, tuexen Sponsored by: Microsoft OSTC Differential Revision: https://reviews.freebsd.org/D6688
2304 lines
63 KiB
C
2304 lines
63 KiB
C
/******************************************************************************
|
|
|
|
Copyright (c) 2001-2015, Intel Corporation
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
3. Neither the name of the Intel Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
******************************************************************************/
|
|
/*$FreeBSD$*/
|
|
|
|
|
|
#ifndef IXGBE_STANDALONE_BUILD
|
|
#include "opt_inet.h"
|
|
#include "opt_inet6.h"
|
|
#include "opt_rss.h"
|
|
#endif
|
|
|
|
#include "ixgbe.h"
|
|
|
|
#ifdef RSS
|
|
#include <net/rss_config.h>
|
|
#include <netinet/in_rss.h>
|
|
#endif
|
|
|
|
#ifdef DEV_NETMAP
|
|
#include <net/netmap.h>
|
|
#include <sys/selinfo.h>
|
|
#include <dev/netmap/netmap_kern.h>
|
|
|
|
extern int ix_crcstrip;
|
|
#endif
|
|
|
|
/*
|
|
** HW RSC control:
|
|
** this feature only works with
|
|
** IPv4, and only on 82599 and later.
|
|
** Also this will cause IP forwarding to
|
|
** fail and that can't be controlled by
|
|
** the stack as LRO can. For all these
|
|
** reasons I've deemed it best to leave
|
|
** this off and not bother with a tuneable
|
|
** interface, this would need to be compiled
|
|
** to enable.
|
|
*/
|
|
static bool ixgbe_rsc_enable = FALSE;
|
|
|
|
#ifdef IXGBE_FDIR
|
|
/*
|
|
** For Flow Director: this is the
|
|
** number of TX packets we sample
|
|
** for the filter pool, this means
|
|
** every 20th packet will be probed.
|
|
**
|
|
** This feature can be disabled by
|
|
** setting this to 0.
|
|
*/
|
|
static int atr_sample_rate = 20;
|
|
#endif
|
|
|
|
/*********************************************************************
|
|
* Local Function prototypes
|
|
*********************************************************************/
|
|
static void ixgbe_setup_transmit_ring(struct tx_ring *);
|
|
static void ixgbe_free_transmit_buffers(struct tx_ring *);
|
|
static int ixgbe_setup_receive_ring(struct rx_ring *);
|
|
static void ixgbe_free_receive_buffers(struct rx_ring *);
|
|
|
|
static void ixgbe_rx_checksum(u32, struct mbuf *, u32);
|
|
static void ixgbe_refresh_mbufs(struct rx_ring *, int);
|
|
static int ixgbe_xmit(struct tx_ring *, struct mbuf **);
|
|
static int ixgbe_tx_ctx_setup(struct tx_ring *,
|
|
struct mbuf *, u32 *, u32 *);
|
|
static int ixgbe_tso_setup(struct tx_ring *,
|
|
struct mbuf *, u32 *, u32 *);
|
|
#ifdef IXGBE_FDIR
|
|
static void ixgbe_atr(struct tx_ring *, struct mbuf *);
|
|
#endif
|
|
static __inline void ixgbe_rx_discard(struct rx_ring *, int);
|
|
static __inline void ixgbe_rx_input(struct rx_ring *, struct ifnet *,
|
|
struct mbuf *, u32);
|
|
|
|
#ifdef IXGBE_LEGACY_TX
|
|
/*********************************************************************
|
|
* Transmit entry point
|
|
*
|
|
* ixgbe_start is called by the stack to initiate a transmit.
|
|
* The driver will remain in this routine as long as there are
|
|
* packets to transmit and transmit resources are available.
|
|
* In case resources are not available stack is notified and
|
|
* the packet is requeued.
|
|
**********************************************************************/
|
|
|
|
void
|
|
ixgbe_start_locked(struct tx_ring *txr, struct ifnet * ifp)
|
|
{
|
|
struct mbuf *m_head;
|
|
struct adapter *adapter = txr->adapter;
|
|
|
|
IXGBE_TX_LOCK_ASSERT(txr);
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
if (!adapter->link_active)
|
|
return;
|
|
|
|
while (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
|
|
if (txr->tx_avail <= IXGBE_QUEUE_MIN_FREE)
|
|
break;
|
|
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
if (ixgbe_xmit(txr, &m_head)) {
|
|
if (m_head != NULL)
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
break;
|
|
}
|
|
/* Send a copy of the frame to the BPF listener */
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Legacy TX start - called by the stack, this
|
|
* always uses the first tx ring, and should
|
|
* not be used with multiqueue tx enabled.
|
|
*/
|
|
void
|
|
ixgbe_start(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
|
|
IXGBE_TX_LOCK(txr);
|
|
ixgbe_start_locked(txr, ifp);
|
|
IXGBE_TX_UNLOCK(txr);
|
|
}
|
|
return;
|
|
}
|
|
|
|
#else /* ! IXGBE_LEGACY_TX */
|
|
|
|
/*
|
|
** Multiqueue Transmit Entry Point
|
|
** (if_transmit function)
|
|
*/
|
|
int
|
|
ixgbe_mq_start(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct ix_queue *que;
|
|
struct tx_ring *txr;
|
|
int i, err = 0;
|
|
#ifdef RSS
|
|
uint32_t bucket_id;
|
|
#endif
|
|
|
|
/*
|
|
* When doing RSS, map it to the same outbound queue
|
|
* as the incoming flow would be mapped to.
|
|
*
|
|
* If everything is setup correctly, it should be the
|
|
* same bucket that the current CPU we're on is.
|
|
*/
|
|
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
|
|
#ifdef RSS
|
|
if (rss_hash2bucket(m->m_pkthdr.flowid,
|
|
M_HASHTYPE_GET(m), &bucket_id) == 0) {
|
|
i = bucket_id % adapter->num_queues;
|
|
#ifdef IXGBE_DEBUG
|
|
if (bucket_id > adapter->num_queues)
|
|
if_printf(ifp, "bucket_id (%d) > num_queues "
|
|
"(%d)\n", bucket_id, adapter->num_queues);
|
|
#endif
|
|
} else
|
|
#endif
|
|
i = m->m_pkthdr.flowid % adapter->num_queues;
|
|
} else
|
|
i = curcpu % adapter->num_queues;
|
|
|
|
/* Check for a hung queue and pick alternative */
|
|
if (((1 << i) & adapter->active_queues) == 0)
|
|
i = ffsl(adapter->active_queues);
|
|
|
|
txr = &adapter->tx_rings[i];
|
|
que = &adapter->queues[i];
|
|
|
|
err = drbr_enqueue(ifp, txr->br, m);
|
|
if (err)
|
|
return (err);
|
|
if (IXGBE_TX_TRYLOCK(txr)) {
|
|
ixgbe_mq_start_locked(ifp, txr);
|
|
IXGBE_TX_UNLOCK(txr);
|
|
} else
|
|
taskqueue_enqueue(que->tq, &txr->txq_task);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
ixgbe_mq_start_locked(struct ifnet *ifp, struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct mbuf *next;
|
|
int enqueued = 0, err = 0;
|
|
|
|
if (((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) ||
|
|
adapter->link_active == 0)
|
|
return (ENETDOWN);
|
|
|
|
/* Process the queue */
|
|
#if __FreeBSD_version < 901504
|
|
next = drbr_dequeue(ifp, txr->br);
|
|
while (next != NULL) {
|
|
if ((err = ixgbe_xmit(txr, &next)) != 0) {
|
|
if (next != NULL)
|
|
err = drbr_enqueue(ifp, txr->br, next);
|
|
#else
|
|
while ((next = drbr_peek(ifp, txr->br)) != NULL) {
|
|
if ((err = ixgbe_xmit(txr, &next)) != 0) {
|
|
if (next == NULL) {
|
|
drbr_advance(ifp, txr->br);
|
|
} else {
|
|
drbr_putback(ifp, txr->br, next);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
#if __FreeBSD_version >= 901504
|
|
drbr_advance(ifp, txr->br);
|
|
#endif
|
|
enqueued++;
|
|
#if 0 // this is VF-only
|
|
#if __FreeBSD_version >= 1100036
|
|
/*
|
|
* Since we're looking at the tx ring, we can check
|
|
* to see if we're a VF by examing our tail register
|
|
* address.
|
|
*/
|
|
if (txr->tail < IXGBE_TDT(0) && next->m_flags & M_MCAST)
|
|
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
|
|
#endif
|
|
#endif
|
|
/* Send a copy of the frame to the BPF listener */
|
|
ETHER_BPF_MTAP(ifp, next);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
#if __FreeBSD_version < 901504
|
|
next = drbr_dequeue(ifp, txr->br);
|
|
#endif
|
|
}
|
|
|
|
if (txr->tx_avail < IXGBE_TX_CLEANUP_THRESHOLD)
|
|
ixgbe_txeof(txr);
|
|
|
|
return (err);
|
|
}
|
|
|
|
/*
|
|
* Called from a taskqueue to drain queued transmit packets.
|
|
*/
|
|
void
|
|
ixgbe_deferred_mq_start(void *arg, int pending)
|
|
{
|
|
struct tx_ring *txr = arg;
|
|
struct adapter *adapter = txr->adapter;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
|
|
IXGBE_TX_LOCK(txr);
|
|
if (!drbr_empty(ifp, txr->br))
|
|
ixgbe_mq_start_locked(ifp, txr);
|
|
IXGBE_TX_UNLOCK(txr);
|
|
}
|
|
|
|
/*
|
|
* Flush all ring buffers
|
|
*/
|
|
void
|
|
ixgbe_qflush(struct ifnet *ifp)
|
|
{
|
|
struct adapter *adapter = ifp->if_softc;
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
struct mbuf *m;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IXGBE_TX_LOCK(txr);
|
|
while ((m = buf_ring_dequeue_sc(txr->br)) != NULL)
|
|
m_freem(m);
|
|
IXGBE_TX_UNLOCK(txr);
|
|
}
|
|
if_qflush(ifp);
|
|
}
|
|
#endif /* IXGBE_LEGACY_TX */
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine maps the mbufs to tx descriptors, allowing the
|
|
* TX engine to transmit the packets.
|
|
* - return 0 on success, positive on failure
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
ixgbe_xmit(struct tx_ring *txr, struct mbuf **m_headp)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
u32 olinfo_status = 0, cmd_type_len;
|
|
int i, j, error, nsegs;
|
|
int first;
|
|
bool remap = TRUE;
|
|
struct mbuf *m_head;
|
|
bus_dma_segment_t segs[adapter->num_segs];
|
|
bus_dmamap_t map;
|
|
struct ixgbe_tx_buf *txbuf;
|
|
union ixgbe_adv_tx_desc *txd = NULL;
|
|
|
|
m_head = *m_headp;
|
|
|
|
/* Basic descriptor defines */
|
|
cmd_type_len = (IXGBE_ADVTXD_DTYP_DATA |
|
|
IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT);
|
|
|
|
if (m_head->m_flags & M_VLANTAG)
|
|
cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
|
|
|
|
/*
|
|
* Important to capture the first descriptor
|
|
* used because it will contain the index of
|
|
* the one we tell the hardware to report back
|
|
*/
|
|
first = txr->next_avail_desc;
|
|
txbuf = &txr->tx_buffers[first];
|
|
map = txbuf->map;
|
|
|
|
/*
|
|
* Map the packet for DMA.
|
|
*/
|
|
retry:
|
|
error = bus_dmamap_load_mbuf_sg(txr->txtag, map,
|
|
*m_headp, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
|
|
if (__predict_false(error)) {
|
|
struct mbuf *m;
|
|
|
|
switch (error) {
|
|
case EFBIG:
|
|
/* Try it again? - one try */
|
|
if (remap == TRUE) {
|
|
remap = FALSE;
|
|
/*
|
|
* XXX: m_defrag will choke on
|
|
* non-MCLBYTES-sized clusters
|
|
*/
|
|
m = m_defrag(*m_headp, M_NOWAIT);
|
|
if (m == NULL) {
|
|
adapter->mbuf_defrag_failed++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_headp = m;
|
|
goto retry;
|
|
} else
|
|
return (error);
|
|
case ENOMEM:
|
|
txr->no_tx_dma_setup++;
|
|
return (error);
|
|
default:
|
|
txr->no_tx_dma_setup++;
|
|
m_freem(*m_headp);
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
/* Make certain there are enough descriptors */
|
|
if (txr->tx_avail < (nsegs + 2)) {
|
|
txr->no_desc_avail++;
|
|
bus_dmamap_unload(txr->txtag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
m_head = *m_headp;
|
|
|
|
/*
|
|
* Set up the appropriate offload context
|
|
* this will consume the first descriptor
|
|
*/
|
|
error = ixgbe_tx_ctx_setup(txr, m_head, &cmd_type_len, &olinfo_status);
|
|
if (__predict_false(error)) {
|
|
if (error == ENOBUFS)
|
|
*m_headp = NULL;
|
|
return (error);
|
|
}
|
|
|
|
#ifdef IXGBE_FDIR
|
|
/* Do the flow director magic */
|
|
if ((txr->atr_sample) && (!adapter->fdir_reinit)) {
|
|
++txr->atr_count;
|
|
if (txr->atr_count >= atr_sample_rate) {
|
|
ixgbe_atr(txr, m_head);
|
|
txr->atr_count = 0;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
olinfo_status |= IXGBE_ADVTXD_CC;
|
|
i = txr->next_avail_desc;
|
|
for (j = 0; j < nsegs; j++) {
|
|
bus_size_t seglen;
|
|
bus_addr_t segaddr;
|
|
|
|
txbuf = &txr->tx_buffers[i];
|
|
txd = &txr->tx_base[i];
|
|
seglen = segs[j].ds_len;
|
|
segaddr = htole64(segs[j].ds_addr);
|
|
|
|
txd->read.buffer_addr = segaddr;
|
|
txd->read.cmd_type_len = htole32(txr->txd_cmd |
|
|
cmd_type_len |seglen);
|
|
txd->read.olinfo_status = htole32(olinfo_status);
|
|
|
|
if (++i == txr->num_desc)
|
|
i = 0;
|
|
}
|
|
|
|
txd->read.cmd_type_len |=
|
|
htole32(IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS);
|
|
txr->tx_avail -= nsegs;
|
|
txr->next_avail_desc = i;
|
|
|
|
txbuf->m_head = m_head;
|
|
/*
|
|
* Here we swap the map so the last descriptor,
|
|
* which gets the completion interrupt has the
|
|
* real map, and the first descriptor gets the
|
|
* unused map from this descriptor.
|
|
*/
|
|
txr->tx_buffers[first].map = txbuf->map;
|
|
txbuf->map = map;
|
|
bus_dmamap_sync(txr->txtag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Set the EOP descriptor that will be marked done */
|
|
txbuf = &txr->tx_buffers[first];
|
|
txbuf->eop = txd;
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
/*
|
|
* Advance the Transmit Descriptor Tail (Tdt), this tells the
|
|
* hardware that this frame is available to transmit.
|
|
*/
|
|
++txr->total_packets;
|
|
IXGBE_WRITE_REG(&adapter->hw, txr->tail, i);
|
|
|
|
/* Mark queue as having work */
|
|
if (txr->busy == 0)
|
|
txr->busy = 1;
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for tx_buffer structures. The tx_buffer stores all
|
|
* the information needed to transmit a packet on the wire. This is
|
|
* called only once at attach, setup is done every reset.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
ixgbe_allocate_transmit_buffers(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
device_t dev = adapter->dev;
|
|
struct ixgbe_tx_buf *txbuf;
|
|
int error, i;
|
|
|
|
/*
|
|
* Setup DMA descriptor areas.
|
|
*/
|
|
if ((error = bus_dma_tag_create(
|
|
bus_get_dma_tag(adapter->dev), /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
IXGBE_TSO_SIZE, /* maxsize */
|
|
adapter->num_segs, /* nsegments */
|
|
PAGE_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&txr->txtag))) {
|
|
device_printf(dev,"Unable to allocate TX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (!(txr->tx_buffers =
|
|
(struct ixgbe_tx_buf *) malloc(sizeof(struct ixgbe_tx_buf) *
|
|
adapter->num_tx_desc, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate tx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Create the descriptor buffer dma maps */
|
|
txbuf = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, txbuf++) {
|
|
error = bus_dmamap_create(txr->txtag, 0, &txbuf->map);
|
|
if (error != 0) {
|
|
device_printf(dev, "Unable to create TX DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
fail:
|
|
/* We free all, it handles case where we are in the middle */
|
|
ixgbe_free_transmit_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize a transmit ring.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
ixgbe_setup_transmit_ring(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct ixgbe_tx_buf *txbuf;
|
|
#ifdef DEV_NETMAP
|
|
struct netmap_adapter *na = NA(adapter->ifp);
|
|
struct netmap_slot *slot;
|
|
#endif /* DEV_NETMAP */
|
|
|
|
/* Clear the old ring contents */
|
|
IXGBE_TX_LOCK(txr);
|
|
#ifdef DEV_NETMAP
|
|
/*
|
|
* (under lock): if in netmap mode, do some consistency
|
|
* checks and set slot to entry 0 of the netmap ring.
|
|
*/
|
|
slot = netmap_reset(na, NR_TX, txr->me, 0);
|
|
#endif /* DEV_NETMAP */
|
|
bzero((void *)txr->tx_base,
|
|
(sizeof(union ixgbe_adv_tx_desc)) * adapter->num_tx_desc);
|
|
/* Reset indices */
|
|
txr->next_avail_desc = 0;
|
|
txr->next_to_clean = 0;
|
|
|
|
/* Free any existing tx buffers. */
|
|
txbuf = txr->tx_buffers;
|
|
for (int i = 0; i < txr->num_desc; i++, txbuf++) {
|
|
if (txbuf->m_head != NULL) {
|
|
bus_dmamap_sync(txr->txtag, txbuf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag, txbuf->map);
|
|
m_freem(txbuf->m_head);
|
|
txbuf->m_head = NULL;
|
|
}
|
|
#ifdef DEV_NETMAP
|
|
/*
|
|
* In netmap mode, set the map for the packet buffer.
|
|
* NOTE: Some drivers (not this one) also need to set
|
|
* the physical buffer address in the NIC ring.
|
|
* Slots in the netmap ring (indexed by "si") are
|
|
* kring->nkr_hwofs positions "ahead" wrt the
|
|
* corresponding slot in the NIC ring. In some drivers
|
|
* (not here) nkr_hwofs can be negative. Function
|
|
* netmap_idx_n2k() handles wraparounds properly.
|
|
*/
|
|
if (slot) {
|
|
int si = netmap_idx_n2k(&na->tx_rings[txr->me], i);
|
|
netmap_load_map(na, txr->txtag,
|
|
txbuf->map, NMB(na, slot + si));
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
/* Clear the EOP descriptor pointer */
|
|
txbuf->eop = NULL;
|
|
}
|
|
|
|
#ifdef IXGBE_FDIR
|
|
/* Set the rate at which we sample packets */
|
|
if (adapter->hw.mac.type != ixgbe_mac_82598EB)
|
|
txr->atr_sample = atr_sample_rate;
|
|
#endif
|
|
|
|
/* Set number of descriptors available */
|
|
txr->tx_avail = adapter->num_tx_desc;
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
IXGBE_TX_UNLOCK(txr);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize all transmit rings.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
ixgbe_setup_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++)
|
|
ixgbe_setup_transmit_ring(txr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all transmit rings.
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
ixgbe_free_transmit_structures(struct adapter *adapter)
|
|
{
|
|
struct tx_ring *txr = adapter->tx_rings;
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, txr++) {
|
|
IXGBE_TX_LOCK(txr);
|
|
ixgbe_free_transmit_buffers(txr);
|
|
ixgbe_dma_free(adapter, &txr->txdma);
|
|
IXGBE_TX_UNLOCK(txr);
|
|
IXGBE_TX_LOCK_DESTROY(txr);
|
|
}
|
|
free(adapter->tx_rings, M_DEVBUF);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free transmit ring related data structures.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
ixgbe_free_transmit_buffers(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct ixgbe_tx_buf *tx_buffer;
|
|
int i;
|
|
|
|
INIT_DEBUGOUT("ixgbe_free_transmit_ring: begin");
|
|
|
|
if (txr->tx_buffers == NULL)
|
|
return;
|
|
|
|
tx_buffer = txr->tx_buffers;
|
|
for (i = 0; i < adapter->num_tx_desc; i++, tx_buffer++) {
|
|
if (tx_buffer->m_head != NULL) {
|
|
bus_dmamap_sync(txr->txtag, tx_buffer->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
m_freem(tx_buffer->m_head);
|
|
tx_buffer->m_head = NULL;
|
|
if (tx_buffer->map != NULL) {
|
|
bus_dmamap_destroy(txr->txtag,
|
|
tx_buffer->map);
|
|
tx_buffer->map = NULL;
|
|
}
|
|
} else if (tx_buffer->map != NULL) {
|
|
bus_dmamap_unload(txr->txtag,
|
|
tx_buffer->map);
|
|
bus_dmamap_destroy(txr->txtag,
|
|
tx_buffer->map);
|
|
tx_buffer->map = NULL;
|
|
}
|
|
}
|
|
#ifdef IXGBE_LEGACY_TX
|
|
if (txr->br != NULL)
|
|
buf_ring_free(txr->br, M_DEVBUF);
|
|
#endif
|
|
if (txr->tx_buffers != NULL) {
|
|
free(txr->tx_buffers, M_DEVBUF);
|
|
txr->tx_buffers = NULL;
|
|
}
|
|
if (txr->txtag != NULL) {
|
|
bus_dma_tag_destroy(txr->txtag);
|
|
txr->txtag = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Advanced Context Descriptor setup for VLAN, CSUM or TSO
|
|
*
|
|
**********************************************************************/
|
|
|
|
static int
|
|
ixgbe_tx_ctx_setup(struct tx_ring *txr, struct mbuf *mp,
|
|
u32 *cmd_type_len, u32 *olinfo_status)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct ixgbe_adv_tx_context_desc *TXD;
|
|
struct ether_vlan_header *eh;
|
|
#ifdef INET
|
|
struct ip *ip;
|
|
#endif
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
|
|
int ehdrlen, ip_hlen = 0;
|
|
u16 etype;
|
|
u8 ipproto = 0;
|
|
int offload = TRUE;
|
|
int ctxd = txr->next_avail_desc;
|
|
u16 vtag = 0;
|
|
caddr_t l3d;
|
|
|
|
|
|
/* First check if TSO is to be used */
|
|
if (mp->m_pkthdr.csum_flags & (CSUM_IP_TSO|CSUM_IP6_TSO))
|
|
return (ixgbe_tso_setup(txr, mp, cmd_type_len, olinfo_status));
|
|
|
|
if ((mp->m_pkthdr.csum_flags & CSUM_OFFLOAD) == 0)
|
|
offload = FALSE;
|
|
|
|
/* Indicate the whole packet as payload when not doing TSO */
|
|
*olinfo_status |= mp->m_pkthdr.len << IXGBE_ADVTXD_PAYLEN_SHIFT;
|
|
|
|
/* Now ready a context descriptor */
|
|
TXD = (struct ixgbe_adv_tx_context_desc *) &txr->tx_base[ctxd];
|
|
|
|
/*
|
|
** In advanced descriptors the vlan tag must
|
|
** be placed into the context descriptor. Hence
|
|
** we need to make one even if not doing offloads.
|
|
*/
|
|
if (mp->m_flags & M_VLANTAG) {
|
|
vtag = htole16(mp->m_pkthdr.ether_vtag);
|
|
vlan_macip_lens |= (vtag << IXGBE_ADVTXD_VLAN_SHIFT);
|
|
} else if (!IXGBE_IS_X550VF(adapter) && (offload == FALSE))
|
|
return (0);
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present,
|
|
* helpful for QinQ too.
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
etype = ntohs(eh->evl_proto);
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
} else {
|
|
etype = ntohs(eh->evl_encap_proto);
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
}
|
|
|
|
/* Set the ether header length */
|
|
vlan_macip_lens |= ehdrlen << IXGBE_ADVTXD_MACLEN_SHIFT;
|
|
|
|
if (offload == FALSE)
|
|
goto no_offloads;
|
|
|
|
/*
|
|
* If the first mbuf only includes the ethernet header, jump to the next one
|
|
* XXX: This assumes the stack splits mbufs containing headers on header boundaries
|
|
* XXX: And assumes the entire IP header is contained in one mbuf
|
|
*/
|
|
if (mp->m_len == ehdrlen && mp->m_next)
|
|
l3d = mtod(mp->m_next, caddr_t);
|
|
else
|
|
l3d = mtod(mp, caddr_t) + ehdrlen;
|
|
|
|
switch (etype) {
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(l3d);
|
|
ip_hlen = ip->ip_hl << 2;
|
|
ipproto = ip->ip_p;
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
|
|
/* Insert IPv4 checksum into data descriptors */
|
|
if (mp->m_pkthdr.csum_flags & CSUM_IP) {
|
|
ip->ip_sum = 0;
|
|
*olinfo_status |= IXGBE_TXD_POPTS_IXSM << 8;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(l3d);
|
|
ip_hlen = sizeof(struct ip6_hdr);
|
|
ipproto = ip6->ip6_nxt;
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV6;
|
|
break;
|
|
#endif
|
|
default:
|
|
offload = FALSE;
|
|
break;
|
|
}
|
|
|
|
vlan_macip_lens |= ip_hlen;
|
|
|
|
/* No support for offloads for non-L4 next headers */
|
|
switch (ipproto) {
|
|
case IPPROTO_TCP:
|
|
if (mp->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP))
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
|
|
else
|
|
offload = false;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if (mp->m_pkthdr.csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP))
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_UDP;
|
|
else
|
|
offload = false;
|
|
break;
|
|
case IPPROTO_SCTP:
|
|
if (mp->m_pkthdr.csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP))
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_SCTP;
|
|
else
|
|
offload = false;
|
|
break;
|
|
default:
|
|
offload = false;
|
|
break;
|
|
}
|
|
|
|
if (offload) /* Insert L4 checksum into data descriptors */
|
|
*olinfo_status |= IXGBE_TXD_POPTS_TXSM << 8;
|
|
|
|
no_offloads:
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_DCMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
|
|
|
|
/* Now copy bits into descriptor */
|
|
TXD->vlan_macip_lens = htole32(vlan_macip_lens);
|
|
TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
|
|
TXD->seqnum_seed = htole32(0);
|
|
TXD->mss_l4len_idx = htole32(0);
|
|
|
|
/* We've consumed the first desc, adjust counters */
|
|
if (++ctxd == txr->num_desc)
|
|
ctxd = 0;
|
|
txr->next_avail_desc = ctxd;
|
|
--txr->tx_avail;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Setup work for hardware segmentation offload (TSO) on
|
|
* adapters using advanced tx descriptors
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
ixgbe_tso_setup(struct tx_ring *txr, struct mbuf *mp,
|
|
u32 *cmd_type_len, u32 *olinfo_status)
|
|
{
|
|
struct ixgbe_adv_tx_context_desc *TXD;
|
|
u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
|
|
u32 mss_l4len_idx = 0, paylen;
|
|
u16 vtag = 0, eh_type;
|
|
int ctxd, ehdrlen, ip_hlen, tcp_hlen;
|
|
struct ether_vlan_header *eh;
|
|
#ifdef INET6
|
|
struct ip6_hdr *ip6;
|
|
#endif
|
|
#ifdef INET
|
|
struct ip *ip;
|
|
#endif
|
|
struct tcphdr *th;
|
|
|
|
/*
|
|
* Determine where frame payload starts.
|
|
* Jump over vlan headers if already present
|
|
*/
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
eh_type = eh->evl_proto;
|
|
} else {
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
eh_type = eh->evl_encap_proto;
|
|
}
|
|
|
|
switch (ntohs(eh_type)) {
|
|
#ifdef INET6
|
|
case ETHERTYPE_IPV6:
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
|
|
/* XXX-BZ For now we do not pretend to support ext. hdrs. */
|
|
if (ip6->ip6_nxt != IPPROTO_TCP)
|
|
return (ENXIO);
|
|
ip_hlen = sizeof(struct ip6_hdr);
|
|
ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
|
|
th = (struct tcphdr *)((caddr_t)ip6 + ip_hlen);
|
|
th->th_sum = in6_cksum_pseudo(ip6, 0, IPPROTO_TCP, 0);
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV6;
|
|
break;
|
|
#endif
|
|
#ifdef INET
|
|
case ETHERTYPE_IP:
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
if (ip->ip_p != IPPROTO_TCP)
|
|
return (ENXIO);
|
|
ip->ip_sum = 0;
|
|
ip_hlen = ip->ip_hl << 2;
|
|
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
|
|
th->th_sum = in_pseudo(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
|
|
/* Tell transmit desc to also do IPv4 checksum. */
|
|
*olinfo_status |= IXGBE_TXD_POPTS_IXSM << 8;
|
|
break;
|
|
#endif
|
|
default:
|
|
panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
|
|
__func__, ntohs(eh_type));
|
|
break;
|
|
}
|
|
|
|
ctxd = txr->next_avail_desc;
|
|
TXD = (struct ixgbe_adv_tx_context_desc *) &txr->tx_base[ctxd];
|
|
|
|
tcp_hlen = th->th_off << 2;
|
|
|
|
/* This is used in the transmit desc in encap */
|
|
paylen = mp->m_pkthdr.len - ehdrlen - ip_hlen - tcp_hlen;
|
|
|
|
/* VLAN MACLEN IPLEN */
|
|
if (mp->m_flags & M_VLANTAG) {
|
|
vtag = htole16(mp->m_pkthdr.ether_vtag);
|
|
vlan_macip_lens |= (vtag << IXGBE_ADVTXD_VLAN_SHIFT);
|
|
}
|
|
|
|
vlan_macip_lens |= ehdrlen << IXGBE_ADVTXD_MACLEN_SHIFT;
|
|
vlan_macip_lens |= ip_hlen;
|
|
TXD->vlan_macip_lens = htole32(vlan_macip_lens);
|
|
|
|
/* ADV DTYPE TUCMD */
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_DCMD_DEXT | IXGBE_ADVTXD_DTYP_CTXT;
|
|
type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
|
|
TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
|
|
|
|
/* MSS L4LEN IDX */
|
|
mss_l4len_idx |= (mp->m_pkthdr.tso_segsz << IXGBE_ADVTXD_MSS_SHIFT);
|
|
mss_l4len_idx |= (tcp_hlen << IXGBE_ADVTXD_L4LEN_SHIFT);
|
|
TXD->mss_l4len_idx = htole32(mss_l4len_idx);
|
|
|
|
TXD->seqnum_seed = htole32(0);
|
|
|
|
if (++ctxd == txr->num_desc)
|
|
ctxd = 0;
|
|
|
|
txr->tx_avail--;
|
|
txr->next_avail_desc = ctxd;
|
|
*cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
|
|
*olinfo_status |= IXGBE_TXD_POPTS_TXSM << 8;
|
|
*olinfo_status |= paylen << IXGBE_ADVTXD_PAYLEN_SHIFT;
|
|
++txr->tso_tx;
|
|
return (0);
|
|
}
|
|
|
|
|
|
/**********************************************************************
|
|
*
|
|
* Examine each tx_buffer in the used queue. If the hardware is done
|
|
* processing the packet then free associated resources. The
|
|
* tx_buffer is put back on the free queue.
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
ixgbe_txeof(struct tx_ring *txr)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
#ifdef DEV_NETMAP
|
|
struct ifnet *ifp = adapter->ifp;
|
|
#endif
|
|
u32 work, processed = 0;
|
|
u32 limit = adapter->tx_process_limit;
|
|
struct ixgbe_tx_buf *buf;
|
|
union ixgbe_adv_tx_desc *txd;
|
|
|
|
mtx_assert(&txr->tx_mtx, MA_OWNED);
|
|
|
|
#ifdef DEV_NETMAP
|
|
if (ifp->if_capenable & IFCAP_NETMAP) {
|
|
struct netmap_adapter *na = NA(ifp);
|
|
struct netmap_kring *kring = &na->tx_rings[txr->me];
|
|
txd = txr->tx_base;
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
/*
|
|
* In netmap mode, all the work is done in the context
|
|
* of the client thread. Interrupt handlers only wake up
|
|
* clients, which may be sleeping on individual rings
|
|
* or on a global resource for all rings.
|
|
* To implement tx interrupt mitigation, we wake up the client
|
|
* thread roughly every half ring, even if the NIC interrupts
|
|
* more frequently. This is implemented as follows:
|
|
* - ixgbe_txsync() sets kring->nr_kflags with the index of
|
|
* the slot that should wake up the thread (nkr_num_slots
|
|
* means the user thread should not be woken up);
|
|
* - the driver ignores tx interrupts unless netmap_mitigate=0
|
|
* or the slot has the DD bit set.
|
|
*/
|
|
if (!netmap_mitigate ||
|
|
(kring->nr_kflags < kring->nkr_num_slots &&
|
|
txd[kring->nr_kflags].wb.status & IXGBE_TXD_STAT_DD)) {
|
|
netmap_tx_irq(ifp, txr->me);
|
|
}
|
|
return;
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
|
|
if (txr->tx_avail == txr->num_desc) {
|
|
txr->busy = 0;
|
|
return;
|
|
}
|
|
|
|
/* Get work starting point */
|
|
work = txr->next_to_clean;
|
|
buf = &txr->tx_buffers[work];
|
|
txd = &txr->tx_base[work];
|
|
work -= txr->num_desc; /* The distance to ring end */
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
do {
|
|
union ixgbe_adv_tx_desc *eop = buf->eop;
|
|
if (eop == NULL) /* No work */
|
|
break;
|
|
|
|
if ((eop->wb.status & IXGBE_TXD_STAT_DD) == 0)
|
|
break; /* I/O not complete */
|
|
|
|
if (buf->m_head) {
|
|
txr->bytes +=
|
|
buf->m_head->m_pkthdr.len;
|
|
bus_dmamap_sync(txr->txtag,
|
|
buf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
buf->map);
|
|
m_freem(buf->m_head);
|
|
buf->m_head = NULL;
|
|
}
|
|
buf->eop = NULL;
|
|
++txr->tx_avail;
|
|
|
|
/* We clean the range if multi segment */
|
|
while (txd != eop) {
|
|
++txd;
|
|
++buf;
|
|
++work;
|
|
/* wrap the ring? */
|
|
if (__predict_false(!work)) {
|
|
work -= txr->num_desc;
|
|
buf = txr->tx_buffers;
|
|
txd = txr->tx_base;
|
|
}
|
|
if (buf->m_head) {
|
|
txr->bytes +=
|
|
buf->m_head->m_pkthdr.len;
|
|
bus_dmamap_sync(txr->txtag,
|
|
buf->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(txr->txtag,
|
|
buf->map);
|
|
m_freem(buf->m_head);
|
|
buf->m_head = NULL;
|
|
}
|
|
++txr->tx_avail;
|
|
buf->eop = NULL;
|
|
|
|
}
|
|
++txr->packets;
|
|
++processed;
|
|
|
|
/* Try the next packet */
|
|
++txd;
|
|
++buf;
|
|
++work;
|
|
/* reset with a wrap */
|
|
if (__predict_false(!work)) {
|
|
work -= txr->num_desc;
|
|
buf = txr->tx_buffers;
|
|
txd = txr->tx_base;
|
|
}
|
|
prefetch(txd);
|
|
} while (__predict_true(--limit));
|
|
|
|
bus_dmamap_sync(txr->txdma.dma_tag, txr->txdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
work += txr->num_desc;
|
|
txr->next_to_clean = work;
|
|
|
|
/*
|
|
** Queue Hang detection, we know there's
|
|
** work outstanding or the first return
|
|
** would have been taken, so increment busy
|
|
** if nothing managed to get cleaned, then
|
|
** in local_timer it will be checked and
|
|
** marked as HUNG if it exceeds a MAX attempt.
|
|
*/
|
|
if ((processed == 0) && (txr->busy != IXGBE_QUEUE_HUNG))
|
|
++txr->busy;
|
|
/*
|
|
** If anything gets cleaned we reset state to 1,
|
|
** note this will turn off HUNG if its set.
|
|
*/
|
|
if (processed)
|
|
txr->busy = 1;
|
|
|
|
if (txr->tx_avail == txr->num_desc)
|
|
txr->busy = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
#ifdef IXGBE_FDIR
|
|
/*
|
|
** This routine parses packet headers so that Flow
|
|
** Director can make a hashed filter table entry
|
|
** allowing traffic flows to be identified and kept
|
|
** on the same cpu. This would be a performance
|
|
** hit, but we only do it at IXGBE_FDIR_RATE of
|
|
** packets.
|
|
*/
|
|
static void
|
|
ixgbe_atr(struct tx_ring *txr, struct mbuf *mp)
|
|
{
|
|
struct adapter *adapter = txr->adapter;
|
|
struct ix_queue *que;
|
|
struct ip *ip;
|
|
struct tcphdr *th;
|
|
struct udphdr *uh;
|
|
struct ether_vlan_header *eh;
|
|
union ixgbe_atr_hash_dword input = {.dword = 0};
|
|
union ixgbe_atr_hash_dword common = {.dword = 0};
|
|
int ehdrlen, ip_hlen;
|
|
u16 etype;
|
|
|
|
eh = mtod(mp, struct ether_vlan_header *);
|
|
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
|
|
ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
etype = eh->evl_proto;
|
|
} else {
|
|
ehdrlen = ETHER_HDR_LEN;
|
|
etype = eh->evl_encap_proto;
|
|
}
|
|
|
|
/* Only handling IPv4 */
|
|
if (etype != htons(ETHERTYPE_IP))
|
|
return;
|
|
|
|
ip = (struct ip *)(mp->m_data + ehdrlen);
|
|
ip_hlen = ip->ip_hl << 2;
|
|
|
|
/* check if we're UDP or TCP */
|
|
switch (ip->ip_p) {
|
|
case IPPROTO_TCP:
|
|
th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
|
|
/* src and dst are inverted */
|
|
common.port.dst ^= th->th_sport;
|
|
common.port.src ^= th->th_dport;
|
|
input.formatted.flow_type ^= IXGBE_ATR_FLOW_TYPE_TCPV4;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
uh = (struct udphdr *)((caddr_t)ip + ip_hlen);
|
|
/* src and dst are inverted */
|
|
common.port.dst ^= uh->uh_sport;
|
|
common.port.src ^= uh->uh_dport;
|
|
input.formatted.flow_type ^= IXGBE_ATR_FLOW_TYPE_UDPV4;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
input.formatted.vlan_id = htobe16(mp->m_pkthdr.ether_vtag);
|
|
if (mp->m_pkthdr.ether_vtag)
|
|
common.flex_bytes ^= htons(ETHERTYPE_VLAN);
|
|
else
|
|
common.flex_bytes ^= etype;
|
|
common.ip ^= ip->ip_src.s_addr ^ ip->ip_dst.s_addr;
|
|
|
|
que = &adapter->queues[txr->me];
|
|
/*
|
|
** This assumes the Rx queue and Tx
|
|
** queue are bound to the same CPU
|
|
*/
|
|
ixgbe_fdir_add_signature_filter_82599(&adapter->hw,
|
|
input, common, que->msix);
|
|
}
|
|
#endif /* IXGBE_FDIR */
|
|
|
|
/*
|
|
** Used to detect a descriptor that has
|
|
** been merged by Hardware RSC.
|
|
*/
|
|
static inline u32
|
|
ixgbe_rsc_count(union ixgbe_adv_rx_desc *rx)
|
|
{
|
|
return (le32toh(rx->wb.lower.lo_dword.data) &
|
|
IXGBE_RXDADV_RSCCNT_MASK) >> IXGBE_RXDADV_RSCCNT_SHIFT;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize Hardware RSC (LRO) feature on 82599
|
|
* for an RX ring, this is toggled by the LRO capability
|
|
* even though it is transparent to the stack.
|
|
*
|
|
* NOTE: since this HW feature only works with IPV4 and
|
|
* our testing has shown soft LRO to be as effective
|
|
* I have decided to disable this by default.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
ixgbe_setup_hw_rsc(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct ixgbe_hw *hw = &adapter->hw;
|
|
u32 rscctrl, rdrxctl;
|
|
|
|
/* If turning LRO/RSC off we need to disable it */
|
|
if ((adapter->ifp->if_capenable & IFCAP_LRO) == 0) {
|
|
rscctrl = IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxr->me));
|
|
rscctrl &= ~IXGBE_RSCCTL_RSCEN;
|
|
return;
|
|
}
|
|
|
|
rdrxctl = IXGBE_READ_REG(hw, IXGBE_RDRXCTL);
|
|
rdrxctl &= ~IXGBE_RDRXCTL_RSCFRSTSIZE;
|
|
#ifdef DEV_NETMAP /* crcstrip is optional in netmap */
|
|
if (adapter->ifp->if_capenable & IFCAP_NETMAP && !ix_crcstrip)
|
|
#endif /* DEV_NETMAP */
|
|
rdrxctl |= IXGBE_RDRXCTL_CRCSTRIP;
|
|
rdrxctl |= IXGBE_RDRXCTL_RSCACKC;
|
|
IXGBE_WRITE_REG(hw, IXGBE_RDRXCTL, rdrxctl);
|
|
|
|
rscctrl = IXGBE_READ_REG(hw, IXGBE_RSCCTL(rxr->me));
|
|
rscctrl |= IXGBE_RSCCTL_RSCEN;
|
|
/*
|
|
** Limit the total number of descriptors that
|
|
** can be combined, so it does not exceed 64K
|
|
*/
|
|
if (rxr->mbuf_sz == MCLBYTES)
|
|
rscctrl |= IXGBE_RSCCTL_MAXDESC_16;
|
|
else if (rxr->mbuf_sz == MJUMPAGESIZE)
|
|
rscctrl |= IXGBE_RSCCTL_MAXDESC_8;
|
|
else if (rxr->mbuf_sz == MJUM9BYTES)
|
|
rscctrl |= IXGBE_RSCCTL_MAXDESC_4;
|
|
else /* Using 16K cluster */
|
|
rscctrl |= IXGBE_RSCCTL_MAXDESC_1;
|
|
|
|
IXGBE_WRITE_REG(hw, IXGBE_RSCCTL(rxr->me), rscctrl);
|
|
|
|
/* Enable TCP header recognition */
|
|
IXGBE_WRITE_REG(hw, IXGBE_PSRTYPE(0),
|
|
(IXGBE_READ_REG(hw, IXGBE_PSRTYPE(0)) |
|
|
IXGBE_PSRTYPE_TCPHDR));
|
|
|
|
/* Disable RSC for ACK packets */
|
|
IXGBE_WRITE_REG(hw, IXGBE_RSCDBU,
|
|
(IXGBE_RSCDBU_RSCACKDIS | IXGBE_READ_REG(hw, IXGBE_RSCDBU)));
|
|
|
|
rxr->hw_rsc = TRUE;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Refresh mbuf buffers for RX descriptor rings
|
|
* - now keeps its own state so discards due to resource
|
|
* exhaustion are unnecessary, if an mbuf cannot be obtained
|
|
* it just returns, keeping its placeholder, thus it can simply
|
|
* be recalled to try again.
|
|
*
|
|
**********************************************************************/
|
|
static void
|
|
ixgbe_refresh_mbufs(struct rx_ring *rxr, int limit)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
bus_dma_segment_t seg[1];
|
|
struct ixgbe_rx_buf *rxbuf;
|
|
struct mbuf *mp;
|
|
int i, j, nsegs, error;
|
|
bool refreshed = FALSE;
|
|
|
|
i = j = rxr->next_to_refresh;
|
|
/* Control the loop with one beyond */
|
|
if (++j == rxr->num_desc)
|
|
j = 0;
|
|
|
|
while (j != limit) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->buf == NULL) {
|
|
mp = m_getjcl(M_NOWAIT, MT_DATA,
|
|
M_PKTHDR, rxr->mbuf_sz);
|
|
if (mp == NULL)
|
|
goto update;
|
|
if (adapter->max_frame_size <= (MCLBYTES - ETHER_ALIGN))
|
|
m_adj(mp, ETHER_ALIGN);
|
|
} else
|
|
mp = rxbuf->buf;
|
|
|
|
mp->m_pkthdr.len = mp->m_len = rxr->mbuf_sz;
|
|
|
|
/* If we're dealing with an mbuf that was copied rather
|
|
* than replaced, there's no need to go through busdma.
|
|
*/
|
|
if ((rxbuf->flags & IXGBE_RX_COPY) == 0) {
|
|
/* Get the memory mapping */
|
|
bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
|
|
error = bus_dmamap_load_mbuf_sg(rxr->ptag,
|
|
rxbuf->pmap, mp, seg, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
printf("Refresh mbufs: payload dmamap load"
|
|
" failure - %d\n", error);
|
|
m_free(mp);
|
|
rxbuf->buf = NULL;
|
|
goto update;
|
|
}
|
|
rxbuf->buf = mp;
|
|
bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxbuf->addr = rxr->rx_base[i].read.pkt_addr =
|
|
htole64(seg[0].ds_addr);
|
|
} else {
|
|
rxr->rx_base[i].read.pkt_addr = rxbuf->addr;
|
|
rxbuf->flags &= ~IXGBE_RX_COPY;
|
|
}
|
|
|
|
refreshed = TRUE;
|
|
/* Next is precalculated */
|
|
i = j;
|
|
rxr->next_to_refresh = i;
|
|
if (++j == rxr->num_desc)
|
|
j = 0;
|
|
}
|
|
update:
|
|
if (refreshed) /* Update hardware tail index */
|
|
IXGBE_WRITE_REG(&adapter->hw,
|
|
rxr->tail, rxr->next_to_refresh);
|
|
return;
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for rx_buffer structures. Since we use one
|
|
* rx_buffer per received packet, the maximum number of rx_buffer's
|
|
* that we'll need is equal to the number of receive descriptors
|
|
* that we've allocated.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
ixgbe_allocate_receive_buffers(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
device_t dev = adapter->dev;
|
|
struct ixgbe_rx_buf *rxbuf;
|
|
int bsize, error;
|
|
|
|
bsize = sizeof(struct ixgbe_rx_buf) * rxr->num_desc;
|
|
if (!(rxr->rx_buffers =
|
|
(struct ixgbe_rx_buf *) malloc(bsize,
|
|
M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate rx_buffer memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if ((error = bus_dma_tag_create(bus_get_dma_tag(dev), /* parent */
|
|
1, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MJUM16BYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MJUM16BYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&rxr->ptag))) {
|
|
device_printf(dev, "Unable to create RX DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
for (int i = 0; i < rxr->num_desc; i++, rxbuf++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
error = bus_dmamap_create(rxr->ptag, 0, &rxbuf->pmap);
|
|
if (error) {
|
|
device_printf(dev, "Unable to create RX dma map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail:
|
|
/* Frees all, but can handle partial completion */
|
|
ixgbe_free_receive_structures(adapter);
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
ixgbe_free_receive_ring(struct rx_ring *rxr)
|
|
{
|
|
struct ixgbe_rx_buf *rxbuf;
|
|
|
|
for (int i = 0; i < rxr->num_desc; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->buf != NULL) {
|
|
bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
|
|
rxbuf->buf->m_flags |= M_PKTHDR;
|
|
m_freem(rxbuf->buf);
|
|
rxbuf->buf = NULL;
|
|
rxbuf->flags = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize a receive ring and its buffers.
|
|
*
|
|
**********************************************************************/
|
|
static int
|
|
ixgbe_setup_receive_ring(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter;
|
|
struct ifnet *ifp;
|
|
device_t dev;
|
|
struct ixgbe_rx_buf *rxbuf;
|
|
bus_dma_segment_t seg[1];
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
int rsize, nsegs, error = 0;
|
|
#ifdef DEV_NETMAP
|
|
struct netmap_adapter *na = NA(rxr->adapter->ifp);
|
|
struct netmap_slot *slot;
|
|
#endif /* DEV_NETMAP */
|
|
|
|
adapter = rxr->adapter;
|
|
ifp = adapter->ifp;
|
|
dev = adapter->dev;
|
|
|
|
/* Clear the ring contents */
|
|
IXGBE_RX_LOCK(rxr);
|
|
#ifdef DEV_NETMAP
|
|
/* same as in ixgbe_setup_transmit_ring() */
|
|
slot = netmap_reset(na, NR_RX, rxr->me, 0);
|
|
#endif /* DEV_NETMAP */
|
|
rsize = roundup2(adapter->num_rx_desc *
|
|
sizeof(union ixgbe_adv_rx_desc), DBA_ALIGN);
|
|
bzero((void *)rxr->rx_base, rsize);
|
|
/* Cache the size */
|
|
rxr->mbuf_sz = adapter->rx_mbuf_sz;
|
|
|
|
/* Free current RX buffer structs and their mbufs */
|
|
ixgbe_free_receive_ring(rxr);
|
|
|
|
/* Now replenish the mbufs */
|
|
for (int j = 0; j != rxr->num_desc; ++j) {
|
|
struct mbuf *mp;
|
|
|
|
rxbuf = &rxr->rx_buffers[j];
|
|
#ifdef DEV_NETMAP
|
|
/*
|
|
* In netmap mode, fill the map and set the buffer
|
|
* address in the NIC ring, considering the offset
|
|
* between the netmap and NIC rings (see comment in
|
|
* ixgbe_setup_transmit_ring() ). No need to allocate
|
|
* an mbuf, so end the block with a continue;
|
|
*/
|
|
if (slot) {
|
|
int sj = netmap_idx_n2k(&na->rx_rings[rxr->me], j);
|
|
uint64_t paddr;
|
|
void *addr;
|
|
|
|
addr = PNMB(na, slot + sj, &paddr);
|
|
netmap_load_map(na, rxr->ptag, rxbuf->pmap, addr);
|
|
/* Update descriptor and the cached value */
|
|
rxr->rx_base[j].read.pkt_addr = htole64(paddr);
|
|
rxbuf->addr = htole64(paddr);
|
|
continue;
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
rxbuf->flags = 0;
|
|
rxbuf->buf = m_getjcl(M_NOWAIT, MT_DATA,
|
|
M_PKTHDR, adapter->rx_mbuf_sz);
|
|
if (rxbuf->buf == NULL) {
|
|
error = ENOBUFS;
|
|
goto fail;
|
|
}
|
|
mp = rxbuf->buf;
|
|
mp->m_pkthdr.len = mp->m_len = rxr->mbuf_sz;
|
|
/* Get the memory mapping */
|
|
error = bus_dmamap_load_mbuf_sg(rxr->ptag,
|
|
rxbuf->pmap, mp, seg,
|
|
&nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0)
|
|
goto fail;
|
|
bus_dmamap_sync(rxr->ptag,
|
|
rxbuf->pmap, BUS_DMASYNC_PREREAD);
|
|
/* Update the descriptor and the cached value */
|
|
rxr->rx_base[j].read.pkt_addr = htole64(seg[0].ds_addr);
|
|
rxbuf->addr = htole64(seg[0].ds_addr);
|
|
}
|
|
|
|
|
|
/* Setup our descriptor indices */
|
|
rxr->next_to_check = 0;
|
|
rxr->next_to_refresh = 0;
|
|
rxr->lro_enabled = FALSE;
|
|
rxr->rx_copies = 0;
|
|
rxr->rx_bytes = 0;
|
|
rxr->vtag_strip = FALSE;
|
|
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
** Now set up the LRO interface:
|
|
*/
|
|
if (ixgbe_rsc_enable)
|
|
ixgbe_setup_hw_rsc(rxr);
|
|
else if (ifp->if_capenable & IFCAP_LRO) {
|
|
int err = tcp_lro_init(lro);
|
|
if (err) {
|
|
device_printf(dev, "LRO Initialization failed!\n");
|
|
goto fail;
|
|
}
|
|
INIT_DEBUGOUT("RX Soft LRO Initialized\n");
|
|
rxr->lro_enabled = TRUE;
|
|
lro->ifp = adapter->ifp;
|
|
}
|
|
|
|
IXGBE_RX_UNLOCK(rxr);
|
|
return (0);
|
|
|
|
fail:
|
|
ixgbe_free_receive_ring(rxr);
|
|
IXGBE_RX_UNLOCK(rxr);
|
|
return (error);
|
|
}
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Initialize all receive rings.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
ixgbe_setup_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
int j;
|
|
|
|
for (j = 0; j < adapter->num_queues; j++, rxr++)
|
|
if (ixgbe_setup_receive_ring(rxr))
|
|
goto fail;
|
|
|
|
return (0);
|
|
fail:
|
|
/*
|
|
* Free RX buffers allocated so far, we will only handle
|
|
* the rings that completed, the failing case will have
|
|
* cleaned up for itself. 'j' failed, so its the terminus.
|
|
*/
|
|
for (int i = 0; i < j; ++i) {
|
|
rxr = &adapter->rx_rings[i];
|
|
ixgbe_free_receive_ring(rxr);
|
|
}
|
|
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free all receive rings.
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
ixgbe_free_receive_structures(struct adapter *adapter)
|
|
{
|
|
struct rx_ring *rxr = adapter->rx_rings;
|
|
|
|
INIT_DEBUGOUT("ixgbe_free_receive_structures: begin");
|
|
|
|
for (int i = 0; i < adapter->num_queues; i++, rxr++) {
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
ixgbe_free_receive_buffers(rxr);
|
|
/* Free LRO memory */
|
|
tcp_lro_free(lro);
|
|
/* Free the ring memory as well */
|
|
ixgbe_dma_free(adapter, &rxr->rxdma);
|
|
}
|
|
|
|
free(adapter->rx_rings, M_DEVBUF);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Free receive ring data structures
|
|
*
|
|
**********************************************************************/
|
|
void
|
|
ixgbe_free_receive_buffers(struct rx_ring *rxr)
|
|
{
|
|
struct adapter *adapter = rxr->adapter;
|
|
struct ixgbe_rx_buf *rxbuf;
|
|
|
|
INIT_DEBUGOUT("ixgbe_free_receive_buffers: begin");
|
|
|
|
/* Cleanup any existing buffers */
|
|
if (rxr->rx_buffers != NULL) {
|
|
for (int i = 0; i < adapter->num_rx_desc; i++) {
|
|
rxbuf = &rxr->rx_buffers[i];
|
|
if (rxbuf->buf != NULL) {
|
|
bus_dmamap_sync(rxr->ptag, rxbuf->pmap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(rxr->ptag, rxbuf->pmap);
|
|
rxbuf->buf->m_flags |= M_PKTHDR;
|
|
m_freem(rxbuf->buf);
|
|
}
|
|
rxbuf->buf = NULL;
|
|
if (rxbuf->pmap != NULL) {
|
|
bus_dmamap_destroy(rxr->ptag, rxbuf->pmap);
|
|
rxbuf->pmap = NULL;
|
|
}
|
|
}
|
|
if (rxr->rx_buffers != NULL) {
|
|
free(rxr->rx_buffers, M_DEVBUF);
|
|
rxr->rx_buffers = NULL;
|
|
}
|
|
}
|
|
|
|
if (rxr->ptag != NULL) {
|
|
bus_dma_tag_destroy(rxr->ptag);
|
|
rxr->ptag = NULL;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
static __inline void
|
|
ixgbe_rx_input(struct rx_ring *rxr, struct ifnet *ifp, struct mbuf *m, u32 ptype)
|
|
{
|
|
|
|
/*
|
|
* ATM LRO is only for IP/TCP packets and TCP checksum of the packet
|
|
* should be computed by hardware. Also it should not have VLAN tag in
|
|
* ethernet header. In case of IPv6 we do not yet support ext. hdrs.
|
|
*/
|
|
if (rxr->lro_enabled &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(ptype & IXGBE_RXDADV_PKTTYPE_ETQF) == 0 &&
|
|
((ptype & (IXGBE_RXDADV_PKTTYPE_IPV4 | IXGBE_RXDADV_PKTTYPE_TCP)) ==
|
|
(IXGBE_RXDADV_PKTTYPE_IPV4 | IXGBE_RXDADV_PKTTYPE_TCP) ||
|
|
(ptype & (IXGBE_RXDADV_PKTTYPE_IPV6 | IXGBE_RXDADV_PKTTYPE_TCP)) ==
|
|
(IXGBE_RXDADV_PKTTYPE_IPV6 | IXGBE_RXDADV_PKTTYPE_TCP)) &&
|
|
(m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) ==
|
|
(CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) {
|
|
/*
|
|
* Send to the stack if:
|
|
** - LRO not enabled, or
|
|
** - no LRO resources, or
|
|
** - lro enqueue fails
|
|
*/
|
|
if (rxr->lro.lro_cnt != 0)
|
|
if (tcp_lro_rx(&rxr->lro, m, 0) == 0)
|
|
return;
|
|
}
|
|
IXGBE_RX_UNLOCK(rxr);
|
|
(*ifp->if_input)(ifp, m);
|
|
IXGBE_RX_LOCK(rxr);
|
|
}
|
|
|
|
static __inline void
|
|
ixgbe_rx_discard(struct rx_ring *rxr, int i)
|
|
{
|
|
struct ixgbe_rx_buf *rbuf;
|
|
|
|
rbuf = &rxr->rx_buffers[i];
|
|
|
|
|
|
/*
|
|
** With advanced descriptors the writeback
|
|
** clobbers the buffer addrs, so its easier
|
|
** to just free the existing mbufs and take
|
|
** the normal refresh path to get new buffers
|
|
** and mapping.
|
|
*/
|
|
|
|
if (rbuf->fmp != NULL) {/* Partial chain ? */
|
|
rbuf->fmp->m_flags |= M_PKTHDR;
|
|
m_freem(rbuf->fmp);
|
|
rbuf->fmp = NULL;
|
|
rbuf->buf = NULL; /* rbuf->buf is part of fmp's chain */
|
|
} else if (rbuf->buf) {
|
|
m_free(rbuf->buf);
|
|
rbuf->buf = NULL;
|
|
}
|
|
bus_dmamap_unload(rxr->ptag, rbuf->pmap);
|
|
|
|
rbuf->flags = 0;
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* This routine executes in interrupt context. It replenishes
|
|
* the mbufs in the descriptor and sends data which has been
|
|
* dma'ed into host memory to upper layer.
|
|
*
|
|
* Return TRUE for more work, FALSE for all clean.
|
|
*********************************************************************/
|
|
bool
|
|
ixgbe_rxeof(struct ix_queue *que)
|
|
{
|
|
struct adapter *adapter = que->adapter;
|
|
struct rx_ring *rxr = que->rxr;
|
|
struct ifnet *ifp = adapter->ifp;
|
|
struct lro_ctrl *lro = &rxr->lro;
|
|
int i, nextp, processed = 0;
|
|
u32 staterr = 0;
|
|
u32 count = adapter->rx_process_limit;
|
|
union ixgbe_adv_rx_desc *cur;
|
|
struct ixgbe_rx_buf *rbuf, *nbuf;
|
|
u16 pkt_info;
|
|
|
|
IXGBE_RX_LOCK(rxr);
|
|
|
|
#ifdef DEV_NETMAP
|
|
/* Same as the txeof routine: wakeup clients on intr. */
|
|
if (netmap_rx_irq(ifp, rxr->me, &processed)) {
|
|
IXGBE_RX_UNLOCK(rxr);
|
|
return (FALSE);
|
|
}
|
|
#endif /* DEV_NETMAP */
|
|
|
|
for (i = rxr->next_to_check; count != 0;) {
|
|
struct mbuf *sendmp, *mp;
|
|
u32 rsc, ptype;
|
|
u16 len;
|
|
u16 vtag = 0;
|
|
bool eop;
|
|
|
|
/* Sync the ring. */
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
cur = &rxr->rx_base[i];
|
|
staterr = le32toh(cur->wb.upper.status_error);
|
|
pkt_info = le16toh(cur->wb.lower.lo_dword.hs_rss.pkt_info);
|
|
|
|
if ((staterr & IXGBE_RXD_STAT_DD) == 0)
|
|
break;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
break;
|
|
|
|
count--;
|
|
sendmp = NULL;
|
|
nbuf = NULL;
|
|
rsc = 0;
|
|
cur->wb.upper.status_error = 0;
|
|
rbuf = &rxr->rx_buffers[i];
|
|
mp = rbuf->buf;
|
|
|
|
len = le16toh(cur->wb.upper.length);
|
|
ptype = le32toh(cur->wb.lower.lo_dword.data) &
|
|
IXGBE_RXDADV_PKTTYPE_MASK;
|
|
eop = ((staterr & IXGBE_RXD_STAT_EOP) != 0);
|
|
|
|
/* Make sure bad packets are discarded */
|
|
if (eop && (staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK) != 0) {
|
|
#if __FreeBSD_version >= 1100036
|
|
if (IXGBE_IS_VF(adapter))
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
|
|
#endif
|
|
rxr->rx_discarded++;
|
|
ixgbe_rx_discard(rxr, i);
|
|
goto next_desc;
|
|
}
|
|
|
|
/*
|
|
** On 82599 which supports a hardware
|
|
** LRO (called HW RSC), packets need
|
|
** not be fragmented across sequential
|
|
** descriptors, rather the next descriptor
|
|
** is indicated in bits of the descriptor.
|
|
** This also means that we might proceses
|
|
** more than one packet at a time, something
|
|
** that has never been true before, it
|
|
** required eliminating global chain pointers
|
|
** in favor of what we are doing here. -jfv
|
|
*/
|
|
if (!eop) {
|
|
/*
|
|
** Figure out the next descriptor
|
|
** of this frame.
|
|
*/
|
|
if (rxr->hw_rsc == TRUE) {
|
|
rsc = ixgbe_rsc_count(cur);
|
|
rxr->rsc_num += (rsc - 1);
|
|
}
|
|
if (rsc) { /* Get hardware index */
|
|
nextp = ((staterr &
|
|
IXGBE_RXDADV_NEXTP_MASK) >>
|
|
IXGBE_RXDADV_NEXTP_SHIFT);
|
|
} else { /* Just sequential */
|
|
nextp = i + 1;
|
|
if (nextp == adapter->num_rx_desc)
|
|
nextp = 0;
|
|
}
|
|
nbuf = &rxr->rx_buffers[nextp];
|
|
prefetch(nbuf);
|
|
}
|
|
/*
|
|
** Rather than using the fmp/lmp global pointers
|
|
** we now keep the head of a packet chain in the
|
|
** buffer struct and pass this along from one
|
|
** descriptor to the next, until we get EOP.
|
|
*/
|
|
mp->m_len = len;
|
|
/*
|
|
** See if there is a stored head
|
|
** that determines what we are
|
|
*/
|
|
sendmp = rbuf->fmp;
|
|
if (sendmp != NULL) { /* secondary frag */
|
|
rbuf->buf = rbuf->fmp = NULL;
|
|
mp->m_flags &= ~M_PKTHDR;
|
|
sendmp->m_pkthdr.len += mp->m_len;
|
|
} else {
|
|
/*
|
|
* Optimize. This might be a small packet,
|
|
* maybe just a TCP ACK. Do a fast copy that
|
|
* is cache aligned into a new mbuf, and
|
|
* leave the old mbuf+cluster for re-use.
|
|
*/
|
|
if (eop && len <= IXGBE_RX_COPY_LEN) {
|
|
sendmp = m_gethdr(M_NOWAIT, MT_DATA);
|
|
if (sendmp != NULL) {
|
|
sendmp->m_data +=
|
|
IXGBE_RX_COPY_ALIGN;
|
|
ixgbe_bcopy(mp->m_data,
|
|
sendmp->m_data, len);
|
|
sendmp->m_len = len;
|
|
rxr->rx_copies++;
|
|
rbuf->flags |= IXGBE_RX_COPY;
|
|
}
|
|
}
|
|
if (sendmp == NULL) {
|
|
rbuf->buf = rbuf->fmp = NULL;
|
|
sendmp = mp;
|
|
}
|
|
|
|
/* first desc of a non-ps chain */
|
|
sendmp->m_flags |= M_PKTHDR;
|
|
sendmp->m_pkthdr.len = mp->m_len;
|
|
}
|
|
++processed;
|
|
|
|
/* Pass the head pointer on */
|
|
if (eop == 0) {
|
|
nbuf->fmp = sendmp;
|
|
sendmp = NULL;
|
|
mp->m_next = nbuf->buf;
|
|
} else { /* Sending this frame */
|
|
sendmp->m_pkthdr.rcvif = ifp;
|
|
rxr->rx_packets++;
|
|
/* capture data for AIM */
|
|
rxr->bytes += sendmp->m_pkthdr.len;
|
|
rxr->rx_bytes += sendmp->m_pkthdr.len;
|
|
/* Process vlan info */
|
|
if ((rxr->vtag_strip) &&
|
|
(staterr & IXGBE_RXD_STAT_VP))
|
|
vtag = le16toh(cur->wb.upper.vlan);
|
|
if (vtag) {
|
|
sendmp->m_pkthdr.ether_vtag = vtag;
|
|
sendmp->m_flags |= M_VLANTAG;
|
|
}
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
ixgbe_rx_checksum(staterr, sendmp, ptype);
|
|
|
|
/*
|
|
* In case of multiqueue, we have RXCSUM.PCSD bit set
|
|
* and never cleared. This means we have RSS hash
|
|
* available to be used.
|
|
*/
|
|
if (adapter->num_queues > 1) {
|
|
sendmp->m_pkthdr.flowid =
|
|
le32toh(cur->wb.lower.hi_dword.rss);
|
|
switch (pkt_info & IXGBE_RXDADV_RSSTYPE_MASK) {
|
|
case IXGBE_RXDADV_RSSTYPE_IPV4:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_IPV4);
|
|
break;
|
|
case IXGBE_RXDADV_RSSTYPE_IPV4_TCP:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_TCP_IPV4);
|
|
break;
|
|
case IXGBE_RXDADV_RSSTYPE_IPV6:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_IPV6);
|
|
break;
|
|
case IXGBE_RXDADV_RSSTYPE_IPV6_TCP:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_TCP_IPV6);
|
|
break;
|
|
case IXGBE_RXDADV_RSSTYPE_IPV6_EX:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_IPV6_EX);
|
|
break;
|
|
case IXGBE_RXDADV_RSSTYPE_IPV6_TCP_EX:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_TCP_IPV6_EX);
|
|
break;
|
|
#if __FreeBSD_version > 1100000
|
|
case IXGBE_RXDADV_RSSTYPE_IPV4_UDP:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_UDP_IPV4);
|
|
break;
|
|
case IXGBE_RXDADV_RSSTYPE_IPV6_UDP:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_UDP_IPV6);
|
|
break;
|
|
case IXGBE_RXDADV_RSSTYPE_IPV6_UDP_EX:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_RSS_UDP_IPV6_EX);
|
|
break;
|
|
#endif
|
|
default:
|
|
M_HASHTYPE_SET(sendmp,
|
|
M_HASHTYPE_OPAQUE_HASH);
|
|
}
|
|
} else {
|
|
sendmp->m_pkthdr.flowid = que->msix;
|
|
M_HASHTYPE_SET(sendmp, M_HASHTYPE_OPAQUE);
|
|
}
|
|
}
|
|
next_desc:
|
|
bus_dmamap_sync(rxr->rxdma.dma_tag, rxr->rxdma.dma_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance our pointers to the next descriptor. */
|
|
if (++i == rxr->num_desc)
|
|
i = 0;
|
|
|
|
/* Now send to the stack or do LRO */
|
|
if (sendmp != NULL) {
|
|
rxr->next_to_check = i;
|
|
ixgbe_rx_input(rxr, ifp, sendmp, ptype);
|
|
i = rxr->next_to_check;
|
|
}
|
|
|
|
/* Every 8 descriptors we go to refresh mbufs */
|
|
if (processed == 8) {
|
|
ixgbe_refresh_mbufs(rxr, i);
|
|
processed = 0;
|
|
}
|
|
}
|
|
|
|
/* Refresh any remaining buf structs */
|
|
if (ixgbe_rx_unrefreshed(rxr))
|
|
ixgbe_refresh_mbufs(rxr, i);
|
|
|
|
rxr->next_to_check = i;
|
|
|
|
/*
|
|
* Flush any outstanding LRO work
|
|
*/
|
|
tcp_lro_flush_all(lro);
|
|
|
|
IXGBE_RX_UNLOCK(rxr);
|
|
|
|
/*
|
|
** Still have cleaning to do?
|
|
*/
|
|
if ((staterr & IXGBE_RXD_STAT_DD) != 0)
|
|
return (TRUE);
|
|
else
|
|
return (FALSE);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Verify that the hardware indicated that the checksum is valid.
|
|
* Inform the stack about the status of checksum so that stack
|
|
* doesn't spend time verifying the checksum.
|
|
*
|
|
*********************************************************************/
|
|
static void
|
|
ixgbe_rx_checksum(u32 staterr, struct mbuf * mp, u32 ptype)
|
|
{
|
|
u16 status = (u16) staterr;
|
|
u8 errors = (u8) (staterr >> 24);
|
|
bool sctp = false;
|
|
|
|
if ((ptype & IXGBE_RXDADV_PKTTYPE_ETQF) == 0 &&
|
|
(ptype & IXGBE_RXDADV_PKTTYPE_SCTP) != 0)
|
|
sctp = true;
|
|
|
|
/* IPv4 checksum */
|
|
if (status & IXGBE_RXD_STAT_IPCS) {
|
|
mp->m_pkthdr.csum_flags |= CSUM_L3_CALC;
|
|
/* IP Checksum Good */
|
|
if (!(errors & IXGBE_RXD_ERR_IPE))
|
|
mp->m_pkthdr.csum_flags |= CSUM_L3_VALID;
|
|
}
|
|
/* TCP/UDP/SCTP checksum */
|
|
if (status & IXGBE_RXD_STAT_L4CS) {
|
|
mp->m_pkthdr.csum_flags |= CSUM_L4_CALC;
|
|
if (!(errors & IXGBE_RXD_ERR_TCPE)) {
|
|
mp->m_pkthdr.csum_flags |= CSUM_L4_VALID;
|
|
if (!sctp)
|
|
mp->m_pkthdr.csum_data = htons(0xffff);
|
|
}
|
|
}
|
|
}
|
|
|
|
/********************************************************************
|
|
* Manage DMA'able memory.
|
|
*******************************************************************/
|
|
static void
|
|
ixgbe_dmamap_cb(void *arg, bus_dma_segment_t * segs, int nseg, int error)
|
|
{
|
|
if (error)
|
|
return;
|
|
*(bus_addr_t *) arg = segs->ds_addr;
|
|
return;
|
|
}
|
|
|
|
int
|
|
ixgbe_dma_malloc(struct adapter *adapter, bus_size_t size,
|
|
struct ixgbe_dma_alloc *dma, int mapflags)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
int r;
|
|
|
|
r = bus_dma_tag_create(bus_get_dma_tag(adapter->dev), /* parent */
|
|
DBA_ALIGN, 0, /* alignment, bounds */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
size, /* maxsize */
|
|
1, /* nsegments */
|
|
size, /* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, /* lockfunc */
|
|
NULL, /* lockfuncarg */
|
|
&dma->dma_tag);
|
|
if (r != 0) {
|
|
device_printf(dev,"ixgbe_dma_malloc: bus_dma_tag_create failed; "
|
|
"error %u\n", r);
|
|
goto fail_0;
|
|
}
|
|
r = bus_dmamem_alloc(dma->dma_tag, (void **)&dma->dma_vaddr,
|
|
BUS_DMA_NOWAIT, &dma->dma_map);
|
|
if (r != 0) {
|
|
device_printf(dev,"ixgbe_dma_malloc: bus_dmamem_alloc failed; "
|
|
"error %u\n", r);
|
|
goto fail_1;
|
|
}
|
|
r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
|
|
size,
|
|
ixgbe_dmamap_cb,
|
|
&dma->dma_paddr,
|
|
mapflags | BUS_DMA_NOWAIT);
|
|
if (r != 0) {
|
|
device_printf(dev,"ixgbe_dma_malloc: bus_dmamap_load failed; "
|
|
"error %u\n", r);
|
|
goto fail_2;
|
|
}
|
|
dma->dma_size = size;
|
|
return (0);
|
|
fail_2:
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
fail_1:
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
fail_0:
|
|
dma->dma_tag = NULL;
|
|
return (r);
|
|
}
|
|
|
|
void
|
|
ixgbe_dma_free(struct adapter *adapter, struct ixgbe_dma_alloc *dma)
|
|
{
|
|
bus_dmamap_sync(dma->dma_tag, dma->dma_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->dma_tag, dma->dma_map);
|
|
bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
|
|
bus_dma_tag_destroy(dma->dma_tag);
|
|
}
|
|
|
|
|
|
/*********************************************************************
|
|
*
|
|
* Allocate memory for the transmit and receive rings, and then
|
|
* the descriptors associated with each, called only once at attach.
|
|
*
|
|
**********************************************************************/
|
|
int
|
|
ixgbe_allocate_queues(struct adapter *adapter)
|
|
{
|
|
device_t dev = adapter->dev;
|
|
struct ix_queue *que;
|
|
struct tx_ring *txr;
|
|
struct rx_ring *rxr;
|
|
int rsize, tsize, error = IXGBE_SUCCESS;
|
|
int txconf = 0, rxconf = 0;
|
|
#ifdef PCI_IOV
|
|
enum ixgbe_iov_mode iov_mode;
|
|
#endif
|
|
|
|
/* First allocate the top level queue structs */
|
|
if (!(adapter->queues =
|
|
(struct ix_queue *) malloc(sizeof(struct ix_queue) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate queue memory\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* First allocate the TX ring struct memory */
|
|
if (!(adapter->tx_rings =
|
|
(struct tx_ring *) malloc(sizeof(struct tx_ring) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate TX ring memory\n");
|
|
error = ENOMEM;
|
|
goto tx_fail;
|
|
}
|
|
|
|
/* Next allocate the RX */
|
|
if (!(adapter->rx_rings =
|
|
(struct rx_ring *) malloc(sizeof(struct rx_ring) *
|
|
adapter->num_queues, M_DEVBUF, M_NOWAIT | M_ZERO))) {
|
|
device_printf(dev, "Unable to allocate RX ring memory\n");
|
|
error = ENOMEM;
|
|
goto rx_fail;
|
|
}
|
|
|
|
/* For the ring itself */
|
|
tsize = roundup2(adapter->num_tx_desc *
|
|
sizeof(union ixgbe_adv_tx_desc), DBA_ALIGN);
|
|
|
|
#ifdef PCI_IOV
|
|
iov_mode = ixgbe_get_iov_mode(adapter);
|
|
adapter->pool = ixgbe_max_vfs(iov_mode);
|
|
#else
|
|
adapter->pool = 0;
|
|
#endif
|
|
/*
|
|
* Now set up the TX queues, txconf is needed to handle the
|
|
* possibility that things fail midcourse and we need to
|
|
* undo memory gracefully
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++, txconf++) {
|
|
/* Set up some basics */
|
|
txr = &adapter->tx_rings[i];
|
|
txr->adapter = adapter;
|
|
#ifdef PCI_IOV
|
|
txr->me = ixgbe_pf_que_index(iov_mode, i);
|
|
#else
|
|
txr->me = i;
|
|
#endif
|
|
txr->num_desc = adapter->num_tx_desc;
|
|
|
|
/* Initialize the TX side lock */
|
|
snprintf(txr->mtx_name, sizeof(txr->mtx_name), "%s:tx(%d)",
|
|
device_get_nameunit(dev), txr->me);
|
|
mtx_init(&txr->tx_mtx, txr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (ixgbe_dma_malloc(adapter, tsize,
|
|
&txr->txdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev,
|
|
"Unable to allocate TX Descriptor memory\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
txr->tx_base = (union ixgbe_adv_tx_desc *)txr->txdma.dma_vaddr;
|
|
bzero((void *)txr->tx_base, tsize);
|
|
|
|
/* Now allocate transmit buffers for the ring */
|
|
if (ixgbe_allocate_transmit_buffers(txr)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up transmit buffers\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
#ifndef IXGBE_LEGACY_TX
|
|
/* Allocate a buf ring */
|
|
txr->br = buf_ring_alloc(IXGBE_BR_SIZE, M_DEVBUF,
|
|
M_WAITOK, &txr->tx_mtx);
|
|
if (txr->br == NULL) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up buf ring\n");
|
|
error = ENOMEM;
|
|
goto err_tx_desc;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Next the RX queues...
|
|
*/
|
|
rsize = roundup2(adapter->num_rx_desc *
|
|
sizeof(union ixgbe_adv_rx_desc), DBA_ALIGN);
|
|
for (int i = 0; i < adapter->num_queues; i++, rxconf++) {
|
|
rxr = &adapter->rx_rings[i];
|
|
/* Set up some basics */
|
|
rxr->adapter = adapter;
|
|
#ifdef PCI_IOV
|
|
rxr->me = ixgbe_pf_que_index(iov_mode, i);
|
|
#else
|
|
rxr->me = i;
|
|
#endif
|
|
rxr->num_desc = adapter->num_rx_desc;
|
|
|
|
/* Initialize the RX side lock */
|
|
snprintf(rxr->mtx_name, sizeof(rxr->mtx_name), "%s:rx(%d)",
|
|
device_get_nameunit(dev), rxr->me);
|
|
mtx_init(&rxr->rx_mtx, rxr->mtx_name, NULL, MTX_DEF);
|
|
|
|
if (ixgbe_dma_malloc(adapter, rsize,
|
|
&rxr->rxdma, BUS_DMA_NOWAIT)) {
|
|
device_printf(dev,
|
|
"Unable to allocate RxDescriptor memory\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
rxr->rx_base = (union ixgbe_adv_rx_desc *)rxr->rxdma.dma_vaddr;
|
|
bzero((void *)rxr->rx_base, rsize);
|
|
|
|
/* Allocate receive buffers for the ring*/
|
|
if (ixgbe_allocate_receive_buffers(rxr)) {
|
|
device_printf(dev,
|
|
"Critical Failure setting up receive buffers\n");
|
|
error = ENOMEM;
|
|
goto err_rx_desc;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Finally set up the queue holding structs
|
|
*/
|
|
for (int i = 0; i < adapter->num_queues; i++) {
|
|
que = &adapter->queues[i];
|
|
que->adapter = adapter;
|
|
que->me = i;
|
|
que->txr = &adapter->tx_rings[i];
|
|
que->rxr = &adapter->rx_rings[i];
|
|
}
|
|
|
|
return (0);
|
|
|
|
err_rx_desc:
|
|
for (rxr = adapter->rx_rings; rxconf > 0; rxr++, rxconf--)
|
|
ixgbe_dma_free(adapter, &rxr->rxdma);
|
|
err_tx_desc:
|
|
for (txr = adapter->tx_rings; txconf > 0; txr++, txconf--)
|
|
ixgbe_dma_free(adapter, &txr->txdma);
|
|
free(adapter->rx_rings, M_DEVBUF);
|
|
rx_fail:
|
|
free(adapter->tx_rings, M_DEVBUF);
|
|
tx_fail:
|
|
free(adapter->queues, M_DEVBUF);
|
|
fail:
|
|
return (error);
|
|
}
|