chuck 553365cad1 Fix uninitialized variable in camdd
gcc  builds were failing because of this uninitialized warning.

Reported by:	bz, imp
Approved by:	imp (mentor)
Discussed with:	ken
Pointy hat:	chuck
2019-06-09 02:06:31 +00:00

3651 lines
90 KiB
C

/*-
* Copyright (c) 1997-2007 Kenneth D. Merry
* Copyright (c) 2013, 2014, 2015 Spectra Logic Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* Authors: Ken Merry (Spectra Logic Corporation)
*/
/*
* This is eventually intended to be:
* - A basic data transfer/copy utility
* - A simple benchmark utility
* - An example of how to use the asynchronous pass(4) driver interface.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/ioctl.h>
#include <sys/stdint.h>
#include <sys/types.h>
#include <sys/endian.h>
#include <sys/param.h>
#include <sys/sbuf.h>
#include <sys/stat.h>
#include <sys/event.h>
#include <sys/time.h>
#include <sys/uio.h>
#include <vm/vm.h>
#include <sys/bus.h>
#include <sys/bus_dma.h>
#include <sys/mtio.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <stdio.h>
#include <stdlib.h>
#include <semaphore.h>
#include <string.h>
#include <unistd.h>
#include <inttypes.h>
#include <limits.h>
#include <fcntl.h>
#include <ctype.h>
#include <err.h>
#include <libutil.h>
#include <pthread.h>
#include <assert.h>
#include <bsdxml.h>
#include <cam/cam.h>
#include <cam/cam_debug.h>
#include <cam/cam_ccb.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_da.h>
#include <cam/scsi/scsi_pass.h>
#include <cam/scsi/scsi_message.h>
#include <cam/scsi/smp_all.h>
#include <cam/nvme/nvme_all.h>
#include <camlib.h>
#include <mtlib.h>
#include <zlib.h>
typedef enum {
CAMDD_CMD_NONE = 0x00000000,
CAMDD_CMD_HELP = 0x00000001,
CAMDD_CMD_WRITE = 0x00000002,
CAMDD_CMD_READ = 0x00000003
} camdd_cmdmask;
typedef enum {
CAMDD_ARG_NONE = 0x00000000,
CAMDD_ARG_VERBOSE = 0x00000001,
CAMDD_ARG_DEVICE = 0x00000002,
CAMDD_ARG_BUS = 0x00000004,
CAMDD_ARG_TARGET = 0x00000008,
CAMDD_ARG_LUN = 0x00000010,
CAMDD_ARG_UNIT = 0x00000020,
CAMDD_ARG_TIMEOUT = 0x00000040,
CAMDD_ARG_ERR_RECOVER = 0x00000080,
CAMDD_ARG_RETRIES = 0x00000100
} camdd_argmask;
typedef enum {
CAMDD_DEV_NONE = 0x00,
CAMDD_DEV_PASS = 0x01,
CAMDD_DEV_FILE = 0x02
} camdd_dev_type;
struct camdd_io_opts {
camdd_dev_type dev_type;
char *dev_name;
uint64_t blocksize;
uint64_t queue_depth;
uint64_t offset;
int min_cmd_size;
int write_dev;
uint64_t debug;
};
typedef enum {
CAMDD_BUF_NONE,
CAMDD_BUF_DATA,
CAMDD_BUF_INDIRECT
} camdd_buf_type;
struct camdd_buf_indirect {
/*
* Pointer to the source buffer.
*/
struct camdd_buf *src_buf;
/*
* Offset into the source buffer, in bytes.
*/
uint64_t offset;
/*
* Pointer to the starting point in the source buffer.
*/
uint8_t *start_ptr;
/*
* Length of this chunk in bytes.
*/
size_t len;
};
struct camdd_buf_data {
/*
* Buffer allocated when we allocate this camdd_buf. This should
* be the size of the blocksize for this device.
*/
uint8_t *buf;
/*
* The amount of backing store allocated in buf. Generally this
* will be the blocksize of the device.
*/
uint32_t alloc_len;
/*
* The amount of data that was put into the buffer (on reads) or
* the amount of data we have put onto the src_list so far (on
* writes).
*/
uint32_t fill_len;
/*
* The amount of data that was not transferred.
*/
uint32_t resid;
/*
* Starting byte offset on the reader.
*/
uint64_t src_start_offset;
/*
* CCB used for pass(4) device targets.
*/
union ccb ccb;
/*
* Number of scatter/gather segments.
*/
int sg_count;
/*
* Set if we had to tack on an extra buffer to round the transfer
* up to a sector size.
*/
int extra_buf;
/*
* Scatter/gather list used generally when we're the writer for a
* pass(4) device.
*/
bus_dma_segment_t *segs;
/*
* Scatter/gather list used generally when we're the writer for a
* file or block device;
*/
struct iovec *iovec;
};
union camdd_buf_types {
struct camdd_buf_indirect indirect;
struct camdd_buf_data data;
};
typedef enum {
CAMDD_STATUS_NONE,
CAMDD_STATUS_OK,
CAMDD_STATUS_SHORT_IO,
CAMDD_STATUS_EOF,
CAMDD_STATUS_ERROR
} camdd_buf_status;
struct camdd_buf {
camdd_buf_type buf_type;
union camdd_buf_types buf_type_spec;
camdd_buf_status status;
uint64_t lba;
size_t len;
/*
* A reference count of how many indirect buffers point to this
* buffer.
*/
int refcount;
/*
* A link back to our parent device.
*/
struct camdd_dev *dev;
STAILQ_ENTRY(camdd_buf) links;
STAILQ_ENTRY(camdd_buf) work_links;
/*
* A count of the buffers on the src_list.
*/
int src_count;
/*
* List of buffers from our partner thread that are the components
* of this buffer for the I/O. Uses src_links.
*/
STAILQ_HEAD(,camdd_buf) src_list;
STAILQ_ENTRY(camdd_buf) src_links;
};
#define NUM_DEV_TYPES 2
struct camdd_dev_pass {
int scsi_dev_type;
int protocol;
struct cam_device *dev;
uint64_t max_sector;
uint32_t block_len;
uint32_t cpi_maxio;
};
typedef enum {
CAMDD_FILE_NONE,
CAMDD_FILE_REG,
CAMDD_FILE_STD,
CAMDD_FILE_PIPE,
CAMDD_FILE_DISK,
CAMDD_FILE_TAPE,
CAMDD_FILE_TTY,
CAMDD_FILE_MEM
} camdd_file_type;
typedef enum {
CAMDD_FF_NONE = 0x00,
CAMDD_FF_CAN_SEEK = 0x01
} camdd_file_flags;
struct camdd_dev_file {
int fd;
struct stat sb;
char filename[MAXPATHLEN + 1];
camdd_file_type file_type;
camdd_file_flags file_flags;
uint8_t *tmp_buf;
};
struct camdd_dev_block {
int fd;
uint64_t size_bytes;
uint32_t block_len;
};
union camdd_dev_spec {
struct camdd_dev_pass pass;
struct camdd_dev_file file;
struct camdd_dev_block block;
};
typedef enum {
CAMDD_DEV_FLAG_NONE = 0x00,
CAMDD_DEV_FLAG_EOF = 0x01,
CAMDD_DEV_FLAG_PEER_EOF = 0x02,
CAMDD_DEV_FLAG_ACTIVE = 0x04,
CAMDD_DEV_FLAG_EOF_SENT = 0x08,
CAMDD_DEV_FLAG_EOF_QUEUED = 0x10
} camdd_dev_flags;
struct camdd_dev {
camdd_dev_type dev_type;
union camdd_dev_spec dev_spec;
camdd_dev_flags flags;
char device_name[MAXPATHLEN+1];
uint32_t blocksize;
uint32_t sector_size;
uint64_t max_sector;
uint64_t sector_io_limit;
int min_cmd_size;
int write_dev;
int retry_count;
int io_timeout;
int debug;
uint64_t start_offset_bytes;
uint64_t next_io_pos_bytes;
uint64_t next_peer_pos_bytes;
uint64_t next_completion_pos_bytes;
uint64_t peer_bytes_queued;
uint64_t bytes_transferred;
uint32_t target_queue_depth;
uint32_t cur_active_io;
uint8_t *extra_buf;
uint32_t extra_buf_len;
struct camdd_dev *peer_dev;
pthread_mutex_t mutex;
pthread_cond_t cond;
int kq;
int (*run)(struct camdd_dev *dev);
int (*fetch)(struct camdd_dev *dev);
/*
* Buffers that are available for I/O. Uses links.
*/
STAILQ_HEAD(,camdd_buf) free_queue;
/*
* Free indirect buffers. These are used for breaking a large
* buffer into multiple pieces.
*/
STAILQ_HEAD(,camdd_buf) free_indirect_queue;
/*
* Buffers that have been queued to the kernel. Uses links.
*/
STAILQ_HEAD(,camdd_buf) active_queue;
/*
* Will generally contain one of our buffers that is waiting for enough
* I/O from our partner thread to be able to execute. This will
* generally happen when our per-I/O-size is larger than the
* partner thread's per-I/O-size. Uses links.
*/
STAILQ_HEAD(,camdd_buf) pending_queue;
/*
* Number of buffers on the pending queue
*/
int num_pending_queue;
/*
* Buffers that are filled and ready to execute. This is used when
* our partner (reader) thread sends us blocks that are larger than
* our blocksize, and so we have to split them into multiple pieces.
*/
STAILQ_HEAD(,camdd_buf) run_queue;
/*
* Number of buffers on the run queue.
*/
int num_run_queue;
STAILQ_HEAD(,camdd_buf) reorder_queue;
int num_reorder_queue;
/*
* Buffers that have been queued to us by our partner thread
* (generally the reader thread) to be written out. Uses
* work_links.
*/
STAILQ_HEAD(,camdd_buf) work_queue;
/*
* Buffers that have been completed by our partner thread. Uses
* work_links.
*/
STAILQ_HEAD(,camdd_buf) peer_done_queue;
/*
* Number of buffers on the peer done queue.
*/
uint32_t num_peer_done_queue;
/*
* A list of buffers that we have queued to our peer thread. Uses
* links.
*/
STAILQ_HEAD(,camdd_buf) peer_work_queue;
/*
* Number of buffers on the peer work queue.
*/
uint32_t num_peer_work_queue;
};
static sem_t camdd_sem;
static sig_atomic_t need_exit = 0;
static sig_atomic_t error_exit = 0;
static sig_atomic_t need_status = 0;
#ifndef min
#define min(a, b) (a < b) ? a : b
#endif
/* Generically useful offsets into the peripheral private area */
#define ppriv_ptr0 periph_priv.entries[0].ptr
#define ppriv_ptr1 periph_priv.entries[1].ptr
#define ppriv_field0 periph_priv.entries[0].field
#define ppriv_field1 periph_priv.entries[1].field
#define ccb_buf ppriv_ptr0
#define CAMDD_FILE_DEFAULT_BLOCK 524288
#define CAMDD_FILE_DEFAULT_DEPTH 1
#define CAMDD_PASS_MAX_BLOCK 1048576
#define CAMDD_PASS_DEFAULT_DEPTH 6
#define CAMDD_PASS_RW_TIMEOUT 60 * 1000
static int parse_btl(char *tstr, int *bus, int *target, int *lun,
camdd_argmask *arglst);
void camdd_free_dev(struct camdd_dev *dev);
struct camdd_dev *camdd_alloc_dev(camdd_dev_type dev_type,
struct kevent *new_ke, int num_ke,
int retry_count, int timeout);
static struct camdd_buf *camdd_alloc_buf(struct camdd_dev *dev,
camdd_buf_type buf_type);
void camdd_release_buf(struct camdd_buf *buf);
struct camdd_buf *camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type);
int camdd_buf_sg_create(struct camdd_buf *buf, int iovec,
uint32_t sector_size, uint32_t *num_sectors_used,
int *double_buf_needed);
uint32_t camdd_buf_get_len(struct camdd_buf *buf);
void camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf);
int camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran);
int camdd_probe_pass_scsi(struct cam_device *cam_dev, union ccb *ccb,
camdd_argmask arglist, int probe_retry_count,
int probe_timeout, uint64_t *maxsector, uint32_t *block_len);
int camdd_probe_pass_nvme(struct cam_device *cam_dev, union ccb *ccb,
camdd_argmask arglist, int probe_retry_count,
int probe_timeout, uint64_t *maxsector, uint32_t *block_len);
struct camdd_dev *camdd_probe_file(int fd, struct camdd_io_opts *io_opts,
int retry_count, int timeout);
struct camdd_dev *camdd_probe_pass(struct cam_device *cam_dev,
struct camdd_io_opts *io_opts,
camdd_argmask arglist, int probe_retry_count,
int probe_timeout, int io_retry_count,
int io_timeout);
void nvme_read_write(struct ccb_nvmeio *nvmeio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint32_t nsid, int readop, uint64_t lba,
uint32_t block_count, uint8_t *data_ptr, uint32_t dxfer_len,
uint32_t timeout);
void *camdd_file_worker(void *arg);
camdd_buf_status camdd_ccb_status(union ccb *ccb, int protocol);
int camdd_get_cgd(struct cam_device *device, struct ccb_getdev *cgd);
int camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf);
int camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf);
void camdd_peer_done(struct camdd_buf *buf);
void camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
int *error_count);
int camdd_pass_fetch(struct camdd_dev *dev);
int camdd_file_run(struct camdd_dev *dev);
int camdd_pass_run(struct camdd_dev *dev);
int camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len);
int camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf);
void camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
uint32_t *peer_depth, uint32_t *our_bytes,
uint32_t *peer_bytes);
void *camdd_worker(void *arg);
void camdd_sig_handler(int sig);
void camdd_print_status(struct camdd_dev *camdd_dev,
struct camdd_dev *other_dev,
struct timespec *start_time);
int camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts,
uint64_t max_io, int retry_count, int timeout);
int camdd_parse_io_opts(char *args, int is_write,
struct camdd_io_opts *io_opts);
void usage(void);
/*
* Parse out a bus, or a bus, target and lun in the following
* format:
* bus
* bus:target
* bus:target:lun
*
* Returns the number of parsed components, or 0.
*/
static int
parse_btl(char *tstr, int *bus, int *target, int *lun, camdd_argmask *arglst)
{
char *tmpstr;
int convs = 0;
while (isspace(*tstr) && (*tstr != '\0'))
tstr++;
tmpstr = (char *)strtok(tstr, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')) {
*bus = strtol(tmpstr, NULL, 0);
*arglst |= CAMDD_ARG_BUS;
convs++;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')) {
*target = strtol(tmpstr, NULL, 0);
*arglst |= CAMDD_ARG_TARGET;
convs++;
tmpstr = (char *)strtok(NULL, ":");
if ((tmpstr != NULL) && (*tmpstr != '\0')) {
*lun = strtol(tmpstr, NULL, 0);
*arglst |= CAMDD_ARG_LUN;
convs++;
}
}
}
return convs;
}
/*
* XXX KDM clean up and free all of the buffers on the queue!
*/
void
camdd_free_dev(struct camdd_dev *dev)
{
if (dev == NULL)
return;
switch (dev->dev_type) {
case CAMDD_DEV_FILE: {
struct camdd_dev_file *file_dev = &dev->dev_spec.file;
if (file_dev->fd != -1)
close(file_dev->fd);
free(file_dev->tmp_buf);
break;
}
case CAMDD_DEV_PASS: {
struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
if (pass_dev->dev != NULL)
cam_close_device(pass_dev->dev);
break;
}
default:
break;
}
free(dev);
}
struct camdd_dev *
camdd_alloc_dev(camdd_dev_type dev_type, struct kevent *new_ke, int num_ke,
int retry_count, int timeout)
{
struct camdd_dev *dev = NULL;
struct kevent *ke;
size_t ke_size;
int retval = 0;
dev = calloc(1, sizeof(*dev));
if (dev == NULL) {
warn("%s: unable to malloc %zu bytes", __func__, sizeof(*dev));
goto bailout;
}
dev->dev_type = dev_type;
dev->io_timeout = timeout;
dev->retry_count = retry_count;
STAILQ_INIT(&dev->free_queue);
STAILQ_INIT(&dev->free_indirect_queue);
STAILQ_INIT(&dev->active_queue);
STAILQ_INIT(&dev->pending_queue);
STAILQ_INIT(&dev->run_queue);
STAILQ_INIT(&dev->reorder_queue);
STAILQ_INIT(&dev->work_queue);
STAILQ_INIT(&dev->peer_done_queue);
STAILQ_INIT(&dev->peer_work_queue);
retval = pthread_mutex_init(&dev->mutex, NULL);
if (retval != 0) {
warnc(retval, "%s: failed to initialize mutex", __func__);
goto bailout;
}
retval = pthread_cond_init(&dev->cond, NULL);
if (retval != 0) {
warnc(retval, "%s: failed to initialize condition variable",
__func__);
goto bailout;
}
dev->kq = kqueue();
if (dev->kq == -1) {
warn("%s: Unable to create kqueue", __func__);
goto bailout;
}
ke_size = sizeof(struct kevent) * (num_ke + 4);
ke = calloc(1, ke_size);
if (ke == NULL) {
warn("%s: unable to malloc %zu bytes", __func__, ke_size);
goto bailout;
}
if (num_ke > 0)
bcopy(new_ke, ke, num_ke * sizeof(struct kevent));
EV_SET(&ke[num_ke++], (uintptr_t)&dev->work_queue, EVFILT_USER,
EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
EV_SET(&ke[num_ke++], (uintptr_t)&dev->peer_done_queue, EVFILT_USER,
EV_ADD|EV_ENABLE|EV_CLEAR, 0,0, 0);
EV_SET(&ke[num_ke++], SIGINFO, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
EV_SET(&ke[num_ke++], SIGINT, EVFILT_SIGNAL, EV_ADD|EV_ENABLE, 0,0,0);
retval = kevent(dev->kq, ke, num_ke, NULL, 0, NULL);
if (retval == -1) {
warn("%s: Unable to register kevents", __func__);
goto bailout;
}
return (dev);
bailout:
free(dev);
return (NULL);
}
static struct camdd_buf *
camdd_alloc_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
{
struct camdd_buf *buf = NULL;
uint8_t *data_ptr = NULL;
/*
* We only need to allocate data space for data buffers.
*/
switch (buf_type) {
case CAMDD_BUF_DATA:
data_ptr = malloc(dev->blocksize);
if (data_ptr == NULL) {
warn("unable to allocate %u bytes", dev->blocksize);
goto bailout_error;
}
break;
default:
break;
}
buf = calloc(1, sizeof(*buf));
if (buf == NULL) {
warn("unable to allocate %zu bytes", sizeof(*buf));
goto bailout_error;
}
buf->buf_type = buf_type;
buf->dev = dev;
switch (buf_type) {
case CAMDD_BUF_DATA: {
struct camdd_buf_data *data;
data = &buf->buf_type_spec.data;
data->alloc_len = dev->blocksize;
data->buf = data_ptr;
break;
}
case CAMDD_BUF_INDIRECT:
break;
default:
break;
}
STAILQ_INIT(&buf->src_list);
return (buf);
bailout_error:
free(data_ptr);
return (NULL);
}
void
camdd_release_buf(struct camdd_buf *buf)
{
struct camdd_dev *dev;
dev = buf->dev;
switch (buf->buf_type) {
case CAMDD_BUF_DATA: {
struct camdd_buf_data *data;
data = &buf->buf_type_spec.data;
if (data->segs != NULL) {
if (data->extra_buf != 0) {
void *extra_buf;
extra_buf = (void *)
data->segs[data->sg_count - 1].ds_addr;
free(extra_buf);
data->extra_buf = 0;
}
free(data->segs);
data->segs = NULL;
data->sg_count = 0;
} else if (data->iovec != NULL) {
if (data->extra_buf != 0) {
free(data->iovec[data->sg_count - 1].iov_base);
data->extra_buf = 0;
}
free(data->iovec);
data->iovec = NULL;
data->sg_count = 0;
}
STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
break;
}
case CAMDD_BUF_INDIRECT:
STAILQ_INSERT_TAIL(&dev->free_indirect_queue, buf, links);
break;
default:
err(1, "%s: Invalid buffer type %d for released buffer",
__func__, buf->buf_type);
break;
}
}
struct camdd_buf *
camdd_get_buf(struct camdd_dev *dev, camdd_buf_type buf_type)
{
struct camdd_buf *buf = NULL;
switch (buf_type) {
case CAMDD_BUF_DATA:
buf = STAILQ_FIRST(&dev->free_queue);
if (buf != NULL) {
struct camdd_buf_data *data;
uint8_t *data_ptr;
uint32_t alloc_len;
STAILQ_REMOVE_HEAD(&dev->free_queue, links);
data = &buf->buf_type_spec.data;
data_ptr = data->buf;
alloc_len = data->alloc_len;
bzero(buf, sizeof(*buf));
data->buf = data_ptr;
data->alloc_len = alloc_len;
}
break;
case CAMDD_BUF_INDIRECT:
buf = STAILQ_FIRST(&dev->free_indirect_queue);
if (buf != NULL) {
STAILQ_REMOVE_HEAD(&dev->free_indirect_queue, links);
bzero(buf, sizeof(*buf));
}
break;
default:
warnx("Unknown buffer type %d requested", buf_type);
break;
}
if (buf == NULL)
return (camdd_alloc_buf(dev, buf_type));
else {
STAILQ_INIT(&buf->src_list);
buf->dev = dev;
buf->buf_type = buf_type;
return (buf);
}
}
int
camdd_buf_sg_create(struct camdd_buf *buf, int iovec, uint32_t sector_size,
uint32_t *num_sectors_used, int *double_buf_needed)
{
struct camdd_buf *tmp_buf;
struct camdd_buf_data *data;
uint8_t *extra_buf = NULL;
size_t extra_buf_len = 0;
int extra_buf_attached = 0;
int i, retval = 0;
data = &buf->buf_type_spec.data;
data->sg_count = buf->src_count;
/*
* Compose a scatter/gather list from all of the buffers in the list.
* If the length of the buffer isn't a multiple of the sector size,
* we'll have to add an extra buffer. This should only happen
* at the end of a transfer.
*/
if ((data->fill_len % sector_size) != 0) {
extra_buf_len = sector_size - (data->fill_len % sector_size);
extra_buf = calloc(extra_buf_len, 1);
if (extra_buf == NULL) {
warn("%s: unable to allocate %zu bytes for extra "
"buffer space", __func__, extra_buf_len);
retval = 1;
goto bailout;
}
data->extra_buf = 1;
data->sg_count++;
}
if (iovec == 0) {
data->segs = calloc(data->sg_count, sizeof(bus_dma_segment_t));
if (data->segs == NULL) {
warn("%s: unable to allocate %zu bytes for S/G list",
__func__, sizeof(bus_dma_segment_t) *
data->sg_count);
retval = 1;
goto bailout;
}
} else {
data->iovec = calloc(data->sg_count, sizeof(struct iovec));
if (data->iovec == NULL) {
warn("%s: unable to allocate %zu bytes for S/G list",
__func__, sizeof(struct iovec) * data->sg_count);
retval = 1;
goto bailout;
}
}
for (i = 0, tmp_buf = STAILQ_FIRST(&buf->src_list);
i < buf->src_count && tmp_buf != NULL; i++,
tmp_buf = STAILQ_NEXT(tmp_buf, src_links)) {
if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
struct camdd_buf_data *tmp_data;
tmp_data = &tmp_buf->buf_type_spec.data;
if (iovec == 0) {
data->segs[i].ds_addr =
(bus_addr_t) tmp_data->buf;
data->segs[i].ds_len = tmp_data->fill_len -
tmp_data->resid;
} else {
data->iovec[i].iov_base = tmp_data->buf;
data->iovec[i].iov_len = tmp_data->fill_len -
tmp_data->resid;
}
if (((tmp_data->fill_len - tmp_data->resid) %
sector_size) != 0)
*double_buf_needed = 1;
} else {
struct camdd_buf_indirect *tmp_ind;
tmp_ind = &tmp_buf->buf_type_spec.indirect;
if (iovec == 0) {
data->segs[i].ds_addr =
(bus_addr_t)tmp_ind->start_ptr;
data->segs[i].ds_len = tmp_ind->len;
} else {
data->iovec[i].iov_base = tmp_ind->start_ptr;
data->iovec[i].iov_len = tmp_ind->len;
}
if ((tmp_ind->len % sector_size) != 0)
*double_buf_needed = 1;
}
}
if (extra_buf != NULL) {
if (iovec == 0) {
data->segs[i].ds_addr = (bus_addr_t)extra_buf;
data->segs[i].ds_len = extra_buf_len;
} else {
data->iovec[i].iov_base = extra_buf;
data->iovec[i].iov_len = extra_buf_len;
}
extra_buf_attached = 1;
i++;
}
if ((tmp_buf != NULL) || (i != data->sg_count)) {
warnx("buffer source count does not match "
"number of buffers in list!");
retval = 1;
goto bailout;
}
bailout:
if (retval == 0) {
*num_sectors_used = (data->fill_len + extra_buf_len) /
sector_size;
} else if (extra_buf_attached == 0) {
/*
* If extra_buf isn't attached yet, we need to free it
* to avoid leaking.
*/
free(extra_buf);
data->extra_buf = 0;
data->sg_count--;
}
return (retval);
}
uint32_t
camdd_buf_get_len(struct camdd_buf *buf)
{
uint32_t len = 0;
if (buf->buf_type != CAMDD_BUF_DATA) {
struct camdd_buf_indirect *indirect;
indirect = &buf->buf_type_spec.indirect;
len = indirect->len;
} else {
struct camdd_buf_data *data;
data = &buf->buf_type_spec.data;
len = data->fill_len;
}
return (len);
}
void
camdd_buf_add_child(struct camdd_buf *buf, struct camdd_buf *child_buf)
{
struct camdd_buf_data *data;
assert(buf->buf_type == CAMDD_BUF_DATA);
data = &buf->buf_type_spec.data;
STAILQ_INSERT_TAIL(&buf->src_list, child_buf, src_links);
buf->src_count++;
data->fill_len += camdd_buf_get_len(child_buf);
}
typedef enum {
CAMDD_TS_MAX_BLK,
CAMDD_TS_MIN_BLK,
CAMDD_TS_BLK_GRAN,
CAMDD_TS_EFF_IOSIZE
} camdd_status_item_index;
static struct camdd_status_items {
const char *name;
struct mt_status_entry *entry;
} req_status_items[] = {
{ "max_blk", NULL },
{ "min_blk", NULL },
{ "blk_gran", NULL },
{ "max_effective_iosize", NULL }
};
int
camdd_probe_tape(int fd, char *filename, uint64_t *max_iosize,
uint64_t *max_blk, uint64_t *min_blk, uint64_t *blk_gran)
{
struct mt_status_data status_data;
char *xml_str = NULL;
unsigned int i;
int retval = 0;
retval = mt_get_xml_str(fd, MTIOCEXTGET, &xml_str);
if (retval != 0)
err(1, "Couldn't get XML string from %s", filename);
retval = mt_get_status(xml_str, &status_data);
if (retval != XML_STATUS_OK) {
warn("couldn't get status for %s", filename);
retval = 1;
goto bailout;
} else
retval = 0;
if (status_data.error != 0) {
warnx("%s", status_data.error_str);
retval = 1;
goto bailout;
}
for (i = 0; i < nitems(req_status_items); i++) {
char *name;
name = __DECONST(char *, req_status_items[i].name);
req_status_items[i].entry = mt_status_entry_find(&status_data,
name);
if (req_status_items[i].entry == NULL) {
errx(1, "Cannot find status entry %s",
req_status_items[i].name);
}
}
*max_iosize = req_status_items[CAMDD_TS_EFF_IOSIZE].entry->value_unsigned;
*max_blk= req_status_items[CAMDD_TS_MAX_BLK].entry->value_unsigned;
*min_blk= req_status_items[CAMDD_TS_MIN_BLK].entry->value_unsigned;
*blk_gran = req_status_items[CAMDD_TS_BLK_GRAN].entry->value_unsigned;
bailout:
free(xml_str);
mt_status_free(&status_data);
return (retval);
}
struct camdd_dev *
camdd_probe_file(int fd, struct camdd_io_opts *io_opts, int retry_count,
int timeout)
{
struct camdd_dev *dev = NULL;
struct camdd_dev_file *file_dev;
uint64_t blocksize = io_opts->blocksize;
dev = camdd_alloc_dev(CAMDD_DEV_FILE, NULL, 0, retry_count, timeout);
if (dev == NULL)
goto bailout;
file_dev = &dev->dev_spec.file;
file_dev->fd = fd;
strlcpy(file_dev->filename, io_opts->dev_name,
sizeof(file_dev->filename));
strlcpy(dev->device_name, io_opts->dev_name, sizeof(dev->device_name));
if (blocksize == 0)
dev->blocksize = CAMDD_FILE_DEFAULT_BLOCK;
else
dev->blocksize = blocksize;
if ((io_opts->queue_depth != 0)
&& (io_opts->queue_depth != 1)) {
warnx("Queue depth %ju for %s ignored, only 1 outstanding "
"command supported", (uintmax_t)io_opts->queue_depth,
io_opts->dev_name);
}
dev->target_queue_depth = CAMDD_FILE_DEFAULT_DEPTH;
dev->run = camdd_file_run;
dev->fetch = NULL;
/*
* We can effectively access files on byte boundaries. We'll reset
* this for devices like disks that can be accessed on sector
* boundaries.
*/
dev->sector_size = 1;
if ((fd != STDIN_FILENO)
&& (fd != STDOUT_FILENO)) {
int retval;
retval = fstat(fd, &file_dev->sb);
if (retval != 0) {
warn("Cannot stat %s", dev->device_name);
goto bailout_error;
}
if (S_ISREG(file_dev->sb.st_mode)) {
file_dev->file_type = CAMDD_FILE_REG;
} else if (S_ISCHR(file_dev->sb.st_mode)) {
int type;
if (ioctl(fd, FIODTYPE, &type) == -1)
err(1, "FIODTYPE ioctl failed on %s",
dev->device_name);
else {
if (type & D_TAPE)
file_dev->file_type = CAMDD_FILE_TAPE;
else if (type & D_DISK)
file_dev->file_type = CAMDD_FILE_DISK;
else if (type & D_MEM)
file_dev->file_type = CAMDD_FILE_MEM;
else if (type & D_TTY)
file_dev->file_type = CAMDD_FILE_TTY;
}
} else if (S_ISDIR(file_dev->sb.st_mode)) {
errx(1, "cannot operate on directory %s",
dev->device_name);
} else if (S_ISFIFO(file_dev->sb.st_mode)) {
file_dev->file_type = CAMDD_FILE_PIPE;
} else
errx(1, "Cannot determine file type for %s",
dev->device_name);
switch (file_dev->file_type) {
case CAMDD_FILE_REG:
if (file_dev->sb.st_size != 0)
dev->max_sector = file_dev->sb.st_size - 1;
else
dev->max_sector = 0;
file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
break;
case CAMDD_FILE_TAPE: {
uint64_t max_iosize, max_blk, min_blk, blk_gran;
/*
* Check block limits and maximum effective iosize.
* Make sure the blocksize is within the block
* limits (and a multiple of the minimum blocksize)
* and that the blocksize is <= maximum effective
* iosize.
*/
retval = camdd_probe_tape(fd, dev->device_name,
&max_iosize, &max_blk, &min_blk, &blk_gran);
if (retval != 0)
errx(1, "Unable to probe tape %s",
dev->device_name);
/*
* The blocksize needs to be <= the maximum
* effective I/O size of the tape device. Note
* that this also takes into account the maximum
* blocksize reported by READ BLOCK LIMITS.
*/
if (dev->blocksize > max_iosize) {
warnx("Blocksize %u too big for %s, limiting "
"to %ju", dev->blocksize, dev->device_name,
max_iosize);
dev->blocksize = max_iosize;
}
/*
* The blocksize needs to be at least min_blk;
*/
if (dev->blocksize < min_blk) {
warnx("Blocksize %u too small for %s, "
"increasing to %ju", dev->blocksize,
dev->device_name, min_blk);
dev->blocksize = min_blk;
}
/*
* And the blocksize needs to be a multiple of
* the block granularity.
*/
if ((blk_gran != 0)
&& (dev->blocksize % (1 << blk_gran))) {
warnx("Blocksize %u for %s not a multiple of "
"%d, adjusting to %d", dev->blocksize,
dev->device_name, (1 << blk_gran),
dev->blocksize & ~((1 << blk_gran) - 1));
dev->blocksize &= ~((1 << blk_gran) - 1);
}
if (dev->blocksize == 0) {
errx(1, "Unable to derive valid blocksize for "
"%s", dev->device_name);
}
/*
* For tape drives, set the sector size to the
* blocksize so that we make sure not to write
* less than the blocksize out to the drive.
*/
dev->sector_size = dev->blocksize;
break;
}
case CAMDD_FILE_DISK: {
off_t media_size;
unsigned int sector_size;
file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
if (ioctl(fd, DIOCGSECTORSIZE, &sector_size) == -1) {
err(1, "DIOCGSECTORSIZE ioctl failed on %s",
dev->device_name);
}
if (sector_size == 0) {
errx(1, "DIOCGSECTORSIZE ioctl returned "
"invalid sector size %u for %s",
sector_size, dev->device_name);
}
if (ioctl(fd, DIOCGMEDIASIZE, &media_size) == -1) {
err(1, "DIOCGMEDIASIZE ioctl failed on %s",
dev->device_name);
}
if (media_size == 0) {
errx(1, "DIOCGMEDIASIZE ioctl returned "
"invalid media size %ju for %s",
(uintmax_t)media_size, dev->device_name);
}
if (dev->blocksize % sector_size) {
errx(1, "%s blocksize %u not a multiple of "
"sector size %u", dev->device_name,
dev->blocksize, sector_size);
}
dev->sector_size = sector_size;
dev->max_sector = (media_size / sector_size) - 1;
break;
}
case CAMDD_FILE_MEM:
file_dev->file_flags |= CAMDD_FF_CAN_SEEK;
break;
default:
break;
}
}
if ((io_opts->offset != 0)
&& ((file_dev->file_flags & CAMDD_FF_CAN_SEEK) == 0)) {
warnx("Offset %ju specified for %s, but we cannot seek on %s",
io_opts->offset, io_opts->dev_name, io_opts->dev_name);
goto bailout_error;
}
#if 0
else if ((io_opts->offset != 0)
&& ((io_opts->offset % dev->sector_size) != 0)) {
warnx("Offset %ju for %s is not a multiple of the "
"sector size %u", io_opts->offset,
io_opts->dev_name, dev->sector_size);
goto bailout_error;
} else {
dev->start_offset_bytes = io_opts->offset;
}
#endif
bailout:
return (dev);
bailout_error:
camdd_free_dev(dev);
return (NULL);
}
/*
* Get a get device CCB for the specified device.
*/
int
camdd_get_cgd(struct cam_device *device, struct ccb_getdev *cgd)
{
union ccb *ccb;
int retval = 0;
ccb = cam_getccb(device);
if (ccb == NULL) {
warnx("%s: couldn't allocate CCB", __func__);
return -1;
}
CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cgd);
ccb->ccb_h.func_code = XPT_GDEV_TYPE;
if (cam_send_ccb(device, ccb) < 0) {
warn("%s: error sending Get Device Information CCB", __func__);
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = -1;
goto bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_error_print(device, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
retval = -1;
goto bailout;
}
bcopy(&ccb->cgd, cgd, sizeof(struct ccb_getdev));
bailout:
cam_freeccb(ccb);
return retval;
}
int
camdd_probe_pass_scsi(struct cam_device *cam_dev, union ccb *ccb,
camdd_argmask arglist, int probe_retry_count,
int probe_timeout, uint64_t *maxsector, uint32_t *block_len)
{
struct scsi_read_capacity_data rcap;
struct scsi_read_capacity_data_long rcaplong;
int retval = -1;
if (ccb == NULL) {
warnx("%s: error passed ccb is NULL", __func__);
goto bailout;
}
CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
scsi_read_capacity(&ccb->csio,
/*retries*/ probe_retry_count,
/*cbfcnp*/ NULL,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
&rcap,
SSD_FULL_SIZE,
/*timeout*/ probe_timeout ? probe_timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAMDD_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(cam_dev, ccb) < 0) {
warn("error sending READ CAPACITY command");
cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
goto bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
goto bailout;
}
*maxsector = scsi_4btoul(rcap.addr);
*block_len = scsi_4btoul(rcap.length);
/*
* A last block of 2^32-1 means that the true capacity is over 2TB,
* and we need to issue the long READ CAPACITY to get the real
* capacity. Otherwise, we're all set.
*/
if (*maxsector != 0xffffffff) {
retval = 0;
goto bailout;
}
scsi_read_capacity_16(&ccb->csio,
/*retries*/ probe_retry_count,
/*cbfcnp*/ NULL,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
/*lba*/ 0,
/*reladdr*/ 0,
/*pmi*/ 0,
(uint8_t *)&rcaplong,
sizeof(rcaplong),
/*sense_len*/ SSD_FULL_SIZE,
/*timeout*/ probe_timeout ? probe_timeout : 5000);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAMDD_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(cam_dev, ccb) < 0) {
warn("error sending READ CAPACITY (16) command");
cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
goto bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
goto bailout;
}
*maxsector = scsi_8btou64(rcaplong.addr);
*block_len = scsi_4btoul(rcaplong.length);
retval = 0;
bailout:
return retval;
}
int
camdd_probe_pass_nvme(struct cam_device *cam_dev, union ccb *ccb,
camdd_argmask arglist, int probe_retry_count,
int probe_timeout, uint64_t *maxsector, uint32_t *block_len)
{
struct nvme_command *nc = NULL;
struct nvme_namespace_data nsdata;
uint32_t nsid = cam_dev->target_lun & UINT32_MAX;
uint8_t format = 0, lbads = 0;
int retval = -1;
if (ccb == NULL) {
warnx("%s: error passed ccb is NULL", __func__);
goto bailout;
}
CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->nvmeio);
/* Send Identify Namespace to get block size and capacity */
nc = &ccb->nvmeio.cmd;
nc->opc = NVME_OPC_IDENTIFY;
nc->nsid = nsid;
nc->cdw10 = 0; /* Identify Namespace is CNS = 0 */
cam_fill_nvmeadmin(&ccb->nvmeio,
/*retries*/ probe_retry_count,
/*cbfcnp*/ NULL,
CAM_DIR_IN,
(uint8_t *)&nsdata,
sizeof(nsdata),
probe_timeout);
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (arglist & CAMDD_ARG_ERR_RECOVER)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (cam_send_ccb(cam_dev, ccb) < 0) {
warn("error sending Identify Namespace command");
cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
goto bailout;
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP) {
cam_error_print(cam_dev, ccb, CAM_ESF_ALL, CAM_EPF_ALL, stderr);
goto bailout;
}
*maxsector = nsdata.nsze;
/* The LBA Data Size (LBADS) is reported as a power of 2 */
format = nsdata.flbas & NVME_NS_DATA_FLBAS_FORMAT_MASK;
lbads = (nsdata.lbaf[format] >> NVME_NS_DATA_LBAF_LBADS_SHIFT) &
NVME_NS_DATA_LBAF_LBADS_MASK;
*block_len = 1 << lbads;
retval = 0;
bailout:
return retval;
}
/*
* Need to implement this. Do a basic probe:
* - Check the inquiry data, make sure we're talking to a device that we
* can reasonably expect to talk to -- direct, RBC, CD, WORM.
* - Send a test unit ready, make sure the device is available.
* - Get the capacity and block size.
*/
struct camdd_dev *
camdd_probe_pass(struct cam_device *cam_dev, struct camdd_io_opts *io_opts,
camdd_argmask arglist, int probe_retry_count,
int probe_timeout, int io_retry_count, int io_timeout)
{
union ccb *ccb;
uint64_t maxsector = 0;
uint32_t cpi_maxio, max_iosize, pass_numblocks;
uint32_t block_len = 0;
struct camdd_dev *dev = NULL;
struct camdd_dev_pass *pass_dev;
struct kevent ke;
struct ccb_getdev cgd;
int retval;
int scsi_dev_type = T_NODEVICE;
if ((retval = camdd_get_cgd(cam_dev, &cgd)) != 0) {
warnx("%s: error retrieving CGD", __func__);
return NULL;
}
ccb = cam_getccb(cam_dev);
if (ccb == NULL) {
warnx("%s: error allocating ccb", __func__);
goto bailout;
}
switch (cgd.protocol) {
case PROTO_SCSI:
scsi_dev_type = SID_TYPE(&cam_dev->inq_data);
/*
* For devices that support READ CAPACITY, we'll attempt to get the
* capacity. Otherwise, we really don't support tape or other
* devices via SCSI passthrough, so just return an error in that case.
*/
switch (scsi_dev_type) {
case T_DIRECT:
case T_WORM:
case T_CDROM:
case T_OPTICAL:
case T_RBC:
case T_ZBC_HM:
break;
default:
errx(1, "Unsupported SCSI device type %d", scsi_dev_type);
break; /*NOTREACHED*/
}
if ((retval = camdd_probe_pass_scsi(cam_dev, ccb, probe_retry_count,
arglist, probe_timeout, &maxsector,
&block_len))) {
goto bailout;
}
break;
case PROTO_NVME:
if ((retval = camdd_probe_pass_nvme(cam_dev, ccb, probe_retry_count,
arglist, probe_timeout, &maxsector,
&block_len))) {
goto bailout;
}
break;
default:
errx(1, "Unsupported PROTO type %d", cgd.protocol);
break; /*NOTREACHED*/
}
if (block_len == 0) {
warnx("Sector size for %s%u is 0, cannot continue",
cam_dev->device_name, cam_dev->dev_unit_num);
goto bailout_error;
}
CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->cpi);
ccb->ccb_h.func_code = XPT_PATH_INQ;
ccb->ccb_h.flags = CAM_DIR_NONE;
ccb->ccb_h.retry_count = 1;
if (cam_send_ccb(cam_dev, ccb) < 0) {
warn("error sending XPT_PATH_INQ CCB");
cam_error_print(cam_dev, ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
goto bailout;
}
EV_SET(&ke, cam_dev->fd, EVFILT_READ, EV_ADD|EV_ENABLE, 0, 0, 0);
dev = camdd_alloc_dev(CAMDD_DEV_PASS, &ke, 1, io_retry_count,
io_timeout);
if (dev == NULL)
goto bailout;
pass_dev = &dev->dev_spec.pass;
pass_dev->scsi_dev_type = scsi_dev_type;
pass_dev->protocol = cgd.protocol;
pass_dev->dev = cam_dev;
pass_dev->max_sector = maxsector;
pass_dev->block_len = block_len;
pass_dev->cpi_maxio = ccb->cpi.maxio;
snprintf(dev->device_name, sizeof(dev->device_name), "%s%u",
pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
dev->sector_size = block_len;
dev->max_sector = maxsector;
/*
* Determine the optimal blocksize to use for this device.
*/
/*
* If the controller has not specified a maximum I/O size,
* just go with 128K as a somewhat conservative value.
*/
if (pass_dev->cpi_maxio == 0)
cpi_maxio = 131072;
else
cpi_maxio = pass_dev->cpi_maxio;
/*
* If the controller has a large maximum I/O size, limit it
* to something smaller so that the kernel doesn't have trouble
* allocating buffers to copy data in and out for us.
* XXX KDM this is until we have unmapped I/O support in the kernel.
*/
max_iosize = min(cpi_maxio, CAMDD_PASS_MAX_BLOCK);
/*
* If we weren't able to get a block size for some reason,
* default to 512 bytes.
*/
block_len = pass_dev->block_len;
if (block_len == 0)
block_len = 512;
/*
* Figure out how many blocksize chunks will fit in the
* maximum I/O size.
*/
pass_numblocks = max_iosize / block_len;
/*
* And finally, multiple the number of blocks by the LBA
* length to get our maximum block size;
*/
dev->blocksize = pass_numblocks * block_len;
if (io_opts->blocksize != 0) {
if ((io_opts->blocksize % dev->sector_size) != 0) {
warnx("Blocksize %ju for %s is not a multiple of "
"sector size %u", (uintmax_t)io_opts->blocksize,
dev->device_name, dev->sector_size);
goto bailout_error;
}
dev->blocksize = io_opts->blocksize;
}
dev->target_queue_depth = CAMDD_PASS_DEFAULT_DEPTH;
if (io_opts->queue_depth != 0)
dev->target_queue_depth = io_opts->queue_depth;
if (io_opts->offset != 0) {
if (io_opts->offset > (dev->max_sector * dev->sector_size)) {
warnx("Offset %ju is past the end of device %s",
io_opts->offset, dev->device_name);
goto bailout_error;
}
#if 0
else if ((io_opts->offset % dev->sector_size) != 0) {
warnx("Offset %ju for %s is not a multiple of the "
"sector size %u", io_opts->offset,
dev->device_name, dev->sector_size);
goto bailout_error;
}
dev->start_offset_bytes = io_opts->offset;
#endif
}
dev->min_cmd_size = io_opts->min_cmd_size;
dev->run = camdd_pass_run;
dev->fetch = camdd_pass_fetch;
bailout:
cam_freeccb(ccb);
return (dev);
bailout_error:
cam_freeccb(ccb);
camdd_free_dev(dev);
return (NULL);
}
void
nvme_read_write(struct ccb_nvmeio *nvmeio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint32_t nsid, int readop, uint64_t lba,
uint32_t block_count, uint8_t *data_ptr, uint32_t dxfer_len,
uint32_t timeout)
{
struct nvme_command *nc = &nvmeio->cmd;
nc->opc = readop ? NVME_OPC_READ : NVME_OPC_WRITE;
nc->nsid = nsid;
nc->cdw10 = lba & UINT32_MAX;
nc->cdw11 = lba >> 32;
/* NLB (bits 15:0) is a zero based value */
nc->cdw12 = (block_count - 1) & UINT16_MAX;
cam_fill_nvmeio(nvmeio,
retries,
cbfcnp,
readop ? CAM_DIR_IN : CAM_DIR_OUT,
data_ptr,
dxfer_len,
timeout);
}
void *
camdd_worker(void *arg)
{
struct camdd_dev *dev = arg;
struct camdd_buf *buf;
struct timespec ts, *kq_ts;
ts.tv_sec = 0;
ts.tv_nsec = 0;
pthread_mutex_lock(&dev->mutex);
dev->flags |= CAMDD_DEV_FLAG_ACTIVE;
for (;;) {
struct kevent ke;
int retval = 0;
/*
* XXX KDM check the reorder queue depth?
*/
if (dev->write_dev == 0) {
uint32_t our_depth, peer_depth, peer_bytes, our_bytes;
uint32_t target_depth = dev->target_queue_depth;
uint32_t peer_target_depth =
dev->peer_dev->target_queue_depth;
uint32_t peer_blocksize = dev->peer_dev->blocksize;
camdd_get_depth(dev, &our_depth, &peer_depth,
&our_bytes, &peer_bytes);
#if 0
while (((our_depth < target_depth)
&& (peer_depth < peer_target_depth))
|| ((peer_bytes + our_bytes) <
(peer_blocksize * 2))) {
#endif
while (((our_depth + peer_depth) <
(target_depth + peer_target_depth))
|| ((peer_bytes + our_bytes) <
(peer_blocksize * 3))) {
retval = camdd_queue(dev, NULL);
if (retval == 1)
break;
else if (retval != 0) {
error_exit = 1;
goto bailout;
}
camdd_get_depth(dev, &our_depth, &peer_depth,
&our_bytes, &peer_bytes);
}
}
/*
* See if we have any I/O that is ready to execute.
*/
buf = STAILQ_FIRST(&dev->run_queue);
if (buf != NULL) {
while (dev->target_queue_depth > dev->cur_active_io) {
retval = dev->run(dev);
if (retval == -1) {
dev->flags |= CAMDD_DEV_FLAG_EOF;
error_exit = 1;
break;
} else if (retval != 0) {
break;
}
}
}
/*
* We've reached EOF, or our partner has reached EOF.
*/
if ((dev->flags & CAMDD_DEV_FLAG_EOF)
|| (dev->flags & CAMDD_DEV_FLAG_PEER_EOF)) {
if (dev->write_dev != 0) {
if ((STAILQ_EMPTY(&dev->work_queue))
&& (dev->num_run_queue == 0)
&& (dev->cur_active_io == 0)) {
goto bailout;
}
} else {
/*
* If we're the reader, and the writer
* got EOF, he is already done. If we got
* the EOF, then we need to wait until
* everything is flushed out for the writer.
*/
if (dev->flags & CAMDD_DEV_FLAG_PEER_EOF) {
goto bailout;
} else if ((dev->num_peer_work_queue == 0)
&& (dev->num_peer_done_queue == 0)
&& (dev->cur_active_io == 0)
&& (dev->num_run_queue == 0)) {
goto bailout;
}
}
/*
* XXX KDM need to do something about the pending
* queue and cleanup resources.
*/
}
if ((dev->write_dev == 0)
&& (dev->cur_active_io == 0)
&& (dev->peer_bytes_queued < dev->peer_dev->blocksize))
kq_ts = &ts;
else
kq_ts = NULL;
/*
* Run kevent to see if there are events to process.
*/
pthread_mutex_unlock(&dev->mutex);
retval = kevent(dev->kq, NULL, 0, &ke, 1, kq_ts);
pthread_mutex_lock(&dev->mutex);
if (retval == -1) {
warn("%s: error returned from kevent",__func__);
goto bailout;
} else if (retval != 0) {
switch (ke.filter) {
case EVFILT_READ:
if (dev->fetch != NULL) {
retval = dev->fetch(dev);
if (retval == -1) {
error_exit = 1;
goto bailout;
}
}
break;
case EVFILT_SIGNAL:
/*
* We register for this so we don't get
* an error as a result of a SIGINFO or a
* SIGINT. It will actually get handled
* by the signal handler. If we get a
* SIGINT, bail out without printing an
* error message. Any other signals
* will result in the error message above.
*/
if (ke.ident == SIGINT)
goto bailout;
break;
case EVFILT_USER:
retval = 0;
/*
* Check to see if the other thread has
* queued any I/O for us to do. (In this
* case we're the writer.)
*/
for (buf = STAILQ_FIRST(&dev->work_queue);
buf != NULL;
buf = STAILQ_FIRST(&dev->work_queue)) {
STAILQ_REMOVE_HEAD(&dev->work_queue,
work_links);
retval = camdd_queue(dev, buf);
/*
* We keep going unless we get an
* actual error. If we get EOF, we
* still want to remove the buffers
* from the queue and send the back
* to the reader thread.
*/
if (retval == -1) {
error_exit = 1;
goto bailout;
} else
retval = 0;
}
/*
* Next check to see if the other thread has
* queued any completed buffers back to us.
* (In this case we're the reader.)
*/
for (buf = STAILQ_FIRST(&dev->peer_done_queue);
buf != NULL;
buf = STAILQ_FIRST(&dev->peer_done_queue)){
STAILQ_REMOVE_HEAD(
&dev->peer_done_queue, work_links);
dev->num_peer_done_queue--;
camdd_peer_done(buf);
}
break;
default:
warnx("%s: unknown kevent filter %d",
__func__, ke.filter);
break;
}
}
}
bailout:
dev->flags &= ~CAMDD_DEV_FLAG_ACTIVE;
/* XXX KDM cleanup resources here? */
pthread_mutex_unlock(&dev->mutex);
need_exit = 1;
sem_post(&camdd_sem);
return (NULL);
}
/*
* Simplistic translation of CCB status to our local status.
*/
camdd_buf_status
camdd_ccb_status(union ccb *ccb, int protocol)
{
camdd_buf_status status = CAMDD_STATUS_NONE;
cam_status ccb_status;
ccb_status = ccb->ccb_h.status & CAM_STATUS_MASK;
switch (protocol) {
case PROTO_SCSI:
switch (ccb_status) {
case CAM_REQ_CMP: {
if (ccb->csio.resid == 0) {
status = CAMDD_STATUS_OK;
} else if (ccb->csio.dxfer_len > ccb->csio.resid) {
status = CAMDD_STATUS_SHORT_IO;
} else {
status = CAMDD_STATUS_EOF;
}
break;
}
case CAM_SCSI_STATUS_ERROR: {
switch (ccb->csio.scsi_status) {
case SCSI_STATUS_OK:
case SCSI_STATUS_COND_MET:
case SCSI_STATUS_INTERMED:
case SCSI_STATUS_INTERMED_COND_MET:
status = CAMDD_STATUS_OK;
break;
case SCSI_STATUS_CMD_TERMINATED:
case SCSI_STATUS_CHECK_COND:
case SCSI_STATUS_QUEUE_FULL:
case SCSI_STATUS_BUSY:
case SCSI_STATUS_RESERV_CONFLICT:
default:
status = CAMDD_STATUS_ERROR;
break;
}
break;
}
default:
status = CAMDD_STATUS_ERROR;
break;
}
break;
case PROTO_NVME:
switch (ccb_status) {
case CAM_REQ_CMP:
status = CAMDD_STATUS_OK;
break;
default:
status = CAMDD_STATUS_ERROR;
break;
}
break;
default:
status = CAMDD_STATUS_ERROR;
break;
}
return (status);
}
/*
* Queue a buffer to our peer's work thread for writing.
*
* Returns 0 for success, -1 for failure, 1 if the other thread exited.
*/
int
camdd_queue_peer_buf(struct camdd_dev *dev, struct camdd_buf *buf)
{
struct kevent ke;
STAILQ_HEAD(, camdd_buf) local_queue;
struct camdd_buf *buf1, *buf2;
struct camdd_buf_data *data = NULL;
uint64_t peer_bytes_queued = 0;
int active = 1;
int retval = 0;
STAILQ_INIT(&local_queue);
/*
* Since we're the reader, we need to queue our I/O to the writer
* in sequential order in order to make sure it gets written out
* in sequential order.
*
* Check the next expected I/O starting offset. If this doesn't
* match, put it on the reorder queue.
*/
if ((buf->lba * dev->sector_size) != dev->next_completion_pos_bytes) {
/*
* If there is nothing on the queue, there is no sorting
* needed.
*/
if (STAILQ_EMPTY(&dev->reorder_queue)) {
STAILQ_INSERT_TAIL(&dev->reorder_queue, buf, links);
dev->num_reorder_queue++;
goto bailout;
}
/*
* Sort in ascending order by starting LBA. There should
* be no identical LBAs.
*/
for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
buf1 = buf2) {
buf2 = STAILQ_NEXT(buf1, links);
if (buf->lba < buf1->lba) {
/*
* If we're less than the first one, then
* we insert at the head of the list
* because this has to be the first element
* on the list.
*/
STAILQ_INSERT_HEAD(&dev->reorder_queue,
buf, links);
dev->num_reorder_queue++;
break;
} else if (buf->lba > buf1->lba) {
if (buf2 == NULL) {
STAILQ_INSERT_TAIL(&dev->reorder_queue,
buf, links);
dev->num_reorder_queue++;
break;
} else if (buf->lba < buf2->lba) {
STAILQ_INSERT_AFTER(&dev->reorder_queue,
buf1, buf, links);
dev->num_reorder_queue++;
break;
}
} else {
errx(1, "Found buffers with duplicate LBA %ju!",
buf->lba);
}
}
goto bailout;
} else {
/*
* We're the next expected I/O completion, so put ourselves
* on the local queue to be sent to the writer. We use
* work_links here so that we can queue this to the
* peer_work_queue before taking the buffer off of the
* local_queue.
*/
dev->next_completion_pos_bytes += buf->len;
STAILQ_INSERT_TAIL(&local_queue, buf, work_links);
/*
* Go through the reorder queue looking for more sequential
* I/O and add it to the local queue.
*/
for (buf1 = STAILQ_FIRST(&dev->reorder_queue); buf1 != NULL;
buf1 = STAILQ_FIRST(&dev->reorder_queue)) {
/*
* As soon as we see an I/O that is out of sequence,
* we're done.
*/
if ((buf1->lba * dev->sector_size) !=
dev->next_completion_pos_bytes)
break;
STAILQ_REMOVE_HEAD(&dev->reorder_queue, links);
dev->num_reorder_queue--;
STAILQ_INSERT_TAIL(&local_queue, buf1, work_links);
dev->next_completion_pos_bytes += buf1->len;
}
}
/*
* Setup the event to let the other thread know that it has work
* pending.
*/
EV_SET(&ke, (uintptr_t)&dev->peer_dev->work_queue, EVFILT_USER, 0,
NOTE_TRIGGER, 0, NULL);
/*
* Put this on our shadow queue so that we know what we've queued
* to the other thread.
*/
STAILQ_FOREACH_SAFE(buf1, &local_queue, work_links, buf2) {
if (buf1->buf_type != CAMDD_BUF_DATA) {
errx(1, "%s: should have a data buffer, not an "
"indirect buffer", __func__);
}
data = &buf1->buf_type_spec.data;
/*
* We only need to send one EOF to the writer, and don't
* need to continue sending EOFs after that.
*/
if (buf1->status == CAMDD_STATUS_EOF) {
if (dev->flags & CAMDD_DEV_FLAG_EOF_SENT) {
STAILQ_REMOVE(&local_queue, buf1, camdd_buf,
work_links);
camdd_release_buf(buf1);
retval = 1;
continue;
}
dev->flags |= CAMDD_DEV_FLAG_EOF_SENT;
}
STAILQ_INSERT_TAIL(&dev->peer_work_queue, buf1, links);
peer_bytes_queued += (data->fill_len - data->resid);
dev->peer_bytes_queued += (data->fill_len - data->resid);
dev->num_peer_work_queue++;
}
if (STAILQ_FIRST(&local_queue) == NULL)
goto bailout;
/*
* Drop our mutex and pick up the other thread's mutex. We need to
* do this to avoid deadlocks.
*/
pthread_mutex_unlock(&dev->mutex);
pthread_mutex_lock(&dev->peer_dev->mutex);
if (dev->peer_dev->flags & CAMDD_DEV_FLAG_ACTIVE) {
/*
* Put the buffers on the other thread's incoming work queue.
*/
for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
buf1 = STAILQ_FIRST(&local_queue)) {
STAILQ_REMOVE_HEAD(&local_queue, work_links);
STAILQ_INSERT_TAIL(&dev->peer_dev->work_queue, buf1,
work_links);
}
/*
* Send an event to the other thread's kqueue to let it know
* that there is something on the work queue.
*/
retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
if (retval == -1)
warn("%s: unable to add peer work_queue kevent",
__func__);
else
retval = 0;
} else
active = 0;
pthread_mutex_unlock(&dev->peer_dev->mutex);
pthread_mutex_lock(&dev->mutex);
/*
* If the other side isn't active, run through the queue and
* release all of the buffers.
*/
if (active == 0) {
for (buf1 = STAILQ_FIRST(&local_queue); buf1 != NULL;
buf1 = STAILQ_FIRST(&local_queue)) {
STAILQ_REMOVE_HEAD(&local_queue, work_links);
STAILQ_REMOVE(&dev->peer_work_queue, buf1, camdd_buf,
links);
dev->num_peer_work_queue--;
camdd_release_buf(buf1);
}
dev->peer_bytes_queued -= peer_bytes_queued;
retval = 1;
}
bailout:
return (retval);
}
/*
* Return a buffer to the reader thread when we have completed writing it.
*/
int
camdd_complete_peer_buf(struct camdd_dev *dev, struct camdd_buf *peer_buf)
{
struct kevent ke;
int retval = 0;
/*
* Setup the event to let the other thread know that we have
* completed a buffer.
*/
EV_SET(&ke, (uintptr_t)&dev->peer_dev->peer_done_queue, EVFILT_USER, 0,
NOTE_TRIGGER, 0, NULL);
/*
* Drop our lock and acquire the other thread's lock before
* manipulating
*/
pthread_mutex_unlock(&dev->mutex);
pthread_mutex_lock(&dev->peer_dev->mutex);
/*
* Put the buffer on the reader thread's peer done queue now that
* we have completed it.
*/
STAILQ_INSERT_TAIL(&dev->peer_dev->peer_done_queue, peer_buf,
work_links);
dev->peer_dev->num_peer_done_queue++;
/*
* Send an event to the peer thread to let it know that we've added
* something to its peer done queue.
*/
retval = kevent(dev->peer_dev->kq, &ke, 1, NULL, 0, NULL);
if (retval == -1)
warn("%s: unable to add peer_done_queue kevent", __func__);
else
retval = 0;
/*
* Drop the other thread's lock and reacquire ours.
*/
pthread_mutex_unlock(&dev->peer_dev->mutex);
pthread_mutex_lock(&dev->mutex);
return (retval);
}
/*
* Free a buffer that was written out by the writer thread and returned to
* the reader thread.
*/
void
camdd_peer_done(struct camdd_buf *buf)
{
struct camdd_dev *dev;
struct camdd_buf_data *data;
dev = buf->dev;
if (buf->buf_type != CAMDD_BUF_DATA) {
errx(1, "%s: should have a data buffer, not an "
"indirect buffer", __func__);
}
data = &buf->buf_type_spec.data;
STAILQ_REMOVE(&dev->peer_work_queue, buf, camdd_buf, links);
dev->num_peer_work_queue--;
dev->peer_bytes_queued -= (data->fill_len - data->resid);
if (buf->status == CAMDD_STATUS_EOF)
dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
}
/*
* Assumes caller holds the lock for this device.
*/
void
camdd_complete_buf(struct camdd_dev *dev, struct camdd_buf *buf,
int *error_count)
{
int retval = 0;
/*
* If we're the reader, we need to send the completed I/O
* to the writer. If we're the writer, we need to just
* free up resources, or let the reader know if we've
* encountered an error.
*/
if (dev->write_dev == 0) {
retval = camdd_queue_peer_buf(dev, buf);
if (retval != 0)
(*error_count)++;
} else {
struct camdd_buf *tmp_buf, *next_buf;
STAILQ_FOREACH_SAFE(tmp_buf, &buf->src_list, src_links,
next_buf) {
struct camdd_buf *src_buf;
struct camdd_buf_indirect *indirect;
STAILQ_REMOVE(&buf->src_list, tmp_buf,
camdd_buf, src_links);
tmp_buf->status = buf->status;
if (tmp_buf->buf_type == CAMDD_BUF_DATA) {
camdd_complete_peer_buf(dev, tmp_buf);
continue;
}
indirect = &tmp_buf->buf_type_spec.indirect;
src_buf = indirect->src_buf;
src_buf->refcount--;
/*
* XXX KDM we probably need to account for
* exactly how many bytes we were able to
* write. Allocate the residual to the
* first N buffers? Or just track the
* number of bytes written? Right now the reader
* doesn't do anything with a residual.
*/
src_buf->status = buf->status;
if (src_buf->refcount <= 0)
camdd_complete_peer_buf(dev, src_buf);
STAILQ_INSERT_TAIL(&dev->free_indirect_queue,
tmp_buf, links);
}
STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
}
}
/*
* Fetch all completed commands from the pass(4) device.
*
* Returns the number of commands received, or -1 if any of the commands
* completed with an error. Returns 0 if no commands are available.
*/
int
camdd_pass_fetch(struct camdd_dev *dev)
{
struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
union ccb ccb;
int retval = 0, num_fetched = 0, error_count = 0;
pthread_mutex_unlock(&dev->mutex);
/*
* XXX KDM we don't distinguish between EFAULT and ENOENT.
*/
while ((retval = ioctl(pass_dev->dev->fd, CAMIOGET, &ccb)) != -1) {
struct camdd_buf *buf;
struct camdd_buf_data *data;
cam_status ccb_status;
union ccb *buf_ccb;
buf = ccb.ccb_h.ccb_buf;
data = &buf->buf_type_spec.data;
buf_ccb = &data->ccb;
num_fetched++;
/*
* Copy the CCB back out so we get status, sense data, etc.
*/
bcopy(&ccb, buf_ccb, sizeof(ccb));
pthread_mutex_lock(&dev->mutex);
/*
* We're now done, so take this off the active queue.
*/
STAILQ_REMOVE(&dev->active_queue, buf, camdd_buf, links);
dev->cur_active_io--;
ccb_status = ccb.ccb_h.status & CAM_STATUS_MASK;
if (ccb_status != CAM_REQ_CMP) {
cam_error_print(pass_dev->dev, &ccb, CAM_ESF_ALL,
CAM_EPF_ALL, stderr);
}
switch (pass_dev->protocol) {
case PROTO_SCSI:
data->resid = ccb.csio.resid;
dev->bytes_transferred += (ccb.csio.dxfer_len - ccb.csio.resid);
break;
case PROTO_NVME:
data->resid = 0;
dev->bytes_transferred += ccb.nvmeio.dxfer_len;
break;
default:
return -1;
break;
}
if (buf->status == CAMDD_STATUS_NONE)
buf->status = camdd_ccb_status(&ccb, pass_dev->protocol);
if (buf->status == CAMDD_STATUS_ERROR)
error_count++;
else if (buf->status == CAMDD_STATUS_EOF) {
/*
* Once we queue this buffer to our partner thread,
* he will know that we've hit EOF.
*/
dev->flags |= CAMDD_DEV_FLAG_EOF;
}
camdd_complete_buf(dev, buf, &error_count);
/*
* Unlock in preparation for the ioctl call.
*/
pthread_mutex_unlock(&dev->mutex);
}
pthread_mutex_lock(&dev->mutex);
if (error_count > 0)
return (-1);
else
return (num_fetched);
}
/*
* Returns -1 for error, 0 for success/continue, and 1 for resource
* shortage/stop processing.
*/
int
camdd_file_run(struct camdd_dev *dev)
{
struct camdd_dev_file *file_dev = &dev->dev_spec.file;
struct camdd_buf_data *data;
struct camdd_buf *buf;
off_t io_offset;
int retval = 0, write_dev = dev->write_dev;
int error_count = 0, no_resources = 0, double_buf_needed = 0;
uint32_t num_sectors = 0, db_len = 0;
buf = STAILQ_FIRST(&dev->run_queue);
if (buf == NULL) {
no_resources = 1;
goto bailout;
} else if ((dev->write_dev == 0)
&& (dev->flags & (CAMDD_DEV_FLAG_EOF |
CAMDD_DEV_FLAG_EOF_SENT))) {
STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
dev->num_run_queue--;
buf->status = CAMDD_STATUS_EOF;
error_count++;
goto bailout;
}
/*
* If we're writing, we need to go through the source buffer list
* and create an S/G list.
*/
if (write_dev != 0) {
retval = camdd_buf_sg_create(buf, /*iovec*/ 1,
dev->sector_size, &num_sectors, &double_buf_needed);
if (retval != 0) {
no_resources = 1;
goto bailout;
}
}
STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
dev->num_run_queue--;
data = &buf->buf_type_spec.data;
/*
* pread(2) and pwrite(2) offsets are byte offsets.
*/
io_offset = buf->lba * dev->sector_size;
/*
* Unlock the mutex while we read or write.
*/
pthread_mutex_unlock(&dev->mutex);
/*
* Note that we don't need to double buffer if we're the reader
* because in that case, we have allocated a single buffer of
* sufficient size to do the read. This copy is necessary on
* writes because if one of the components of the S/G list is not
* a sector size multiple, the kernel will reject the write. This
* is unfortunate but not surprising. So this will make sure that
* we're using a single buffer that is a multiple of the sector size.
*/
if ((double_buf_needed != 0)
&& (data->sg_count > 1)
&& (write_dev != 0)) {
uint32_t cur_offset;
int i;
if (file_dev->tmp_buf == NULL)
file_dev->tmp_buf = calloc(dev->blocksize, 1);
if (file_dev->tmp_buf == NULL) {
buf->status = CAMDD_STATUS_ERROR;
error_count++;
pthread_mutex_lock(&dev->mutex);
goto bailout;
}
for (i = 0, cur_offset = 0; i < data->sg_count; i++) {
bcopy(data->iovec[i].iov_base,
&file_dev->tmp_buf[cur_offset],
data->iovec[i].iov_len);
cur_offset += data->iovec[i].iov_len;
}
db_len = cur_offset;
}
if (file_dev->file_flags & CAMDD_FF_CAN_SEEK) {
if (write_dev == 0) {
/*
* XXX KDM is there any way we would need a S/G
* list here?
*/
retval = pread(file_dev->fd, data->buf,
buf->len, io_offset);
} else {
if (double_buf_needed != 0) {
retval = pwrite(file_dev->fd, file_dev->tmp_buf,
db_len, io_offset);
} else if (data->sg_count == 0) {
retval = pwrite(file_dev->fd, data->buf,
data->fill_len, io_offset);
} else {
retval = pwritev(file_dev->fd, data->iovec,
data->sg_count, io_offset);
}
}
} else {
if (write_dev == 0) {
/*
* XXX KDM is there any way we would need a S/G
* list here?
*/
retval = read(file_dev->fd, data->buf, buf->len);
} else {
if (double_buf_needed != 0) {
retval = write(file_dev->fd, file_dev->tmp_buf,
db_len);
} else if (data->sg_count == 0) {
retval = write(file_dev->fd, data->buf,
data->fill_len);
} else {
retval = writev(file_dev->fd, data->iovec,
data->sg_count);
}
}
}
/* We're done, re-acquire the lock */
pthread_mutex_lock(&dev->mutex);
if (retval >= (ssize_t)data->fill_len) {
/*
* If the bytes transferred is more than the request size,
* that indicates an overrun, which should only happen at
* the end of a transfer if we have to round up to a sector
* boundary.
*/
if (buf->status == CAMDD_STATUS_NONE)
buf->status = CAMDD_STATUS_OK;
data->resid = 0;
dev->bytes_transferred += retval;
} else if (retval == -1) {
warn("Error %s %s", (write_dev) ? "writing to" :
"reading from", file_dev->filename);
buf->status = CAMDD_STATUS_ERROR;
data->resid = data->fill_len;
error_count++;
if (dev->debug == 0)
goto bailout;
if ((double_buf_needed != 0)
&& (write_dev != 0)) {
fprintf(stderr, "%s: fd %d, DB buf %p, len %u lba %ju "
"offset %ju\n", __func__, file_dev->fd,
file_dev->tmp_buf, db_len, (uintmax_t)buf->lba,
(uintmax_t)io_offset);
} else if (data->sg_count == 0) {
fprintf(stderr, "%s: fd %d, buf %p, len %u, lba %ju "
"offset %ju\n", __func__, file_dev->fd, data->buf,
data->fill_len, (uintmax_t)buf->lba,
(uintmax_t)io_offset);
} else {
int i;
fprintf(stderr, "%s: fd %d, len %u, lba %ju "
"offset %ju\n", __func__, file_dev->fd,
data->fill_len, (uintmax_t)buf->lba,
(uintmax_t)io_offset);
for (i = 0; i < data->sg_count; i++) {
fprintf(stderr, "index %d ptr %p len %zu\n",
i, data->iovec[i].iov_base,
data->iovec[i].iov_len);
}
}
} else if (retval == 0) {
buf->status = CAMDD_STATUS_EOF;
if (dev->debug != 0)
printf("%s: got EOF from %s!\n", __func__,
file_dev->filename);
data->resid = data->fill_len;
error_count++;
} else if (retval < (ssize_t)data->fill_len) {
if (buf->status == CAMDD_STATUS_NONE)
buf->status = CAMDD_STATUS_SHORT_IO;
data->resid = data->fill_len - retval;
dev->bytes_transferred += retval;
}
bailout:
if (buf != NULL) {
if (buf->status == CAMDD_STATUS_EOF) {
struct camdd_buf *buf2;
dev->flags |= CAMDD_DEV_FLAG_EOF;
STAILQ_FOREACH(buf2, &dev->run_queue, links)
buf2->status = CAMDD_STATUS_EOF;
}
camdd_complete_buf(dev, buf, &error_count);
}
if (error_count != 0)
return (-1);
else if (no_resources != 0)
return (1);
else
return (0);
}
/*
* Execute one command from the run queue. Returns 0 for success, 1 for
* stop processing, and -1 for error.
*/
int
camdd_pass_run(struct camdd_dev *dev)
{
struct camdd_buf *buf = NULL;
struct camdd_dev_pass *pass_dev = &dev->dev_spec.pass;
struct camdd_buf_data *data;
uint32_t num_blocks, sectors_used = 0;
union ccb *ccb;
int retval = 0, is_write = dev->write_dev;
int double_buf_needed = 0;
buf = STAILQ_FIRST(&dev->run_queue);
if (buf == NULL) {
retval = 1;
goto bailout;
}
/*
* If we're writing, we need to go through the source buffer list
* and create an S/G list.
*/
if (is_write != 0) {
retval = camdd_buf_sg_create(buf, /*iovec*/ 0,dev->sector_size,
&sectors_used, &double_buf_needed);
if (retval != 0) {
retval = -1;
goto bailout;
}
}
STAILQ_REMOVE(&dev->run_queue, buf, camdd_buf, links);
dev->num_run_queue--;
data = &buf->buf_type_spec.data;
/*
* In almost every case the number of blocks should be the device
* block size. The exception may be at the end of an I/O stream
* for a partial block or at the end of a device.
*/
if (is_write != 0)
num_blocks = sectors_used;
else
num_blocks = data->fill_len / pass_dev->block_len;
ccb = &data->ccb;
switch (pass_dev->protocol) {
case PROTO_SCSI:
CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->csio);
scsi_read_write(&ccb->csio,
/*retries*/ dev->retry_count,
/*cbfcnp*/ NULL,
/*tag_action*/ MSG_SIMPLE_Q_TAG,
/*readop*/ (dev->write_dev == 0) ? SCSI_RW_READ :
SCSI_RW_WRITE,
/*byte2*/ 0,
/*minimum_cmd_size*/ dev->min_cmd_size,
/*lba*/ buf->lba,
/*block_count*/ num_blocks,
/*data_ptr*/ (data->sg_count != 0) ?
(uint8_t *)data->segs : data->buf,
/*dxfer_len*/ (num_blocks * pass_dev->block_len),
/*sense_len*/ SSD_FULL_SIZE,
/*timeout*/ dev->io_timeout);
if (data->sg_count != 0) {
ccb->csio.sglist_cnt = data->sg_count;
}
break;
case PROTO_NVME:
CCB_CLEAR_ALL_EXCEPT_HDR(&ccb->nvmeio);
nvme_read_write(&ccb->nvmeio,
/*retries*/ dev->retry_count,
/*cbfcnp*/ NULL,
/*nsid*/ pass_dev->dev->target_lun & UINT32_MAX,
/*readop*/ dev->write_dev == 0,
/*lba*/ buf->lba,
/*block_count*/ num_blocks,
/*data_ptr*/ (data->sg_count != 0) ?
(uint8_t *)data->segs : data->buf,
/*dxfer_len*/ (num_blocks * pass_dev->block_len),
/*timeout*/ dev->io_timeout);
ccb->nvmeio.sglist_cnt = data->sg_count;
break;
default:
retval = -1;
goto bailout;
}
/* Disable freezing the device queue */
ccb->ccb_h.flags |= CAM_DEV_QFRZDIS;
if (dev->retry_count != 0)
ccb->ccb_h.flags |= CAM_PASS_ERR_RECOVER;
if (data->sg_count != 0) {
ccb->ccb_h.flags |= CAM_DATA_SG;
}
/*
* Store a pointer to the buffer in the CCB. The kernel will
* restore this when we get it back, and we'll use it to identify
* the buffer this CCB came from.
*/
ccb->ccb_h.ccb_buf = buf;
/*
* Unlock our mutex in preparation for issuing the ioctl.
*/
pthread_mutex_unlock(&dev->mutex);
/*
* Queue the CCB to the pass(4) driver.
*/
if (ioctl(pass_dev->dev->fd, CAMIOQUEUE, ccb) == -1) {
pthread_mutex_lock(&dev->mutex);
warn("%s: error sending CAMIOQUEUE ioctl to %s%u", __func__,
pass_dev->dev->device_name, pass_dev->dev->dev_unit_num);
warn("%s: CCB address is %p", __func__, ccb);
retval = -1;
STAILQ_INSERT_TAIL(&dev->free_queue, buf, links);
} else {
pthread_mutex_lock(&dev->mutex);
dev->cur_active_io++;
STAILQ_INSERT_TAIL(&dev->active_queue, buf, links);
}
bailout:
return (retval);
}
int
camdd_get_next_lba_len(struct camdd_dev *dev, uint64_t *lba, ssize_t *len)
{
struct camdd_dev_pass *pass_dev;
uint32_t num_blocks;
int retval = 0;
pass_dev = &dev->dev_spec.pass;
*lba = dev->next_io_pos_bytes / dev->sector_size;
*len = dev->blocksize;
num_blocks = *len / dev->sector_size;
/*
* If max_sector is 0, then we have no set limit. This can happen
* if we're writing to a file in a filesystem, or reading from
* something like /dev/zero.
*/
if ((dev->max_sector != 0)
|| (dev->sector_io_limit != 0)) {
uint64_t max_sector;
if ((dev->max_sector != 0)
&& (dev->sector_io_limit != 0))
max_sector = min(dev->sector_io_limit, dev->max_sector);
else if (dev->max_sector != 0)
max_sector = dev->max_sector;
else
max_sector = dev->sector_io_limit;
/*
* Check to see whether we're starting off past the end of
* the device. If so, we need to just send an EOF
* notification to the writer.
*/
if (*lba > max_sector) {
*len = 0;
retval = 1;
} else if (((*lba + num_blocks) > max_sector + 1)
|| ((*lba + num_blocks) < *lba)) {
/*
* If we get here (but pass the first check), we
* can trim the request length down to go to the
* end of the device.
*/
num_blocks = (max_sector + 1) - *lba;
*len = num_blocks * dev->sector_size;
retval = 1;
}
}
dev->next_io_pos_bytes += *len;
return (retval);
}
/*
* Returns 0 for success, 1 for EOF detected, and -1 for failure.
*/
int
camdd_queue(struct camdd_dev *dev, struct camdd_buf *read_buf)
{
struct camdd_buf *buf = NULL;
struct camdd_buf_data *data;
struct camdd_dev_pass *pass_dev;
size_t new_len;
struct camdd_buf_data *rb_data;
int is_write = dev->write_dev;
int eof_flush_needed = 0;
int retval = 0;
int error;
pass_dev = &dev->dev_spec.pass;
/*
* If we've gotten EOF or our partner has, we should not continue
* queueing I/O. If we're a writer, though, we should continue
* to write any buffers that don't have EOF status.
*/
if ((dev->flags & CAMDD_DEV_FLAG_EOF)
|| ((dev->flags & CAMDD_DEV_FLAG_PEER_EOF)
&& (is_write == 0))) {
/*
* Tell the worker thread that we have seen EOF.
*/
retval = 1;
/*
* If we're the writer, send the buffer back with EOF status.
*/
if (is_write) {
read_buf->status = CAMDD_STATUS_EOF;
error = camdd_complete_peer_buf(dev, read_buf);
}
goto bailout;
}
if (is_write == 0) {
buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
if (buf == NULL) {
retval = -1;
goto bailout;
}
data = &buf->buf_type_spec.data;
retval = camdd_get_next_lba_len(dev, &buf->lba, &buf->len);
if (retval != 0) {
buf->status = CAMDD_STATUS_EOF;
if ((buf->len == 0)
&& ((dev->flags & (CAMDD_DEV_FLAG_EOF_SENT |
CAMDD_DEV_FLAG_EOF_QUEUED)) != 0)) {
camdd_release_buf(buf);
goto bailout;
}
dev->flags |= CAMDD_DEV_FLAG_EOF_QUEUED;
}
data->fill_len = buf->len;
data->src_start_offset = buf->lba * dev->sector_size;
/*
* Put this on the run queue.
*/
STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
dev->num_run_queue++;
/* We're done. */
goto bailout;
}
/*
* Check for new EOF status from the reader.
*/
if ((read_buf->status == CAMDD_STATUS_EOF)
|| (read_buf->status == CAMDD_STATUS_ERROR)) {
dev->flags |= CAMDD_DEV_FLAG_PEER_EOF;
if ((STAILQ_FIRST(&dev->pending_queue) == NULL)
&& (read_buf->len == 0)) {
camdd_complete_peer_buf(dev, read_buf);
retval = 1;
goto bailout;
} else
eof_flush_needed = 1;
}
/*
* See if we have a buffer we're composing with pieces from our
* partner thread.
*/
buf = STAILQ_FIRST(&dev->pending_queue);
if (buf == NULL) {
uint64_t lba;
ssize_t len;
retval = camdd_get_next_lba_len(dev, &lba, &len);
if (retval != 0) {
read_buf->status = CAMDD_STATUS_EOF;
if (len == 0) {
dev->flags |= CAMDD_DEV_FLAG_EOF;
error = camdd_complete_peer_buf(dev, read_buf);
goto bailout;
}
}
/*
* If we don't have a pending buffer, we need to grab a new
* one from the free list or allocate another one.
*/
buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
if (buf == NULL) {
retval = 1;
goto bailout;
}
buf->lba = lba;
buf->len = len;
STAILQ_INSERT_TAIL(&dev->pending_queue, buf, links);
dev->num_pending_queue++;
}
data = &buf->buf_type_spec.data;
rb_data = &read_buf->buf_type_spec.data;
if ((rb_data->src_start_offset != dev->next_peer_pos_bytes)
&& (dev->debug != 0)) {
printf("%s: WARNING: reader offset %#jx != expected offset "
"%#jx\n", __func__, (uintmax_t)rb_data->src_start_offset,
(uintmax_t)dev->next_peer_pos_bytes);
}
dev->next_peer_pos_bytes = rb_data->src_start_offset +
(rb_data->fill_len - rb_data->resid);
new_len = (rb_data->fill_len - rb_data->resid) + data->fill_len;
if (new_len < buf->len) {
/*
* There are three cases here:
* 1. We need more data to fill up a block, so we put
* this I/O on the queue and wait for more I/O.
* 2. We have a pending buffer in the queue that is
* smaller than our blocksize, but we got an EOF. So we
* need to go ahead and flush the write out.
* 3. We got an error.
*/
/*
* Increment our fill length.
*/
data->fill_len += (rb_data->fill_len - rb_data->resid);
/*
* Add the new read buffer to the list for writing.
*/
STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
/* Increment the count */
buf->src_count++;
if (eof_flush_needed == 0) {
/*
* We need to exit, because we don't have enough
* data yet.
*/
goto bailout;
} else {
/*
* Take the buffer off of the pending queue.
*/
STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
links);
dev->num_pending_queue--;
/*
* If we need an EOF flush, but there is no data
* to flush, go ahead and return this buffer.
*/
if (data->fill_len == 0) {
camdd_complete_buf(dev, buf, /*error_count*/0);
retval = 1;
goto bailout;
}
/*
* Put this on the next queue for execution.
*/
STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
dev->num_run_queue++;
}
} else if (new_len == buf->len) {
/*
* We have enough data to completey fill one block,
* so we're ready to issue the I/O.
*/
/*
* Take the buffer off of the pending queue.
*/
STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf, links);
dev->num_pending_queue--;
/*
* Add the new read buffer to the list for writing.
*/
STAILQ_INSERT_TAIL(&buf->src_list, read_buf, src_links);
/* Increment the count */
buf->src_count++;
/*
* Increment our fill length.
*/
data->fill_len += (rb_data->fill_len - rb_data->resid);
/*
* Put this on the next queue for execution.
*/
STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
dev->num_run_queue++;
} else {
struct camdd_buf *idb;
struct camdd_buf_indirect *indirect;
uint32_t len_to_go, cur_offset;
idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
if (idb == NULL) {
retval = 1;
goto bailout;
}
indirect = &idb->buf_type_spec.indirect;
indirect->src_buf = read_buf;
read_buf->refcount++;
indirect->offset = 0;
indirect->start_ptr = rb_data->buf;
/*
* We've already established that there is more
* data in read_buf than we have room for in our
* current write request. So this particular chunk
* of the request should just be the remainder
* needed to fill up a block.
*/
indirect->len = buf->len - (data->fill_len - data->resid);
camdd_buf_add_child(buf, idb);
/*
* This buffer is ready to execute, so we can take
* it off the pending queue and put it on the run
* queue.
*/
STAILQ_REMOVE(&dev->pending_queue, buf, camdd_buf,
links);
dev->num_pending_queue--;
STAILQ_INSERT_TAIL(&dev->run_queue, buf, links);
dev->num_run_queue++;
cur_offset = indirect->offset + indirect->len;
/*
* The resulting I/O would be too large to fit in
* one block. We need to split this I/O into
* multiple pieces. Allocate as many buffers as needed.
*/
for (len_to_go = rb_data->fill_len - rb_data->resid -
indirect->len; len_to_go > 0;) {
struct camdd_buf *new_buf;
struct camdd_buf_data *new_data;
uint64_t lba;
ssize_t len;
retval = camdd_get_next_lba_len(dev, &lba, &len);
if ((retval != 0)
&& (len == 0)) {
/*
* The device has already been marked
* as EOF, and there is no space left.
*/
goto bailout;
}
new_buf = camdd_get_buf(dev, CAMDD_BUF_DATA);
if (new_buf == NULL) {
retval = 1;
goto bailout;
}
new_buf->lba = lba;
new_buf->len = len;
idb = camdd_get_buf(dev, CAMDD_BUF_INDIRECT);
if (idb == NULL) {
retval = 1;
goto bailout;
}
indirect = &idb->buf_type_spec.indirect;
indirect->src_buf = read_buf;
read_buf->refcount++;
indirect->offset = cur_offset;
indirect->start_ptr = rb_data->buf + cur_offset;
indirect->len = min(len_to_go, new_buf->len);
#if 0
if (((indirect->len % dev->sector_size) != 0)
|| ((indirect->offset % dev->sector_size) != 0)) {
warnx("offset %ju len %ju not aligned with "
"sector size %u", indirect->offset,
(uintmax_t)indirect->len, dev->sector_size);
}
#endif
cur_offset += indirect->len;
len_to_go -= indirect->len;
camdd_buf_add_child(new_buf, idb);
new_data = &new_buf->buf_type_spec.data;
if ((new_data->fill_len == new_buf->len)
|| (eof_flush_needed != 0)) {
STAILQ_INSERT_TAIL(&dev->run_queue,
new_buf, links);
dev->num_run_queue++;
} else if (new_data->fill_len < buf->len) {
STAILQ_INSERT_TAIL(&dev->pending_queue,
new_buf, links);
dev->num_pending_queue++;
} else {
warnx("%s: too much data in new "
"buffer!", __func__);
retval = 1;
goto bailout;
}
}
}
bailout:
return (retval);
}
void
camdd_get_depth(struct camdd_dev *dev, uint32_t *our_depth,
uint32_t *peer_depth, uint32_t *our_bytes, uint32_t *peer_bytes)
{
*our_depth = dev->cur_active_io + dev->num_run_queue;
if (dev->num_peer_work_queue >
dev->num_peer_done_queue)
*peer_depth = dev->num_peer_work_queue -
dev->num_peer_done_queue;
else
*peer_depth = 0;
*our_bytes = *our_depth * dev->blocksize;
*peer_bytes = dev->peer_bytes_queued;
}
void
camdd_sig_handler(int sig)
{
if (sig == SIGINFO)
need_status = 1;
else {
need_exit = 1;
error_exit = 1;
}
sem_post(&camdd_sem);
}
void
camdd_print_status(struct camdd_dev *camdd_dev, struct camdd_dev *other_dev,
struct timespec *start_time)
{
struct timespec done_time;
uint64_t total_ns;
long double mb_sec, total_sec;
int error = 0;
error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &done_time);
if (error != 0) {
warn("Unable to get done time");
return;
}
timespecsub(&done_time, start_time, &done_time);
total_ns = done_time.tv_nsec + (done_time.tv_sec * 1000000000);
total_sec = total_ns;
total_sec /= 1000000000;
fprintf(stderr, "%ju bytes %s %s\n%ju bytes %s %s\n"
"%.4Lf seconds elapsed\n",
(uintmax_t)camdd_dev->bytes_transferred,
(camdd_dev->write_dev == 0) ? "read from" : "written to",
camdd_dev->device_name,
(uintmax_t)other_dev->bytes_transferred,
(other_dev->write_dev == 0) ? "read from" : "written to",
other_dev->device_name, total_sec);
mb_sec = min(other_dev->bytes_transferred,camdd_dev->bytes_transferred);
mb_sec /= 1024 * 1024;
mb_sec *= 1000000000;
mb_sec /= total_ns;
fprintf(stderr, "%.2Lf MB/sec\n", mb_sec);
}
int
camdd_rw(struct camdd_io_opts *io_opts, int num_io_opts, uint64_t max_io,
int retry_count, int timeout)
{
struct cam_device *new_cam_dev = NULL;
struct camdd_dev *devs[2];
struct timespec start_time;
pthread_t threads[2];
int unit = 0;
int error = 0;
int i;
if (num_io_opts != 2) {
warnx("Must have one input and one output path");
error = 1;
goto bailout;
}
bzero(devs, sizeof(devs));
for (i = 0; i < num_io_opts; i++) {
switch (io_opts[i].dev_type) {
case CAMDD_DEV_PASS: {
if (isdigit(io_opts[i].dev_name[0])) {
camdd_argmask new_arglist = CAMDD_ARG_NONE;
int bus = 0, target = 0, lun = 0;
int rv;
/* device specified as bus:target[:lun] */
rv = parse_btl(io_opts[i].dev_name, &bus,
&target, &lun, &new_arglist);
if (rv < 2) {
warnx("numeric device specification "
"must be either bus:target, or "
"bus:target:lun");
error = 1;
goto bailout;
}
/* default to 0 if lun was not specified */
if ((new_arglist & CAMDD_ARG_LUN) == 0) {
lun = 0;
new_arglist |= CAMDD_ARG_LUN;
}
new_cam_dev = cam_open_btl(bus, target, lun,
O_RDWR, NULL);
} else {
char name[30];
if (cam_get_device(io_opts[i].dev_name, name,
sizeof name, &unit) == -1) {
warnx("%s", cam_errbuf);
error = 1;
goto bailout;
}
new_cam_dev = cam_open_spec_device(name, unit,
O_RDWR, NULL);
}
if (new_cam_dev == NULL) {
warnx("%s", cam_errbuf);
error = 1;
goto bailout;
}
devs[i] = camdd_probe_pass(new_cam_dev,
/*io_opts*/ &io_opts[i],
CAMDD_ARG_ERR_RECOVER,
/*probe_retry_count*/ 3,
/*probe_timeout*/ 5000,
/*io_retry_count*/ retry_count,
/*io_timeout*/ timeout);
if (devs[i] == NULL) {
warn("Unable to probe device %s%u",
new_cam_dev->device_name,
new_cam_dev->dev_unit_num);
error = 1;
goto bailout;
}
break;
}
case CAMDD_DEV_FILE: {
int fd = -1;
if (io_opts[i].dev_name[0] == '-') {
if (io_opts[i].write_dev != 0)
fd = STDOUT_FILENO;
else
fd = STDIN_FILENO;
} else {
if (io_opts[i].write_dev != 0) {
fd = open(io_opts[i].dev_name,
O_RDWR | O_CREAT, S_IWUSR |S_IRUSR);
} else {
fd = open(io_opts[i].dev_name,
O_RDONLY);
}
}
if (fd == -1) {
warn("error opening file %s",
io_opts[i].dev_name);
error = 1;
goto bailout;
}
devs[i] = camdd_probe_file(fd, &io_opts[i],
retry_count, timeout);
if (devs[i] == NULL) {
error = 1;
goto bailout;
}
break;
}
default:
warnx("Unknown device type %d (%s)",
io_opts[i].dev_type, io_opts[i].dev_name);
error = 1;
goto bailout;
break; /*NOTREACHED */
}
devs[i]->write_dev = io_opts[i].write_dev;
devs[i]->start_offset_bytes = io_opts[i].offset;
if (max_io != 0) {
devs[i]->sector_io_limit =
(devs[i]->start_offset_bytes /
devs[i]->sector_size) +
(max_io / devs[i]->sector_size) - 1;
}
devs[i]->next_io_pos_bytes = devs[i]->start_offset_bytes;
devs[i]->next_completion_pos_bytes =devs[i]->start_offset_bytes;
}
devs[0]->peer_dev = devs[1];
devs[1]->peer_dev = devs[0];
devs[0]->next_peer_pos_bytes = devs[0]->peer_dev->next_io_pos_bytes;
devs[1]->next_peer_pos_bytes = devs[1]->peer_dev->next_io_pos_bytes;
sem_init(&camdd_sem, /*pshared*/ 0, 0);
signal(SIGINFO, camdd_sig_handler);
signal(SIGINT, camdd_sig_handler);
error = clock_gettime(CLOCK_MONOTONIC_PRECISE, &start_time);
if (error != 0) {
warn("Unable to get start time");
goto bailout;
}
for (i = 0; i < num_io_opts; i++) {
error = pthread_create(&threads[i], NULL, camdd_worker,
(void *)devs[i]);
if (error != 0) {
warnc(error, "pthread_create() failed");
goto bailout;
}
}
for (;;) {
if ((sem_wait(&camdd_sem) == -1)
|| (need_exit != 0)) {
struct kevent ke;
for (i = 0; i < num_io_opts; i++) {
EV_SET(&ke, (uintptr_t)&devs[i]->work_queue,
EVFILT_USER, 0, NOTE_TRIGGER, 0, NULL);
devs[i]->flags |= CAMDD_DEV_FLAG_EOF;
error = kevent(devs[i]->kq, &ke, 1, NULL, 0,
NULL);
if (error == -1)
warn("%s: unable to wake up thread",
__func__);
error = 0;
}
break;
} else if (need_status != 0) {
camdd_print_status(devs[0], devs[1], &start_time);
need_status = 0;
}
}
for (i = 0; i < num_io_opts; i++) {
pthread_join(threads[i], NULL);
}
camdd_print_status(devs[0], devs[1], &start_time);
bailout:
for (i = 0; i < num_io_opts; i++)
camdd_free_dev(devs[i]);
return (error + error_exit);
}
void
usage(void)
{
fprintf(stderr,
"usage: camdd <-i|-o pass=pass0,bs=1M,offset=1M,depth=4>\n"
" <-i|-o file=/tmp/file,bs=512K,offset=1M>\n"
" <-i|-o file=/dev/da0,bs=512K,offset=1M>\n"
" <-i|-o file=/dev/nsa0,bs=512K>\n"
" [-C retry_count][-E][-m max_io_amt][-t timeout_secs][-v][-h]\n"
"Option description\n"
"-i <arg=val> Specify input device/file and parameters\n"
"-o <arg=val> Specify output device/file and parameters\n"
"Input and Output parameters\n"
"pass=name Specify a pass(4) device like pass0 or /dev/pass0\n"
"file=name Specify a file or device, /tmp/foo, /dev/da0, /dev/null\n"
" or - for stdin/stdout\n"
"bs=blocksize Specify blocksize in bytes, or using K, M, G, etc. suffix\n"
"offset=len Specify starting offset in bytes or using K, M, G suffix\n"
" NOTE: offset cannot be specified on tapes, pipes, stdin/out\n"
"depth=N Specify a numeric queue depth. This only applies to pass(4)\n"
"mcs=N Specify a minimum cmd size for pass(4) read/write commands\n"
"Optional arguments\n"
"-C retry_cnt Specify a retry count for pass(4) devices\n"
"-E Enable CAM error recovery for pass(4) devices\n"
"-m max_io Specify the maximum amount to be transferred in bytes or\n"
" using K, G, M, etc. suffixes\n"
"-t timeout Specify the I/O timeout to use with pass(4) devices\n"
"-v Enable verbose error recovery\n"
"-h Print this message\n");
}
int
camdd_parse_io_opts(char *args, int is_write, struct camdd_io_opts *io_opts)
{
char *tmpstr, *tmpstr2;
char *orig_tmpstr = NULL;
int retval = 0;
io_opts->write_dev = is_write;
tmpstr = strdup(args);
if (tmpstr == NULL) {
warn("strdup failed");
retval = 1;
goto bailout;
}
orig_tmpstr = tmpstr;
while ((tmpstr2 = strsep(&tmpstr, ",")) != NULL) {
char *name, *value;
/*
* If the user creates an empty parameter by putting in two
* commas, skip over it and look for the next field.
*/
if (*tmpstr2 == '\0')
continue;
name = strsep(&tmpstr2, "=");
if (*name == '\0') {
warnx("Got empty I/O parameter name");
retval = 1;
goto bailout;
}
value = strsep(&tmpstr2, "=");
if ((value == NULL)
|| (*value == '\0')) {
warnx("Empty I/O parameter value for %s", name);
retval = 1;
goto bailout;
}
if (strncasecmp(name, "file", 4) == 0) {
io_opts->dev_type = CAMDD_DEV_FILE;
io_opts->dev_name = strdup(value);
if (io_opts->dev_name == NULL) {
warn("Error allocating memory");
retval = 1;
goto bailout;
}
} else if (strncasecmp(name, "pass", 4) == 0) {
io_opts->dev_type = CAMDD_DEV_PASS;
io_opts->dev_name = strdup(value);
if (io_opts->dev_name == NULL) {
warn("Error allocating memory");
retval = 1;
goto bailout;
}
} else if ((strncasecmp(name, "bs", 2) == 0)
|| (strncasecmp(name, "blocksize", 9) == 0)) {
retval = expand_number(value, &io_opts->blocksize);
if (retval == -1) {
warn("expand_number(3) failed on %s=%s", name,
value);
retval = 1;
goto bailout;
}
} else if (strncasecmp(name, "depth", 5) == 0) {
char *endptr;
io_opts->queue_depth = strtoull(value, &endptr, 0);
if (*endptr != '\0') {
warnx("invalid queue depth %s", value);
retval = 1;
goto bailout;
}
} else if (strncasecmp(name, "mcs", 3) == 0) {
char *endptr;
io_opts->min_cmd_size = strtol(value, &endptr, 0);
if ((*endptr != '\0')
|| ((io_opts->min_cmd_size > 16)
|| (io_opts->min_cmd_size < 0))) {
warnx("invalid minimum cmd size %s", value);
retval = 1;
goto bailout;
}
} else if (strncasecmp(name, "offset", 6) == 0) {
retval = expand_number(value, &io_opts->offset);
if (retval == -1) {
warn("expand_number(3) failed on %s=%s", name,
value);
retval = 1;
goto bailout;
}
} else if (strncasecmp(name, "debug", 5) == 0) {
char *endptr;
io_opts->debug = strtoull(value, &endptr, 0);
if (*endptr != '\0') {
warnx("invalid debug level %s", value);
retval = 1;
goto bailout;
}
} else {
warnx("Unrecognized parameter %s=%s", name, value);
}
}
bailout:
free(orig_tmpstr);
return (retval);
}
int
main(int argc, char **argv)
{
int c;
camdd_argmask arglist = CAMDD_ARG_NONE;
int timeout = 0, retry_count = 1;
int error = 0;
uint64_t max_io = 0;
struct camdd_io_opts *opt_list = NULL;
if (argc == 1) {
usage();
exit(1);
}
opt_list = calloc(2, sizeof(struct camdd_io_opts));
if (opt_list == NULL) {
warn("Unable to allocate option list");
error = 1;
goto bailout;
}
while ((c = getopt(argc, argv, "C:Ehi:m:o:t:v")) != -1){
switch (c) {
case 'C':
retry_count = strtol(optarg, NULL, 0);
if (retry_count < 0)
errx(1, "retry count %d is < 0",
retry_count);
arglist |= CAMDD_ARG_RETRIES;
break;
case 'E':
arglist |= CAMDD_ARG_ERR_RECOVER;
break;
case 'i':
case 'o':
if (((c == 'i')
&& (opt_list[0].dev_type != CAMDD_DEV_NONE))
|| ((c == 'o')
&& (opt_list[1].dev_type != CAMDD_DEV_NONE))) {
errx(1, "Only one input and output path "
"allowed");
}
error = camdd_parse_io_opts(optarg, (c == 'o') ? 1 : 0,
(c == 'o') ? &opt_list[1] : &opt_list[0]);
if (error != 0)
goto bailout;
break;
case 'm':
error = expand_number(optarg, &max_io);
if (error == -1) {
warn("invalid maximum I/O amount %s", optarg);
error = 1;
goto bailout;
}
break;
case 't':
timeout = strtol(optarg, NULL, 0);
if (timeout < 0)
errx(1, "invalid timeout %d", timeout);
/* Convert the timeout from seconds to ms */
timeout *= 1000;
arglist |= CAMDD_ARG_TIMEOUT;
break;
case 'v':
arglist |= CAMDD_ARG_VERBOSE;
break;
case 'h':
default:
usage();
exit(1);
break; /*NOTREACHED*/
}
}
if ((opt_list[0].dev_type == CAMDD_DEV_NONE)
|| (opt_list[1].dev_type == CAMDD_DEV_NONE))
errx(1, "Must specify both -i and -o");
/*
* Set the timeout if the user hasn't specified one.
*/
if (timeout == 0)
timeout = CAMDD_PASS_RW_TIMEOUT;
error = camdd_rw(opt_list, 2, max_io, retry_count, timeout);
bailout:
free(opt_list);
exit(error);
}