freebsd-skq/sys/compat/linux/linux_misc.c
rwatson f504530d9f o Merge contents of struct pcred into struct ucred. Specifically, add the
real uid, saved uid, real gid, and saved gid to ucred, as well as the
  pcred->pc_uidinfo, which was associated with the real uid, only rename
  it to cr_ruidinfo so as not to conflict with cr_uidinfo, which
  corresponds to the effective uid.
o Remove p_cred from struct proc; add p_ucred to struct proc, replacing
  original macro that pointed.
  p->p_ucred to p->p_cred->pc_ucred.
o Universally update code so that it makes use of ucred instead of pcred,
  p->p_ucred instead of p->p_pcred, cr_ruidinfo instead of p_uidinfo,
  cr_{r,sv}{u,g}id instead of p_*, etc.
o Remove pcred0 and its initialization from init_main.c; initialize
  cr_ruidinfo there.
o Restruction many credential modification chunks to always crdup while
  we figure out locking and optimizations; generally speaking, this
  means moving to a structure like this:
        newcred = crdup(oldcred);
        ...
        p->p_ucred = newcred;
        crfree(oldcred);
  It's not race-free, but better than nothing.  There are also races
  in sys_process.c, all inter-process authorization, fork, exec, and
  exit.
o Remove sigio->sio_ruid since sigio->sio_ucred now contains the ruid;
  remove comments indicating that the old arrangement was a problem.
o Restructure exec1() a little to use newcred/oldcred arrangement, and
  use improved uid management primitives.
o Clean up exit1() so as to do less work in credential cleanup due to
  pcred removal.
o Clean up fork1() so as to do less work in credential cleanup and
  allocation.
o Clean up ktrcanset() to take into account changes, and move to using
  suser_xxx() instead of performing a direct uid==0 comparision.
o Improve commenting in various kern_prot.c credential modification
  calls to better document current behavior.  In a couple of places,
  current behavior is a little questionable and we need to check
  POSIX.1 to make sure it's "right".  More commenting work still
  remains to be done.
o Update credential management calls, such as crfree(), to take into
  account new ruidinfo reference.
o Modify or add the following uid and gid helper routines:
      change_euid()
      change_egid()
      change_ruid()
      change_rgid()
      change_svuid()
      change_svgid()
  In each case, the call now acts on a credential not a process, and as
  such no longer requires more complicated process locking/etc.  They
  now assume the caller will do any necessary allocation of an
  exclusive credential reference.  Each is commented to document its
  reference requirements.
o CANSIGIO() is simplified to require only credentials, not processes
  and pcreds.
o Remove lots of (p_pcred==NULL) checks.
o Add an XXX to authorization code in nfs_lock.c, since it's
  questionable, and needs to be considered carefully.
o Simplify posix4 authorization code to require only credentials, not
  processes and pcreds.  Note that this authorization, as well as
  CANSIGIO(), needs to be updated to use the p_cansignal() and
  p_cansched() centralized authorization routines, as they currently
  do not take into account some desirable restrictions that are handled
  by the centralized routines, as well as being inconsistent with other
  similar authorization instances.
o Update libkvm to take these changes into account.

Obtained from:	TrustedBSD Project
Reviewed by:	green, bde, jhb, freebsd-arch, freebsd-audit
2001-05-25 16:59:11 +00:00

1257 lines
28 KiB
C

/*-
* Copyright (c) 1994-1995 Søren Schmidt
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software withough specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/fcntl.h>
#include <sys/imgact_aout.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/time.h>
#include <sys/unistd.h>
#include <sys/vnode.h>
#include <sys/wait.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_map.h>
#include <vm/vm_extern.h>
#include <machine/frame.h>
#include <machine/limits.h>
#include <machine/psl.h>
#include <machine/sysarch.h>
#ifdef __i386__
#include <machine/segments.h>
#endif
#include <posix4/sched.h>
#include <machine/../linux/linux.h>
#include <machine/../linux/linux_proto.h>
#include <compat/linux/linux_mib.h>
#include <compat/linux/linux_util.h>
#ifdef __alpha__
#define BSD_TO_LINUX_SIGNAL(sig) (sig)
#else
#define BSD_TO_LINUX_SIGNAL(sig) \
(((sig) <= LINUX_SIGTBLSZ) ? bsd_to_linux_signal[_SIG_IDX(sig)] : sig)
#endif
struct linux_rlimit {
unsigned long rlim_cur;
unsigned long rlim_max;
};
#ifndef __alpha__
static unsigned int linux_to_bsd_resource[LINUX_RLIM_NLIMITS] =
{ RLIMIT_CPU, RLIMIT_FSIZE, RLIMIT_DATA, RLIMIT_STACK,
RLIMIT_CORE, RLIMIT_RSS, RLIMIT_NPROC, RLIMIT_NOFILE,
RLIMIT_MEMLOCK, -1
};
#endif /*!__alpha__*/
#ifndef __alpha__
int
linux_alarm(struct proc *p, struct linux_alarm_args *args)
{
struct itimerval it, old_it;
struct timeval tv;
int s;
#ifdef DEBUG
if (ldebug(alarm))
printf(ARGS(alarm, "%u"), args->secs);
#endif
if (args->secs > 100000000)
return EINVAL;
it.it_value.tv_sec = (long)args->secs;
it.it_value.tv_usec = 0;
it.it_interval.tv_sec = 0;
it.it_interval.tv_usec = 0;
s = splsoftclock();
old_it = p->p_realtimer;
getmicrouptime(&tv);
if (timevalisset(&old_it.it_value))
callout_stop(&p->p_itcallout);
if (it.it_value.tv_sec != 0) {
callout_reset(&p->p_itcallout, tvtohz(&it.it_value), realitexpire, p);
timevaladd(&it.it_value, &tv);
}
p->p_realtimer = it;
splx(s);
if (timevalcmp(&old_it.it_value, &tv, >)) {
timevalsub(&old_it.it_value, &tv);
if (old_it.it_value.tv_usec != 0)
old_it.it_value.tv_sec++;
p->p_retval[0] = old_it.it_value.tv_sec;
}
return 0;
}
#endif /*!__alpha__*/
int
linux_brk(struct proc *p, struct linux_brk_args *args)
{
#if 0
struct vmspace *vm = p->p_vmspace;
vm_offset_t new, old;
int error;
if ((vm_offset_t)args->dsend < (vm_offset_t)vm->vm_daddr)
return EINVAL;
if (((caddr_t)args->dsend - (caddr_t)vm->vm_daddr)
> p->p_rlimit[RLIMIT_DATA].rlim_cur)
return ENOMEM;
old = round_page((vm_offset_t)vm->vm_daddr) + ctob(vm->vm_dsize);
new = round_page((vm_offset_t)args->dsend);
p->p_retval[0] = old;
if ((new-old) > 0) {
if (swap_pager_full)
return ENOMEM;
error = vm_map_find(&vm->vm_map, NULL, 0, &old, (new-old), FALSE,
VM_PROT_ALL, VM_PROT_ALL, 0);
if (error)
return error;
vm->vm_dsize += btoc((new-old));
p->p_retval[0] = (int)(vm->vm_daddr + ctob(vm->vm_dsize));
}
return 0;
#else
struct vmspace *vm = p->p_vmspace;
vm_offset_t new, old;
struct obreak_args /* {
char * nsize;
} */ tmp;
#ifdef DEBUG
if (ldebug(brk))
printf(ARGS(brk, "%p"), (void *)args->dsend);
#endif
old = (vm_offset_t)vm->vm_daddr + ctob(vm->vm_dsize);
new = (vm_offset_t)args->dsend;
tmp.nsize = (char *) new;
if (((caddr_t)new > vm->vm_daddr) && !obreak(p, &tmp))
p->p_retval[0] = (long)new;
else
p->p_retval[0] = (long)old;
return 0;
#endif
}
int
linux_uselib(struct proc *p, struct linux_uselib_args *args)
{
struct nameidata ni;
struct vnode *vp;
struct exec *a_out;
struct vattr attr;
vm_offset_t vmaddr;
unsigned long file_offset;
vm_offset_t buffer;
unsigned long bss_size;
int error;
caddr_t sg;
int locked;
sg = stackgap_init();
CHECKALTEXIST(p, &sg, args->library);
#ifdef DEBUG
if (ldebug(uselib))
printf(ARGS(uselib, "%s"), args->library);
#endif
a_out = NULL;
locked = 0;
vp = NULL;
NDINIT(&ni, LOOKUP, FOLLOW | LOCKLEAF, UIO_USERSPACE, args->library, p);
error = namei(&ni);
if (error)
goto cleanup;
vp = ni.ni_vp;
/*
* XXX This looks like a bogus check - a LOCKLEAF namei should not succeed
* without returning a vnode.
*/
if (vp == NULL) {
error = ENOEXEC; /* ?? */
goto cleanup;
}
NDFREE(&ni, NDF_ONLY_PNBUF);
/*
* From here on down, we have a locked vnode that must be unlocked.
*/
locked++;
/*
* Writable?
*/
if (vp->v_writecount) {
error = ETXTBSY;
goto cleanup;
}
/*
* Executable?
*/
error = VOP_GETATTR(vp, &attr, p->p_ucred, p);
if (error)
goto cleanup;
if ((vp->v_mount->mnt_flag & MNT_NOEXEC) ||
((attr.va_mode & 0111) == 0) ||
(attr.va_type != VREG)) {
error = ENOEXEC;
goto cleanup;
}
/*
* Sensible size?
*/
if (attr.va_size == 0) {
error = ENOEXEC;
goto cleanup;
}
/*
* Can we access it?
*/
error = VOP_ACCESS(vp, VEXEC, p->p_ucred, p);
if (error)
goto cleanup;
error = VOP_OPEN(vp, FREAD, p->p_ucred, p);
if (error)
goto cleanup;
/*
* Lock no longer needed
*/
VOP_UNLOCK(vp, 0, p);
locked = 0;
/*
* Pull in executable header into kernel_map
*/
error = vm_mmap(kernel_map, (vm_offset_t *)&a_out, PAGE_SIZE,
VM_PROT_READ, VM_PROT_READ, 0, (caddr_t)vp, 0);
if (error)
goto cleanup;
/*
* Is it a Linux binary ?
*/
if (((a_out->a_magic >> 16) & 0xff) != 0x64) {
error = ENOEXEC;
goto cleanup;
}
/* While we are here, we should REALLY do some more checks */
/*
* Set file/virtual offset based on a.out variant.
*/
switch ((int)(a_out->a_magic & 0xffff)) {
case 0413: /* ZMAGIC */
file_offset = 1024;
break;
case 0314: /* QMAGIC */
file_offset = 0;
break;
default:
error = ENOEXEC;
goto cleanup;
}
bss_size = round_page(a_out->a_bss);
/*
* Check various fields in header for validity/bounds.
*/
if (a_out->a_text & PAGE_MASK || a_out->a_data & PAGE_MASK) {
error = ENOEXEC;
goto cleanup;
}
/* text + data can't exceed file size */
if (a_out->a_data + a_out->a_text > attr.va_size) {
error = EFAULT;
goto cleanup;
}
/* To protect p->p_rlimit in the if condition. */
mtx_assert(&Giant, MA_OWNED);
/*
* text/data/bss must not exceed limits
* XXX: this is not complete. it should check current usage PLUS
* the resources needed by this library.
*/
if (a_out->a_text > MAXTSIZ ||
a_out->a_data + bss_size > p->p_rlimit[RLIMIT_DATA].rlim_cur) {
error = ENOMEM;
goto cleanup;
}
/*
* prevent more writers
*/
vp->v_flag |= VTEXT;
/*
* Check if file_offset page aligned,.
* Currently we cannot handle misalinged file offsets,
* and so we read in the entire image (what a waste).
*/
if (file_offset & PAGE_MASK) {
#ifdef DEBUG
printf("uselib: Non page aligned binary %lu\n", file_offset);
#endif
/*
* Map text+data read/write/execute
*/
/* a_entry is the load address and is page aligned */
vmaddr = trunc_page(a_out->a_entry);
/* get anon user mapping, read+write+execute */
error = vm_map_find(&p->p_vmspace->vm_map, NULL, 0, &vmaddr,
a_out->a_text + a_out->a_data, FALSE,
VM_PROT_ALL, VM_PROT_ALL, 0);
if (error)
goto cleanup;
/* map file into kernel_map */
error = vm_mmap(kernel_map, &buffer,
round_page(a_out->a_text + a_out->a_data + file_offset),
VM_PROT_READ, VM_PROT_READ, 0,
(caddr_t)vp, trunc_page(file_offset));
if (error)
goto cleanup;
/* copy from kernel VM space to user space */
error = copyout((caddr_t)(void *)(uintptr_t)(buffer + file_offset),
(caddr_t)vmaddr, a_out->a_text + a_out->a_data);
/* release temporary kernel space */
vm_map_remove(kernel_map, buffer,
buffer + round_page(a_out->a_text + a_out->a_data + file_offset));
if (error)
goto cleanup;
}
else {
#ifdef DEBUG
printf("uselib: Page aligned binary %lu\n", file_offset);
#endif
/*
* for QMAGIC, a_entry is 20 bytes beyond the load address
* to skip the executable header
*/
vmaddr = trunc_page(a_out->a_entry);
/*
* Map it all into the process's space as a single copy-on-write
* "data" segment.
*/
error = vm_mmap(&p->p_vmspace->vm_map, &vmaddr,
a_out->a_text + a_out->a_data,
VM_PROT_ALL, VM_PROT_ALL, MAP_PRIVATE | MAP_FIXED,
(caddr_t)vp, file_offset);
if (error)
goto cleanup;
}
#ifdef DEBUG
printf("mem=%08lx = %08lx %08lx\n", vmaddr, ((long*)vmaddr)[0], ((long*)vmaddr)[1]);
#endif
if (bss_size != 0) {
/*
* Calculate BSS start address
*/
vmaddr = trunc_page(a_out->a_entry) + a_out->a_text + a_out->a_data;
/*
* allocate some 'anon' space
*/
error = vm_map_find(&p->p_vmspace->vm_map, NULL, 0, &vmaddr,
bss_size, FALSE,
VM_PROT_ALL, VM_PROT_ALL, 0);
if (error)
goto cleanup;
}
cleanup:
/*
* Unlock vnode if needed
*/
if (locked)
VOP_UNLOCK(vp, 0, p);
/*
* Release the kernel mapping.
*/
if (a_out)
vm_map_remove(kernel_map, (vm_offset_t)a_out, (vm_offset_t)a_out + PAGE_SIZE);
return error;
}
int
linux_newselect(struct proc *p, struct linux_newselect_args *args)
{
struct select_args bsa;
struct timeval tv0, tv1, utv, *tvp;
caddr_t sg;
int error;
#ifdef DEBUG
if (ldebug(newselect))
printf(ARGS(newselect, "%d, %p, %p, %p, %p"),
args->nfds, (void *)args->readfds,
(void *)args->writefds, (void *)args->exceptfds,
(void *)args->timeout);
#endif
error = 0;
bsa.nd = args->nfds;
bsa.in = args->readfds;
bsa.ou = args->writefds;
bsa.ex = args->exceptfds;
bsa.tv = args->timeout;
/*
* Store current time for computation of the amount of
* time left.
*/
if (args->timeout) {
if ((error = copyin(args->timeout, &utv, sizeof(utv))))
goto select_out;
#ifdef DEBUG
if (ldebug(newselect))
printf(LMSG("incoming timeout (%ld/%ld)"),
utv.tv_sec, utv.tv_usec);
#endif
if (itimerfix(&utv)) {
/*
* The timeval was invalid. Convert it to something
* valid that will act as it does under Linux.
*/
sg = stackgap_init();
tvp = stackgap_alloc(&sg, sizeof(utv));
utv.tv_sec += utv.tv_usec / 1000000;
utv.tv_usec %= 1000000;
if (utv.tv_usec < 0) {
utv.tv_sec -= 1;
utv.tv_usec += 1000000;
}
if (utv.tv_sec < 0)
timevalclear(&utv);
if ((error = copyout(&utv, tvp, sizeof(utv))))
goto select_out;
bsa.tv = tvp;
}
microtime(&tv0);
}
error = select(p, &bsa);
#ifdef DEBUG
if (ldebug(newselect))
printf(LMSG("real select returns %d"), error);
#endif
if (error) {
/*
* See fs/select.c in the Linux kernel. Without this,
* Maelstrom doesn't work.
*/
if (error == ERESTART)
error = EINTR;
goto select_out;
}
if (args->timeout) {
if (p->p_retval[0]) {
/*
* Compute how much time was left of the timeout,
* by subtracting the current time and the time
* before we started the call, and subtracting
* that result from the user-supplied value.
*/
microtime(&tv1);
timevalsub(&tv1, &tv0);
timevalsub(&utv, &tv1);
if (utv.tv_sec < 0)
timevalclear(&utv);
} else
timevalclear(&utv);
#ifdef DEBUG
if (ldebug(newselect))
printf(LMSG("outgoing timeout (%ld/%ld)"),
utv.tv_sec, utv.tv_usec);
#endif
if ((error = copyout(&utv, args->timeout, sizeof(utv))))
goto select_out;
}
select_out:
#ifdef DEBUG
if (ldebug(newselect))
printf(LMSG("newselect_out -> %d"), error);
#endif
return error;
}
int
linux_getpgid(struct proc *p, struct linux_getpgid_args *args)
{
struct proc *curp;
#ifdef DEBUG
if (ldebug(getpgid))
printf(ARGS(getpgid, "%d"), args->pid);
#endif
if (args->pid != p->p_pid) {
if (!(curp = pfind(args->pid)))
return ESRCH;
p->p_retval[0] = curp->p_pgid;
PROC_UNLOCK(curp);
}
else
p->p_retval[0] = p->p_pgid;
return 0;
}
int
linux_mremap(struct proc *p, struct linux_mremap_args *args)
{
struct munmap_args /* {
void *addr;
size_t len;
} */ bsd_args;
int error = 0;
#ifdef DEBUG
if (ldebug(mremap))
printf(ARGS(mremap, "%p, %08lx, %08lx, %08lx"),
(void *)args->addr,
(unsigned long)args->old_len,
(unsigned long)args->new_len,
(unsigned long)args->flags);
#endif
args->new_len = round_page(args->new_len);
args->old_len = round_page(args->old_len);
if (args->new_len > args->old_len) {
p->p_retval[0] = 0;
return ENOMEM;
}
if (args->new_len < args->old_len) {
bsd_args.addr = args->addr + args->new_len;
bsd_args.len = args->old_len - args->new_len;
error = munmap(p, &bsd_args);
}
p->p_retval[0] = error ? 0 : (u_long)args->addr;
return error;
}
int
linux_msync(struct proc *p, struct linux_msync_args *args)
{
struct msync_args bsd_args;
bsd_args.addr = args->addr;
bsd_args.len = args->len;
bsd_args.flags = 0; /* XXX ignore */
return msync(p, &bsd_args);
}
#ifndef __alpha__
int
linux_time(struct proc *p, struct linux_time_args *args)
{
struct timeval tv;
linux_time_t tm;
int error;
#ifdef DEBUG
if (ldebug(time))
printf(ARGS(time, "*"));
#endif
microtime(&tv);
tm = tv.tv_sec;
if (args->tm && (error = copyout(&tm, args->tm, sizeof(linux_time_t))))
return error;
p->p_retval[0] = tm;
return 0;
}
#endif /*!__alpha__*/
struct linux_times_argv {
long tms_utime;
long tms_stime;
long tms_cutime;
long tms_cstime;
};
#ifdef __alpha__
#define CLK_TCK 1024 /* Linux uses 1024 on alpha */
#else
#define CLK_TCK 100 /* Linux uses 100 */
#endif
#define CONVTCK(r) (r.tv_sec * CLK_TCK + r.tv_usec / (1000000 / CLK_TCK))
int
linux_times(struct proc *p, struct linux_times_args *args)
{
struct timeval tv;
struct linux_times_argv tms;
struct rusage ru;
int error;
#ifdef DEBUG
if (ldebug(times))
printf(ARGS(times, "*"));
#endif
mtx_lock_spin(&sched_lock);
calcru(p, &ru.ru_utime, &ru.ru_stime, NULL);
mtx_unlock_spin(&sched_lock);
tms.tms_utime = CONVTCK(ru.ru_utime);
tms.tms_stime = CONVTCK(ru.ru_stime);
tms.tms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
tms.tms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
if ((error = copyout((caddr_t)&tms, (caddr_t)args->buf,
sizeof(struct linux_times_argv))))
return error;
microuptime(&tv);
p->p_retval[0] = (int)CONVTCK(tv);
return 0;
}
int
linux_newuname(struct proc *p, struct linux_newuname_args *args)
{
struct linux_new_utsname utsname;
char *osrelease, *osname;
#ifdef DEBUG
if (ldebug(newuname))
printf(ARGS(newuname, "*"));
#endif
osname = linux_get_osname(p);
osrelease = linux_get_osrelease(p);
bzero(&utsname, sizeof(struct linux_new_utsname));
strncpy(utsname.sysname, osname, LINUX_MAX_UTSNAME-1);
strncpy(utsname.nodename, hostname, LINUX_MAX_UTSNAME-1);
strncpy(utsname.release, osrelease, LINUX_MAX_UTSNAME-1);
strncpy(utsname.version, version, LINUX_MAX_UTSNAME-1);
strncpy(utsname.machine, machine, LINUX_MAX_UTSNAME-1);
strncpy(utsname.domainname, domainname, LINUX_MAX_UTSNAME-1);
return (copyout((caddr_t)&utsname, (caddr_t)args->buf,
sizeof(struct linux_new_utsname)));
}
struct linux_utimbuf {
linux_time_t l_actime;
linux_time_t l_modtime;
};
int
linux_utime(struct proc *p, struct linux_utime_args *args)
{
struct utimes_args /* {
char *path;
struct timeval *tptr;
} */ bsdutimes;
struct timeval tv[2], *tvp;
struct linux_utimbuf lut;
int error;
caddr_t sg;
sg = stackgap_init();
CHECKALTEXIST(p, &sg, args->fname);
#ifdef DEBUG
if (ldebug(utime))
printf(ARGS(utime, "%s, *"), args->fname);
#endif
if (args->times) {
if ((error = copyin(args->times, &lut, sizeof lut)))
return error;
tv[0].tv_sec = lut.l_actime;
tv[0].tv_usec = 0;
tv[1].tv_sec = lut.l_modtime;
tv[1].tv_usec = 0;
/* so that utimes can copyin */
tvp = (struct timeval *)stackgap_alloc(&sg, sizeof(tv));
if (tvp == NULL)
return (ENAMETOOLONG);
if ((error = copyout(tv, tvp, sizeof(tv))))
return error;
bsdutimes.tptr = tvp;
} else
bsdutimes.tptr = NULL;
bsdutimes.path = args->fname;
return utimes(p, &bsdutimes);
}
#define __WCLONE 0x80000000
#ifndef __alpha__
int
linux_waitpid(struct proc *p, struct linux_waitpid_args *args)
{
struct wait_args /* {
int pid;
int *status;
int options;
struct rusage *rusage;
} */ tmp;
int error, tmpstat;
#ifdef DEBUG
if (ldebug(waitpid))
printf(ARGS(waitpid, "%d, %p, %d"),
args->pid, (void *)args->status, args->options);
#endif
tmp.pid = args->pid;
tmp.status = args->status;
tmp.options = (args->options & (WNOHANG | WUNTRACED));
/* WLINUXCLONE should be equal to __WCLONE, but we make sure */
if (args->options & __WCLONE)
tmp.options |= WLINUXCLONE;
tmp.rusage = NULL;
if ((error = wait4(p, &tmp)) != 0)
return error;
if (args->status) {
if ((error = copyin(args->status, &tmpstat, sizeof(int))) != 0)
return error;
tmpstat &= 0xffff;
if (WIFSIGNALED(tmpstat))
tmpstat = (tmpstat & 0xffffff80) |
BSD_TO_LINUX_SIGNAL(WTERMSIG(tmpstat));
else if (WIFSTOPPED(tmpstat))
tmpstat = (tmpstat & 0xffff00ff) |
(BSD_TO_LINUX_SIGNAL(WSTOPSIG(tmpstat)) << 8);
return copyout(&tmpstat, args->status, sizeof(int));
} else
return 0;
}
#endif /*!__alpha__*/
int
linux_wait4(struct proc *p, struct linux_wait4_args *args)
{
struct wait_args /* {
int pid;
int *status;
int options;
struct rusage *rusage;
} */ tmp;
int error, tmpstat;
#ifdef DEBUG
if (ldebug(wait4))
printf(ARGS(wait4, "%d, %p, %d, %p"),
args->pid, (void *)args->status, args->options,
(void *)args->rusage);
#endif
tmp.pid = args->pid;
tmp.status = args->status;
tmp.options = (args->options & (WNOHANG | WUNTRACED));
/* WLINUXCLONE should be equal to __WCLONE, but we make sure */
if (args->options & __WCLONE)
tmp.options |= WLINUXCLONE;
tmp.rusage = args->rusage;
if ((error = wait4(p, &tmp)) != 0)
return error;
SIGDELSET(p->p_siglist, SIGCHLD);
if (args->status) {
if ((error = copyin(args->status, &tmpstat, sizeof(int))) != 0)
return error;
tmpstat &= 0xffff;
if (WIFSIGNALED(tmpstat))
tmpstat = (tmpstat & 0xffffff80) |
BSD_TO_LINUX_SIGNAL(WTERMSIG(tmpstat));
else if (WIFSTOPPED(tmpstat))
tmpstat = (tmpstat & 0xffff00ff) |
(BSD_TO_LINUX_SIGNAL(WSTOPSIG(tmpstat)) << 8);
return copyout(&tmpstat, args->status, sizeof(int));
} else
return 0;
}
int
linux_mknod(struct proc *p, struct linux_mknod_args *args)
{
caddr_t sg;
struct mknod_args bsd_mknod;
struct mkfifo_args bsd_mkfifo;
sg = stackgap_init();
CHECKALTCREAT(p, &sg, args->path);
#ifdef DEBUG
if (ldebug(mknod))
printf(ARGS(mknod, "%s, %d, %d"),
args->path, args->mode, args->dev);
#endif
if (args->mode & S_IFIFO) {
bsd_mkfifo.path = args->path;
bsd_mkfifo.mode = args->mode;
return mkfifo(p, &bsd_mkfifo);
} else {
bsd_mknod.path = args->path;
bsd_mknod.mode = args->mode;
bsd_mknod.dev = args->dev;
return mknod(p, &bsd_mknod);
}
}
/*
* UGH! This is just about the dumbest idea I've ever heard!!
*/
int
linux_personality(struct proc *p, struct linux_personality_args *args)
{
#ifdef DEBUG
if (ldebug(personality))
printf(ARGS(personality, "%d"), args->per);
#endif
#ifndef __alpha__
if (args->per != 0)
return EINVAL;
#endif
/* Yes Jim, it's still a Linux... */
p->p_retval[0] = 0;
return 0;
}
/*
* Wrappers for get/setitimer for debugging..
*/
int
linux_setitimer(struct proc *p, struct linux_setitimer_args *args)
{
struct setitimer_args bsa;
struct itimerval foo;
int error;
#ifdef DEBUG
if (ldebug(setitimer))
printf(ARGS(setitimer, "%p, %p"),
(void *)args->itv, (void *)args->oitv);
#endif
bsa.which = args->which;
bsa.itv = args->itv;
bsa.oitv = args->oitv;
if (args->itv) {
if ((error = copyin((caddr_t)args->itv, (caddr_t)&foo,
sizeof(foo))))
return error;
#ifdef DEBUG
if (ldebug(setitimer)) {
printf("setitimer: value: sec: %ld, usec: %ld\n",
foo.it_value.tv_sec, foo.it_value.tv_usec);
printf("setitimer: interval: sec: %ld, usec: %ld\n",
foo.it_interval.tv_sec, foo.it_interval.tv_usec);
}
#endif
}
return setitimer(p, &bsa);
}
int
linux_getitimer(struct proc *p, struct linux_getitimer_args *args)
{
struct getitimer_args bsa;
#ifdef DEBUG
if (ldebug(getitimer))
printf(ARGS(getitimer, "%p"), (void *)args->itv);
#endif
bsa.which = args->which;
bsa.itv = args->itv;
return getitimer(p, &bsa);
}
#ifndef __alpha__
int
linux_nice(struct proc *p, struct linux_nice_args *args)
{
struct setpriority_args bsd_args;
bsd_args.which = PRIO_PROCESS;
bsd_args.who = 0; /* current process */
bsd_args.prio = args->inc;
return setpriority(p, &bsd_args);
}
#endif /*!__alpha__*/
int
linux_setgroups(p, uap)
struct proc *p;
struct linux_setgroups_args *uap;
{
struct ucred *newcred, *oldcred;
linux_gid_t linux_gidset[NGROUPS];
gid_t *bsd_gidset;
int ngrp, error;
ngrp = uap->gidsetsize;
oldcred = p->p_ucred;
/*
* cr_groups[0] holds egid. Setting the whole set from
* the supplied set will cause egid to be changed too.
* Keep cr_groups[0] unchanged to prevent that.
*/
if ((error = suser_xxx(oldcred, NULL, PRISON_ROOT)) != 0)
return (error);
if (ngrp >= NGROUPS)
return (EINVAL);
newcred = crdup(oldcred);
if (ngrp > 0) {
error = copyin((caddr_t)uap->gidset, (caddr_t)linux_gidset,
ngrp * sizeof(linux_gid_t));
if (error)
return (error);
newcred->cr_ngroups = ngrp + 1;
bsd_gidset = newcred->cr_groups;
ngrp--;
while (ngrp >= 0) {
bsd_gidset[ngrp + 1] = linux_gidset[ngrp];
ngrp--;
}
}
else
newcred->cr_ngroups = 1;
setsugid(p);
p->p_ucred = newcred;
crfree(oldcred);
return (0);
}
int
linux_getgroups(p, uap)
struct proc *p;
struct linux_getgroups_args *uap;
{
struct ucred *cred;
linux_gid_t linux_gidset[NGROUPS];
gid_t *bsd_gidset;
int bsd_gidsetsz, ngrp, error;
cred = p->p_ucred;
bsd_gidset = cred->cr_groups;
bsd_gidsetsz = cred->cr_ngroups - 1;
/*
* cr_groups[0] holds egid. Returning the whole set
* here will cause a duplicate. Exclude cr_groups[0]
* to prevent that.
*/
if ((ngrp = uap->gidsetsize) == 0) {
p->p_retval[0] = bsd_gidsetsz;
return (0);
}
if (ngrp < bsd_gidsetsz)
return (EINVAL);
ngrp = 0;
while (ngrp < bsd_gidsetsz) {
linux_gidset[ngrp] = bsd_gidset[ngrp + 1];
ngrp++;
}
if ((error = copyout((caddr_t)linux_gidset, (caddr_t)uap->gidset,
ngrp * sizeof(linux_gid_t))))
return (error);
p->p_retval[0] = ngrp;
return (0);
}
#ifndef __alpha__
int
linux_setrlimit(p, uap)
struct proc *p;
struct linux_setrlimit_args *uap;
{
struct __setrlimit_args bsd;
struct linux_rlimit rlim;
int error;
caddr_t sg = stackgap_init();
#ifdef DEBUG
if (ldebug(setrlimit))
printf(ARGS(setrlimit, "%d, %p"),
uap->resource, (void *)uap->rlim);
#endif
if (uap->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
bsd.which = linux_to_bsd_resource[uap->resource];
if (bsd.which == -1)
return (EINVAL);
error = copyin(uap->rlim, &rlim, sizeof(rlim));
if (error)
return (error);
bsd.rlp = stackgap_alloc(&sg, sizeof(struct rlimit));
bsd.rlp->rlim_cur = (rlim_t)rlim.rlim_cur;
bsd.rlp->rlim_max = (rlim_t)rlim.rlim_max;
return (setrlimit(p, &bsd));
}
int
linux_getrlimit(p, uap)
struct proc *p;
struct linux_getrlimit_args *uap;
{
struct __getrlimit_args bsd;
struct linux_rlimit rlim;
int error;
caddr_t sg = stackgap_init();
#ifdef DEBUG
if (ldebug(getrlimit))
printf(ARGS(getrlimit, "%d, %p"),
uap->resource, (void *)uap->rlim);
#endif
if (uap->resource >= LINUX_RLIM_NLIMITS)
return (EINVAL);
bsd.which = linux_to_bsd_resource[uap->resource];
if (bsd.which == -1)
return (EINVAL);
bsd.rlp = stackgap_alloc(&sg, sizeof(struct rlimit));
error = getrlimit(p, &bsd);
if (error)
return (error);
rlim.rlim_cur = (unsigned long)bsd.rlp->rlim_cur;
if (rlim.rlim_cur == ULONG_MAX)
rlim.rlim_cur = LONG_MAX;
rlim.rlim_max = (unsigned long)bsd.rlp->rlim_max;
if (rlim.rlim_max == ULONG_MAX)
rlim.rlim_max = LONG_MAX;
return (copyout(&rlim, uap->rlim, sizeof(rlim)));
}
#endif /*!__alpha__*/
int
linux_sched_setscheduler(p, uap)
struct proc *p;
struct linux_sched_setscheduler_args *uap;
{
struct sched_setscheduler_args bsd;
#ifdef DEBUG
if (ldebug(sched_setscheduler))
printf(ARGS(sched_setscheduler, "%d, %d, %p"),
uap->pid, uap->policy, (const void *)uap->param);
#endif
switch (uap->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return EINVAL;
}
bsd.pid = uap->pid;
bsd.param = uap->param;
return sched_setscheduler(p, &bsd);
}
int
linux_sched_getscheduler(p, uap)
struct proc *p;
struct linux_sched_getscheduler_args *uap;
{
struct sched_getscheduler_args bsd;
int error;
#ifdef DEBUG
if (ldebug(sched_getscheduler))
printf(ARGS(sched_getscheduler, "%d"), uap->pid);
#endif
bsd.pid = uap->pid;
error = sched_getscheduler(p, &bsd);
switch (p->p_retval[0]) {
case SCHED_OTHER:
p->p_retval[0] = LINUX_SCHED_OTHER;
break;
case SCHED_FIFO:
p->p_retval[0] = LINUX_SCHED_FIFO;
break;
case SCHED_RR:
p->p_retval[0] = LINUX_SCHED_RR;
break;
}
return error;
}
int
linux_sched_get_priority_max(p, uap)
struct proc *p;
struct linux_sched_get_priority_max_args *uap;
{
struct sched_get_priority_max_args bsd;
#ifdef DEBUG
if (ldebug(sched_get_priority_max))
printf(ARGS(sched_get_priority_max, "%d"), uap->policy);
#endif
switch (uap->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return EINVAL;
}
return sched_get_priority_max(p, &bsd);
}
int
linux_sched_get_priority_min(p, uap)
struct proc *p;
struct linux_sched_get_priority_min_args *uap;
{
struct sched_get_priority_min_args bsd;
#ifdef DEBUG
if (ldebug(sched_get_priority_min))
printf(ARGS(sched_get_priority_min, "%d"), uap->policy);
#endif
switch (uap->policy) {
case LINUX_SCHED_OTHER:
bsd.policy = SCHED_OTHER;
break;
case LINUX_SCHED_FIFO:
bsd.policy = SCHED_FIFO;
break;
case LINUX_SCHED_RR:
bsd.policy = SCHED_RR;
break;
default:
return EINVAL;
}
return sched_get_priority_min(p, &bsd);
}
#define REBOOT_CAD_ON 0x89abcdef
#define REBOOT_CAD_OFF 0
#define REBOOT_HALT 0xcdef0123
int
linux_reboot(struct proc *p, struct linux_reboot_args *args)
{
struct reboot_args bsd_args;
#ifdef DEBUG
if (ldebug(reboot))
printf(ARGS(reboot, "0x%x"), args->opt);
#endif
if (args->opt == REBOOT_CAD_ON || args->opt == REBOOT_CAD_OFF)
return (0);
bsd_args.opt = args->opt == REBOOT_HALT ? RB_HALT : 0;
return (reboot(p, &bsd_args));
}