freebsd-skq/sys/dev/ral/rt2860.c
Kevin Lo 5945b5f5ab Rename definition of IEEE80211_FC1_WEP to IEEE80211_FC1_PROTECTED.
The origin of WEP comes from IEEE Std 802.11-1997 where it defines
whether the frame body of MAC frame has been encrypted using WEP
algorithm or not.
IEEE Std. 802.11-2007 changes WEP to Protected Frame, indicates
whether the frame is protected by a cryptographic encapsulation
algorithm.

Reviewed by:	adrian, rpaulo
2014-01-08 08:06:56 +00:00

4106 lines
108 KiB
C

/*-
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2012 Bernhard Schmidt <bschmidt@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $OpenBSD: rt2860.c,v 1.65 2010/10/23 14:24:54 damien Exp $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*-
* Ralink Technology RT2860/RT3090/RT3390/RT3562 chipset driver
* http://www.ralinktech.com/
*/
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/firmware.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_regdomain.h>
#include <net80211/ieee80211_ratectl.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#include <dev/ral/rt2860reg.h>
#include <dev/ral/rt2860var.h>
#define RAL_DEBUG
#ifdef RAL_DEBUG
#define DPRINTF(x) do { if (sc->sc_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (sc->sc_debug >= (n)) printf x; } while (0)
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
static struct ieee80211vap *rt2860_vap_create(struct ieee80211com *,
const char [IFNAMSIZ], int, enum ieee80211_opmode,
int, const uint8_t [IEEE80211_ADDR_LEN],
const uint8_t [IEEE80211_ADDR_LEN]);
static void rt2860_vap_delete(struct ieee80211vap *);
static void rt2860_dma_map_addr(void *, bus_dma_segment_t *, int, int);
static int rt2860_alloc_tx_ring(struct rt2860_softc *,
struct rt2860_tx_ring *);
static void rt2860_reset_tx_ring(struct rt2860_softc *,
struct rt2860_tx_ring *);
static void rt2860_free_tx_ring(struct rt2860_softc *,
struct rt2860_tx_ring *);
static int rt2860_alloc_tx_pool(struct rt2860_softc *);
static void rt2860_free_tx_pool(struct rt2860_softc *);
static int rt2860_alloc_rx_ring(struct rt2860_softc *,
struct rt2860_rx_ring *);
static void rt2860_reset_rx_ring(struct rt2860_softc *,
struct rt2860_rx_ring *);
static void rt2860_free_rx_ring(struct rt2860_softc *,
struct rt2860_rx_ring *);
static void rt2860_updatestats(struct rt2860_softc *);
static void rt2860_newassoc(struct ieee80211_node *, int);
static void rt2860_node_free(struct ieee80211_node *);
#ifdef IEEE80211_HT
static int rt2860_ampdu_rx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void rt2860_ampdu_rx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
#endif
static int rt2860_newstate(struct ieee80211vap *, enum ieee80211_state,
int);
static uint16_t rt3090_efuse_read_2(struct rt2860_softc *, uint16_t);
static uint16_t rt2860_eeprom_read_2(struct rt2860_softc *, uint16_t);
static void rt2860_intr_coherent(struct rt2860_softc *);
static void rt2860_drain_stats_fifo(struct rt2860_softc *);
static void rt2860_tx_intr(struct rt2860_softc *, int);
static void rt2860_rx_intr(struct rt2860_softc *);
static void rt2860_tbtt_intr(struct rt2860_softc *);
static void rt2860_gp_intr(struct rt2860_softc *);
static int rt2860_tx(struct rt2860_softc *, struct mbuf *,
struct ieee80211_node *);
static int rt2860_raw_xmit(struct ieee80211_node *, struct mbuf *,
const struct ieee80211_bpf_params *);
static int rt2860_tx_raw(struct rt2860_softc *, struct mbuf *,
struct ieee80211_node *,
const struct ieee80211_bpf_params *params);
static void rt2860_start(struct ifnet *);
static void rt2860_start_locked(struct ifnet *);
static void rt2860_watchdog(void *);
static int rt2860_ioctl(struct ifnet *, u_long, caddr_t);
static void rt2860_mcu_bbp_write(struct rt2860_softc *, uint8_t, uint8_t);
static uint8_t rt2860_mcu_bbp_read(struct rt2860_softc *, uint8_t);
static void rt2860_rf_write(struct rt2860_softc *, uint8_t, uint32_t);
static uint8_t rt3090_rf_read(struct rt2860_softc *, uint8_t);
static void rt3090_rf_write(struct rt2860_softc *, uint8_t, uint8_t);
static int rt2860_mcu_cmd(struct rt2860_softc *, uint8_t, uint16_t, int);
static void rt2860_enable_mrr(struct rt2860_softc *);
static void rt2860_set_txpreamble(struct rt2860_softc *);
static void rt2860_set_basicrates(struct rt2860_softc *,
const struct ieee80211_rateset *);
static void rt2860_scan_start(struct ieee80211com *);
static void rt2860_scan_end(struct ieee80211com *);
static void rt2860_set_channel(struct ieee80211com *);
static void rt2860_select_chan_group(struct rt2860_softc *, int);
static void rt2860_set_chan(struct rt2860_softc *, u_int);
static void rt3090_set_chan(struct rt2860_softc *, u_int);
static int rt3090_rf_init(struct rt2860_softc *);
static void rt3090_rf_wakeup(struct rt2860_softc *);
static int rt3090_filter_calib(struct rt2860_softc *, uint8_t, uint8_t,
uint8_t *);
static void rt3090_rf_setup(struct rt2860_softc *);
static void rt2860_set_leds(struct rt2860_softc *, uint16_t);
static void rt2860_set_gp_timer(struct rt2860_softc *, int);
static void rt2860_set_bssid(struct rt2860_softc *, const uint8_t *);
static void rt2860_set_macaddr(struct rt2860_softc *, const uint8_t *);
static void rt2860_update_promisc(struct ifnet *);
static void rt2860_updateslot(struct ifnet *);
static void rt2860_updateprot(struct ifnet *);
static int rt2860_updateedca(struct ieee80211com *);
#ifdef HW_CRYPTO
static int rt2860_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
static void rt2860_delete_key(struct ieee80211com *,
struct ieee80211_node *, struct ieee80211_key *);
#endif
static int8_t rt2860_rssi2dbm(struct rt2860_softc *, uint8_t, uint8_t);
static const char *rt2860_get_rf(uint8_t);
static int rt2860_read_eeprom(struct rt2860_softc *,
uint8_t macaddr[IEEE80211_ADDR_LEN]);
static int rt2860_bbp_init(struct rt2860_softc *);
static int rt2860_txrx_enable(struct rt2860_softc *);
static void rt2860_init(void *);
static void rt2860_init_locked(struct rt2860_softc *);
static void rt2860_stop(void *);
static void rt2860_stop_locked(struct rt2860_softc *);
static int rt2860_load_microcode(struct rt2860_softc *);
#ifdef NOT_YET
static void rt2860_calib(struct rt2860_softc *);
#endif
static void rt3090_set_rx_antenna(struct rt2860_softc *, int);
static void rt2860_switch_chan(struct rt2860_softc *,
struct ieee80211_channel *);
static int rt2860_setup_beacon(struct rt2860_softc *,
struct ieee80211vap *);
static void rt2860_enable_tsf_sync(struct rt2860_softc *);
static const struct {
uint32_t reg;
uint32_t val;
} rt2860_def_mac[] = {
RT2860_DEF_MAC
};
static const struct {
uint8_t reg;
uint8_t val;
} rt2860_def_bbp[] = {
RT2860_DEF_BBP
};
static const struct rfprog {
uint8_t chan;
uint32_t r1, r2, r3, r4;
} rt2860_rf2850[] = {
RT2860_RF2850
};
struct {
uint8_t n, r, k;
} rt3090_freqs[] = {
RT3070_RF3052
};
static const struct {
uint8_t reg;
uint8_t val;
} rt3090_def_rf[] = {
RT3070_DEF_RF
};
int
rt2860_attach(device_t dev, int id)
{
struct rt2860_softc *sc = device_get_softc(dev);
struct ieee80211com *ic;
struct ifnet *ifp;
uint32_t tmp;
int error, ntries, qid;
uint8_t bands;
uint8_t macaddr[IEEE80211_ADDR_LEN];
sc->sc_dev = dev;
sc->sc_debug = 0;
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
if (ifp == NULL) {
device_printf(sc->sc_dev, "can not if_alloc()\n");
return ENOMEM;
}
ic = ifp->if_l2com;
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF | MTX_RECURSE);
callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
/* wait for NIC to initialize */
for (ntries = 0; ntries < 100; ntries++) {
tmp = RAL_READ(sc, RT2860_ASIC_VER_ID);
if (tmp != 0 && tmp != 0xffffffff)
break;
DELAY(10);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"timeout waiting for NIC to initialize\n");
error = EIO;
goto fail1;
}
sc->mac_ver = tmp >> 16;
sc->mac_rev = tmp & 0xffff;
if (sc->mac_ver != 0x2860 &&
(id == 0x0681 || id == 0x0781 || id == 0x1059))
sc->sc_flags |= RT2860_ADVANCED_PS;
/* retrieve RF rev. no and various other things from EEPROM */
rt2860_read_eeprom(sc, macaddr);
if (bootverbose) {
device_printf(sc->sc_dev, "MAC/BBP RT%X (rev 0x%04X), "
"RF %s (MIMO %dT%dR), address %6D\n",
sc->mac_ver, sc->mac_rev, rt2860_get_rf(sc->rf_rev),
sc->ntxchains, sc->nrxchains, macaddr, ":");
}
/*
* Allocate Tx (4 EDCAs + HCCA + Mgt) and Rx rings.
*/
for (qid = 0; qid < 6; qid++) {
if ((error = rt2860_alloc_tx_ring(sc, &sc->txq[qid])) != 0) {
device_printf(sc->sc_dev,
"could not allocate Tx ring %d\n", qid);
goto fail2;
}
}
if ((error = rt2860_alloc_rx_ring(sc, &sc->rxq)) != 0) {
device_printf(sc->sc_dev, "could not allocate Rx ring\n");
goto fail2;
}
if ((error = rt2860_alloc_tx_pool(sc)) != 0) {
device_printf(sc->sc_dev, "could not allocate Tx pool\n");
goto fail3;
}
/* mgmt ring is broken on RT2860C, use EDCA AC VO ring instead */
sc->mgtqid = (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) ?
WME_AC_VO : 5;
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = rt2860_init;
ifp->if_ioctl = rt2860_ioctl;
ifp->if_start = rt2860_start;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_STA /* station mode */
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
| IEEE80211_C_HOSTAP /* hostap mode */
| IEEE80211_C_MONITOR /* monitor mode */
| IEEE80211_C_AHDEMO /* adhoc demo mode */
| IEEE80211_C_WDS /* 4-address traffic works */
| IEEE80211_C_MBSS /* mesh point link mode */
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
| IEEE80211_C_SHSLOT /* short slot time supported */
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
#if 0
| IEEE80211_C_BGSCAN /* capable of bg scanning */
#endif
| IEEE80211_C_WME /* 802.11e */
;
bands = 0;
setbit(&bands, IEEE80211_MODE_11B);
setbit(&bands, IEEE80211_MODE_11G);
if (sc->rf_rev == RT2860_RF_2750 || sc->rf_rev == RT2860_RF_2850)
setbit(&bands, IEEE80211_MODE_11A);
ieee80211_init_channels(ic, NULL, &bands);
ieee80211_ifattach(ic, macaddr);
ic->ic_wme.wme_update = rt2860_updateedca;
ic->ic_scan_start = rt2860_scan_start;
ic->ic_scan_end = rt2860_scan_end;
ic->ic_set_channel = rt2860_set_channel;
ic->ic_updateslot = rt2860_updateslot;
ic->ic_update_promisc = rt2860_update_promisc;
ic->ic_raw_xmit = rt2860_raw_xmit;
sc->sc_node_free = ic->ic_node_free;
ic->ic_node_free = rt2860_node_free;
ic->ic_newassoc = rt2860_newassoc;
ic->ic_vap_create = rt2860_vap_create;
ic->ic_vap_delete = rt2860_vap_delete;
ieee80211_radiotap_attach(ic,
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
RT2860_TX_RADIOTAP_PRESENT,
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
RT2860_RX_RADIOTAP_PRESENT);
#ifdef RAL_DEBUG
SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
"debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs");
#endif
if (bootverbose)
ieee80211_announce(ic);
return 0;
fail3: rt2860_free_rx_ring(sc, &sc->rxq);
fail2: while (--qid >= 0)
rt2860_free_tx_ring(sc, &sc->txq[qid]);
fail1: mtx_destroy(&sc->sc_mtx);
if_free(ifp);
return error;
}
int
rt2860_detach(void *xsc)
{
struct rt2860_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
int qid;
RAL_LOCK(sc);
rt2860_stop_locked(sc);
RAL_UNLOCK(sc);
ieee80211_ifdetach(ic);
for (qid = 0; qid < 6; qid++)
rt2860_free_tx_ring(sc, &sc->txq[qid]);
rt2860_free_rx_ring(sc, &sc->rxq);
rt2860_free_tx_pool(sc);
if_free(ifp);
mtx_destroy(&sc->sc_mtx);
return 0;
}
void
rt2860_shutdown(void *xsc)
{
struct rt2860_softc *sc = xsc;
rt2860_stop(sc);
}
void
rt2860_suspend(void *xsc)
{
struct rt2860_softc *sc = xsc;
rt2860_stop(sc);
}
void
rt2860_resume(void *xsc)
{
struct rt2860_softc *sc = xsc;
struct ifnet *ifp = sc->sc_ifp;
if (ifp->if_flags & IFF_UP)
rt2860_init(sc);
}
static struct ieee80211vap *
rt2860_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
enum ieee80211_opmode opmode, int flags,
const uint8_t bssid[IEEE80211_ADDR_LEN],
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2860_vap *rvp;
struct ieee80211vap *vap;
switch (opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
case IEEE80211_M_MONITOR:
case IEEE80211_M_HOSTAP:
case IEEE80211_M_MBSS:
/* XXXRP: TBD */
if (!TAILQ_EMPTY(&ic->ic_vaps)) {
if_printf(ifp, "only 1 vap supported\n");
return NULL;
}
if (opmode == IEEE80211_M_STA)
flags |= IEEE80211_CLONE_NOBEACONS;
break;
case IEEE80211_M_WDS:
if (TAILQ_EMPTY(&ic->ic_vaps) ||
ic->ic_opmode != IEEE80211_M_HOSTAP) {
if_printf(ifp, "wds only supported in ap mode\n");
return NULL;
}
/*
* Silently remove any request for a unique
* bssid; WDS vap's always share the local
* mac address.
*/
flags &= ~IEEE80211_CLONE_BSSID;
break;
default:
if_printf(ifp, "unknown opmode %d\n", opmode);
return NULL;
}
rvp = malloc(sizeof(struct rt2860_vap), M_80211_VAP, M_NOWAIT | M_ZERO);
if (rvp == NULL)
return NULL;
vap = &rvp->ral_vap;
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
/* override state transition machine */
rvp->ral_newstate = vap->iv_newstate;
vap->iv_newstate = rt2860_newstate;
#if 0
vap->iv_update_beacon = rt2860_beacon_update;
#endif
/* HW supports up to 255 STAs (0-254) in HostAP and IBSS modes */
vap->iv_max_aid = min(IEEE80211_AID_MAX, RT2860_WCID_MAX);
ieee80211_ratectl_init(vap);
/* complete setup */
ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
if (TAILQ_FIRST(&ic->ic_vaps) == vap)
ic->ic_opmode = opmode;
return vap;
}
static void
rt2860_vap_delete(struct ieee80211vap *vap)
{
struct rt2860_vap *rvp = RT2860_VAP(vap);
ieee80211_ratectl_deinit(vap);
ieee80211_vap_detach(vap);
free(rvp, M_80211_VAP);
}
static void
rt2860_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
if (error != 0)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
*(bus_addr_t *)arg = segs[0].ds_addr;
}
static int
rt2860_alloc_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
int size, error;
size = RT2860_TX_RING_COUNT * sizeof (struct rt2860_txd);
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 16, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
size, 1, size, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA map\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->txd,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->txd,
size, rt2860_dma_map_addr, &ring->paddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: rt2860_free_tx_ring(sc, ring);
return error;
}
void
rt2860_reset_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
struct rt2860_tx_data *data;
int i;
for (i = 0; i < RT2860_TX_RING_COUNT; i++) {
if ((data = ring->data[i]) == NULL)
continue; /* nothing mapped in this slot */
if (data->m != NULL) {
bus_dmamap_sync(sc->txwi_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txwi_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
SLIST_INSERT_HEAD(&sc->data_pool, data, next);
ring->data[i] = NULL;
}
ring->queued = 0;
ring->cur = ring->next = 0;
}
void
rt2860_free_tx_ring(struct rt2860_softc *sc, struct rt2860_tx_ring *ring)
{
struct rt2860_tx_data *data;
int i;
if (ring->txd != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->txd, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
for (i = 0; i < RT2860_TX_RING_COUNT; i++) {
if ((data = ring->data[i]) == NULL)
continue; /* nothing mapped in this slot */
if (data->m != NULL) {
bus_dmamap_sync(sc->txwi_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txwi_dmat, data->map);
m_freem(data->m);
}
if (data->ni != NULL)
ieee80211_free_node(data->ni);
SLIST_INSERT_HEAD(&sc->data_pool, data, next);
}
}
/*
* Allocate a pool of TX Wireless Information blocks.
*/
int
rt2860_alloc_tx_pool(struct rt2860_softc *sc)
{
caddr_t vaddr;
bus_addr_t paddr;
int i, size, error;
size = RT2860_TX_POOL_COUNT * RT2860_TXWI_DMASZ;
/* init data_pool early in case of failure.. */
SLIST_INIT(&sc->data_pool);
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
size, 1, size, 0, NULL, NULL, &sc->txwi_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create txwi DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(sc->txwi_dmat, (void **)&sc->txwi_vaddr,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->txwi_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->txwi_dmat, sc->txwi_map,
sc->txwi_vaddr, size, rt2860_dma_map_addr, &paddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load txwi DMA map\n");
goto fail;
}
bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE);
vaddr = sc->txwi_vaddr;
for (i = 0; i < RT2860_TX_POOL_COUNT; i++) {
struct rt2860_tx_data *data = &sc->data[i];
error = bus_dmamap_create(sc->txwi_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->txwi = (struct rt2860_txwi *)vaddr;
data->paddr = paddr;
vaddr += RT2860_TXWI_DMASZ;
paddr += RT2860_TXWI_DMASZ;
SLIST_INSERT_HEAD(&sc->data_pool, data, next);
}
return 0;
fail: rt2860_free_tx_pool(sc);
return error;
}
void
rt2860_free_tx_pool(struct rt2860_softc *sc)
{
if (sc->txwi_vaddr != NULL) {
bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txwi_dmat, sc->txwi_map);
bus_dmamem_free(sc->txwi_dmat, sc->txwi_vaddr, sc->txwi_map);
}
if (sc->txwi_dmat != NULL)
bus_dma_tag_destroy(sc->txwi_dmat);
while (!SLIST_EMPTY(&sc->data_pool)) {
struct rt2860_tx_data *data;
data = SLIST_FIRST(&sc->data_pool);
bus_dmamap_destroy(sc->txwi_dmat, data->map);
SLIST_REMOVE_HEAD(&sc->data_pool, next);
}
}
int
rt2860_alloc_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
bus_addr_t physaddr;
int i, size, error;
size = RT2860_RX_RING_COUNT * sizeof (struct rt2860_rxd);
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 16, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
size, 1, size, 0, NULL, NULL, &ring->desc_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create desc DMA tag\n");
goto fail;
}
error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->rxd,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
if (error != 0) {
device_printf(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->rxd,
size, rt2860_dma_map_addr, &ring->paddr, 0);
if (error != 0) {
device_printf(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
if (error != 0) {
device_printf(sc->sc_dev, "could not create data DMA tag\n");
goto fail;
}
for (i = 0; i < RT2860_RX_RING_COUNT; i++) {
struct rt2860_rx_data *data = &ring->data[i];
struct rt2860_rxd *rxd = &ring->rxd[i];
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
if (error != 0) {
device_printf(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (data->m == NULL) {
device_printf(sc->sc_dev,
"could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(ring->data_dmat, data->map,
mtod(data->m, void *), MCLBYTES, rt2860_dma_map_addr,
&physaddr, 0);
if (error != 0) {
device_printf(sc->sc_dev,
"could not load rx buf DMA map");
goto fail;
}
rxd->sdp0 = htole32(physaddr);
rxd->sdl0 = htole16(MCLBYTES);
}
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
return 0;
fail: rt2860_free_rx_ring(sc, ring);
return error;
}
void
rt2860_reset_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
int i;
for (i = 0; i < RT2860_RX_RING_COUNT; i++)
ring->rxd[i].sdl0 &= ~htole16(RT2860_RX_DDONE);
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
ring->cur = 0;
}
void
rt2860_free_rx_ring(struct rt2860_softc *sc, struct rt2860_rx_ring *ring)
{
int i;
if (ring->rxd != NULL) {
bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
bus_dmamem_free(ring->desc_dmat, ring->rxd, ring->desc_map);
}
if (ring->desc_dmat != NULL)
bus_dma_tag_destroy(ring->desc_dmat);
for (i = 0; i < RT2860_RX_RING_COUNT; i++) {
struct rt2860_rx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(ring->data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(ring->data_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(ring->data_dmat, data->map);
}
if (ring->data_dmat != NULL)
bus_dma_tag_destroy(ring->data_dmat);
}
static void
rt2860_updatestats(struct rt2860_softc *sc)
{
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
/*
* In IBSS or HostAP modes (when the hardware sends beacons), the
* MAC can run into a livelock and start sending CTS-to-self frames
* like crazy if protection is enabled. Fortunately, we can detect
* when such a situation occurs and reset the MAC.
*/
if (ic->ic_curmode != IEEE80211_M_STA) {
/* check if we're in a livelock situation.. */
uint32_t tmp = RAL_READ(sc, RT2860_DEBUG);
if ((tmp & (1 << 29)) && (tmp & (1 << 7 | 1 << 5))) {
/* ..and reset MAC/BBP for a while.. */
DPRINTF(("CTS-to-self livelock detected\n"));
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_SRST);
RAL_BARRIER_WRITE(sc);
DELAY(1);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL,
RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
}
}
}
static void
rt2860_newassoc(struct ieee80211_node *ni, int isnew)
{
struct ieee80211com *ic = ni->ni_ic;
struct rt2860_softc *sc = ic->ic_ifp->if_softc;
uint8_t wcid;
wcid = IEEE80211_AID(ni->ni_associd);
if (isnew && ni->ni_associd != 0) {
sc->wcid2ni[wcid] = ni;
/* init WCID table entry */
RAL_WRITE_REGION_1(sc, RT2860_WCID_ENTRY(wcid),
ni->ni_macaddr, IEEE80211_ADDR_LEN);
}
DPRINTF(("new assoc isnew=%d addr=%s WCID=%d\n",
isnew, ether_sprintf(ni->ni_macaddr), wcid));
}
static void
rt2860_node_free(struct ieee80211_node *ni)
{
struct ieee80211com *ic = ni->ni_ic;
struct rt2860_softc *sc = ic->ic_ifp->if_softc;
uint8_t wcid;
if (ni->ni_associd != 0) {
wcid = IEEE80211_AID(ni->ni_associd);
/* clear Rx WCID search table entry */
RAL_SET_REGION_4(sc, RT2860_WCID_ENTRY(wcid), 0, 2);
}
sc->sc_node_free(ni);
}
#ifdef IEEE80211_HT
static int
rt2860_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct rt2860_softc *sc = ic->ic_softc;
uint8_t wcid = ((struct rt2860_node *)ni)->wcid;
uint32_t tmp;
/* update BA session mask */
tmp = RAL_READ(sc, RT2860_WCID_ENTRY(wcid) + 4);
tmp |= (1 << tid) << 16;
RAL_WRITE(sc, RT2860_WCID_ENTRY(wcid) + 4, tmp);
return 0;
}
static void
rt2860_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct rt2860_softc *sc = ic->ic_softc;
uint8_t wcid = ((struct rt2860_node *)ni)->wcid;
uint32_t tmp;
/* update BA session mask */
tmp = RAL_READ(sc, RT2860_WCID_ENTRY(wcid) + 4);
tmp &= ~((1 << tid) << 16);
RAL_WRITE(sc, RT2860_WCID_ENTRY(wcid) + 4, tmp);
}
#endif
int
rt2860_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
{
struct rt2860_vap *rvp = RT2860_VAP(vap);
struct ieee80211com *ic = vap->iv_ic;
struct rt2860_softc *sc = ic->ic_ifp->if_softc;
uint32_t tmp;
int error;
if (vap->iv_state == IEEE80211_S_RUN) {
/* turn link LED off */
rt2860_set_leds(sc, RT2860_LED_RADIO);
}
if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) {
/* abort TSF synchronization */
tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG);
RAL_WRITE(sc, RT2860_BCN_TIME_CFG,
tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
RT2860_TBTT_TIMER_EN));
}
rt2860_set_gp_timer(sc, 0);
error = rvp->ral_newstate(vap, nstate, arg);
if (error != 0)
return (error);
if (nstate == IEEE80211_S_RUN) {
struct ieee80211_node *ni = vap->iv_bss;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rt2860_enable_mrr(sc);
rt2860_set_txpreamble(sc);
rt2860_set_basicrates(sc, &ni->ni_rates);
rt2860_set_bssid(sc, ni->ni_bssid);
}
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
vap->iv_opmode == IEEE80211_M_IBSS ||
vap->iv_opmode == IEEE80211_M_MBSS) {
error = rt2860_setup_beacon(sc, vap);
if (error != 0)
return error;
}
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
rt2860_enable_tsf_sync(sc);
rt2860_set_gp_timer(sc, 500);
}
/* turn link LED on */
rt2860_set_leds(sc, RT2860_LED_RADIO |
(IEEE80211_IS_CHAN_2GHZ(ni->ni_chan) ?
RT2860_LED_LINK_2GHZ : RT2860_LED_LINK_5GHZ));
}
return error;
}
/* Read 16-bit from eFUSE ROM (>=RT3071 only.) */
static uint16_t
rt3090_efuse_read_2(struct rt2860_softc *sc, uint16_t addr)
{
uint32_t tmp;
uint16_t reg;
int ntries;
addr *= 2;
/*-
* Read one 16-byte block into registers EFUSE_DATA[0-3]:
* DATA0: F E D C
* DATA1: B A 9 8
* DATA2: 7 6 5 4
* DATA3: 3 2 1 0
*/
tmp = RAL_READ(sc, RT3070_EFUSE_CTRL);
tmp &= ~(RT3070_EFSROM_MODE_MASK | RT3070_EFSROM_AIN_MASK);
tmp |= (addr & ~0xf) << RT3070_EFSROM_AIN_SHIFT | RT3070_EFSROM_KICK;
RAL_WRITE(sc, RT3070_EFUSE_CTRL, tmp);
for (ntries = 0; ntries < 500; ntries++) {
tmp = RAL_READ(sc, RT3070_EFUSE_CTRL);
if (!(tmp & RT3070_EFSROM_KICK))
break;
DELAY(2);
}
if (ntries == 500)
return 0xffff;
if ((tmp & RT3070_EFUSE_AOUT_MASK) == RT3070_EFUSE_AOUT_MASK)
return 0xffff; /* address not found */
/* determine to which 32-bit register our 16-bit word belongs */
reg = RT3070_EFUSE_DATA3 - (addr & 0xc);
tmp = RAL_READ(sc, reg);
return (addr & 2) ? tmp >> 16 : tmp & 0xffff;
}
/*
* Read 16 bits at address 'addr' from the serial EEPROM (either 93C46,
* 93C66 or 93C86).
*/
static uint16_t
rt2860_eeprom_read_2(struct rt2860_softc *sc, uint16_t addr)
{
uint32_t tmp;
uint16_t val;
int n;
/* clock C once before the first command */
RT2860_EEPROM_CTL(sc, 0);
RT2860_EEPROM_CTL(sc, RT2860_S);
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);
RT2860_EEPROM_CTL(sc, RT2860_S);
/* write start bit (1) */
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D);
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C);
/* write READ opcode (10) */
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D);
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_D | RT2860_C);
RT2860_EEPROM_CTL(sc, RT2860_S);
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);
/* write address (A5-A0 or A7-A0) */
n = ((RAL_READ(sc, RT2860_PCI_EECTRL) & 0x30) == 0) ? 5 : 7;
for (; n >= 0; n--) {
RT2860_EEPROM_CTL(sc, RT2860_S |
(((addr >> n) & 1) << RT2860_SHIFT_D));
RT2860_EEPROM_CTL(sc, RT2860_S |
(((addr >> n) & 1) << RT2860_SHIFT_D) | RT2860_C);
}
RT2860_EEPROM_CTL(sc, RT2860_S);
/* read data Q15-Q0 */
val = 0;
for (n = 15; n >= 0; n--) {
RT2860_EEPROM_CTL(sc, RT2860_S | RT2860_C);
tmp = RAL_READ(sc, RT2860_PCI_EECTRL);
val |= ((tmp & RT2860_Q) >> RT2860_SHIFT_Q) << n;
RT2860_EEPROM_CTL(sc, RT2860_S);
}
RT2860_EEPROM_CTL(sc, 0);
/* clear Chip Select and clock C */
RT2860_EEPROM_CTL(sc, RT2860_S);
RT2860_EEPROM_CTL(sc, 0);
RT2860_EEPROM_CTL(sc, RT2860_C);
return val;
}
static __inline uint16_t
rt2860_srom_read(struct rt2860_softc *sc, uint8_t addr)
{
/* either eFUSE ROM or EEPROM */
return sc->sc_srom_read(sc, addr);
}
static void
rt2860_intr_coherent(struct rt2860_softc *sc)
{
uint32_t tmp;
/* DMA finds data coherent event when checking the DDONE bit */
DPRINTF(("Tx/Rx Coherent interrupt\n"));
/* restart DMA engine */
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
tmp &= ~(RT2860_TX_WB_DDONE | RT2860_RX_DMA_EN | RT2860_TX_DMA_EN);
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
(void)rt2860_txrx_enable(sc);
}
static void
rt2860_drain_stats_fifo(struct rt2860_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211_node *ni;
uint32_t stat;
int retrycnt;
uint8_t wcid, mcs, pid;
/* drain Tx status FIFO (maxsize = 16) */
while ((stat = RAL_READ(sc, RT2860_TX_STAT_FIFO)) & RT2860_TXQ_VLD) {
DPRINTFN(4, ("tx stat 0x%08x\n", stat));
wcid = (stat >> RT2860_TXQ_WCID_SHIFT) & 0xff;
ni = sc->wcid2ni[wcid];
/* if no ACK was requested, no feedback is available */
if (!(stat & RT2860_TXQ_ACKREQ) || wcid == 0xff || ni == NULL)
continue;
/* update per-STA AMRR stats */
if (stat & RT2860_TXQ_OK) {
/*
* Check if there were retries, ie if the Tx success
* rate is different from the requested rate. Note
* that it works only because we do not allow rate
* fallback from OFDM to CCK.
*/
mcs = (stat >> RT2860_TXQ_MCS_SHIFT) & 0x7f;
pid = (stat >> RT2860_TXQ_PID_SHIFT) & 0xf;
if (mcs + 1 != pid)
retrycnt = 1;
else
retrycnt = 0;
ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
IEEE80211_RATECTL_TX_SUCCESS, &retrycnt, NULL);
} else {
ieee80211_ratectl_tx_complete(ni->ni_vap, ni,
IEEE80211_RATECTL_TX_FAILURE, &retrycnt, NULL);
ifp->if_oerrors++;
}
}
}
static void
rt2860_tx_intr(struct rt2860_softc *sc, int qid)
{
struct ifnet *ifp = sc->sc_ifp;
struct rt2860_tx_ring *ring = &sc->txq[qid];
uint32_t hw;
rt2860_drain_stats_fifo(sc);
hw = RAL_READ(sc, RT2860_TX_DTX_IDX(qid));
while (ring->next != hw) {
struct rt2860_tx_data *data = ring->data[ring->next];
if (data != NULL) {
bus_dmamap_sync(sc->txwi_dmat, data->map,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->txwi_dmat, data->map);
if (data->m->m_flags & M_TXCB) {
ieee80211_process_callback(data->ni, data->m,
0);
}
m_freem(data->m);
ieee80211_free_node(data->ni);
data->m = NULL;
data->ni = NULL;
SLIST_INSERT_HEAD(&sc->data_pool, data, next);
ring->data[ring->next] = NULL;
ifp->if_opackets++;
}
ring->queued--;
ring->next = (ring->next + 1) % RT2860_TX_RING_COUNT;
}
sc->sc_tx_timer = 0;
if (ring->queued < RT2860_TX_RING_COUNT)
sc->qfullmsk &= ~(1 << qid);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
rt2860_start_locked(ifp);
}
/*
* Return the Rx chain with the highest RSSI for a given frame.
*/
static __inline uint8_t
rt2860_maxrssi_chain(struct rt2860_softc *sc, const struct rt2860_rxwi *rxwi)
{
uint8_t rxchain = 0;
if (sc->nrxchains > 1) {
if (rxwi->rssi[1] > rxwi->rssi[rxchain])
rxchain = 1;
if (sc->nrxchains > 2)
if (rxwi->rssi[2] > rxwi->rssi[rxchain])
rxchain = 2;
}
return rxchain;
}
static void
rt2860_rx_intr(struct rt2860_softc *sc)
{
struct rt2860_rx_radiotap_header *tap;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *m1;
bus_addr_t physaddr;
uint32_t hw;
uint16_t phy;
uint8_t ant;
int8_t rssi, nf;
int error;
hw = RAL_READ(sc, RT2860_FS_DRX_IDX) & 0xfff;
while (sc->rxq.cur != hw) {
struct rt2860_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct rt2860_rxd *rxd = &sc->rxq.rxd[sc->rxq.cur];
struct rt2860_rxwi *rxwi;
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_POSTREAD);
if (__predict_false(!(rxd->sdl0 & htole16(RT2860_RX_DDONE)))) {
DPRINTF(("RXD DDONE bit not set!\n"));
break; /* should not happen */
}
if (__predict_false(rxd->flags &
htole32(RT2860_RX_CRCERR | RT2860_RX_ICVERR))) {
ifp->if_ierrors++;
goto skip;
}
#ifdef HW_CRYPTO
if (__predict_false(rxd->flags & htole32(RT2860_RX_MICERR))) {
/* report MIC failures to net80211 for TKIP */
ic->ic_stats.is_rx_locmicfail++;
ieee80211_michael_mic_failure(ic, 0/* XXX */);
ifp->if_ierrors++;
goto skip;
}
#endif
m1 = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (__predict_false(m1 == NULL)) {
ifp->if_ierrors++;
goto skip;
}
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rxq.data_dmat, data->map);
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(m1, void *), MCLBYTES, rt2860_dma_map_addr,
&physaddr, 0);
if (__predict_false(error != 0)) {
m_freem(m1);
/* try to reload the old mbuf */
error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
mtod(data->m, void *), MCLBYTES,
rt2860_dma_map_addr, &physaddr, 0);
if (__predict_false(error != 0)) {
panic("%s: could not load old rx mbuf",
device_get_name(sc->sc_dev));
}
/* physical address may have changed */
rxd->sdp0 = htole32(physaddr);
ifp->if_ierrors++;
goto skip;
}
/*
* New mbuf successfully loaded, update Rx ring and continue
* processing.
*/
m = data->m;
data->m = m1;
rxd->sdp0 = htole32(physaddr);
rxwi = mtod(m, struct rt2860_rxwi *);
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
m->m_data = (caddr_t)(rxwi + 1);
m->m_pkthdr.len = m->m_len = le16toh(rxwi->len) & 0xfff;
wh = mtod(m, struct ieee80211_frame *);
#ifdef HW_CRYPTO
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
/* frame is decrypted by hardware */
wh->i_fc[1] &= ~IEEE80211_FC1_PROTECTED;
}
#endif
/* HW may insert 2 padding bytes after 802.11 header */
if (rxd->flags & htole32(RT2860_RX_L2PAD)) {
u_int hdrlen = ieee80211_hdrsize(wh);
ovbcopy(wh, (caddr_t)wh + 2, hdrlen);
m->m_data += 2;
wh = mtod(m, struct ieee80211_frame *);
}
ant = rt2860_maxrssi_chain(sc, rxwi);
rssi = rt2860_rssi2dbm(sc, rxwi->rssi[ant], ant);
nf = RT2860_NOISE_FLOOR;
if (ieee80211_radiotap_active(ic)) {
tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_antenna = ant;
tap->wr_antsignal = nf + rssi;
tap->wr_antnoise = nf;
/* in case it can't be found below */
tap->wr_rate = 2;
phy = le16toh(rxwi->phy);
switch (phy & RT2860_PHY_MODE) {
case RT2860_PHY_CCK:
switch ((phy & RT2860_PHY_MCS) & ~RT2860_PHY_SHPRE) {
case 0: tap->wr_rate = 2; break;
case 1: tap->wr_rate = 4; break;
case 2: tap->wr_rate = 11; break;
case 3: tap->wr_rate = 22; break;
}
if (phy & RT2860_PHY_SHPRE)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
break;
case RT2860_PHY_OFDM:
switch (phy & RT2860_PHY_MCS) {
case 0: tap->wr_rate = 12; break;
case 1: tap->wr_rate = 18; break;
case 2: tap->wr_rate = 24; break;
case 3: tap->wr_rate = 36; break;
case 4: tap->wr_rate = 48; break;
case 5: tap->wr_rate = 72; break;
case 6: tap->wr_rate = 96; break;
case 7: tap->wr_rate = 108; break;
}
break;
}
}
RAL_UNLOCK(sc);
wh = mtod(m, struct ieee80211_frame *);
/* send the frame to the 802.11 layer */
ni = ieee80211_find_rxnode(ic,
(struct ieee80211_frame_min *)wh);
if (ni != NULL) {
(void)ieee80211_input(ni, m, rssi - nf, nf);
ieee80211_free_node(ni);
} else
(void)ieee80211_input_all(ic, m, rssi - nf, nf);
RAL_LOCK(sc);
skip: rxd->sdl0 &= ~htole16(RT2860_RX_DDONE);
bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
BUS_DMASYNC_PREWRITE);
sc->rxq.cur = (sc->rxq.cur + 1) % RT2860_RX_RING_COUNT;
}
/* tell HW what we have processed */
RAL_WRITE(sc, RT2860_RX_CALC_IDX,
(sc->rxq.cur - 1) % RT2860_RX_RING_COUNT);
}
static void
rt2860_tbtt_intr(struct rt2860_softc *sc)
{
#if 0
struct ieee80211com *ic = &sc->sc_ic;
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
/* one less beacon until next DTIM */
if (ic->ic_dtim_count == 0)
ic->ic_dtim_count = ic->ic_dtim_period - 1;
else
ic->ic_dtim_count--;
/* update dynamic parts of beacon */
rt2860_setup_beacon(sc);
/* flush buffered multicast frames */
if (ic->ic_dtim_count == 0)
ieee80211_notify_dtim(ic);
}
#endif
/* check if protection mode has changed */
if ((sc->sc_ic_flags ^ ic->ic_flags) & IEEE80211_F_USEPROT) {
rt2860_updateprot(ic);
sc->sc_ic_flags = ic->ic_flags;
}
#endif
}
static void
rt2860_gp_intr(struct rt2860_softc *sc)
{
struct ieee80211com *ic = sc->sc_ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
DPRINTFN(2, ("GP timeout state=%d\n", vap->iv_state));
if (vap->iv_state == IEEE80211_S_RUN)
rt2860_updatestats(sc);
}
void
rt2860_intr(void *arg)
{
struct rt2860_softc *sc = arg;
uint32_t r;
RAL_LOCK(sc);
r = RAL_READ(sc, RT2860_INT_STATUS);
if (__predict_false(r == 0xffffffff)) {
RAL_UNLOCK(sc);
return; /* device likely went away */
}
if (r == 0) {
RAL_UNLOCK(sc);
return; /* not for us */
}
/* acknowledge interrupts */
RAL_WRITE(sc, RT2860_INT_STATUS, r);
if (r & RT2860_TX_RX_COHERENT)
rt2860_intr_coherent(sc);
if (r & RT2860_MAC_INT_2) /* TX status */
rt2860_drain_stats_fifo(sc);
if (r & RT2860_TX_DONE_INT5)
rt2860_tx_intr(sc, 5);
if (r & RT2860_RX_DONE_INT)
rt2860_rx_intr(sc);
if (r & RT2860_TX_DONE_INT4)
rt2860_tx_intr(sc, 4);
if (r & RT2860_TX_DONE_INT3)
rt2860_tx_intr(sc, 3);
if (r & RT2860_TX_DONE_INT2)
rt2860_tx_intr(sc, 2);
if (r & RT2860_TX_DONE_INT1)
rt2860_tx_intr(sc, 1);
if (r & RT2860_TX_DONE_INT0)
rt2860_tx_intr(sc, 0);
if (r & RT2860_MAC_INT_0) /* TBTT */
rt2860_tbtt_intr(sc);
if (r & RT2860_MAC_INT_3) /* Auto wakeup */
/* TBD wakeup */;
if (r & RT2860_MAC_INT_4) /* GP timer */
rt2860_gp_intr(sc);
RAL_UNLOCK(sc);
}
static int
rt2860_tx(struct rt2860_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = ni->ni_vap;
struct rt2860_tx_ring *ring;
struct rt2860_tx_data *data;
struct rt2860_txd *txd;
struct rt2860_txwi *txwi;
struct ieee80211_frame *wh;
const struct ieee80211_txparam *tp;
struct ieee80211_key *k;
struct mbuf *m1;
bus_dma_segment_t segs[RT2860_MAX_SCATTER];
bus_dma_segment_t *seg;
u_int hdrlen;
uint16_t qos, dur;
uint8_t type, qsel, mcs, pid, tid, qid;
int i, nsegs, ntxds, pad, rate, ridx, error;
/* the data pool contains at least one element, pick the first */
data = SLIST_FIRST(&sc->data_pool);
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ni, m);
if (k == NULL) {
m_freem(m);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
hdrlen = ieee80211_anyhdrsize(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
rate = tp->mcastrate;
} else if (m->m_flags & M_EAPOL) {
rate = tp->mgmtrate;
} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
rate = tp->ucastrate;
} else {
(void) ieee80211_ratectl_rate(ni, NULL, 0);
rate = ni->ni_txrate;
}
rate &= IEEE80211_RATE_VAL;
qid = M_WME_GETAC(m);
if (IEEE80211_QOS_HAS_SEQ(wh)) {
qos = ((const struct ieee80211_qosframe *)wh)->i_qos[0];
tid = qos & IEEE80211_QOS_TID;
} else {
qos = 0;
tid = 0;
}
ring = &sc->txq[qid];
ridx = ieee80211_legacy_rate_lookup(ic->ic_rt, rate);
/* get MCS code from rate index */
mcs = rt2860_rates[ridx].mcs;
/* setup TX Wireless Information */
txwi = data->txwi;
txwi->flags = 0;
/* let HW generate seq numbers for non-QoS frames */
txwi->xflags = qos ? 0 : RT2860_TX_NSEQ;
if (type == IEEE80211_FC0_TYPE_DATA)
txwi->wcid = IEEE80211_AID(ni->ni_associd);
else
txwi->wcid = 0xff;
txwi->len = htole16(m->m_pkthdr.len);
if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
txwi->phy = htole16(RT2860_PHY_CCK);
if (ridx != RT2860_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
mcs |= RT2860_PHY_SHPRE;
} else
txwi->phy = htole16(RT2860_PHY_OFDM);
txwi->phy |= htole16(mcs);
/*
* We store the MCS code into the driver-private PacketID field.
* The PacketID is latched into TX_STAT_FIFO when Tx completes so
* that we know at which initial rate the frame was transmitted.
* We add 1 to the MCS code because setting the PacketID field to
* 0 means that we don't want feedback in TX_STAT_FIFO.
*/
pid = (mcs + 1) & 0xf;
txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
/* check if RTS/CTS or CTS-to-self protection is required */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(m->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold ||
((ic->ic_flags & IEEE80211_F_USEPROT) &&
rt2860_rates[ridx].phy == IEEE80211_T_OFDM)))
txwi->txop = RT2860_TX_TXOP_HT;
else
txwi->txop = RT2860_TX_TXOP_BACKOFF;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(!qos || (qos & IEEE80211_QOS_ACKPOLICY) !=
IEEE80211_QOS_ACKPOLICY_NOACK)) {
txwi->xflags |= RT2860_TX_ACK;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
dur = rt2860_rates[ridx].sp_ack_dur;
else
dur = rt2860_rates[ridx].lp_ack_dur;
*(uint16_t *)wh->i_dur = htole16(dur);
}
/* ask MAC to insert timestamp into probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
/* NOTE: beacons do not pass through tx_data() */
txwi->flags |= RT2860_TX_TS;
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2860_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
if (mcs & RT2860_PHY_SHPRE)
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
ieee80211_radiotap_tx(vap, m);
}
pad = (hdrlen + 3) & ~3;
/* copy and trim 802.11 header */
memcpy(txwi + 1, wh, hdrlen);
m_adj(m, hdrlen);
error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m, segs,
&nsegs, 0);
if (__predict_false(error != 0 && error != EFBIG)) {
device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
error);
m_freem(m);
return error;
}
if (__predict_true(error == 0)) {
/* determine how many TXDs are required */
ntxds = 1 + (nsegs / 2);
if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
/* not enough free TXDs, force mbuf defrag */
bus_dmamap_unload(sc->txwi_dmat, data->map);
error = EFBIG;
}
}
if (__predict_false(error != 0)) {
m1 = m_defrag(m, M_NOWAIT);
if (m1 == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m);
return ENOBUFS;
}
m = m1;
error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m,
segs, &nsegs, 0);
if (__predict_false(error != 0)) {
device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
error);
m_freem(m);
return error;
}
/* determine how many TXDs are now required */
ntxds = 1 + (nsegs / 2);
if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
/* this is a hopeless case, drop the mbuf! */
bus_dmamap_unload(sc->txwi_dmat, data->map);
m_freem(m);
return ENOBUFS;
}
}
qsel = (qid < WME_NUM_AC) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_MGMT;
/* first segment is TXWI + 802.11 header */
txd = &ring->txd[ring->cur];
txd->sdp0 = htole32(data->paddr);
txd->sdl0 = htole16(sizeof (struct rt2860_txwi) + pad);
txd->flags = qsel;
/* setup payload segments */
seg = &segs[0];
for (i = nsegs; i >= 2; i -= 2) {
txd->sdp1 = htole32(seg->ds_addr);
txd->sdl1 = htole16(seg->ds_len);
seg++;
ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
/* grab a new Tx descriptor */
txd = &ring->txd[ring->cur];
txd->sdp0 = htole32(seg->ds_addr);
txd->sdl0 = htole16(seg->ds_len);
txd->flags = qsel;
seg++;
}
/* finalize last segment */
if (i > 0) {
txd->sdp1 = htole32(seg->ds_addr);
txd->sdl1 = htole16(seg->ds_len | RT2860_TX_LS1);
} else {
txd->sdl0 |= htole16(RT2860_TX_LS0);
txd->sdl1 = 0;
}
/* remove from the free pool and link it into the SW Tx slot */
SLIST_REMOVE_HEAD(&sc->data_pool, next);
data->m = m;
data->ni = ni;
ring->data[ring->cur] = data;
bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
DPRINTFN(4, ("sending frame qid=%d wcid=%d nsegs=%d ridx=%d\n",
qid, txwi->wcid, nsegs, ridx));
ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
ring->queued += ntxds;
if (ring->queued >= RT2860_TX_RING_COUNT)
sc->qfullmsk |= 1 << qid;
/* kick Tx */
RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), ring->cur);
return 0;
}
static int
rt2860_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
const struct ieee80211_bpf_params *params)
{
struct ieee80211com *ic = ni->ni_ic;
struct ifnet *ifp = ic->ic_ifp;
struct rt2860_softc *sc = ifp->if_softc;
int error;
RAL_LOCK(sc);
/* prevent management frames from being sent if we're not ready */
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
RAL_UNLOCK(sc);
m_freem(m);
ieee80211_free_node(ni);
return ENETDOWN;
}
if (params == NULL) {
/*
* Legacy path; interpret frame contents to decide
* precisely how to send the frame.
*/
error = rt2860_tx(sc, m, ni);
} else {
/*
* Caller supplied explicit parameters to use in
* sending the frame.
*/
error = rt2860_tx_raw(sc, m, ni, params);
}
if (error != 0) {
/* NB: m is reclaimed on tx failure */
ieee80211_free_node(ni);
ifp->if_oerrors++;
}
sc->sc_tx_timer = 5;
RAL_UNLOCK(sc);
return error;
}
static int
rt2860_tx_raw(struct rt2860_softc *sc, struct mbuf *m,
struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = ni->ni_vap;
struct rt2860_tx_ring *ring;
struct rt2860_tx_data *data;
struct rt2860_txd *txd;
struct rt2860_txwi *txwi;
struct ieee80211_frame *wh;
struct mbuf *m1;
bus_dma_segment_t segs[RT2860_MAX_SCATTER];
bus_dma_segment_t *seg;
u_int hdrlen;
uint16_t dur;
uint8_t type, qsel, mcs, pid, tid, qid;
int i, nsegs, ntxds, pad, rate, ridx, error;
/* the data pool contains at least one element, pick the first */
data = SLIST_FIRST(&sc->data_pool);
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_hdrsize(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
/* Choose a TX rate index. */
rate = params->ibp_rate0;
ridx = ieee80211_legacy_rate_lookup(ic->ic_rt,
rate & IEEE80211_RATE_VAL);
if (ridx == (uint8_t)-1) {
/* XXX fall back to mcast/mgmt rate? */
m_freem(m);
return EINVAL;
}
qid = params->ibp_pri & 3;
tid = 0;
ring = &sc->txq[qid];
/* get MCS code from rate index */
mcs = rt2860_rates[ridx].mcs;
/* setup TX Wireless Information */
txwi = data->txwi;
txwi->flags = 0;
/* let HW generate seq numbers for non-QoS frames */
txwi->xflags = params->ibp_pri & 3 ? 0 : RT2860_TX_NSEQ;
txwi->wcid = 0xff;
txwi->len = htole16(m->m_pkthdr.len);
if (rt2860_rates[ridx].phy == IEEE80211_T_DS) {
txwi->phy = htole16(RT2860_PHY_CCK);
if (ridx != RT2860_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
mcs |= RT2860_PHY_SHPRE;
} else
txwi->phy = htole16(RT2860_PHY_OFDM);
txwi->phy |= htole16(mcs);
/*
* We store the MCS code into the driver-private PacketID field.
* The PacketID is latched into TX_STAT_FIFO when Tx completes so
* that we know at which initial rate the frame was transmitted.
* We add 1 to the MCS code because setting the PacketID field to
* 0 means that we don't want feedback in TX_STAT_FIFO.
*/
pid = (mcs + 1) & 0xf;
txwi->len |= htole16(pid << RT2860_TX_PID_SHIFT);
/* check if RTS/CTS or CTS-to-self protection is required */
if (params->ibp_flags & IEEE80211_BPF_RTS ||
params->ibp_flags & IEEE80211_BPF_CTS)
txwi->txop = RT2860_TX_TXOP_HT;
else
txwi->txop = RT2860_TX_TXOP_BACKOFF;
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) {
txwi->xflags |= RT2860_TX_ACK;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
dur = rt2860_rates[ridx].sp_ack_dur;
else
dur = rt2860_rates[ridx].lp_ack_dur;
*(uint16_t *)wh->i_dur = htole16(dur);
}
/* ask MAC to insert timestamp into probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
/* NOTE: beacons do not pass through tx_data() */
txwi->flags |= RT2860_TX_TS;
if (ieee80211_radiotap_active_vap(vap)) {
struct rt2860_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = rate;
if (mcs & RT2860_PHY_SHPRE)
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
ieee80211_radiotap_tx(vap, m);
}
pad = (hdrlen + 3) & ~3;
/* copy and trim 802.11 header */
memcpy(txwi + 1, wh, hdrlen);
m_adj(m, hdrlen);
error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m, segs,
&nsegs, 0);
if (__predict_false(error != 0 && error != EFBIG)) {
device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
error);
m_freem(m);
return error;
}
if (__predict_true(error == 0)) {
/* determine how many TXDs are required */
ntxds = 1 + (nsegs / 2);
if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
/* not enough free TXDs, force mbuf defrag */
bus_dmamap_unload(sc->txwi_dmat, data->map);
error = EFBIG;
}
}
if (__predict_false(error != 0)) {
m1 = m_defrag(m, M_NOWAIT);
if (m1 == NULL) {
device_printf(sc->sc_dev,
"could not defragment mbuf\n");
m_freem(m);
return ENOBUFS;
}
m = m1;
error = bus_dmamap_load_mbuf_sg(sc->txwi_dmat, data->map, m,
segs, &nsegs, 0);
if (__predict_false(error != 0)) {
device_printf(sc->sc_dev, "can't map mbuf (error %d)\n",
error);
m_freem(m);
return error;
}
/* determine how many TXDs are now required */
ntxds = 1 + (nsegs / 2);
if (ring->queued + ntxds >= RT2860_TX_RING_COUNT) {
/* this is a hopeless case, drop the mbuf! */
bus_dmamap_unload(sc->txwi_dmat, data->map);
m_freem(m);
return ENOBUFS;
}
}
qsel = (qid < WME_NUM_AC) ? RT2860_TX_QSEL_EDCA : RT2860_TX_QSEL_MGMT;
/* first segment is TXWI + 802.11 header */
txd = &ring->txd[ring->cur];
txd->sdp0 = htole32(data->paddr);
txd->sdl0 = htole16(sizeof (struct rt2860_txwi) + pad);
txd->flags = qsel;
/* setup payload segments */
seg = &segs[0];
for (i = nsegs; i >= 2; i -= 2) {
txd->sdp1 = htole32(seg->ds_addr);
txd->sdl1 = htole16(seg->ds_len);
seg++;
ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
/* grab a new Tx descriptor */
txd = &ring->txd[ring->cur];
txd->sdp0 = htole32(seg->ds_addr);
txd->sdl0 = htole16(seg->ds_len);
txd->flags = qsel;
seg++;
}
/* finalize last segment */
if (i > 0) {
txd->sdp1 = htole32(seg->ds_addr);
txd->sdl1 = htole16(seg->ds_len | RT2860_TX_LS1);
} else {
txd->sdl0 |= htole16(RT2860_TX_LS0);
txd->sdl1 = 0;
}
/* remove from the free pool and link it into the SW Tx slot */
SLIST_REMOVE_HEAD(&sc->data_pool, next);
data->m = m;
data->ni = ni;
ring->data[ring->cur] = data;
bus_dmamap_sync(sc->txwi_dmat, sc->txwi_map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->txwi_dmat, data->map, BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
DPRINTFN(4, ("sending frame qid=%d wcid=%d nsegs=%d ridx=%d\n",
qid, txwi->wcid, nsegs, ridx));
ring->cur = (ring->cur + 1) % RT2860_TX_RING_COUNT;
ring->queued += ntxds;
if (ring->queued >= RT2860_TX_RING_COUNT)
sc->qfullmsk |= 1 << qid;
/* kick Tx */
RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), ring->cur);
return 0;
}
static void
rt2860_start(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
rt2860_start_locked(ifp);
RAL_UNLOCK(sc);
}
static void
rt2860_start_locked(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
struct mbuf *m;
RAL_LOCK_ASSERT(sc);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
(ifp->if_drv_flags & IFF_DRV_OACTIVE))
return;
for (;;) {
if (SLIST_EMPTY(&sc->data_pool) || sc->qfullmsk != 0) {
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
break;
}
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
if (rt2860_tx(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
}
}
static void
rt2860_watchdog(void *arg)
{
struct rt2860_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
RAL_LOCK_ASSERT(sc);
KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
if (sc->sc_invalid) /* card ejected */
return;
if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
if_printf(ifp, "device timeout\n");
rt2860_stop_locked(sc);
rt2860_init_locked(sc);
ifp->if_oerrors++;
return;
}
callout_reset(&sc->watchdog_ch, hz, rt2860_watchdog, sc);
}
static int
rt2860_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
struct ifreq *ifr = (struct ifreq *)data;
int error = 0, startall = 0;
switch (cmd) {
case SIOCSIFFLAGS:
RAL_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
rt2860_init_locked(sc);
startall = 1;
} else
rt2860_update_promisc(ifp);
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rt2860_stop_locked(sc);
}
RAL_UNLOCK(sc);
if (startall)
ieee80211_start_all(ic);
break;
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCSIFADDR:
error = ether_ioctl(ifp, cmd, data);
break;
default:
error = EINVAL;
break;
}
return error;
}
/*
* Reading and writing from/to the BBP is different from RT2560 and RT2661.
* We access the BBP through the 8051 microcontroller unit which means that
* the microcode must be loaded first.
*/
void
rt2860_mcu_bbp_write(struct rt2860_softc *sc, uint8_t reg, uint8_t val)
{
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"could not write to BBP through MCU\n");
return;
}
RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL |
RT2860_BBP_CSR_KICK | reg << 8 | val);
RAL_BARRIER_WRITE(sc);
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0, 0);
DELAY(1000);
}
uint8_t
rt2860_mcu_bbp_read(struct rt2860_softc *sc, uint8_t reg)
{
uint32_t val;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_H2M_BBPAGENT) & RT2860_BBP_CSR_KICK))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev,
"could not read from BBP through MCU\n");
return 0;
}
RAL_WRITE(sc, RT2860_H2M_BBPAGENT, RT2860_BBP_RW_PARALLEL |
RT2860_BBP_CSR_KICK | RT2860_BBP_CSR_READ | reg << 8);
RAL_BARRIER_WRITE(sc);
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_BBP, 0, 0);
DELAY(1000);
for (ntries = 0; ntries < 100; ntries++) {
val = RAL_READ(sc, RT2860_H2M_BBPAGENT);
if (!(val & RT2860_BBP_CSR_KICK))
return val & 0xff;
DELAY(1);
}
device_printf(sc->sc_dev, "could not read from BBP through MCU\n");
return 0;
}
/*
* Write to one of the 4 programmable 24-bit RF registers.
*/
static void
rt2860_rf_write(struct rt2860_softc *sc, uint8_t reg, uint32_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_RF_CSR_CFG0) & RT2860_RF_REG_CTRL))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
/* RF registers are 24-bit on the RT2860 */
tmp = RT2860_RF_REG_CTRL | 24 << RT2860_RF_REG_WIDTH_SHIFT |
(val & 0x3fffff) << 2 | (reg & 3);
RAL_WRITE(sc, RT2860_RF_CSR_CFG0, tmp);
}
static uint8_t
rt3090_rf_read(struct rt2860_softc *sc, uint8_t reg)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT3070_RF_CSR_CFG) & RT3070_RF_KICK))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not read RF register\n");
return 0xff;
}
tmp = RT3070_RF_KICK | reg << 8;
RAL_WRITE(sc, RT3070_RF_CSR_CFG, tmp);
for (ntries = 0; ntries < 100; ntries++) {
tmp = RAL_READ(sc, RT3070_RF_CSR_CFG);
if (!(tmp & RT3070_RF_KICK))
break;
DELAY(1);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "could not read RF register\n");
return 0xff;
}
return tmp & 0xff;
}
void
rt3090_rf_write(struct rt2860_softc *sc, uint8_t reg, uint8_t val)
{
uint32_t tmp;
int ntries;
for (ntries = 0; ntries < 10; ntries++) {
if (!(RAL_READ(sc, RT3070_RF_CSR_CFG) & RT3070_RF_KICK))
break;
DELAY(10);
}
if (ntries == 10) {
device_printf(sc->sc_dev, "could not write to RF\n");
return;
}
tmp = RT3070_RF_WRITE | RT3070_RF_KICK | reg << 8 | val;
RAL_WRITE(sc, RT3070_RF_CSR_CFG, tmp);
}
/*
* Send a command to the 8051 microcontroller unit.
*/
int
rt2860_mcu_cmd(struct rt2860_softc *sc, uint8_t cmd, uint16_t arg, int wait)
{
int slot, ntries;
uint32_t tmp;
uint8_t cid;
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_H2M_MAILBOX) & RT2860_H2M_BUSY))
break;
DELAY(2);
}
if (ntries == 100)
return EIO;
cid = wait ? cmd : RT2860_TOKEN_NO_INTR;
RAL_WRITE(sc, RT2860_H2M_MAILBOX, RT2860_H2M_BUSY | cid << 16 | arg);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_HOST_CMD, cmd);
if (!wait)
return 0;
/* wait for the command to complete */
for (ntries = 0; ntries < 200; ntries++) {
tmp = RAL_READ(sc, RT2860_H2M_MAILBOX_CID);
/* find the command slot */
for (slot = 0; slot < 4; slot++, tmp >>= 8)
if ((tmp & 0xff) == cid)
break;
if (slot < 4)
break;
DELAY(100);
}
if (ntries == 200) {
/* clear command and status */
RAL_WRITE(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
RAL_WRITE(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
return ETIMEDOUT;
}
/* get command status (1 means success) */
tmp = RAL_READ(sc, RT2860_H2M_MAILBOX_STATUS);
tmp = (tmp >> (slot * 8)) & 0xff;
DPRINTF(("MCU command=0x%02x slot=%d status=0x%02x\n",
cmd, slot, tmp));
/* clear command and status */
RAL_WRITE(sc, RT2860_H2M_MAILBOX_STATUS, 0xffffffff);
RAL_WRITE(sc, RT2860_H2M_MAILBOX_CID, 0xffffffff);
return (tmp == 1) ? 0 : EIO;
}
static void
rt2860_enable_mrr(struct rt2860_softc *sc)
{
#define CCK(mcs) (mcs)
#define OFDM(mcs) (1 << 3 | (mcs))
RAL_WRITE(sc, RT2860_LG_FBK_CFG0,
OFDM(6) << 28 | /* 54->48 */
OFDM(5) << 24 | /* 48->36 */
OFDM(4) << 20 | /* 36->24 */
OFDM(3) << 16 | /* 24->18 */
OFDM(2) << 12 | /* 18->12 */
OFDM(1) << 8 | /* 12-> 9 */
OFDM(0) << 4 | /* 9-> 6 */
OFDM(0)); /* 6-> 6 */
RAL_WRITE(sc, RT2860_LG_FBK_CFG1,
CCK(2) << 12 | /* 11->5.5 */
CCK(1) << 8 | /* 5.5-> 2 */
CCK(0) << 4 | /* 2-> 1 */
CCK(0)); /* 1-> 1 */
#undef OFDM
#undef CCK
}
static void
rt2860_set_txpreamble(struct rt2860_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
tmp = RAL_READ(sc, RT2860_AUTO_RSP_CFG);
tmp &= ~RT2860_CCK_SHORT_EN;
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
tmp |= RT2860_CCK_SHORT_EN;
RAL_WRITE(sc, RT2860_AUTO_RSP_CFG, tmp);
}
void
rt2860_set_basicrates(struct rt2860_softc *sc,
const struct ieee80211_rateset *rs)
{
#define RV(r) ((r) & IEEE80211_RATE_VAL)
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t mask = 0;
uint8_t rate;
int i;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i];
if (!(rate & IEEE80211_RATE_BASIC))
continue;
mask |= 1 << ieee80211_legacy_rate_lookup(ic->ic_rt, RV(rate));
}
RAL_WRITE(sc, RT2860_LEGACY_BASIC_RATE, mask);
#undef RV
}
static void
rt2860_scan_start(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2860_softc *sc = ifp->if_softc;
uint32_t tmp;
tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG);
RAL_WRITE(sc, RT2860_BCN_TIME_CFG,
tmp & ~(RT2860_BCN_TX_EN | RT2860_TSF_TIMER_EN |
RT2860_TBTT_TIMER_EN));
rt2860_set_gp_timer(sc, 0);
}
static void
rt2860_scan_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
if (vap->iv_state == IEEE80211_S_RUN) {
rt2860_enable_tsf_sync(sc);
rt2860_set_gp_timer(sc, 500);
}
}
static void
rt2860_set_channel(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct rt2860_softc *sc = ifp->if_softc;
RAL_LOCK(sc);
rt2860_switch_chan(sc, ic->ic_curchan);
RAL_UNLOCK(sc);
}
static void
rt2860_select_chan_group(struct rt2860_softc *sc, int group)
{
uint32_t tmp;
uint8_t agc;
rt2860_mcu_bbp_write(sc, 62, 0x37 - sc->lna[group]);
rt2860_mcu_bbp_write(sc, 63, 0x37 - sc->lna[group]);
rt2860_mcu_bbp_write(sc, 64, 0x37 - sc->lna[group]);
rt2860_mcu_bbp_write(sc, 86, 0x00);
if (group == 0) {
if (sc->ext_2ghz_lna) {
rt2860_mcu_bbp_write(sc, 82, 0x62);
rt2860_mcu_bbp_write(sc, 75, 0x46);
} else {
rt2860_mcu_bbp_write(sc, 82, 0x84);
rt2860_mcu_bbp_write(sc, 75, 0x50);
}
} else {
if (sc->ext_5ghz_lna) {
rt2860_mcu_bbp_write(sc, 82, 0xf2);
rt2860_mcu_bbp_write(sc, 75, 0x46);
} else {
rt2860_mcu_bbp_write(sc, 82, 0xf2);
rt2860_mcu_bbp_write(sc, 75, 0x50);
}
}
tmp = RAL_READ(sc, RT2860_TX_BAND_CFG);
tmp &= ~(RT2860_5G_BAND_SEL_N | RT2860_5G_BAND_SEL_P);
tmp |= (group == 0) ? RT2860_5G_BAND_SEL_N : RT2860_5G_BAND_SEL_P;
RAL_WRITE(sc, RT2860_TX_BAND_CFG, tmp);
/* enable appropriate Power Amplifiers and Low Noise Amplifiers */
tmp = RT2860_RFTR_EN | RT2860_TRSW_EN | RT2860_LNA_PE0_EN;
if (sc->nrxchains > 1)
tmp |= RT2860_LNA_PE1_EN;
if (sc->mac_ver == 0x3593 && sc->nrxchains > 2)
tmp |= RT3593_LNA_PE2_EN;
if (group == 0) { /* 2GHz */
tmp |= RT2860_PA_PE_G0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_G1_EN;
if (sc->mac_ver == 0x3593 && sc->ntxchains > 2)
tmp |= RT3593_PA_PE_G2_EN;
} else { /* 5GHz */
tmp |= RT2860_PA_PE_A0_EN;
if (sc->ntxchains > 1)
tmp |= RT2860_PA_PE_A1_EN;
if (sc->mac_ver == 0x3593 && sc->ntxchains > 2)
tmp |= RT3593_PA_PE_A2_EN;
}
RAL_WRITE(sc, RT2860_TX_PIN_CFG, tmp);
if (sc->mac_ver == 0x3593) {
tmp = RAL_READ(sc, RT2860_GPIO_CTRL);
if (sc->sc_flags & RT2860_PCIE) {
tmp &= ~0x01010000;
if (group == 0)
tmp |= 0x00010000;
} else {
tmp &= ~0x00008080;
if (group == 0)
tmp |= 0x00000080;
}
tmp = (tmp & ~0x00001000) | 0x00000010;
RAL_WRITE(sc, RT2860_GPIO_CTRL, tmp);
}
/* set initial AGC value */
if (group == 0) { /* 2GHz band */
if (sc->mac_ver >= 0x3071)
agc = 0x1c + sc->lna[0] * 2;
else
agc = 0x2e + sc->lna[0];
} else { /* 5GHz band */
agc = 0x32 + (sc->lna[group] * 5) / 3;
}
rt2860_mcu_bbp_write(sc, 66, agc);
DELAY(1000);
}
static void
rt2860_set_chan(struct rt2860_softc *sc, u_int chan)
{
const struct rfprog *rfprog = rt2860_rf2850;
uint32_t r2, r3, r4;
int8_t txpow1, txpow2;
u_int i;
/* find the settings for this channel (we know it exists) */
for (i = 0; rfprog[i].chan != chan; i++);
r2 = rfprog[i].r2;
if (sc->ntxchains == 1)
r2 |= 1 << 12; /* 1T: disable Tx chain 2 */
if (sc->nrxchains == 1)
r2 |= 1 << 15 | 1 << 4; /* 1R: disable Rx chains 2 & 3 */
else if (sc->nrxchains == 2)
r2 |= 1 << 4; /* 2R: disable Rx chain 3 */
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
if (chan > 14) {
if (txpow1 >= 0)
txpow1 = txpow1 << 1 | 1;
else
txpow1 = (7 + txpow1) << 1;
if (txpow2 >= 0)
txpow2 = txpow2 << 1 | 1;
else
txpow2 = (7 + txpow2) << 1;
}
r3 = rfprog[i].r3 | txpow1 << 7;
r4 = rfprog[i].r4 | sc->freq << 13 | txpow2 << 4;
rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
rt2860_rf_write(sc, RT2860_RF2, r2);
rt2860_rf_write(sc, RT2860_RF3, r3);
rt2860_rf_write(sc, RT2860_RF4, r4);
DELAY(200);
rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
rt2860_rf_write(sc, RT2860_RF2, r2);
rt2860_rf_write(sc, RT2860_RF3, r3 | 1);
rt2860_rf_write(sc, RT2860_RF4, r4);
DELAY(200);
rt2860_rf_write(sc, RT2860_RF1, rfprog[i].r1);
rt2860_rf_write(sc, RT2860_RF2, r2);
rt2860_rf_write(sc, RT2860_RF3, r3);
rt2860_rf_write(sc, RT2860_RF4, r4);
}
static void
rt3090_set_chan(struct rt2860_softc *sc, u_int chan)
{
int8_t txpow1, txpow2;
uint8_t rf;
int i;
/* RT3090 is 2GHz only */
KASSERT(chan >= 1 && chan <= 14, ("chan %d not support", chan));
/* find the settings for this channel (we know it exists) */
for (i = 0; rt2860_rf2850[i].chan != chan; i++);
/* use Tx power values from EEPROM */
txpow1 = sc->txpow1[i];
txpow2 = sc->txpow2[i];
rt3090_rf_write(sc, 2, rt3090_freqs[i].n);
rf = rt3090_rf_read(sc, 3);
rf = (rf & ~0x0f) | rt3090_freqs[i].k;
rt3090_rf_write(sc, 3, rf);
rf = rt3090_rf_read(sc, 6);
rf = (rf & ~0x03) | rt3090_freqs[i].r;
rt3090_rf_write(sc, 6, rf);
/* set Tx0 power */
rf = rt3090_rf_read(sc, 12);
rf = (rf & ~0x1f) | txpow1;
rt3090_rf_write(sc, 12, rf);
/* set Tx1 power */
rf = rt3090_rf_read(sc, 13);
rf = (rf & ~0x1f) | txpow2;
rt3090_rf_write(sc, 13, rf);
rf = rt3090_rf_read(sc, 1);
rf &= ~0xfc;
if (sc->ntxchains == 1)
rf |= RT3070_TX1_PD | RT3070_TX2_PD;
else if (sc->ntxchains == 2)
rf |= RT3070_TX2_PD;
if (sc->nrxchains == 1)
rf |= RT3070_RX1_PD | RT3070_RX2_PD;
else if (sc->nrxchains == 2)
rf |= RT3070_RX2_PD;
rt3090_rf_write(sc, 1, rf);
/* set RF offset */
rf = rt3090_rf_read(sc, 23);
rf = (rf & ~0x7f) | sc->freq;
rt3090_rf_write(sc, 23, rf);
/* program RF filter */
rf = rt3090_rf_read(sc, 24); /* Tx */
rf = (rf & ~0x3f) | sc->rf24_20mhz;
rt3090_rf_write(sc, 24, rf);
rf = rt3090_rf_read(sc, 31); /* Rx */
rf = (rf & ~0x3f) | sc->rf24_20mhz;
rt3090_rf_write(sc, 31, rf);
/* enable RF tuning */
rf = rt3090_rf_read(sc, 7);
rt3090_rf_write(sc, 7, rf | RT3070_TUNE);
}
static int
rt3090_rf_init(struct rt2860_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
uint32_t tmp;
uint8_t rf, bbp;
int i;
rf = rt3090_rf_read(sc, 30);
/* toggle RF R30 bit 7 */
rt3090_rf_write(sc, 30, rf | 0x80);
DELAY(1000);
rt3090_rf_write(sc, 30, rf & ~0x80);
tmp = RAL_READ(sc, RT3070_LDO_CFG0);
tmp &= ~0x1f000000;
if (sc->patch_dac && sc->mac_rev < 0x0211)
tmp |= 0x0d000000; /* 1.35V */
else
tmp |= 0x01000000; /* 1.2V */
RAL_WRITE(sc, RT3070_LDO_CFG0, tmp);
/* patch LNA_PE_G1 */
tmp = RAL_READ(sc, RT3070_GPIO_SWITCH);
RAL_WRITE(sc, RT3070_GPIO_SWITCH, tmp & ~0x20);
/* initialize RF registers to default value */
for (i = 0; i < N(rt3090_def_rf); i++) {
rt3090_rf_write(sc, rt3090_def_rf[i].reg,
rt3090_def_rf[i].val);
}
/* select 20MHz bandwidth */
rt3090_rf_write(sc, 31, 0x14);
rf = rt3090_rf_read(sc, 6);
rt3090_rf_write(sc, 6, rf | 0x40);
if (sc->mac_ver != 0x3593) {
/* calibrate filter for 20MHz bandwidth */
sc->rf24_20mhz = 0x1f; /* default value */
rt3090_filter_calib(sc, 0x07, 0x16, &sc->rf24_20mhz);
/* select 40MHz bandwidth */
bbp = rt2860_mcu_bbp_read(sc, 4);
rt2860_mcu_bbp_write(sc, 4, (bbp & ~0x08) | 0x10);
rf = rt3090_rf_read(sc, 31);
rt3090_rf_write(sc, 31, rf | 0x20);
/* calibrate filter for 40MHz bandwidth */
sc->rf24_40mhz = 0x2f; /* default value */
rt3090_filter_calib(sc, 0x27, 0x19, &sc->rf24_40mhz);
/* go back to 20MHz bandwidth */
bbp = rt2860_mcu_bbp_read(sc, 4);
rt2860_mcu_bbp_write(sc, 4, bbp & ~0x18);
}
if (sc->mac_rev < 0x0211)
rt3090_rf_write(sc, 27, 0x03);
tmp = RAL_READ(sc, RT3070_OPT_14);
RAL_WRITE(sc, RT3070_OPT_14, tmp | 1);
if (sc->rf_rev == RT3070_RF_3020)
rt3090_set_rx_antenna(sc, 0);
bbp = rt2860_mcu_bbp_read(sc, 138);
if (sc->mac_ver == 0x3593) {
if (sc->ntxchains == 1)
bbp |= 0x60; /* turn off DAC1 and DAC2 */
else if (sc->ntxchains == 2)
bbp |= 0x40; /* turn off DAC2 */
if (sc->nrxchains == 1)
bbp &= ~0x06; /* turn off ADC1 and ADC2 */
else if (sc->nrxchains == 2)
bbp &= ~0x04; /* turn off ADC2 */
} else {
if (sc->ntxchains == 1)
bbp |= 0x20; /* turn off DAC1 */
if (sc->nrxchains == 1)
bbp &= ~0x02; /* turn off ADC1 */
}
rt2860_mcu_bbp_write(sc, 138, bbp);
rf = rt3090_rf_read(sc, 1);
rf &= ~(RT3070_RX0_PD | RT3070_TX0_PD);
rf |= RT3070_RF_BLOCK | RT3070_RX1_PD | RT3070_TX1_PD;
rt3090_rf_write(sc, 1, rf);
rf = rt3090_rf_read(sc, 15);
rt3090_rf_write(sc, 15, rf & ~RT3070_TX_LO2);
rf = rt3090_rf_read(sc, 17);
rf &= ~RT3070_TX_LO1;
if (sc->mac_rev >= 0x0211 && !sc->ext_2ghz_lna)
rf |= 0x20; /* fix for long range Rx issue */
if (sc->txmixgain_2ghz >= 2)
rf = (rf & ~0x7) | sc->txmixgain_2ghz;
rt3090_rf_write(sc, 17, rf);
rf = rt3090_rf_read(sc, 20);
rt3090_rf_write(sc, 20, rf & ~RT3070_RX_LO1);
rf = rt3090_rf_read(sc, 21);
rt3090_rf_write(sc, 21, rf & ~RT3070_RX_LO2);
return 0;
#undef N
}
void
rt3090_rf_wakeup(struct rt2860_softc *sc)
{
uint32_t tmp;
uint8_t rf;
if (sc->mac_ver == 0x3593) {
/* enable VCO */
rf = rt3090_rf_read(sc, 1);
rt3090_rf_write(sc, 1, rf | RT3593_VCO);
/* initiate VCO calibration */
rf = rt3090_rf_read(sc, 3);
rt3090_rf_write(sc, 3, rf | RT3593_VCOCAL);
/* enable VCO bias current control */
rf = rt3090_rf_read(sc, 6);
rt3090_rf_write(sc, 6, rf | RT3593_VCO_IC);
/* initiate res calibration */
rf = rt3090_rf_read(sc, 2);
rt3090_rf_write(sc, 2, rf | RT3593_RESCAL);
/* set reference current control to 0.33 mA */
rf = rt3090_rf_read(sc, 22);
rf &= ~RT3593_CP_IC_MASK;
rf |= 1 << RT3593_CP_IC_SHIFT;
rt3090_rf_write(sc, 22, rf);
/* enable RX CTB */
rf = rt3090_rf_read(sc, 46);
rt3090_rf_write(sc, 46, rf | RT3593_RX_CTB);
rf = rt3090_rf_read(sc, 20);
rf &= ~(RT3593_LDO_RF_VC_MASK | RT3593_LDO_PLL_VC_MASK);
rt3090_rf_write(sc, 20, rf);
} else {
/* enable RF block */
rf = rt3090_rf_read(sc, 1);
rt3090_rf_write(sc, 1, rf | RT3070_RF_BLOCK);
/* enable VCO bias current control */
rf = rt3090_rf_read(sc, 7);
rt3090_rf_write(sc, 7, rf | 0x30);
rf = rt3090_rf_read(sc, 9);
rt3090_rf_write(sc, 9, rf | 0x0e);
/* enable RX CTB */
rf = rt3090_rf_read(sc, 21);
rt3090_rf_write(sc, 21, rf | RT3070_RX_CTB);
/* fix Tx to Rx IQ glitch by raising RF voltage */
rf = rt3090_rf_read(sc, 27);
rf &= ~0x77;
if (sc->mac_rev < 0x0211)
rf |= 0x03;
rt3090_rf_write(sc, 27, rf);
}
if (sc->patch_dac && sc->mac_rev < 0x0211) {
tmp = RAL_READ(sc, RT3070_LDO_CFG0);
tmp = (tmp & ~0x1f000000) | 0x0d000000;
RAL_WRITE(sc, RT3070_LDO_CFG0, tmp);
}
}
int
rt3090_filter_calib(struct rt2860_softc *sc, uint8_t init, uint8_t target,
uint8_t *val)
{
uint8_t rf22, rf24;
uint8_t bbp55_pb, bbp55_sb, delta;
int ntries;
/* program filter */
rf24 = rt3090_rf_read(sc, 24);
rf24 = (rf24 & 0xc0) | init; /* initial filter value */
rt3090_rf_write(sc, 24, rf24);
/* enable baseband loopback mode */
rf22 = rt3090_rf_read(sc, 22);
rt3090_rf_write(sc, 22, rf22 | RT3070_BB_LOOPBACK);
/* set power and frequency of passband test tone */
rt2860_mcu_bbp_write(sc, 24, 0x00);
for (ntries = 0; ntries < 100; ntries++) {
/* transmit test tone */
rt2860_mcu_bbp_write(sc, 25, 0x90);
DELAY(1000);
/* read received power */
bbp55_pb = rt2860_mcu_bbp_read(sc, 55);
if (bbp55_pb != 0)
break;
}
if (ntries == 100)
return ETIMEDOUT;
/* set power and frequency of stopband test tone */
rt2860_mcu_bbp_write(sc, 24, 0x06);
for (ntries = 0; ntries < 100; ntries++) {
/* transmit test tone */
rt2860_mcu_bbp_write(sc, 25, 0x90);
DELAY(1000);
/* read received power */
bbp55_sb = rt2860_mcu_bbp_read(sc, 55);
delta = bbp55_pb - bbp55_sb;
if (delta > target)
break;
/* reprogram filter */
rf24++;
rt3090_rf_write(sc, 24, rf24);
}
if (ntries < 100) {
if (rf24 != init)
rf24--; /* backtrack */
*val = rf24;
rt3090_rf_write(sc, 24, rf24);
}
/* restore initial state */
rt2860_mcu_bbp_write(sc, 24, 0x00);
/* disable baseband loopback mode */
rf22 = rt3090_rf_read(sc, 22);
rt3090_rf_write(sc, 22, rf22 & ~RT3070_BB_LOOPBACK);
return 0;
}
static void
rt3090_rf_setup(struct rt2860_softc *sc)
{
uint8_t bbp;
int i;
if (sc->mac_rev >= 0x0211) {
/* enable DC filter */
rt2860_mcu_bbp_write(sc, 103, 0xc0);
/* improve power consumption */
bbp = rt2860_mcu_bbp_read(sc, 31);
rt2860_mcu_bbp_write(sc, 31, bbp & ~0x03);
}
RAL_WRITE(sc, RT2860_TX_SW_CFG1, 0);
if (sc->mac_rev < 0x0211) {
RAL_WRITE(sc, RT2860_TX_SW_CFG2,
sc->patch_dac ? 0x2c : 0x0f);
} else
RAL_WRITE(sc, RT2860_TX_SW_CFG2, 0);
/* initialize RF registers from ROM */
for (i = 0; i < 10; i++) {
if (sc->rf[i].reg == 0 || sc->rf[i].reg == 0xff)
continue;
rt3090_rf_write(sc, sc->rf[i].reg, sc->rf[i].val);
}
}
static void
rt2860_set_leds(struct rt2860_softc *sc, uint16_t which)
{
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LEDS,
which | (sc->leds & 0x7f), 0);
}
/*
* Hardware has a general-purpose programmable timer interrupt that can
* periodically raise MAC_INT_4.
*/
static void
rt2860_set_gp_timer(struct rt2860_softc *sc, int ms)
{
uint32_t tmp;
/* disable GP timer before reprogramming it */
tmp = RAL_READ(sc, RT2860_INT_TIMER_EN);
RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp & ~RT2860_GP_TIMER_EN);
if (ms == 0)
return;
tmp = RAL_READ(sc, RT2860_INT_TIMER_CFG);
ms *= 16; /* Unit: 64us */
tmp = (tmp & 0xffff) | ms << RT2860_GP_TIMER_SHIFT;
RAL_WRITE(sc, RT2860_INT_TIMER_CFG, tmp);
/* enable GP timer */
tmp = RAL_READ(sc, RT2860_INT_TIMER_EN);
RAL_WRITE(sc, RT2860_INT_TIMER_EN, tmp | RT2860_GP_TIMER_EN);
}
static void
rt2860_set_bssid(struct rt2860_softc *sc, const uint8_t *bssid)
{
RAL_WRITE(sc, RT2860_MAC_BSSID_DW0,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
RAL_WRITE(sc, RT2860_MAC_BSSID_DW1,
bssid[4] | bssid[5] << 8);
}
static void
rt2860_set_macaddr(struct rt2860_softc *sc, const uint8_t *addr)
{
RAL_WRITE(sc, RT2860_MAC_ADDR_DW0,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
RAL_WRITE(sc, RT2860_MAC_ADDR_DW1,
addr[4] | addr[5] << 8 | 0xff << 16);
}
static void
rt2860_updateslot(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
tmp = RAL_READ(sc, RT2860_BKOFF_SLOT_CFG);
tmp &= ~0xff;
tmp |= (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
RAL_WRITE(sc, RT2860_BKOFF_SLOT_CFG, tmp);
}
static void
rt2860_updateprot(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
tmp = RT2860_RTSTH_EN | RT2860_PROT_NAV_SHORT | RT2860_TXOP_ALLOW_ALL;
/* setup protection frame rate (MCS code) */
tmp |= IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ?
rt2860_rates[RT2860_RIDX_OFDM6].mcs :
rt2860_rates[RT2860_RIDX_CCK11].mcs;
/* CCK frames don't require protection */
RAL_WRITE(sc, RT2860_CCK_PROT_CFG, tmp);
if (ic->ic_flags & IEEE80211_F_USEPROT) {
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
tmp |= RT2860_PROT_CTRL_RTS_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
tmp |= RT2860_PROT_CTRL_CTS;
}
RAL_WRITE(sc, RT2860_OFDM_PROT_CFG, tmp);
}
static void
rt2860_update_promisc(struct ifnet *ifp)
{
struct rt2860_softc *sc = ifp->if_softc;
uint32_t tmp;
tmp = RAL_READ(sc, RT2860_RX_FILTR_CFG);
tmp &= ~RT2860_DROP_NOT_MYBSS;
if (!(ifp->if_flags & IFF_PROMISC))
tmp |= RT2860_DROP_NOT_MYBSS;
RAL_WRITE(sc, RT2860_RX_FILTR_CFG, tmp);
}
static int
rt2860_updateedca(struct ieee80211com *ic)
{
struct rt2860_softc *sc = ic->ic_ifp->if_softc;
const struct wmeParams *wmep;
int aci;
wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
/* update MAC TX configuration registers */
for (aci = 0; aci < WME_NUM_AC; aci++) {
RAL_WRITE(sc, RT2860_EDCA_AC_CFG(aci),
wmep[aci].wmep_logcwmax << 16 |
wmep[aci].wmep_logcwmin << 12 |
wmep[aci].wmep_aifsn << 8 |
wmep[aci].wmep_txopLimit);
}
/* update SCH/DMA registers too */
RAL_WRITE(sc, RT2860_WMM_AIFSN_CFG,
wmep[WME_AC_VO].wmep_aifsn << 12 |
wmep[WME_AC_VI].wmep_aifsn << 8 |
wmep[WME_AC_BK].wmep_aifsn << 4 |
wmep[WME_AC_BE].wmep_aifsn);
RAL_WRITE(sc, RT2860_WMM_CWMIN_CFG,
wmep[WME_AC_VO].wmep_logcwmin << 12 |
wmep[WME_AC_VI].wmep_logcwmin << 8 |
wmep[WME_AC_BK].wmep_logcwmin << 4 |
wmep[WME_AC_BE].wmep_logcwmin);
RAL_WRITE(sc, RT2860_WMM_CWMAX_CFG,
wmep[WME_AC_VO].wmep_logcwmax << 12 |
wmep[WME_AC_VI].wmep_logcwmax << 8 |
wmep[WME_AC_BK].wmep_logcwmax << 4 |
wmep[WME_AC_BE].wmep_logcwmax);
RAL_WRITE(sc, RT2860_WMM_TXOP0_CFG,
wmep[WME_AC_BK].wmep_txopLimit << 16 |
wmep[WME_AC_BE].wmep_txopLimit);
RAL_WRITE(sc, RT2860_WMM_TXOP1_CFG,
wmep[WME_AC_VO].wmep_txopLimit << 16 |
wmep[WME_AC_VI].wmep_txopLimit);
return 0;
}
#ifdef HW_CRYPTO
static int
rt2860_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct rt2860_softc *sc = ic->ic_softc;
bus_size_t base;
uint32_t attr;
uint8_t mode, wcid, iv[8];
/* defer setting of WEP keys until interface is brought up */
if ((ic->ic_if.if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING))
return 0;
/* map net80211 cipher to RT2860 security mode */
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
mode = RT2860_MODE_WEP40;
break;
case IEEE80211_CIPHER_WEP104:
mode = RT2860_MODE_WEP104;
break;
case IEEE80211_CIPHER_TKIP:
mode = RT2860_MODE_TKIP;
break;
case IEEE80211_CIPHER_CCMP:
mode = RT2860_MODE_AES_CCMP;
break;
default:
return EINVAL;
}
if (k->k_flags & IEEE80211_KEY_GROUP) {
wcid = 0; /* NB: update WCID0 for group keys */
base = RT2860_SKEY(0, k->k_id);
} else {
wcid = ((struct rt2860_node *)ni)->wcid;
base = RT2860_PKEY(wcid);
}
if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
RAL_WRITE_REGION_1(sc, base, k->k_key, 16);
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[16], 8);
RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[24], 8);
} else
#endif
{
RAL_WRITE_REGION_1(sc, base + 16, &k->k_key[24], 8);
RAL_WRITE_REGION_1(sc, base + 24, &k->k_key[16], 8);
}
} else
RAL_WRITE_REGION_1(sc, base, k->k_key, k->k_len);
if (!(k->k_flags & IEEE80211_KEY_GROUP) ||
(k->k_flags & IEEE80211_KEY_TX)) {
/* set initial packet number in IV+EIV */
if (k->k_cipher == IEEE80211_CIPHER_WEP40 ||
k->k_cipher == IEEE80211_CIPHER_WEP104) {
uint32_t val = arc4random();
/* skip weak IVs from Fluhrer/Mantin/Shamir */
if (val >= 0x03ff00 && (val & 0xf8ff00) == 0x00ff00)
val += 0x000100;
iv[0] = val;
iv[1] = val >> 8;
iv[2] = val >> 16;
iv[3] = k->k_id << 6;
iv[4] = iv[5] = iv[6] = iv[7] = 0;
} else {
if (k->k_cipher == IEEE80211_CIPHER_TKIP) {
iv[0] = k->k_tsc >> 8;
iv[1] = (iv[0] | 0x20) & 0x7f;
iv[2] = k->k_tsc;
} else /* CCMP */ {
iv[0] = k->k_tsc;
iv[1] = k->k_tsc >> 8;
iv[2] = 0;
}
iv[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
iv[4] = k->k_tsc >> 16;
iv[5] = k->k_tsc >> 24;
iv[6] = k->k_tsc >> 32;
iv[7] = k->k_tsc >> 40;
}
RAL_WRITE_REGION_1(sc, RT2860_IVEIV(wcid), iv, 8);
}
if (k->k_flags & IEEE80211_KEY_GROUP) {
/* install group key */
attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7);
attr &= ~(0xf << (k->k_id * 4));
attr |= mode << (k->k_id * 4);
RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* install pairwise key */
attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid));
attr = (attr & ~0xf) | (mode << 1) | RT2860_RX_PKEY_EN;
RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr);
}
return 0;
}
static void
rt2860_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct rt2860_softc *sc = ic->ic_softc;
uint32_t attr;
uint8_t wcid;
if (k->k_flags & IEEE80211_KEY_GROUP) {
/* remove group key */
attr = RAL_READ(sc, RT2860_SKEY_MODE_0_7);
attr &= ~(0xf << (k->k_id * 4));
RAL_WRITE(sc, RT2860_SKEY_MODE_0_7, attr);
} else {
/* remove pairwise key */
wcid = ((struct rt2860_node *)ni)->wcid;
attr = RAL_READ(sc, RT2860_WCID_ATTR(wcid));
attr &= ~0xf;
RAL_WRITE(sc, RT2860_WCID_ATTR(wcid), attr);
}
}
#endif
static int8_t
rt2860_rssi2dbm(struct rt2860_softc *sc, uint8_t rssi, uint8_t rxchain)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211_channel *c = ic->ic_curchan;
int delta;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
u_int chan = ieee80211_chan2ieee(ic, c);
delta = sc->rssi_5ghz[rxchain];
/* determine channel group */
if (chan <= 64)
delta -= sc->lna[1];
else if (chan <= 128)
delta -= sc->lna[2];
else
delta -= sc->lna[3];
} else
delta = sc->rssi_2ghz[rxchain] - sc->lna[0];
return -12 - delta - rssi;
}
/*
* Add `delta' (signed) to each 4-bit sub-word of a 32-bit word.
* Used to adjust per-rate Tx power registers.
*/
static __inline uint32_t
b4inc(uint32_t b32, int8_t delta)
{
int8_t i, b4;
for (i = 0; i < 8; i++) {
b4 = b32 & 0xf;
b4 += delta;
if (b4 < 0)
b4 = 0;
else if (b4 > 0xf)
b4 = 0xf;
b32 = b32 >> 4 | b4 << 28;
}
return b32;
}
static const char *
rt2860_get_rf(uint8_t rev)
{
switch (rev) {
case RT2860_RF_2820: return "RT2820";
case RT2860_RF_2850: return "RT2850";
case RT2860_RF_2720: return "RT2720";
case RT2860_RF_2750: return "RT2750";
case RT3070_RF_3020: return "RT3020";
case RT3070_RF_2020: return "RT2020";
case RT3070_RF_3021: return "RT3021";
case RT3070_RF_3022: return "RT3022";
case RT3070_RF_3052: return "RT3052";
case RT3070_RF_3320: return "RT3320";
case RT3070_RF_3053: return "RT3053";
default: return "unknown";
}
}
static int
rt2860_read_eeprom(struct rt2860_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
{
int8_t delta_2ghz, delta_5ghz;
uint32_t tmp;
uint16_t val;
int ridx, ant, i;
/* check whether the ROM is eFUSE ROM or EEPROM */
sc->sc_srom_read = rt2860_eeprom_read_2;
if (sc->mac_ver >= 0x3071) {
tmp = RAL_READ(sc, RT3070_EFUSE_CTRL);
DPRINTF(("EFUSE_CTRL=0x%08x\n", tmp));
if (tmp & RT3070_SEL_EFUSE)
sc->sc_srom_read = rt3090_efuse_read_2;
}
/* read EEPROM version */
val = rt2860_srom_read(sc, RT2860_EEPROM_VERSION);
DPRINTF(("EEPROM rev=%d, FAE=%d\n", val & 0xff, val >> 8));
/* read MAC address */
val = rt2860_srom_read(sc, RT2860_EEPROM_MAC01);
macaddr[0] = val & 0xff;
macaddr[1] = val >> 8;
val = rt2860_srom_read(sc, RT2860_EEPROM_MAC23);
macaddr[2] = val & 0xff;
macaddr[3] = val >> 8;
val = rt2860_srom_read(sc, RT2860_EEPROM_MAC45);
macaddr[4] = val & 0xff;
macaddr[5] = val >> 8;
/* read country code */
val = rt2860_srom_read(sc, RT2860_EEPROM_COUNTRY);
DPRINTF(("EEPROM region code=0x%04x\n", val));
/* read vendor BBP settings */
for (i = 0; i < 8; i++) {
val = rt2860_srom_read(sc, RT2860_EEPROM_BBP_BASE + i);
sc->bbp[i].val = val & 0xff;
sc->bbp[i].reg = val >> 8;
DPRINTF(("BBP%d=0x%02x\n", sc->bbp[i].reg, sc->bbp[i].val));
}
if (sc->mac_ver >= 0x3071) {
/* read vendor RF settings */
for (i = 0; i < 10; i++) {
val = rt2860_srom_read(sc, RT3071_EEPROM_RF_BASE + i);
sc->rf[i].val = val & 0xff;
sc->rf[i].reg = val >> 8;
DPRINTF(("RF%d=0x%02x\n", sc->rf[i].reg,
sc->rf[i].val));
}
}
/* read RF frequency offset from EEPROM */
val = rt2860_srom_read(sc, RT2860_EEPROM_FREQ_LEDS);
sc->freq = ((val & 0xff) != 0xff) ? val & 0xff : 0;
DPRINTF(("EEPROM freq offset %d\n", sc->freq & 0xff));
if ((val >> 8) != 0xff) {
/* read LEDs operating mode */
sc->leds = val >> 8;
sc->led[0] = rt2860_srom_read(sc, RT2860_EEPROM_LED1);
sc->led[1] = rt2860_srom_read(sc, RT2860_EEPROM_LED2);
sc->led[2] = rt2860_srom_read(sc, RT2860_EEPROM_LED3);
} else {
/* broken EEPROM, use default settings */
sc->leds = 0x01;
sc->led[0] = 0x5555;
sc->led[1] = 0x2221;
sc->led[2] = 0xa9f8;
}
DPRINTF(("EEPROM LED mode=0x%02x, LEDs=0x%04x/0x%04x/0x%04x\n",
sc->leds, sc->led[0], sc->led[1], sc->led[2]));
/* read RF information */
val = rt2860_srom_read(sc, RT2860_EEPROM_ANTENNA);
if (val == 0xffff) {
DPRINTF(("invalid EEPROM antenna info, using default\n"));
if (sc->mac_ver == 0x3593) {
/* default to RF3053 3T3R */
sc->rf_rev = RT3070_RF_3053;
sc->ntxchains = 3;
sc->nrxchains = 3;
} else if (sc->mac_ver >= 0x3071) {
/* default to RF3020 1T1R */
sc->rf_rev = RT3070_RF_3020;
sc->ntxchains = 1;
sc->nrxchains = 1;
} else {
/* default to RF2820 1T2R */
sc->rf_rev = RT2860_RF_2820;
sc->ntxchains = 1;
sc->nrxchains = 2;
}
} else {
sc->rf_rev = (val >> 8) & 0xf;
sc->ntxchains = (val >> 4) & 0xf;
sc->nrxchains = val & 0xf;
}
DPRINTF(("EEPROM RF rev=0x%02x chains=%dT%dR\n",
sc->rf_rev, sc->ntxchains, sc->nrxchains));
/* check if RF supports automatic Tx access gain control */
val = rt2860_srom_read(sc, RT2860_EEPROM_CONFIG);
DPRINTF(("EEPROM CFG 0x%04x\n", val));
/* check if driver should patch the DAC issue */
if ((val >> 8) != 0xff)
sc->patch_dac = (val >> 15) & 1;
if ((val & 0xff) != 0xff) {
sc->ext_5ghz_lna = (val >> 3) & 1;
sc->ext_2ghz_lna = (val >> 2) & 1;
/* check if RF supports automatic Tx access gain control */
sc->calib_2ghz = sc->calib_5ghz = 0; /* XXX (val >> 1) & 1 */;
/* check if we have a hardware radio switch */
sc->rfswitch = val & 1;
}
if (sc->sc_flags & RT2860_ADVANCED_PS) {
/* read PCIe power save level */
val = rt2860_srom_read(sc, RT2860_EEPROM_PCIE_PSLEVEL);
if ((val & 0xff) != 0xff) {
sc->pslevel = val & 0x3;
val = rt2860_srom_read(sc, RT2860_EEPROM_REV);
if ((val & 0xff80) != 0x9280)
sc->pslevel = MIN(sc->pslevel, 1);
DPRINTF(("EEPROM PCIe PS Level=%d\n", sc->pslevel));
}
}
/* read power settings for 2GHz channels */
for (i = 0; i < 14; i += 2) {
val = rt2860_srom_read(sc,
RT2860_EEPROM_PWR2GHZ_BASE1 + i / 2);
sc->txpow1[i + 0] = (int8_t)(val & 0xff);
sc->txpow1[i + 1] = (int8_t)(val >> 8);
val = rt2860_srom_read(sc,
RT2860_EEPROM_PWR2GHZ_BASE2 + i / 2);
sc->txpow2[i + 0] = (int8_t)(val & 0xff);
sc->txpow2[i + 1] = (int8_t)(val >> 8);
}
/* fix broken Tx power entries */
for (i = 0; i < 14; i++) {
if (sc->txpow1[i] < 0 || sc->txpow1[i] > 31)
sc->txpow1[i] = 5;
if (sc->txpow2[i] < 0 || sc->txpow2[i] > 31)
sc->txpow2[i] = 5;
DPRINTF(("chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[i].chan, sc->txpow1[i], sc->txpow2[i]));
}
/* read power settings for 5GHz channels */
for (i = 0; i < 40; i += 2) {
val = rt2860_srom_read(sc,
RT2860_EEPROM_PWR5GHZ_BASE1 + i / 2);
sc->txpow1[i + 14] = (int8_t)(val & 0xff);
sc->txpow1[i + 15] = (int8_t)(val >> 8);
val = rt2860_srom_read(sc,
RT2860_EEPROM_PWR5GHZ_BASE2 + i / 2);
sc->txpow2[i + 14] = (int8_t)(val & 0xff);
sc->txpow2[i + 15] = (int8_t)(val >> 8);
}
/* fix broken Tx power entries */
for (i = 0; i < 40; i++) {
if (sc->txpow1[14 + i] < -7 || sc->txpow1[14 + i] > 15)
sc->txpow1[14 + i] = 5;
if (sc->txpow2[14 + i] < -7 || sc->txpow2[14 + i] > 15)
sc->txpow2[14 + i] = 5;
DPRINTF(("chan %d: power1=%d, power2=%d\n",
rt2860_rf2850[14 + i].chan, sc->txpow1[14 + i],
sc->txpow2[14 + i]));
}
/* read Tx power compensation for each Tx rate */
val = rt2860_srom_read(sc, RT2860_EEPROM_DELTAPWR);
delta_2ghz = delta_5ghz = 0;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_2ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_2ghz = -delta_2ghz;
}
val >>= 8;
if ((val & 0xff) != 0xff && (val & 0x80)) {
delta_5ghz = val & 0xf;
if (!(val & 0x40)) /* negative number */
delta_5ghz = -delta_5ghz;
}
DPRINTF(("power compensation=%d (2GHz), %d (5GHz)\n",
delta_2ghz, delta_5ghz));
for (ridx = 0; ridx < 5; ridx++) {
uint32_t reg;
val = rt2860_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2);
reg = val;
val = rt2860_srom_read(sc, RT2860_EEPROM_RPWR + ridx * 2 + 1);
reg |= (uint32_t)val << 16;
sc->txpow20mhz[ridx] = reg;
sc->txpow40mhz_2ghz[ridx] = b4inc(reg, delta_2ghz);
sc->txpow40mhz_5ghz[ridx] = b4inc(reg, delta_5ghz);
DPRINTF(("ridx %d: power 20MHz=0x%08x, 40MHz/2GHz=0x%08x, "
"40MHz/5GHz=0x%08x\n", ridx, sc->txpow20mhz[ridx],
sc->txpow40mhz_2ghz[ridx], sc->txpow40mhz_5ghz[ridx]));
}
/* read factory-calibrated samples for temperature compensation */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI1_2GHZ);
sc->tssi_2ghz[0] = val & 0xff; /* [-4] */
sc->tssi_2ghz[1] = val >> 8; /* [-3] */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI2_2GHZ);
sc->tssi_2ghz[2] = val & 0xff; /* [-2] */
sc->tssi_2ghz[3] = val >> 8; /* [-1] */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI3_2GHZ);
sc->tssi_2ghz[4] = val & 0xff; /* [+0] */
sc->tssi_2ghz[5] = val >> 8; /* [+1] */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI4_2GHZ);
sc->tssi_2ghz[6] = val & 0xff; /* [+2] */
sc->tssi_2ghz[7] = val >> 8; /* [+3] */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI5_2GHZ);
sc->tssi_2ghz[8] = val & 0xff; /* [+4] */
sc->step_2ghz = val >> 8;
DPRINTF(("TSSI 2GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x "
"0x%02x 0x%02x step=%d\n", sc->tssi_2ghz[0], sc->tssi_2ghz[1],
sc->tssi_2ghz[2], sc->tssi_2ghz[3], sc->tssi_2ghz[4],
sc->tssi_2ghz[5], sc->tssi_2ghz[6], sc->tssi_2ghz[7],
sc->tssi_2ghz[8], sc->step_2ghz));
/* check that ref value is correct, otherwise disable calibration */
if (sc->tssi_2ghz[4] == 0xff)
sc->calib_2ghz = 0;
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI1_5GHZ);
sc->tssi_5ghz[0] = val & 0xff; /* [-4] */
sc->tssi_5ghz[1] = val >> 8; /* [-3] */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI2_5GHZ);
sc->tssi_5ghz[2] = val & 0xff; /* [-2] */
sc->tssi_5ghz[3] = val >> 8; /* [-1] */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI3_5GHZ);
sc->tssi_5ghz[4] = val & 0xff; /* [+0] */
sc->tssi_5ghz[5] = val >> 8; /* [+1] */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI4_5GHZ);
sc->tssi_5ghz[6] = val & 0xff; /* [+2] */
sc->tssi_5ghz[7] = val >> 8; /* [+3] */
val = rt2860_srom_read(sc, RT2860_EEPROM_TSSI5_5GHZ);
sc->tssi_5ghz[8] = val & 0xff; /* [+4] */
sc->step_5ghz = val >> 8;
DPRINTF(("TSSI 5GHz: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x "
"0x%02x 0x%02x step=%d\n", sc->tssi_5ghz[0], sc->tssi_5ghz[1],
sc->tssi_5ghz[2], sc->tssi_5ghz[3], sc->tssi_5ghz[4],
sc->tssi_5ghz[5], sc->tssi_5ghz[6], sc->tssi_5ghz[7],
sc->tssi_5ghz[8], sc->step_5ghz));
/* check that ref value is correct, otherwise disable calibration */
if (sc->tssi_5ghz[4] == 0xff)
sc->calib_5ghz = 0;
/* read RSSI offsets and LNA gains from EEPROM */
val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI1_2GHZ);
sc->rssi_2ghz[0] = val & 0xff; /* Ant A */
sc->rssi_2ghz[1] = val >> 8; /* Ant B */
val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI2_2GHZ);
if (sc->mac_ver >= 0x3071) {
/*
* On RT3090 chips (limited to 2 Rx chains), this ROM
* field contains the Tx mixer gain for the 2GHz band.
*/
if ((val & 0xff) != 0xff)
sc->txmixgain_2ghz = val & 0x7;
DPRINTF(("tx mixer gain=%u (2GHz)\n", sc->txmixgain_2ghz));
} else
sc->rssi_2ghz[2] = val & 0xff; /* Ant C */
sc->lna[2] = val >> 8; /* channel group 2 */
val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI1_5GHZ);
sc->rssi_5ghz[0] = val & 0xff; /* Ant A */
sc->rssi_5ghz[1] = val >> 8; /* Ant B */
val = rt2860_srom_read(sc, RT2860_EEPROM_RSSI2_5GHZ);
sc->rssi_5ghz[2] = val & 0xff; /* Ant C */
sc->lna[3] = val >> 8; /* channel group 3 */
val = rt2860_srom_read(sc, RT2860_EEPROM_LNA);
if (sc->mac_ver >= 0x3071)
sc->lna[0] = RT3090_DEF_LNA;
else /* channel group 0 */
sc->lna[0] = val & 0xff;
sc->lna[1] = val >> 8; /* channel group 1 */
/* fix broken 5GHz LNA entries */
if (sc->lna[2] == 0 || sc->lna[2] == 0xff) {
DPRINTF(("invalid LNA for channel group %d\n", 2));
sc->lna[2] = sc->lna[1];
}
if (sc->lna[3] == 0 || sc->lna[3] == 0xff) {
DPRINTF(("invalid LNA for channel group %d\n", 3));
sc->lna[3] = sc->lna[1];
}
/* fix broken RSSI offset entries */
for (ant = 0; ant < 3; ant++) {
if (sc->rssi_2ghz[ant] < -10 || sc->rssi_2ghz[ant] > 10) {
DPRINTF(("invalid RSSI%d offset: %d (2GHz)\n",
ant + 1, sc->rssi_2ghz[ant]));
sc->rssi_2ghz[ant] = 0;
}
if (sc->rssi_5ghz[ant] < -10 || sc->rssi_5ghz[ant] > 10) {
DPRINTF(("invalid RSSI%d offset: %d (5GHz)\n",
ant + 1, sc->rssi_5ghz[ant]));
sc->rssi_5ghz[ant] = 0;
}
}
return 0;
}
int
rt2860_bbp_init(struct rt2860_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
int i, ntries;
/* wait for BBP to wake up */
for (ntries = 0; ntries < 20; ntries++) {
uint8_t bbp0 = rt2860_mcu_bbp_read(sc, 0);
if (bbp0 != 0 && bbp0 != 0xff)
break;
}
if (ntries == 20) {
device_printf(sc->sc_dev,
"timeout waiting for BBP to wake up\n");
return ETIMEDOUT;
}
/* initialize BBP registers to default values */
for (i = 0; i < N(rt2860_def_bbp); i++) {
rt2860_mcu_bbp_write(sc, rt2860_def_bbp[i].reg,
rt2860_def_bbp[i].val);
}
/* fix BBP84 for RT2860E */
if (sc->mac_ver == 0x2860 && sc->mac_rev != 0x0101)
rt2860_mcu_bbp_write(sc, 84, 0x19);
if (sc->mac_ver >= 0x3071) {
rt2860_mcu_bbp_write(sc, 79, 0x13);
rt2860_mcu_bbp_write(sc, 80, 0x05);
rt2860_mcu_bbp_write(sc, 81, 0x33);
} else if (sc->mac_ver == 0x2860 && sc->mac_rev == 0x0100) {
rt2860_mcu_bbp_write(sc, 69, 0x16);
rt2860_mcu_bbp_write(sc, 73, 0x12);
}
return 0;
#undef N
}
static int
rt2860_txrx_enable(struct rt2860_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
int ntries;
/* enable Tx/Rx DMA engine */
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_MAC_TX_EN);
RAL_BARRIER_READ_WRITE(sc);
for (ntries = 0; ntries < 200; ntries++) {
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
DELAY(1000);
}
if (ntries == 200) {
device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
return ETIMEDOUT;
}
DELAY(50);
tmp |= RT2860_RX_DMA_EN | RT2860_TX_DMA_EN |
RT2860_WPDMA_BT_SIZE64 << RT2860_WPDMA_BT_SIZE_SHIFT;
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* set Rx filter */
tmp = RT2860_DROP_CRC_ERR | RT2860_DROP_PHY_ERR;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
tmp |= RT2860_DROP_UC_NOME | RT2860_DROP_DUPL |
RT2860_DROP_CTS | RT2860_DROP_BA | RT2860_DROP_ACK |
RT2860_DROP_VER_ERR | RT2860_DROP_CTRL_RSV |
RT2860_DROP_CFACK | RT2860_DROP_CFEND;
if (ic->ic_opmode == IEEE80211_M_STA)
tmp |= RT2860_DROP_RTS | RT2860_DROP_PSPOLL;
}
RAL_WRITE(sc, RT2860_RX_FILTR_CFG, tmp);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL,
RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
return 0;
}
static void
rt2860_init(void *arg)
{
struct rt2860_softc *sc = arg;
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
RAL_LOCK(sc);
rt2860_init_locked(sc);
RAL_UNLOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
ieee80211_start_all(ic);
}
static void
rt2860_init_locked(struct rt2860_softc *sc)
{
#define N(a) (sizeof (a) / sizeof ((a)[0]))
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
uint32_t tmp;
uint8_t bbp1, bbp3;
int i, qid, ridx, ntries, error;
RAL_LOCK_ASSERT(sc);
if (sc->rfswitch) {
/* hardware has a radio switch on GPIO pin 2 */
if (!(RAL_READ(sc, RT2860_GPIO_CTRL) & (1 << 2))) {
device_printf(sc->sc_dev,
"radio is disabled by hardware switch\n");
#ifdef notyet
rt2860_stop_locked(sc);
return;
#endif
}
}
RAL_WRITE(sc, RT2860_PWR_PIN_CFG, RT2860_IO_RA_PE);
/* disable DMA */
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
tmp &= 0xff0;
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* PBF hardware reset */
RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00);
if ((error = rt2860_load_microcode(sc)) != 0) {
device_printf(sc->sc_dev, "could not load 8051 microcode\n");
rt2860_stop_locked(sc);
return;
}
rt2860_set_macaddr(sc, IF_LLADDR(ifp));
/* init Tx power for all Tx rates (from EEPROM) */
for (ridx = 0; ridx < 5; ridx++) {
if (sc->txpow20mhz[ridx] == 0xffffffff)
continue;
RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx), sc->txpow20mhz[ridx]);
}
for (ntries = 0; ntries < 100; ntries++) {
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
DELAY(1000);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
rt2860_stop_locked(sc);
return;
}
tmp &= 0xff0;
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* reset Rx ring and all 6 Tx rings */
RAL_WRITE(sc, RT2860_WPDMA_RST_IDX, 0x1003f);
/* PBF hardware reset */
RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe1f);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_SYS_CTRL, 0xe00);
RAL_WRITE(sc, RT2860_PWR_PIN_CFG, RT2860_IO_RA_PE | RT2860_IO_RF_PE);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0);
for (i = 0; i < N(rt2860_def_mac); i++)
RAL_WRITE(sc, rt2860_def_mac[i].reg, rt2860_def_mac[i].val);
if (sc->mac_ver >= 0x3071) {
/* set delay of PA_PE assertion to 1us (unit of 0.25us) */
RAL_WRITE(sc, RT2860_TX_SW_CFG0,
4 << RT2860_DLY_PAPE_EN_SHIFT);
}
if (!(RAL_READ(sc, RT2860_PCI_CFG) & RT2860_PCI_CFG_PCI)) {
sc->sc_flags |= RT2860_PCIE;
/* PCIe has different clock cycle count than PCI */
tmp = RAL_READ(sc, RT2860_US_CYC_CNT);
tmp = (tmp & ~0xff) | 0x7d;
RAL_WRITE(sc, RT2860_US_CYC_CNT, tmp);
}
/* wait while MAC is busy */
for (ntries = 0; ntries < 100; ntries++) {
if (!(RAL_READ(sc, RT2860_MAC_STATUS_REG) &
(RT2860_RX_STATUS_BUSY | RT2860_TX_STATUS_BUSY)))
break;
DELAY(1000);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for MAC\n");
rt2860_stop_locked(sc);
return;
}
/* clear Host to MCU mailbox */
RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0);
RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0);
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0, 0);
DELAY(1000);
if ((error = rt2860_bbp_init(sc)) != 0) {
rt2860_stop_locked(sc);
return;
}
/* clear RX WCID search table */
RAL_SET_REGION_4(sc, RT2860_WCID_ENTRY(0), 0, 512);
/* clear pairwise key table */
RAL_SET_REGION_4(sc, RT2860_PKEY(0), 0, 2048);
/* clear IV/EIV table */
RAL_SET_REGION_4(sc, RT2860_IVEIV(0), 0, 512);
/* clear WCID attribute table */
RAL_SET_REGION_4(sc, RT2860_WCID_ATTR(0), 0, 256);
/* clear shared key table */
RAL_SET_REGION_4(sc, RT2860_SKEY(0, 0), 0, 8 * 32);
/* clear shared key mode */
RAL_SET_REGION_4(sc, RT2860_SKEY_MODE_0_7, 0, 4);
/* init Tx rings (4 EDCAs + HCCA + Mgt) */
for (qid = 0; qid < 6; qid++) {
RAL_WRITE(sc, RT2860_TX_BASE_PTR(qid), sc->txq[qid].paddr);
RAL_WRITE(sc, RT2860_TX_MAX_CNT(qid), RT2860_TX_RING_COUNT);
RAL_WRITE(sc, RT2860_TX_CTX_IDX(qid), 0);
}
/* init Rx ring */
RAL_WRITE(sc, RT2860_RX_BASE_PTR, sc->rxq.paddr);
RAL_WRITE(sc, RT2860_RX_MAX_CNT, RT2860_RX_RING_COUNT);
RAL_WRITE(sc, RT2860_RX_CALC_IDX, RT2860_RX_RING_COUNT - 1);
/* setup maximum buffer sizes */
RAL_WRITE(sc, RT2860_MAX_LEN_CFG, 1 << 12 |
(MCLBYTES - sizeof (struct rt2860_rxwi) - 2));
for (ntries = 0; ntries < 100; ntries++) {
tmp = RAL_READ(sc, RT2860_WPDMA_GLO_CFG);
if ((tmp & (RT2860_TX_DMA_BUSY | RT2860_RX_DMA_BUSY)) == 0)
break;
DELAY(1000);
}
if (ntries == 100) {
device_printf(sc->sc_dev, "timeout waiting for DMA engine\n");
rt2860_stop_locked(sc);
return;
}
tmp &= 0xff0;
RAL_WRITE(sc, RT2860_WPDMA_GLO_CFG, tmp);
/* disable interrupts mitigation */
RAL_WRITE(sc, RT2860_DELAY_INT_CFG, 0);
/* write vendor-specific BBP values (from EEPROM) */
for (i = 0; i < 8; i++) {
if (sc->bbp[i].reg == 0 || sc->bbp[i].reg == 0xff)
continue;
rt2860_mcu_bbp_write(sc, sc->bbp[i].reg, sc->bbp[i].val);
}
/* select Main antenna for 1T1R devices */
if (sc->rf_rev == RT3070_RF_2020 ||
sc->rf_rev == RT3070_RF_3020 ||
sc->rf_rev == RT3070_RF_3320)
rt3090_set_rx_antenna(sc, 0);
/* send LEDs operating mode to microcontroller */
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED1, sc->led[0], 0);
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED2, sc->led[1], 0);
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_LED3, sc->led[2], 0);
if (sc->mac_ver >= 0x3071)
rt3090_rf_init(sc);
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_SLEEP, 0x02ff, 1);
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_WAKEUP, 0, 1);
if (sc->mac_ver >= 0x3071)
rt3090_rf_wakeup(sc);
/* disable non-existing Rx chains */
bbp3 = rt2860_mcu_bbp_read(sc, 3);
bbp3 &= ~(1 << 3 | 1 << 4);
if (sc->nrxchains == 2)
bbp3 |= 1 << 3;
else if (sc->nrxchains == 3)
bbp3 |= 1 << 4;
rt2860_mcu_bbp_write(sc, 3, bbp3);
/* disable non-existing Tx chains */
bbp1 = rt2860_mcu_bbp_read(sc, 1);
if (sc->ntxchains == 1)
bbp1 = (bbp1 & ~(1 << 3 | 1 << 4));
else if (sc->mac_ver == 0x3593 && sc->ntxchains == 2)
bbp1 = (bbp1 & ~(1 << 4)) | 1 << 3;
else if (sc->mac_ver == 0x3593 && sc->ntxchains == 3)
bbp1 = (bbp1 & ~(1 << 3)) | 1 << 4;
rt2860_mcu_bbp_write(sc, 1, bbp1);
if (sc->mac_ver >= 0x3071)
rt3090_rf_setup(sc);
/* select default channel */
rt2860_switch_chan(sc, ic->ic_curchan);
/* reset RF from MCU */
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_RFRESET, 0, 0);
/* set RTS threshold */
tmp = RAL_READ(sc, RT2860_TX_RTS_CFG);
tmp &= ~0xffff00;
tmp |= IEEE80211_RTS_DEFAULT << 8;
RAL_WRITE(sc, RT2860_TX_RTS_CFG, tmp);
/* setup initial protection mode */
rt2860_updateprot(ifp);
/* turn radio LED on */
rt2860_set_leds(sc, RT2860_LED_RADIO);
/* enable Tx/Rx DMA engine */
if ((error = rt2860_txrx_enable(sc)) != 0) {
rt2860_stop_locked(sc);
return;
}
/* clear pending interrupts */
RAL_WRITE(sc, RT2860_INT_STATUS, 0xffffffff);
/* enable interrupts */
RAL_WRITE(sc, RT2860_INT_MASK, 0x3fffc);
if (sc->sc_flags & RT2860_ADVANCED_PS)
rt2860_mcu_cmd(sc, RT2860_MCU_CMD_PSLEVEL, sc->pslevel, 0);
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
ifp->if_drv_flags |= IFF_DRV_RUNNING;
callout_reset(&sc->watchdog_ch, hz, rt2860_watchdog, sc);
#undef N
}
static void
rt2860_stop(void *arg)
{
struct rt2860_softc *sc = arg;
RAL_LOCK(sc);
rt2860_stop_locked(sc);
RAL_UNLOCK(sc);
}
static void
rt2860_stop_locked(struct rt2860_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
uint32_t tmp;
int qid;
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
rt2860_set_leds(sc, 0); /* turn all LEDs off */
callout_stop(&sc->watchdog_ch);
sc->sc_tx_timer = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
/* disable interrupts */
RAL_WRITE(sc, RT2860_INT_MASK, 0);
/* disable GP timer */
rt2860_set_gp_timer(sc, 0);
/* disable Rx */
tmp = RAL_READ(sc, RT2860_MAC_SYS_CTRL);
tmp &= ~(RT2860_MAC_RX_EN | RT2860_MAC_TX_EN);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, tmp);
/* reset adapter */
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, RT2860_BBP_HRST | RT2860_MAC_SRST);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_MAC_SYS_CTRL, 0);
/* reset Tx and Rx rings (and reclaim TXWIs) */
sc->qfullmsk = 0;
for (qid = 0; qid < 6; qid++)
rt2860_reset_tx_ring(sc, &sc->txq[qid]);
rt2860_reset_rx_ring(sc, &sc->rxq);
}
int
rt2860_load_microcode(struct rt2860_softc *sc)
{
const struct firmware *fp;
int ntries, error;
RAL_LOCK_ASSERT(sc);
RAL_UNLOCK(sc);
fp = firmware_get("rt2860fw");
RAL_LOCK(sc);
if (fp == NULL) {
device_printf(sc->sc_dev,
"unable to receive rt2860fw firmware image\n");
return EINVAL;
}
/* set "host program ram write selection" bit */
RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_HST_PM_SEL);
/* write microcode image */
RAL_WRITE_REGION_1(sc, RT2860_FW_BASE, fp->data, fp->datasize);
/* kick microcontroller unit */
RAL_WRITE(sc, RT2860_SYS_CTRL, 0);
RAL_BARRIER_WRITE(sc);
RAL_WRITE(sc, RT2860_SYS_CTRL, RT2860_MCU_RESET);
RAL_WRITE(sc, RT2860_H2M_BBPAGENT, 0);
RAL_WRITE(sc, RT2860_H2M_MAILBOX, 0);
/* wait until microcontroller is ready */
RAL_BARRIER_READ_WRITE(sc);
for (ntries = 0; ntries < 1000; ntries++) {
if (RAL_READ(sc, RT2860_SYS_CTRL) & RT2860_MCU_READY)
break;
DELAY(1000);
}
if (ntries == 1000) {
device_printf(sc->sc_dev,
"timeout waiting for MCU to initialize\n");
error = ETIMEDOUT;
} else
error = 0;
firmware_put(fp, FIRMWARE_UNLOAD);
return error;
}
/*
* This function is called periodically to adjust Tx power based on
* temperature variation.
*/
#ifdef NOT_YET
static void
rt2860_calib(struct rt2860_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
const uint8_t *tssi;
uint8_t step, bbp49;
int8_t ridx, d;
/* read current temperature */
bbp49 = rt2860_mcu_bbp_read(sc, 49);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_bss->ni_chan)) {
tssi = &sc->tssi_2ghz[4];
step = sc->step_2ghz;
} else {
tssi = &sc->tssi_5ghz[4];
step = sc->step_5ghz;
}
if (bbp49 < tssi[0]) { /* lower than reference */
/* use higher Tx power than default */
for (d = 0; d > -4 && bbp49 <= tssi[d - 1]; d--);
} else if (bbp49 > tssi[0]) { /* greater than reference */
/* use lower Tx power than default */
for (d = 0; d < +4 && bbp49 >= tssi[d + 1]; d++);
} else {
/* use default Tx power */
d = 0;
}
d *= step;
DPRINTF(("BBP49=0x%02x, adjusting Tx power by %d\n", bbp49, d));
/* write adjusted Tx power values for each Tx rate */
for (ridx = 0; ridx < 5; ridx++) {
if (sc->txpow20mhz[ridx] == 0xffffffff)
continue;
RAL_WRITE(sc, RT2860_TX_PWR_CFG(ridx),
b4inc(sc->txpow20mhz[ridx], d));
}
}
#endif
static void
rt3090_set_rx_antenna(struct rt2860_softc *sc, int aux)
{
uint32_t tmp;
if (aux) {
tmp = RAL_READ(sc, RT2860_PCI_EECTRL);
RAL_WRITE(sc, RT2860_PCI_EECTRL, tmp & ~RT2860_C);
tmp = RAL_READ(sc, RT2860_GPIO_CTRL);
RAL_WRITE(sc, RT2860_GPIO_CTRL, (tmp & ~0x0808) | 0x08);
} else {
tmp = RAL_READ(sc, RT2860_PCI_EECTRL);
RAL_WRITE(sc, RT2860_PCI_EECTRL, tmp | RT2860_C);
tmp = RAL_READ(sc, RT2860_GPIO_CTRL);
RAL_WRITE(sc, RT2860_GPIO_CTRL, tmp & ~0x0808);
}
}
static void
rt2860_switch_chan(struct rt2860_softc *sc, struct ieee80211_channel *c)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
u_int chan, group;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
if (sc->mac_ver >= 0x3071)
rt3090_set_chan(sc, chan);
else
rt2860_set_chan(sc, chan);
/* determine channel group */
if (chan <= 14)
group = 0;
else if (chan <= 64)
group = 1;
else if (chan <= 128)
group = 2;
else
group = 3;
/* XXX necessary only when group has changed! */
rt2860_select_chan_group(sc, group);
DELAY(1000);
}
static int
rt2860_setup_beacon(struct rt2860_softc *sc, struct ieee80211vap *vap)
{
struct ieee80211com *ic = vap->iv_ic;
struct ieee80211_beacon_offsets bo;
struct rt2860_txwi txwi;
struct mbuf *m;
int ridx;
if ((m = ieee80211_beacon_alloc(vap->iv_bss, &bo)) == NULL)
return ENOBUFS;
memset(&txwi, 0, sizeof txwi);
txwi.wcid = 0xff;
txwi.len = htole16(m->m_pkthdr.len);
/* send beacons at the lowest available rate */
ridx = IEEE80211_IS_CHAN_5GHZ(ic->ic_bsschan) ?
RT2860_RIDX_OFDM6 : RT2860_RIDX_CCK1;
txwi.phy = htole16(rt2860_rates[ridx].mcs);
if (rt2860_rates[ridx].phy == IEEE80211_T_OFDM)
txwi.phy |= htole16(RT2860_PHY_OFDM);
txwi.txop = RT2860_TX_TXOP_HT;
txwi.flags = RT2860_TX_TS;
txwi.xflags = RT2860_TX_NSEQ;
RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0),
(uint8_t *)&txwi, sizeof txwi);
RAL_WRITE_REGION_1(sc, RT2860_BCN_BASE(0) + sizeof txwi,
mtod(m, uint8_t *), m->m_pkthdr.len);
m_freem(m);
return 0;
}
static void
rt2860_enable_tsf_sync(struct rt2860_softc *sc)
{
struct ifnet *ifp = sc->sc_ifp;
struct ieee80211com *ic = ifp->if_l2com;
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
uint32_t tmp;
tmp = RAL_READ(sc, RT2860_BCN_TIME_CFG);
tmp &= ~0x1fffff;
tmp |= vap->iv_bss->ni_intval * 16;
tmp |= RT2860_TSF_TIMER_EN | RT2860_TBTT_TIMER_EN;
if (vap->iv_opmode == IEEE80211_M_STA) {
/*
* Local TSF is always updated with remote TSF on beacon
* reception.
*/
tmp |= 1 << RT2860_TSF_SYNC_MODE_SHIFT;
}
else if (vap->iv_opmode == IEEE80211_M_IBSS ||
vap->iv_opmode == IEEE80211_M_MBSS) {
tmp |= RT2860_BCN_TX_EN;
/*
* Local TSF is updated with remote TSF on beacon reception
* only if the remote TSF is greater than local TSF.
*/
tmp |= 2 << RT2860_TSF_SYNC_MODE_SHIFT;
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
tmp |= RT2860_BCN_TX_EN;
/* SYNC with nobody */
tmp |= 3 << RT2860_TSF_SYNC_MODE_SHIFT;
}
RAL_WRITE(sc, RT2860_BCN_TIME_CFG, tmp);
}