freebsd-skq/contrib/ntp/libntp/systime.c
Cy Schubert 2d4e511ca2 MFV r358616:
Update ntp-4.2.8p13 --> 4.2.8p14.

The advisory can be found at:
http://support.ntp.org/bin/view/Main/SecurityNotice#\
March_2020_ntp_4_2_8p14_NTP_Rele

No CVEs have been documented yet.

MFC after:	now
Security:	http://support.ntp.org/bin/view/Main/NtpBug3610
		http://support.ntp.org/bin/view/Main/NtpBug3596
		http://support.ntp.org/bin/view/Main/NtpBug3592
2020-03-04 21:45:12 +00:00

680 lines
18 KiB
C

/*
* systime -- routines to fiddle a UNIX clock.
*
* ATTENTION: Get approval from Dave Mills on all changes to this file!
*
*/
#include <config.h>
#include <math.h>
#include "ntp.h"
#include "ntpd.h"
#include "ntp_syslog.h"
#include "ntp_stdlib.h"
#include "ntp_random.h"
#include "iosignal.h"
#include "timevalops.h"
#include "timespecops.h"
#include "ntp_calendar.h"
#include "lib_strbuf.h"
#ifdef HAVE_SYS_PARAM_H
# include <sys/param.h>
#endif
#ifdef HAVE_UTMP_H
# include <utmp.h>
#endif /* HAVE_UTMP_H */
#ifdef HAVE_UTMPX_H
# include <utmpx.h>
#endif /* HAVE_UTMPX_H */
int allow_panic = FALSE; /* allow panic correction (-g) */
int enable_panic_check = TRUE; /* Can we check allow_panic's state? */
u_long sys_lamport; /* Lamport violation */
u_long sys_tsrounding; /* timestamp rounding errors */
#ifndef USE_COMPILETIME_PIVOT
# define USE_COMPILETIME_PIVOT 1
#endif
/*
* These routines (get_systime, step_systime, adj_systime) implement an
* interface between the system independent NTP clock and the Unix
* system clock in various architectures and operating systems. Time is
* a precious quantity in these routines and every effort is made to
* minimize errors by unbiased rounding and amortizing adjustment
* residues.
*
* In order to improve the apparent resolution, provide unbiased
* rounding and most importantly ensure that the readings cannot be
* predicted, the low-order unused portion of the time below the minimum
* time to read the clock is filled with an unbiased random fuzz.
*
* The sys_tick variable specifies the system clock tick interval in
* seconds, for stepping clocks, defined as those which return times
* less than MINSTEP greater than the previous reading. For systems that
* use a high-resolution counter such that each clock reading is always
* at least MINSTEP greater than the prior, sys_tick is the time to read
* the system clock.
*
* The sys_fuzz variable measures the minimum time to read the system
* clock, regardless of its precision. When reading the system clock
* using get_systime() after sys_tick and sys_fuzz have been determined,
* ntpd ensures each unprocessed clock reading is no less than sys_fuzz
* later than the prior unprocessed reading, and then fuzzes the bits
* below sys_fuzz in the timestamp returned, ensuring each of its
* resulting readings is strictly later than the previous.
*
* When slewing the system clock using adj_systime() (with the kernel
* loop discipline unavailable or disabled), adjtime() offsets are
* quantized to sys_tick, if sys_tick is greater than sys_fuzz, which
* is to say if the OS presents a stepping clock. Otherwise, offsets
* are quantized to the microsecond resolution of adjtime()'s timeval
* input. The remaining correction sys_residual is carried into the
* next adjtime() and meanwhile is also factored into get_systime()
* readings.
*/
double sys_tick = 0; /* tick size or time to read (s) */
double sys_fuzz = 0; /* min. time to read the clock (s) */
long sys_fuzz_nsec = 0; /* min. time to read the clock (ns) */
double measured_tick; /* non-overridable sys_tick (s) */
double sys_residual = 0; /* adjustment residue (s) */
int trunc_os_clock; /* sys_tick > measured_tick */
time_stepped_callback step_callback;
#ifndef SIM
/* perlinger@ntp.org: As 'get_sysime()' does it's own check for clock
* backstepping, this could probably become a local variable in
* 'get_systime()' and the cruft associated with communicating via a
* static value could be removed after the v4.2.8 release.
*/
static int lamport_violated; /* clock was stepped back */
#endif /* !SIM */
#ifdef DEBUG
static int systime_init_done;
# define DONE_SYSTIME_INIT() systime_init_done = TRUE
#else
# define DONE_SYSTIME_INIT() do {} while (FALSE)
#endif
#ifdef HAVE_SIGNALED_IO
int using_sigio;
#endif
#ifdef SYS_WINNT
CRITICAL_SECTION get_systime_cs;
#endif
void
set_sys_fuzz(
double fuzz_val
)
{
sys_fuzz = fuzz_val;
INSIST(sys_fuzz >= 0);
INSIST(sys_fuzz <= 1.0);
/* [Bug 3450] ensure nsec fuzz >= sys_fuzz to reduce chance of
* short-falling fuzz advance
*/
sys_fuzz_nsec = (long)ceil(sys_fuzz * 1e9);
}
void
init_systime(void)
{
INIT_GET_SYSTIME_CRITSEC();
INIT_WIN_PRECISE_TIME();
DONE_SYSTIME_INIT();
}
#ifndef SIM /* ntpsim.c has get_systime() and friends for sim */
static inline void
get_ostime(
struct timespec * tsp
)
{
int rc;
long ticks;
#if defined(HAVE_CLOCK_GETTIME)
rc = clock_gettime(CLOCK_REALTIME, tsp);
#elif defined(HAVE_GETCLOCK)
rc = getclock(TIMEOFDAY, tsp);
#else
struct timeval tv;
rc = GETTIMEOFDAY(&tv, NULL);
tsp->tv_sec = tv.tv_sec;
tsp->tv_nsec = tv.tv_usec * 1000;
#endif
if (rc < 0) {
msyslog(LOG_ERR, "read system clock failed: %m (%d)",
errno);
exit(1);
}
if (trunc_os_clock) {
ticks = (long)((tsp->tv_nsec * 1e-9) / sys_tick);
tsp->tv_nsec = (long)(ticks * 1e9 * sys_tick);
}
}
/*
* get_systime - return system time in NTP timestamp format.
*/
void
get_systime(
l_fp *now /* system time */
)
{
static struct timespec ts_last; /* last sampled os time */
static struct timespec ts_prev; /* prior os time */
static l_fp lfp_prev; /* prior result */
struct timespec ts; /* seconds and nanoseconds */
struct timespec ts_min; /* earliest permissible */
struct timespec ts_lam; /* lamport fictional increment */
double dfuzz;
l_fp result;
l_fp lfpfuzz;
l_fp lfpdelta;
get_ostime(&ts);
DEBUG_REQUIRE(systime_init_done);
ENTER_GET_SYSTIME_CRITSEC();
/* First check if here was a Lamport violation, that is, two
* successive calls to 'get_ostime()' resulted in negative
* time difference. Use a few milliseconds of permissible
* tolerance -- being too sharp can hurt here. (This is intented
* for the Win32 target, where the HPC interpolation might
* introduce small steps backward. It should not be an issue on
* systems where get_ostime() results in a true syscall.)
*/
if (cmp_tspec(add_tspec_ns(ts, 50000000), ts_last) < 0) {
lamport_violated = 1;
sys_lamport++;
}
ts_last = ts;
/*
* After default_get_precision() has set a nonzero sys_fuzz,
* ensure every reading of the OS clock advances by at least
* sys_fuzz over the prior reading, thereby assuring each
* fuzzed result is strictly later than the prior. Limit the
* necessary fiction to 1 second.
*/
if (!USING_SIGIO()) {
ts_min = add_tspec_ns(ts_prev, sys_fuzz_nsec);
if (cmp_tspec(ts, ts_min) < 0) {
ts_lam = sub_tspec(ts_min, ts);
if (ts_lam.tv_sec > 0 && !lamport_violated) {
msyslog(LOG_ERR,
"get_systime Lamport advance exceeds one second (%.9f)",
ts_lam.tv_sec +
1e-9 * ts_lam.tv_nsec);
exit(1);
}
if (!lamport_violated)
ts = ts_min;
}
ts_prev = ts;
}
/* convert from timespec to l_fp fixed-point */
result = tspec_stamp_to_lfp(ts);
/*
* Add in the fuzz. 'ntp_random()' returns [0..2**31-1] so we
* must scale up the result by 2.0 to cover the full fractional
* range.
*/
dfuzz = ntp_random() * 2. / FRAC * sys_fuzz;
DTOLFP(dfuzz, &lfpfuzz);
L_ADD(&result, &lfpfuzz);
/*
* Ensure result is strictly greater than prior result (ignoring
* sys_residual's effect for now) once sys_fuzz has been
* determined.
*
* [Bug 3450] Rounding errors and time slew can lead to a
* violation of the expected postcondition. This is bound to
* happen from time to time (depending on state of the random
* generator, the current slew and the closeness of system time
* stamps drawn) and does not warrant a syslog entry. Instead it
* makes much more sense to ensure the postcondition and hop
* along silently.
*/
if (!USING_SIGIO()) {
if ( !L_ISZERO(&lfp_prev)
&& !lamport_violated
&& (sys_fuzz > 0.0)
) {
lfpdelta = result;
L_SUB(&lfpdelta, &lfp_prev);
L_SUBUF(&lfpdelta, 1);
if (lfpdelta.l_i < 0)
{
L_NEG(&lfpdelta);
DPRINTF(1, ("get_systime: postcond failed by %s secs, fixed\n",
lfptoa(&lfpdelta, 9)));
result = lfp_prev;
L_ADDUF(&result, 1);
sys_tsrounding++;
}
}
lfp_prev = result;
if (lamport_violated)
lamport_violated = FALSE;
}
LEAVE_GET_SYSTIME_CRITSEC();
*now = result;
}
/*
* adj_systime - adjust system time by the argument.
*/
#if !defined SYS_WINNT
int /* 0 okay, 1 error */
adj_systime(
double now /* adjustment (s) */
)
{
struct timeval adjtv; /* new adjustment */
struct timeval oadjtv; /* residual adjustment */
double quant; /* quantize to multiples of */
double dtemp;
long ticks;
int isneg = 0;
/*
* The Windows port adj_systime() depends on being called each
* second even when there's no additional correction, to allow
* emulation of adjtime() behavior on top of an API that simply
* sets the current rate. This POSIX implementation needs to
* ignore invocations with zero correction, otherwise ongoing
* EVNT_NSET adjtime() can be aborted by a tiny adjtime()
* triggered by sys_residual.
*/
if (0. == now) {
if (enable_panic_check && allow_panic) {
msyslog(LOG_ERR, "adj_systime: allow_panic is TRUE!");
INSIST(!allow_panic);
}
return TRUE;
}
/*
* Most Unix adjtime() implementations adjust the system clock
* in microsecond quanta, but some adjust in 10-ms quanta. We
* carefully round the adjustment to the nearest quantum, then
* adjust in quanta and keep the residue for later.
*/
dtemp = now + sys_residual;
if (dtemp < 0) {
isneg = 1;
dtemp = -dtemp;
}
adjtv.tv_sec = (long)dtemp;
dtemp -= adjtv.tv_sec;
if (sys_tick > sys_fuzz)
quant = sys_tick;
else
quant = 1e-6;
ticks = (long)(dtemp / quant + .5);
adjtv.tv_usec = (long)(ticks * quant * 1.e6 + .5);
/* The rounding in the conversions could us push over the
* limits: make sure the result is properly normalised!
* note: sign comes later, all numbers non-negative here.
*/
if (adjtv.tv_usec >= 1000000) {
adjtv.tv_sec += 1;
adjtv.tv_usec -= 1000000;
dtemp -= 1.;
}
/* set the new residual with leftover from correction */
sys_residual = dtemp - adjtv.tv_usec * 1.e-6;
/*
* Convert to signed seconds and microseconds for the Unix
* adjtime() system call. Note we purposely lose the adjtime()
* leftover.
*/
if (isneg) {
adjtv.tv_sec = -adjtv.tv_sec;
adjtv.tv_usec = -adjtv.tv_usec;
sys_residual = -sys_residual;
}
if (adjtv.tv_sec != 0 || adjtv.tv_usec != 0) {
if (adjtime(&adjtv, &oadjtv) < 0) {
msyslog(LOG_ERR, "adj_systime: %m");
if (enable_panic_check && allow_panic) {
msyslog(LOG_ERR, "adj_systime: allow_panic is TRUE!");
}
return FALSE;
}
}
if (enable_panic_check && allow_panic) {
msyslog(LOG_ERR, "adj_systime: allow_panic is TRUE!");
}
return TRUE;
}
#endif
/*
* helper to keep utmp/wtmp up to date
*/
static void
update_uwtmp(
struct timeval timetv,
struct timeval tvlast
)
{
struct timeval tvdiff;
/*
* FreeBSD, for example, has:
* struct utmp {
* char ut_line[UT_LINESIZE];
* char ut_name[UT_NAMESIZE];
* char ut_host[UT_HOSTSIZE];
* long ut_time;
* };
* and appends line="|", name="date", host="", time for the OLD
* and appends line="{", name="date", host="", time for the NEW // }
* to _PATH_WTMP .
*
* Some OSes have utmp, some have utmpx.
*/
/*
* Write old and new time entries in utmp and wtmp if step
* adjustment is greater than one second.
*
* This might become even Uglier...
*/
tvdiff = abs_tval(sub_tval(timetv, tvlast));
if (tvdiff.tv_sec > 0) {
#ifdef HAVE_UTMP_H
struct utmp ut;
#endif
#ifdef HAVE_UTMPX_H
struct utmpx utx;
#endif
#ifdef HAVE_UTMP_H
ZERO(ut);
#endif
#ifdef HAVE_UTMPX_H
ZERO(utx);
#endif
/* UTMP */
#ifdef UPDATE_UTMP
# ifdef HAVE_PUTUTLINE
# ifndef _PATH_UTMP
# define _PATH_UTMP UTMP_FILE
# endif
utmpname(_PATH_UTMP);
ut.ut_type = OLD_TIME;
strlcpy(ut.ut_line, OTIME_MSG, sizeof(ut.ut_line));
ut.ut_time = tvlast.tv_sec;
setutent();
pututline(&ut);
ut.ut_type = NEW_TIME;
strlcpy(ut.ut_line, NTIME_MSG, sizeof(ut.ut_line));
ut.ut_time = timetv.tv_sec;
setutent();
pututline(&ut);
endutent();
# else /* not HAVE_PUTUTLINE */
# endif /* not HAVE_PUTUTLINE */
#endif /* UPDATE_UTMP */
/* UTMPX */
#ifdef UPDATE_UTMPX
# ifdef HAVE_PUTUTXLINE
utx.ut_type = OLD_TIME;
strlcpy(utx.ut_line, OTIME_MSG, sizeof(utx.ut_line));
utx.ut_tv = tvlast;
setutxent();
pututxline(&utx);
utx.ut_type = NEW_TIME;
strlcpy(utx.ut_line, NTIME_MSG, sizeof(utx.ut_line));
utx.ut_tv = timetv;
setutxent();
pututxline(&utx);
endutxent();
# else /* not HAVE_PUTUTXLINE */
# endif /* not HAVE_PUTUTXLINE */
#endif /* UPDATE_UTMPX */
/* WTMP */
#ifdef UPDATE_WTMP
# ifdef HAVE_PUTUTLINE
# ifndef _PATH_WTMP
# define _PATH_WTMP WTMP_FILE
# endif
utmpname(_PATH_WTMP);
ut.ut_type = OLD_TIME;
strlcpy(ut.ut_line, OTIME_MSG, sizeof(ut.ut_line));
ut.ut_time = tvlast.tv_sec;
setutent();
pututline(&ut);
ut.ut_type = NEW_TIME;
strlcpy(ut.ut_line, NTIME_MSG, sizeof(ut.ut_line));
ut.ut_time = timetv.tv_sec;
setutent();
pututline(&ut);
endutent();
# else /* not HAVE_PUTUTLINE */
# endif /* not HAVE_PUTUTLINE */
#endif /* UPDATE_WTMP */
/* WTMPX */
#ifdef UPDATE_WTMPX
# ifdef HAVE_PUTUTXLINE
utx.ut_type = OLD_TIME;
utx.ut_tv = tvlast;
strlcpy(utx.ut_line, OTIME_MSG, sizeof(utx.ut_line));
# ifdef HAVE_UPDWTMPX
updwtmpx(WTMPX_FILE, &utx);
# else /* not HAVE_UPDWTMPX */
# endif /* not HAVE_UPDWTMPX */
# else /* not HAVE_PUTUTXLINE */
# endif /* not HAVE_PUTUTXLINE */
# ifdef HAVE_PUTUTXLINE
utx.ut_type = NEW_TIME;
utx.ut_tv = timetv;
strlcpy(utx.ut_line, NTIME_MSG, sizeof(utx.ut_line));
# ifdef HAVE_UPDWTMPX
updwtmpx(WTMPX_FILE, &utx);
# else /* not HAVE_UPDWTMPX */
# endif /* not HAVE_UPDWTMPX */
# else /* not HAVE_PUTUTXLINE */
# endif /* not HAVE_PUTUTXLINE */
#endif /* UPDATE_WTMPX */
}
}
/*
* step_systime - step the system clock.
*/
int
step_systime(
double step
)
{
time_t pivot; /* for ntp era unfolding */
struct timeval timetv, tvlast;
struct timespec timets;
l_fp fp_ofs, fp_sys; /* offset and target system time in FP */
/*
* Get pivot time for NTP era unfolding. Since we don't step
* very often, we can afford to do the whole calculation from
* scratch. And we're not in the time-critical path yet.
*/
#if SIZEOF_TIME_T > 4
pivot = basedate_get_eracenter();
#else
/* This makes sure the resulting time stamp is on or after
* 1969-12-31/23:59:59 UTC and gives us additional two years,
* from the change of NTP era in 2036 to the UNIX rollover in
* 2038. (Minus one second, but that won't hurt.) We *really*
* need a longer 'time_t' after that! Or a different baseline,
* but that would cause other serious trouble, too.
*/
pivot = 0x7FFFFFFF;
#endif
/* get the complete jump distance as l_fp */
DTOLFP(sys_residual, &fp_sys);
DTOLFP(step, &fp_ofs);
L_ADD(&fp_ofs, &fp_sys);
/* ---> time-critical path starts ---> */
/* get the current time as l_fp (without fuzz) and as struct timeval */
get_ostime(&timets);
fp_sys = tspec_stamp_to_lfp(timets);
tvlast.tv_sec = timets.tv_sec;
tvlast.tv_usec = (timets.tv_nsec + 500) / 1000;
/* get the target time as l_fp */
L_ADD(&fp_sys, &fp_ofs);
/* unfold the new system time */
timetv = lfp_stamp_to_tval(fp_sys, &pivot);
/* now set new system time */
if (ntp_set_tod(&timetv, NULL) != 0) {
msyslog(LOG_ERR, "step-systime: %m");
if (enable_panic_check && allow_panic) {
msyslog(LOG_ERR, "step_systime: allow_panic is TRUE!");
}
return FALSE;
}
/* <--- time-critical path ended with 'ntp_set_tod()' <--- */
sys_residual = 0;
lamport_violated = (step < 0);
if (step_callback)
(*step_callback)();
#ifdef NEED_HPUX_ADJTIME
/*
* CHECKME: is this correct when called by ntpdate?????
*/
_clear_adjtime();
#endif
update_uwtmp(timetv, tvlast);
if (enable_panic_check && allow_panic) {
msyslog(LOG_ERR, "step_systime: allow_panic is TRUE!");
INSIST(!allow_panic);
}
return TRUE;
}
static const char *
tv_fmt_libbuf(
const struct timeval * ptv
)
{
char * retv;
vint64 secs;
ntpcal_split dds;
struct calendar jd;
secs = time_to_vint64(&ptv->tv_sec);
dds = ntpcal_daysplit(&secs);
ntpcal_daysplit_to_date(&jd, &dds, DAY_UNIX_STARTS);
LIB_GETBUF(retv);
snprintf(retv, LIB_BUFLENGTH,
"%04hu-%02hu-%02hu/%02hu:%02hu:%02hu.%06u",
jd.year, (u_short)jd.month, (u_short)jd.monthday,
(u_short)jd.hour, (u_short)jd.minute, (u_short)jd.second,
(u_int)ptv->tv_usec);
return retv;
}
int /*BOOL*/
clamp_systime(void)
{
#if SIZEOF_TIME_T > 4
struct timeval tvbase, tvlast;
struct timespec timets;
tvbase.tv_sec = basedate_get_erabase();
tvbase.tv_usec = 0;
/* ---> time-critical path starts ---> */
/* get the current time as l_fp (without fuzz) and as struct timeval */
get_ostime(&timets);
tvlast.tv_sec = timets.tv_sec;
tvlast.tv_usec = (timets.tv_nsec + 500) / 1000;
if (tvlast.tv_usec >= 1000000) {
tvlast.tv_usec -= 1000000;
tvlast.tv_sec += 1;
}
if (tvbase.tv_sec > tvlast.tv_sec) {
/* now set new system time */
if (ntp_set_tod(&tvbase, NULL) != 0) {
msyslog(LOG_ERR, "clamp-systime: %m");
return FALSE;
}
} else {
msyslog(LOG_INFO,
"clamp-systime: clock (%s) in allowed range",
tv_fmt_libbuf(&tvlast));
return FALSE;
}
/* <--- time-critical path ended with 'ntp_set_tod()' <--- */
sys_residual = 0;
lamport_violated = (tvbase.tv_sec < tvlast.tv_sec);
if (step_callback)
(*step_callback)();
# ifdef NEED_HPUX_ADJTIME
/*
* CHECKME: is this correct when called by ntpdate?????
*/
_clear_adjtime();
# endif
update_uwtmp(tvbase, tvlast);
msyslog(LOG_WARNING,
"clamp-systime: clock stepped from %s to %s!",
tv_fmt_libbuf(&tvlast), tv_fmt_libbuf(&tvbase));
return TRUE;
#else
return FALSE;
#endif
}
#endif /* !SIM */