3d8ba93519
kvm_proclist() was aborting when it saw the ithreads with no pgrp.
881 lines
22 KiB
C
881 lines
22 KiB
C
/*-
|
|
* Copyright (c) 1989, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software developed by the Computer Systems
|
|
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
|
|
* BG 91-66 and contributed to Berkeley.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
/*
|
|
* Proc traversal interface for kvm. ps and w are (probably) the exclusive
|
|
* users of this code, so we've factored it out into a separate module.
|
|
* Thus, we keep this grunge out of the other kvm applications (i.e.,
|
|
* most other applications are interested only in open/close/read/nlist).
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/user.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/file.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <unistd.h>
|
|
#include <nlist.h>
|
|
#include <kvm.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/swap_pager.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <limits.h>
|
|
#include <memory.h>
|
|
#include <paths.h>
|
|
|
|
#include "kvm_private.h"
|
|
|
|
#if used
|
|
static char *
|
|
kvm_readswap(kd, p, va, cnt)
|
|
kvm_t *kd;
|
|
const struct proc *p;
|
|
u_long va;
|
|
u_long *cnt;
|
|
{
|
|
#ifdef __FreeBSD__
|
|
/* XXX Stubbed out, our vm system is differnet */
|
|
_kvm_err(kd, kd->program, "kvm_readswap not implemented");
|
|
return(0);
|
|
#endif /* __FreeBSD__ */
|
|
}
|
|
#endif
|
|
|
|
#define KREAD(kd, addr, obj) \
|
|
(kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
|
|
|
|
/*
|
|
* Read proc's from memory file into buffer bp, which has space to hold
|
|
* at most maxcnt procs.
|
|
*/
|
|
static int
|
|
kvm_proclist(kd, what, arg, p, bp, maxcnt)
|
|
kvm_t *kd;
|
|
int what, arg;
|
|
struct proc *p;
|
|
struct kinfo_proc *bp;
|
|
int maxcnt;
|
|
{
|
|
register int cnt = 0;
|
|
struct kinfo_proc kinfo_proc, *kp;
|
|
struct pgrp pgrp;
|
|
struct session sess;
|
|
struct tty tty;
|
|
struct vmspace vmspace;
|
|
struct procsig procsig;
|
|
struct pstats pstats;
|
|
struct ucred ucred;
|
|
struct proc proc;
|
|
struct proc pproc;
|
|
|
|
kp = &kinfo_proc;
|
|
kp->ki_structsize = sizeof(kinfo_proc);
|
|
for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
|
|
memset(kp, 0, sizeof *kp);
|
|
if (KREAD(kd, (u_long)p, &proc)) {
|
|
_kvm_err(kd, kd->program, "can't read proc at %x", p);
|
|
return (-1);
|
|
}
|
|
if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
|
|
kp->ki_ruid = ucred.cr_ruid;
|
|
kp->ki_svuid = ucred.cr_svuid;
|
|
kp->ki_rgid = ucred.cr_rgid;
|
|
kp->ki_svgid = ucred.cr_svgid;
|
|
kp->ki_ngroups = ucred.cr_ngroups;
|
|
bcopy(ucred.cr_groups, kp->ki_groups,
|
|
NGROUPS * sizeof(gid_t));
|
|
kp->ki_uid = ucred.cr_uid;
|
|
}
|
|
|
|
switch(what) {
|
|
|
|
case KERN_PROC_PID:
|
|
if (proc.p_pid != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_UID:
|
|
if (kp->ki_uid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_RUID:
|
|
if (kp->ki_ruid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
}
|
|
/*
|
|
* We're going to add another proc to the set. If this
|
|
* will overflow the buffer, assume the reason is because
|
|
* nprocs (or the proc list) is corrupt and declare an error.
|
|
*/
|
|
if (cnt >= maxcnt) {
|
|
_kvm_err(kd, kd->program, "nprocs corrupt");
|
|
return (-1);
|
|
}
|
|
/*
|
|
* gather kinfo_proc
|
|
*/
|
|
kp->ki_paddr = p;
|
|
kp->ki_addr = proc.p_addr;
|
|
kp->ki_args = proc.p_args;
|
|
kp->ki_tracep = proc.p_tracep;
|
|
kp->ki_textvp = proc.p_textvp;
|
|
kp->ki_fd = proc.p_fd;
|
|
kp->ki_vmspace = proc.p_vmspace;
|
|
if (proc.p_procsig != NULL) {
|
|
if (KREAD(kd, (u_long)proc.p_procsig, &procsig)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read procsig at %x", proc.p_procsig);
|
|
return (-1);
|
|
}
|
|
kp->ki_sigignore = procsig.ps_sigignore;
|
|
kp->ki_sigcatch = procsig.ps_sigcatch;
|
|
}
|
|
if ((proc.p_sflag & PS_INMEM) && proc.p_stats != NULL) {
|
|
if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read stats at %x", proc.p_stats);
|
|
return (-1);
|
|
}
|
|
kp->ki_start = pstats.p_start;
|
|
kp->ki_rusage = pstats.p_ru;
|
|
kp->ki_childtime.tv_sec = pstats.p_cru.ru_utime.tv_sec +
|
|
pstats.p_cru.ru_stime.tv_sec;
|
|
kp->ki_childtime.tv_usec =
|
|
pstats.p_cru.ru_utime.tv_usec +
|
|
pstats.p_cru.ru_stime.tv_usec;
|
|
}
|
|
if (proc.p_oppid)
|
|
kp->ki_ppid = proc.p_oppid;
|
|
else if (proc.p_pptr) {
|
|
if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read pproc at %x", proc.p_pptr);
|
|
return (-1);
|
|
}
|
|
kp->ki_ppid = pproc.p_pid;
|
|
} else
|
|
kp->ki_ppid = 0;
|
|
if (proc.p_pgrp == NULL)
|
|
goto nopgrp;
|
|
if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
|
|
_kvm_err(kd, kd->program, "can't read pgrp at %x",
|
|
proc.p_pgrp);
|
|
return (-1);
|
|
}
|
|
kp->ki_pgid = pgrp.pg_id;
|
|
kp->ki_jobc = pgrp.pg_jobc;
|
|
if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
|
|
_kvm_err(kd, kd->program, "can't read session at %x",
|
|
pgrp.pg_session);
|
|
return (-1);
|
|
}
|
|
kp->ki_sid = sess.s_sid;
|
|
(void)memcpy(kp->ki_login, sess.s_login,
|
|
sizeof(kp->ki_login));
|
|
kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
|
|
if (sess.s_leader == p)
|
|
kp->ki_kiflag |= KI_SLEADER;
|
|
if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
|
|
if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read tty at %x", sess.s_ttyp);
|
|
return (-1);
|
|
}
|
|
kp->ki_tdev = tty.t_dev;
|
|
if (tty.t_pgrp != NULL) {
|
|
if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read tpgrp at &x",
|
|
tty.t_pgrp);
|
|
return (-1);
|
|
}
|
|
kp->ki_tpgid = pgrp.pg_id;
|
|
} else
|
|
kp->ki_tpgid = -1;
|
|
if (tty.t_session != NULL) {
|
|
if (KREAD(kd, (u_long)tty.t_session, &sess)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read session at %x",
|
|
tty.t_session);
|
|
return (-1);
|
|
}
|
|
kp->ki_tsid = sess.s_sid;
|
|
}
|
|
} else {
|
|
nopgrp:
|
|
kp->ki_tdev = NODEV;
|
|
}
|
|
if (proc.p_wmesg)
|
|
(void)kvm_read(kd, (u_long)proc.p_wmesg,
|
|
kp->ki_wmesg, WMESGLEN);
|
|
|
|
#ifdef sparc
|
|
(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_rssize,
|
|
(char *)&kp->ki_rssize,
|
|
sizeof(kp->ki_rssize));
|
|
(void)kvm_read(kd, (u_long)&proc.p_vmspace->vm_tsize,
|
|
(char *)&kp->ki_tsize,
|
|
3 * sizeof(kp->ki_rssize)); /* XXX */
|
|
#else
|
|
(void)kvm_read(kd, (u_long)proc.p_vmspace,
|
|
(char *)&vmspace, sizeof(vmspace));
|
|
kp->ki_size = vmspace.vm_map.size;
|
|
kp->ki_rssize = vmspace.vm_swrss; /* XXX */
|
|
kp->ki_swrss = vmspace.vm_swrss;
|
|
kp->ki_tsize = vmspace.vm_tsize;
|
|
kp->ki_dsize = vmspace.vm_dsize;
|
|
kp->ki_ssize = vmspace.vm_ssize;
|
|
#endif
|
|
|
|
switch (what) {
|
|
|
|
case KERN_PROC_PGRP:
|
|
if (kp->ki_pgid != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_TTY:
|
|
if ((proc.p_flag & P_CONTROLT) == 0 ||
|
|
kp->ki_tdev != (dev_t)arg)
|
|
continue;
|
|
break;
|
|
}
|
|
if (proc.p_comm[0] != 0) {
|
|
strncpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
|
|
kp->ki_comm[MAXCOMLEN] = 0;
|
|
}
|
|
if (proc.p_blocked != 0) {
|
|
kp->ki_kiflag |= KI_MTXBLOCK;
|
|
if (proc.p_mtxname)
|
|
(void)kvm_read(kd, (u_long)proc.p_mtxname,
|
|
kp->ki_mtxname, MTXNAMELEN);
|
|
kp->ki_mtxname[MTXNAMELEN] = 0;
|
|
}
|
|
kp->ki_runtime = proc.p_runtime;
|
|
kp->ki_pid = proc.p_pid;
|
|
kp->ki_siglist = proc.p_siglist;
|
|
kp->ki_sigmask = proc.p_sigmask;
|
|
kp->ki_xstat = proc.p_xstat;
|
|
kp->ki_acflag = proc.p_acflag;
|
|
kp->ki_pctcpu = proc.p_pctcpu;
|
|
kp->ki_estcpu = proc.p_estcpu;
|
|
kp->ki_slptime = proc.p_slptime;
|
|
kp->ki_swtime = proc.p_swtime;
|
|
kp->ki_flag = proc.p_flag;
|
|
kp->ki_sflag = proc.p_sflag;
|
|
kp->ki_wchan = proc.p_wchan;
|
|
kp->ki_traceflag = proc.p_traceflag;
|
|
kp->ki_stat = proc.p_stat;
|
|
kp->ki_pri = proc.p_pri;
|
|
kp->ki_nice = proc.p_nice;
|
|
kp->ki_lock = proc.p_lock;
|
|
kp->ki_rqindex = proc.p_rqindex;
|
|
kp->ki_oncpu = proc.p_oncpu;
|
|
kp->ki_lastcpu = proc.p_lastcpu;
|
|
bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
|
|
++bp;
|
|
++cnt;
|
|
}
|
|
return (cnt);
|
|
}
|
|
|
|
/*
|
|
* Build proc info array by reading in proc list from a crash dump.
|
|
* Return number of procs read. maxcnt is the max we will read.
|
|
*/
|
|
static int
|
|
kvm_deadprocs(kd, what, arg, a_allproc, a_zombproc, maxcnt)
|
|
kvm_t *kd;
|
|
int what, arg;
|
|
u_long a_allproc;
|
|
u_long a_zombproc;
|
|
int maxcnt;
|
|
{
|
|
register struct kinfo_proc *bp = kd->procbase;
|
|
register int acnt, zcnt;
|
|
struct proc *p;
|
|
|
|
if (KREAD(kd, a_allproc, &p)) {
|
|
_kvm_err(kd, kd->program, "cannot read allproc");
|
|
return (-1);
|
|
}
|
|
acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
|
|
if (acnt < 0)
|
|
return (acnt);
|
|
|
|
if (KREAD(kd, a_zombproc, &p)) {
|
|
_kvm_err(kd, kd->program, "cannot read zombproc");
|
|
return (-1);
|
|
}
|
|
zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
|
|
if (zcnt < 0)
|
|
zcnt = 0;
|
|
|
|
return (acnt + zcnt);
|
|
}
|
|
|
|
struct kinfo_proc *
|
|
kvm_getprocs(kd, op, arg, cnt)
|
|
kvm_t *kd;
|
|
int op, arg;
|
|
int *cnt;
|
|
{
|
|
int mib[4], st, nprocs;
|
|
size_t size;
|
|
|
|
if (kd->procbase != 0) {
|
|
free((void *)kd->procbase);
|
|
/*
|
|
* Clear this pointer in case this call fails. Otherwise,
|
|
* kvm_close() will free it again.
|
|
*/
|
|
kd->procbase = 0;
|
|
}
|
|
if (ISALIVE(kd)) {
|
|
size = 0;
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = op;
|
|
mib[3] = arg;
|
|
st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4, NULL, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getprocs");
|
|
return (0);
|
|
}
|
|
do {
|
|
size += size / 10;
|
|
kd->procbase = (struct kinfo_proc *)
|
|
_kvm_realloc(kd, kd->procbase, size);
|
|
if (kd->procbase == 0)
|
|
return (0);
|
|
st = sysctl(mib, op == KERN_PROC_ALL ? 3 : 4,
|
|
kd->procbase, &size, NULL, 0);
|
|
} while (st == -1 && errno == ENOMEM);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getprocs");
|
|
return (0);
|
|
}
|
|
if (size > 0 &&
|
|
kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
|
|
_kvm_err(kd, kd->program,
|
|
"kinfo_proc size mismatch (expected %d, got %d)",
|
|
sizeof(struct kinfo_proc),
|
|
kd->procbase->ki_structsize);
|
|
return (0);
|
|
}
|
|
nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
|
|
} else {
|
|
struct nlist nl[4], *p;
|
|
|
|
nl[0].n_name = "_nprocs";
|
|
nl[1].n_name = "_allproc";
|
|
nl[2].n_name = "_zombproc";
|
|
nl[3].n_name = 0;
|
|
|
|
if (kvm_nlist(kd, nl) != 0) {
|
|
for (p = nl; p->n_type != 0; ++p)
|
|
;
|
|
_kvm_err(kd, kd->program,
|
|
"%s: no such symbol", p->n_name);
|
|
return (0);
|
|
}
|
|
if (KREAD(kd, nl[0].n_value, &nprocs)) {
|
|
_kvm_err(kd, kd->program, "can't read nprocs");
|
|
return (0);
|
|
}
|
|
size = nprocs * sizeof(struct kinfo_proc);
|
|
kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
|
|
if (kd->procbase == 0)
|
|
return (0);
|
|
|
|
nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
|
|
nl[2].n_value, nprocs);
|
|
#ifdef notdef
|
|
size = nprocs * sizeof(struct kinfo_proc);
|
|
(void)realloc(kd->procbase, size);
|
|
#endif
|
|
}
|
|
*cnt = nprocs;
|
|
return (kd->procbase);
|
|
}
|
|
|
|
void
|
|
_kvm_freeprocs(kd)
|
|
kvm_t *kd;
|
|
{
|
|
if (kd->procbase) {
|
|
free(kd->procbase);
|
|
kd->procbase = 0;
|
|
}
|
|
}
|
|
|
|
void *
|
|
_kvm_realloc(kd, p, n)
|
|
kvm_t *kd;
|
|
void *p;
|
|
size_t n;
|
|
{
|
|
void *np = (void *)realloc(p, n);
|
|
|
|
if (np == 0) {
|
|
free(p);
|
|
_kvm_err(kd, kd->program, "out of memory");
|
|
}
|
|
return (np);
|
|
}
|
|
|
|
#ifndef MAX
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
#endif
|
|
|
|
/*
|
|
* Read in an argument vector from the user address space of process kp.
|
|
* addr if the user-space base address of narg null-terminated contiguous
|
|
* strings. This is used to read in both the command arguments and
|
|
* environment strings. Read at most maxcnt characters of strings.
|
|
*/
|
|
static char **
|
|
kvm_argv(kd, kp, addr, narg, maxcnt)
|
|
kvm_t *kd;
|
|
struct kinfo_proc *kp;
|
|
register u_long addr;
|
|
register int narg;
|
|
register int maxcnt;
|
|
{
|
|
register char *np, *cp, *ep, *ap;
|
|
register u_long oaddr = -1;
|
|
register int len, cc;
|
|
register char **argv;
|
|
|
|
/*
|
|
* Check that there aren't an unreasonable number of agruments,
|
|
* and that the address is in user space.
|
|
*/
|
|
if (narg > 512 || addr < VM_MIN_ADDRESS || addr >= VM_MAXUSER_ADDRESS)
|
|
return (0);
|
|
|
|
/*
|
|
* kd->argv : work space for fetching the strings from the target
|
|
* process's space, and is converted for returning to caller
|
|
*/
|
|
if (kd->argv == 0) {
|
|
/*
|
|
* Try to avoid reallocs.
|
|
*/
|
|
kd->argc = MAX(narg + 1, 32);
|
|
kd->argv = (char **)_kvm_malloc(kd, kd->argc *
|
|
sizeof(*kd->argv));
|
|
if (kd->argv == 0)
|
|
return (0);
|
|
} else if (narg + 1 > kd->argc) {
|
|
kd->argc = MAX(2 * kd->argc, narg + 1);
|
|
kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
|
|
sizeof(*kd->argv));
|
|
if (kd->argv == 0)
|
|
return (0);
|
|
}
|
|
/*
|
|
* kd->argspc : returned to user, this is where the kd->argv
|
|
* arrays are left pointing to the collected strings.
|
|
*/
|
|
if (kd->argspc == 0) {
|
|
kd->argspc = (char *)_kvm_malloc(kd, PAGE_SIZE);
|
|
if (kd->argspc == 0)
|
|
return (0);
|
|
kd->arglen = PAGE_SIZE;
|
|
}
|
|
/*
|
|
* kd->argbuf : used to pull in pages from the target process.
|
|
* the strings are copied out of here.
|
|
*/
|
|
if (kd->argbuf == 0) {
|
|
kd->argbuf = (char *)_kvm_malloc(kd, PAGE_SIZE);
|
|
if (kd->argbuf == 0)
|
|
return (0);
|
|
}
|
|
|
|
/* Pull in the target process'es argv vector */
|
|
cc = sizeof(char *) * narg;
|
|
if (kvm_uread(kd, kp, addr, (char *)kd->argv, cc) != cc)
|
|
return (0);
|
|
/*
|
|
* ap : saved start address of string we're working on in kd->argspc
|
|
* np : pointer to next place to write in kd->argspc
|
|
* len: length of data in kd->argspc
|
|
* argv: pointer to the argv vector that we are hunting around the
|
|
* target process space for, and converting to addresses in
|
|
* our address space (kd->argspc).
|
|
*/
|
|
ap = np = kd->argspc;
|
|
argv = kd->argv;
|
|
len = 0;
|
|
/*
|
|
* Loop over pages, filling in the argument vector.
|
|
* Note that the argv strings could be pointing *anywhere* in
|
|
* the user address space and are no longer contiguous.
|
|
* Note that *argv is modified when we are going to fetch a string
|
|
* that crosses a page boundary. We copy the next part of the string
|
|
* into to "np" and eventually convert the pointer.
|
|
*/
|
|
while (argv < kd->argv + narg && *argv != 0) {
|
|
|
|
/* get the address that the current argv string is on */
|
|
addr = (u_long)*argv & ~(PAGE_SIZE - 1);
|
|
|
|
/* is it the same page as the last one? */
|
|
if (addr != oaddr) {
|
|
if (kvm_uread(kd, kp, addr, kd->argbuf, PAGE_SIZE) !=
|
|
PAGE_SIZE)
|
|
return (0);
|
|
oaddr = addr;
|
|
}
|
|
|
|
/* offset within the page... kd->argbuf */
|
|
addr = (u_long)*argv & (PAGE_SIZE - 1);
|
|
|
|
/* cp = start of string, cc = count of chars in this chunk */
|
|
cp = kd->argbuf + addr;
|
|
cc = PAGE_SIZE - addr;
|
|
|
|
/* dont get more than asked for by user process */
|
|
if (maxcnt > 0 && cc > maxcnt - len)
|
|
cc = maxcnt - len;
|
|
|
|
/* pointer to end of string if we found it in this page */
|
|
ep = memchr(cp, '\0', cc);
|
|
if (ep != 0)
|
|
cc = ep - cp + 1;
|
|
/*
|
|
* at this point, cc is the count of the chars that we are
|
|
* going to retrieve this time. we may or may not have found
|
|
* the end of it. (ep points to the null if the end is known)
|
|
*/
|
|
|
|
/* will we exceed the malloc/realloced buffer? */
|
|
if (len + cc > kd->arglen) {
|
|
register int off;
|
|
register char **pp;
|
|
register char *op = kd->argspc;
|
|
|
|
kd->arglen *= 2;
|
|
kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
|
|
kd->arglen);
|
|
if (kd->argspc == 0)
|
|
return (0);
|
|
/*
|
|
* Adjust argv pointers in case realloc moved
|
|
* the string space.
|
|
*/
|
|
off = kd->argspc - op;
|
|
for (pp = kd->argv; pp < argv; pp++)
|
|
*pp += off;
|
|
ap += off;
|
|
np += off;
|
|
}
|
|
/* np = where to put the next part of the string in kd->argspc*/
|
|
/* np is kinda redundant.. could use "kd->argspc + len" */
|
|
memcpy(np, cp, cc);
|
|
np += cc; /* inc counters */
|
|
len += cc;
|
|
|
|
/*
|
|
* if end of string found, set the *argv pointer to the
|
|
* saved beginning of string, and advance. argv points to
|
|
* somewhere in kd->argv.. This is initially relative
|
|
* to the target process, but when we close it off, we set
|
|
* it to point in our address space.
|
|
*/
|
|
if (ep != 0) {
|
|
*argv++ = ap;
|
|
ap = np;
|
|
} else {
|
|
/* update the address relative to the target process */
|
|
*argv += cc;
|
|
}
|
|
|
|
if (maxcnt > 0 && len >= maxcnt) {
|
|
/*
|
|
* We're stopping prematurely. Terminate the
|
|
* current string.
|
|
*/
|
|
if (ep == 0) {
|
|
*np = '\0';
|
|
*argv++ = ap;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/* Make sure argv is terminated. */
|
|
*argv = 0;
|
|
return (kd->argv);
|
|
}
|
|
|
|
static void
|
|
ps_str_a(p, addr, n)
|
|
struct ps_strings *p;
|
|
u_long *addr;
|
|
int *n;
|
|
{
|
|
*addr = (u_long)p->ps_argvstr;
|
|
*n = p->ps_nargvstr;
|
|
}
|
|
|
|
static void
|
|
ps_str_e(p, addr, n)
|
|
struct ps_strings *p;
|
|
u_long *addr;
|
|
int *n;
|
|
{
|
|
*addr = (u_long)p->ps_envstr;
|
|
*n = p->ps_nenvstr;
|
|
}
|
|
|
|
/*
|
|
* Determine if the proc indicated by p is still active.
|
|
* This test is not 100% foolproof in theory, but chances of
|
|
* being wrong are very low.
|
|
*/
|
|
static int
|
|
proc_verify(curkp)
|
|
struct kinfo_proc *curkp;
|
|
{
|
|
struct kinfo_proc newkp;
|
|
int mib[4];
|
|
size_t len;
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = KERN_PROC_PID;
|
|
mib[3] = curkp->ki_pid;
|
|
len = sizeof(newkp);
|
|
if (sysctl(mib, 4, &newkp, &len, NULL, 0) == -1)
|
|
return (0);
|
|
return (curkp->ki_pid == newkp.ki_pid &&
|
|
(newkp.ki_stat != SZOMB || curkp->ki_stat == SZOMB));
|
|
}
|
|
|
|
static char **
|
|
kvm_doargv(kd, kp, nchr, info)
|
|
kvm_t *kd;
|
|
struct kinfo_proc *kp;
|
|
int nchr;
|
|
void (*info)(struct ps_strings *, u_long *, int *);
|
|
{
|
|
char **ap;
|
|
u_long addr;
|
|
int cnt;
|
|
static struct ps_strings arginfo;
|
|
static u_long ps_strings;
|
|
size_t len;
|
|
|
|
if (ps_strings == NULL) {
|
|
len = sizeof(ps_strings);
|
|
if (sysctlbyname("kern.ps_strings", &ps_strings, &len, NULL,
|
|
0) == -1)
|
|
ps_strings = PS_STRINGS;
|
|
}
|
|
|
|
/*
|
|
* Pointers are stored at the top of the user stack.
|
|
*/
|
|
if (kp->ki_stat == SZOMB ||
|
|
kvm_uread(kd, kp, ps_strings, (char *)&arginfo,
|
|
sizeof(arginfo)) != sizeof(arginfo))
|
|
return (0);
|
|
|
|
(*info)(&arginfo, &addr, &cnt);
|
|
if (cnt == 0)
|
|
return (0);
|
|
ap = kvm_argv(kd, kp, addr, cnt, nchr);
|
|
/*
|
|
* For live kernels, make sure this process didn't go away.
|
|
*/
|
|
if (ap != 0 && ISALIVE(kd) && !proc_verify(kp))
|
|
ap = 0;
|
|
return (ap);
|
|
}
|
|
|
|
/*
|
|
* Get the command args. This code is now machine independent.
|
|
*/
|
|
char **
|
|
kvm_getargv(kd, kp, nchr)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc *kp;
|
|
int nchr;
|
|
{
|
|
int oid[4];
|
|
int i;
|
|
size_t bufsz;
|
|
static int buflen;
|
|
static char *buf, *p;
|
|
static char **bufp;
|
|
static int argc;
|
|
|
|
if (!ISALIVE(kd)) {
|
|
_kvm_err(kd, kd->program,
|
|
"cannot read user space from dead kernel");
|
|
return (0);
|
|
}
|
|
|
|
if (!buflen) {
|
|
bufsz = sizeof(buflen);
|
|
i = sysctlbyname("kern.ps_arg_cache_limit",
|
|
&buflen, &bufsz, NULL, 0);
|
|
if (i == -1) {
|
|
buflen = 0;
|
|
} else {
|
|
buf = malloc(buflen);
|
|
if (buf == NULL)
|
|
buflen = 0;
|
|
argc = 32;
|
|
bufp = malloc(sizeof(char *) * argc);
|
|
}
|
|
}
|
|
if (buf != NULL) {
|
|
oid[0] = CTL_KERN;
|
|
oid[1] = KERN_PROC;
|
|
oid[2] = KERN_PROC_ARGS;
|
|
oid[3] = kp->ki_pid;
|
|
bufsz = buflen;
|
|
i = sysctl(oid, 4, buf, &bufsz, 0, 0);
|
|
if (i == 0 && bufsz > 0) {
|
|
i = 0;
|
|
p = buf;
|
|
do {
|
|
bufp[i++] = p;
|
|
p += strlen(p) + 1;
|
|
if (i >= argc) {
|
|
argc += argc;
|
|
bufp = realloc(bufp,
|
|
sizeof(char *) * argc);
|
|
}
|
|
} while (p < buf + bufsz);
|
|
bufp[i++] = 0;
|
|
return (bufp);
|
|
}
|
|
}
|
|
if (kp->ki_flag & P_SYSTEM)
|
|
return (NULL);
|
|
return (kvm_doargv(kd, kp, nchr, ps_str_a));
|
|
}
|
|
|
|
char **
|
|
kvm_getenvv(kd, kp, nchr)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc *kp;
|
|
int nchr;
|
|
{
|
|
return (kvm_doargv(kd, kp, nchr, ps_str_e));
|
|
}
|
|
|
|
/*
|
|
* Read from user space. The user context is given by p.
|
|
*/
|
|
ssize_t
|
|
kvm_uread(kd, kp, uva, buf, len)
|
|
kvm_t *kd;
|
|
struct kinfo_proc *kp;
|
|
register u_long uva;
|
|
register char *buf;
|
|
register size_t len;
|
|
{
|
|
register char *cp;
|
|
char procfile[MAXPATHLEN];
|
|
ssize_t amount;
|
|
int fd;
|
|
|
|
if (!ISALIVE(kd)) {
|
|
_kvm_err(kd, kd->program,
|
|
"cannot read user space from dead kernel");
|
|
return (0);
|
|
}
|
|
|
|
sprintf(procfile, "/proc/%d/mem", kp->ki_pid);
|
|
fd = open(procfile, O_RDONLY, 0);
|
|
if (fd < 0) {
|
|
_kvm_err(kd, kd->program, "cannot open %s", procfile);
|
|
close(fd);
|
|
return (0);
|
|
}
|
|
|
|
cp = buf;
|
|
while (len > 0) {
|
|
errno = 0;
|
|
if (lseek(fd, (off_t)uva, 0) == -1 && errno != 0) {
|
|
_kvm_err(kd, kd->program, "invalid address (%x) in %s",
|
|
uva, procfile);
|
|
break;
|
|
}
|
|
amount = read(fd, cp, len);
|
|
if (amount < 0) {
|
|
_kvm_syserr(kd, kd->program, "error reading %s",
|
|
procfile);
|
|
break;
|
|
}
|
|
if (amount == 0) {
|
|
_kvm_err(kd, kd->program, "EOF reading %s", procfile);
|
|
break;
|
|
}
|
|
cp += amount;
|
|
uva += amount;
|
|
len -= amount;
|
|
}
|
|
|
|
close(fd);
|
|
return ((ssize_t)(cp - buf));
|
|
}
|