freebsd-skq/stand/powerpc/kboot/main.c
jhibbits 8edcc09486 Unify metadata load files for arm, mips, powerpc, sparc64
Summary:
All metadata.c files are very similar, with only trivial changes.  Unify them
into a single common file, with minor special-casing where needed.

Reviewed By: imp
Differential Revision: https://reviews.freebsd.org/D13978
2018-02-13 03:44:50 +00:00

508 lines
12 KiB
C

/*-
* Copyright (C) 2010-2014 Nathan Whitehorn
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <stand.h>
#include <sys/endian.h>
#include <sys/param.h>
#include <fdt_platform.h>
#define _KERNEL
#include <machine/cpufunc.h>
#include "bootstrap.h"
#include "host_syscall.h"
struct arch_switch archsw;
extern void *_end;
extern char bootprog_info[];
int kboot_getdev(void **vdev, const char *devspec, const char **path);
ssize_t kboot_copyin(const void *src, vm_offset_t dest, const size_t len);
ssize_t kboot_copyout(vm_offset_t src, void *dest, const size_t len);
ssize_t kboot_readin(const int fd, vm_offset_t dest, const size_t len);
int kboot_autoload(void);
uint64_t kboot_loadaddr(u_int type, void *data, uint64_t addr);
int kboot_setcurrdev(struct env_var *ev, int flags, const void *value);
static void kboot_kseg_get(int *nseg, void **ptr);
extern int command_fdt_internal(int argc, char *argv[]);
struct region_desc {
uint64_t start;
uint64_t end;
};
static uint64_t
kboot_get_phys_load_segment(void)
{
int fd;
uint64_t entry[2];
static uint64_t load_segment = ~(0UL);
uint64_t val_64;
uint32_t val_32;
struct region_desc rsvd_reg[32];
int rsvd_reg_cnt = 0;
int ret, a, b;
uint64_t start, end;
if (load_segment == ~(0UL)) {
/* Default load address is 0x00000000 */
load_segment = 0UL;
/* Read reserved regions */
fd = host_open("/proc/device-tree/reserved-ranges", O_RDONLY, 0);
if (fd >= 0) {
while (host_read(fd, &entry[0], sizeof(entry)) == sizeof(entry)) {
rsvd_reg[rsvd_reg_cnt].start = be64toh(entry[0]);
rsvd_reg[rsvd_reg_cnt].end =
be64toh(entry[1]) + rsvd_reg[rsvd_reg_cnt].start - 1;
rsvd_reg_cnt++;
}
host_close(fd);
}
/* Read where the kernel ends */
fd = host_open("/proc/device-tree/chosen/linux,kernel-end", O_RDONLY, 0);
if (fd >= 0) {
ret = host_read(fd, &val_64, sizeof(val_64));
if (ret == sizeof(uint64_t)) {
rsvd_reg[rsvd_reg_cnt].start = 0;
rsvd_reg[rsvd_reg_cnt].end = be64toh(val_64) - 1;
} else {
memcpy(&val_32, &val_64, sizeof(val_32));
rsvd_reg[rsvd_reg_cnt].start = 0;
rsvd_reg[rsvd_reg_cnt].end = be32toh(val_32) - 1;
}
rsvd_reg_cnt++;
host_close(fd);
}
/* Read memory size (SOCKET0 only) */
fd = host_open("/proc/device-tree/memory@0/reg", O_RDONLY, 0);
if (fd < 0)
fd = host_open("/proc/device-tree/memory/reg", O_RDONLY, 0);
if (fd >= 0) {
ret = host_read(fd, &entry, sizeof(entry));
/* Memory range in start:length format */
entry[0] = be64toh(entry[0]);
entry[1] = be64toh(entry[1]);
/* Reserve everything what is before start */
if (entry[0] != 0) {
rsvd_reg[rsvd_reg_cnt].start = 0;
rsvd_reg[rsvd_reg_cnt].end = entry[0] - 1;
rsvd_reg_cnt++;
}
/* Reserve everything what is after end */
if (entry[1] != 0xffffffffffffffffUL) {
rsvd_reg[rsvd_reg_cnt].start = entry[0] + entry[1];
rsvd_reg[rsvd_reg_cnt].end = 0xffffffffffffffffUL;
rsvd_reg_cnt++;
}
host_close(fd);
}
/* Sort entries in ascending order (bubble) */
for (a = rsvd_reg_cnt - 1; a > 0; a--) {
for (b = 0; b < a; b++) {
if (rsvd_reg[b].start > rsvd_reg[b + 1].start) {
struct region_desc tmp;
tmp = rsvd_reg[b];
rsvd_reg[b] = rsvd_reg[b + 1];
rsvd_reg[b + 1] = tmp;
}
}
}
/* Join overlapping/adjacent regions */
for (a = 0; a < rsvd_reg_cnt - 1; ) {
if ((rsvd_reg[a + 1].start >= rsvd_reg[a].start) &&
((rsvd_reg[a + 1].start - 1) <= rsvd_reg[a].end)) {
/* We have overlapping/adjacent regions! */
rsvd_reg[a].end =
MAX(rsvd_reg[a].end, rsvd_reg[a + a].end);
for (b = a + 1; b < rsvd_reg_cnt - 1; b++)
rsvd_reg[b] = rsvd_reg[b + 1];
rsvd_reg_cnt--;
} else
a++;
}
/* Find the first free region */
if (rsvd_reg_cnt > 0) {
start = 0;
end = rsvd_reg[0].start;
for (a = 0; a < rsvd_reg_cnt - 1; a++) {
if ((start >= rsvd_reg[a].start) &&
(start <= rsvd_reg[a].end)) {
start = rsvd_reg[a].end + 1;
end = rsvd_reg[a + 1].start;
} else
break;
}
if (start != end) {
uint64_t align = 64UL*1024UL*1024UL;
/* Align both to 64MB boundary */
start = (start + align - 1UL) & ~(align - 1UL);
end = ((end + 1UL) & ~(align - 1UL)) - 1UL;
if (start < end)
load_segment = start;
}
}
}
return (load_segment);
}
uint8_t
kboot_get_kernel_machine_bits(void)
{
static uint8_t bits = 0;
struct old_utsname utsname;
int ret;
if (bits == 0) {
/* Default is 32-bit kernel */
bits = 32;
/* Try to get system type */
memset(&utsname, 0, sizeof(utsname));
ret = host_uname(&utsname);
if (ret == 0) {
if (strcmp(utsname.machine, "ppc64") == 0)
bits = 64;
else if (strcmp(utsname.machine, "ppc64le") == 0)
bits = 64;
}
}
return (bits);
}
int
kboot_getdev(void **vdev, const char *devspec, const char **path)
{
int i;
const char *devpath, *filepath;
struct devsw *dv;
struct devdesc *desc;
if (strchr(devspec, ':') != NULL) {
devpath = devspec;
filepath = strchr(devspec, ':') + 1;
} else {
devpath = getenv("currdev");
filepath = devspec;
}
for (i = 0; (dv = devsw[i]) != NULL; i++) {
if (strncmp(dv->dv_name, devpath, strlen(dv->dv_name)) == 0)
goto found;
}
return (ENOENT);
found:
if (path != NULL && filepath != NULL)
*path = filepath;
else if (path != NULL)
*path = strchr(devspec, ':') + 1;
if (vdev != NULL) {
desc = malloc(sizeof(*desc));
desc->d_dev = dv;
desc->d_unit = 0;
desc->d_opendata = strdup(devpath);
*vdev = desc;
}
return (0);
}
int
main(int argc, const char **argv)
{
void *heapbase;
const size_t heapsize = 15*1024*1024;
const char *bootdev;
/*
* Set the heap to one page after the end of the loader.
*/
heapbase = host_getmem(heapsize);
setheap(heapbase, heapbase + heapsize);
/*
* Set up console.
*/
cons_probe();
/* Choose bootdev if provided */
if (argc > 1)
bootdev = argv[1];
else
bootdev = "";
printf("Boot device: %s\n", bootdev);
archsw.arch_getdev = kboot_getdev;
archsw.arch_copyin = kboot_copyin;
archsw.arch_copyout = kboot_copyout;
archsw.arch_readin = kboot_readin;
archsw.arch_autoload = kboot_autoload;
archsw.arch_loadaddr = kboot_loadaddr;
archsw.arch_kexec_kseg_get = kboot_kseg_get;
printf("\n%s", bootprog_info);
setenv("currdev", bootdev, 1);
setenv("loaddev", bootdev, 1);
setenv("LINES", "24", 1);
setenv("usefdt", "1", 1);
interact(); /* doesn't return */
return (0);
}
void
exit(int code)
{
while (1); /* XXX: host_exit */
__unreachable();
}
void
delay(int usecs)
{
struct host_timeval tvi, tv;
uint64_t ti, t;
host_gettimeofday(&tvi, NULL);
ti = tvi.tv_sec*1000000 + tvi.tv_usec;
do {
host_gettimeofday(&tv, NULL);
t = tv.tv_sec*1000000 + tv.tv_usec;
} while (t < ti + usecs);
}
time_t
getsecs(void)
{
struct host_timeval tv;
host_gettimeofday(&tv, NULL);
return (tv.tv_sec);
}
time_t
time(time_t *tloc)
{
time_t rv;
rv = getsecs();
if (tloc != NULL)
*tloc = rv;
return (rv);
}
struct kexec_segment {
void *buf;
int bufsz;
void *mem;
int memsz;
};
struct kexec_segment loaded_segments[128];
int nkexec_segments = 0;
static ssize_t
get_phys_buffer(vm_offset_t dest, const size_t len, void **buf)
{
int i = 0;
const size_t segsize = 4*1024*1024;
for (i = 0; i < nkexec_segments; i++) {
if (dest >= (vm_offset_t)loaded_segments[i].mem &&
dest < (vm_offset_t)loaded_segments[i].mem +
loaded_segments[i].memsz)
goto out;
}
loaded_segments[nkexec_segments].buf = host_getmem(segsize);
loaded_segments[nkexec_segments].bufsz = segsize;
loaded_segments[nkexec_segments].mem = (void *)rounddown2(dest,segsize);
loaded_segments[nkexec_segments].memsz = segsize;
i = nkexec_segments;
nkexec_segments++;
out:
*buf = loaded_segments[i].buf + (dest -
(vm_offset_t)loaded_segments[i].mem);
return (min(len,loaded_segments[i].bufsz - (dest -
(vm_offset_t)loaded_segments[i].mem)));
}
ssize_t
kboot_copyin(const void *src, vm_offset_t dest, const size_t len)
{
ssize_t segsize, remainder;
void *destbuf;
remainder = len;
do {
segsize = get_phys_buffer(dest, remainder, &destbuf);
bcopy(src, destbuf, segsize);
remainder -= segsize;
src += segsize;
dest += segsize;
} while (remainder > 0);
return (len);
}
ssize_t
kboot_copyout(vm_offset_t src, void *dest, const size_t len)
{
ssize_t segsize, remainder;
void *srcbuf;
remainder = len;
do {
segsize = get_phys_buffer(src, remainder, &srcbuf);
bcopy(srcbuf, dest, segsize);
remainder -= segsize;
src += segsize;
dest += segsize;
} while (remainder > 0);
return (len);
}
ssize_t
kboot_readin(const int fd, vm_offset_t dest, const size_t len)
{
void *buf;
size_t resid, chunk, get;
ssize_t got;
vm_offset_t p;
p = dest;
chunk = min(PAGE_SIZE, len);
buf = malloc(chunk);
if (buf == NULL) {
printf("kboot_readin: buf malloc failed\n");
return (0);
}
for (resid = len; resid > 0; resid -= got, p += got) {
get = min(chunk, resid);
got = read(fd, buf, get);
if (got <= 0) {
if (got < 0)
printf("kboot_readin: read failed\n");
break;
}
kboot_copyin(buf, p, got);
}
free (buf);
return (len - resid);
}
int
kboot_autoload(void)
{
return (0);
}
uint64_t
kboot_loadaddr(u_int type, void *data, uint64_t addr)
{
if (type == LOAD_ELF)
addr = roundup(addr, PAGE_SIZE);
else
addr += kboot_get_phys_load_segment();
return (addr);
}
static void
kboot_kseg_get(int *nseg, void **ptr)
{
#if 0
int a;
for (a = 0; a < nkexec_segments; a++) {
printf("kseg_get: %jx %jx %jx %jx\n",
(uintmax_t)loaded_segments[a].buf,
(uintmax_t)loaded_segments[a].bufsz,
(uintmax_t)loaded_segments[a].mem,
(uintmax_t)loaded_segments[a].memsz);
}
#endif
*nseg = nkexec_segments;
*ptr = &loaded_segments[0];
}
void
_start(int argc, const char **argv, char **env)
{
register volatile void **sp asm("r1");
main((int)sp[0], (const char **)&sp[1]);
}
/*
* Since proper fdt command handling function is defined in fdt_loader_cmd.c,
* and declaring it as extern is in contradiction with COMMAND_SET() macro
* (which uses static pointer), we're defining wrapper function, which
* calls the proper fdt handling routine.
*/
static int
command_fdt(int argc, char *argv[])
{
return (command_fdt_internal(argc, argv));
}
COMMAND_SET(fdt, "fdt", "flattened device tree handling", command_fdt);