freebsd-skq/sys/dev/sound/isa/mss.c
Ariff Abdullah 90da2b2859 Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
	[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .

Summary of changes includes:

1 Volume Per-Channel (vpc).  Provides private / standalone volume control
  unique per-stream pcm channel without touching master volume / pcm.
  Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
  backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
  instead of /dev/mixer.  Special "bypass" mode is enabled through
  /dev/mixer which will automatically detect if the adjustment is made
  through /dev/mixer and forward its request to this private volume
  controller.  Changes to this volume object will not interfere with
  other channels.

  Requirements:
    - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
      require specific application modifications (preferred).
    - No modifications required for using bypass mode, so applications
      like mplayer or xmms should work out of the box.

  Kernel hints:
    - hint.pcm.%d.vpc (0 = disable vpc).

  Kernel sysctls:
    - hw.snd.vpc_mixer_bypass (default: 1).  Enable or disable /dev/mixer
      bypass mode.
    - hw.snd.vpc_autoreset (default: 1).  By default, closing/opening
      /dev/dsp will reset the volume back to 0 db gain/attenuation.
      Setting this to 0 will preserve its settings across device
      closing/opening.
    - hw.snd.vpc_reset (default: 0).  Panic/reset button to reset all
      volume settings back to 0 db.
    - hw.snd.vpc_0db (default: 45).  0 db relative to linear mixer value.

2 High quality fixed-point Bandlimited SINC sampling rate converter,
  based on Julius O'Smith's Digital Audio Resampling -
  http://ccrma.stanford.edu/~jos/resample/.  It includes a filter design
  script written in awk (the clumsiest joke I've ever written)
    - 100% 32bit fixed-point, 64bit accumulator.
    - Possibly among the fastest (if not fastest) of its kind.
    - Resampling quality is tunable, either runtime or during kernel
      compilation (FEEDER_RATE_PRESETS).
    - Quality can be further customized during kernel compilation by
      defining FEEDER_RATE_PRESETS in /etc/make.conf.

  Kernel sysctls:
    - hw.snd.feeder_rate_quality.
      0 - Zero-order Hold (ZOH).  Fastest, bad quality.
      1 - Linear Interpolation (LINEAR).  Slightly slower than ZOH,
          better quality but still does not eliminate aliasing.
      2 - (and above) - Sinc Interpolation(SINC).  Best quality.  SINC
          quality always start from 2 and above.

  Rough quality comparisons:
    - http://people.freebsd.org/~ariff/z_comparison/

3 Bit-perfect mode.  Bypasses all feeder/dsp effects.  Pure sound will be
  directly fed into the hardware.

4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
  be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.

5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
  vchans in order to make digital format pass through.  It also makes
  vchans more dynamic by choosing a better format/rate among all the
  concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
  becomes sort of optional.

6 Exclusive Stream, with special open() mode O_EXCL.  This will "mute"
  other concurrent vchan streams and only allow a single channel with
  O_EXCL set to keep producing sound.

Other Changes:
    * most feeder_* stuffs are compilable in userland. Let's not
      speculate whether we should go all out for it (save that for
      FreeBSD 16.0-RELEASE).
    * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
    * pull out channel mixing logic out of vchan.c and create its own
      feeder_mixer for world justice.
    * various refactoring here and there, for good or bad.
    * activation of few more OSSv4 ioctls() (see [1] above).
    * opt_snd.h for possible compile time configuration:
      (mostly for debugging purposes, don't try these at home)
        SND_DEBUG
        SND_DIAGNOSTIC
        SND_FEEDER_MULTIFORMAT
        SND_FEEDER_FULL_MULTIFORMAT
        SND_FEEDER_RATE_HP
        SND_PCM_64
        SND_OLDSTEREO

Manual page updates are on the way.

Tested by:	joel, Olivier SMEDTS <olivier at gid0 d org>, too many
          	unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00

2319 lines
60 KiB
C

/*-
* Copyright (c) 2001 George Reid <greid@ukug.uk.freebsd.org>
* Copyright (c) 1999 Cameron Grant <cg@freebsd.org>
* Copyright (c) 1997,1998 Luigi Rizzo
* Copyright (c) 1994,1995 Hannu Savolainen
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
SND_DECLARE_FILE("$FreeBSD$");
/* board-specific include files */
#include <dev/sound/isa/mss.h>
#include <dev/sound/isa/sb.h>
#include <dev/sound/chip.h>
#include <isa/isavar.h>
#include "mixer_if.h"
#define MSS_DEFAULT_BUFSZ (4096)
#define MSS_INDEXED_REGS 0x20
#define OPL_INDEXED_REGS 0x19
struct mss_info;
struct mss_chinfo {
struct mss_info *parent;
struct pcm_channel *channel;
struct snd_dbuf *buffer;
int dir;
u_int32_t fmt, blksz;
};
struct mss_info {
struct resource *io_base; /* primary I/O address for the board */
int io_rid;
struct resource *conf_base; /* and the opti931 also has a config space */
int conf_rid;
struct resource *irq;
int irq_rid;
struct resource *drq1; /* play */
int drq1_rid;
struct resource *drq2; /* rec */
int drq2_rid;
void *ih;
bus_dma_tag_t parent_dmat;
struct mtx *lock;
char mss_indexed_regs[MSS_INDEXED_REGS];
char opl_indexed_regs[OPL_INDEXED_REGS];
int bd_id; /* used to hold board-id info, eg. sb version,
* mss codec type, etc. etc.
*/
int opti_offset; /* offset from config_base for opti931 */
u_long bd_flags; /* board-specific flags */
int optibase; /* base address for OPTi9xx config */
struct resource *indir; /* Indirect register index address */
int indir_rid;
int password; /* password for opti9xx cards */
int passwdreg; /* password register */
unsigned int bufsize;
struct mss_chinfo pch, rch;
};
static int mss_probe(device_t dev);
static int mss_attach(device_t dev);
static driver_intr_t mss_intr;
/* prototypes for local functions */
static int mss_detect(device_t dev, struct mss_info *mss);
#ifndef PC98
static int opti_detect(device_t dev, struct mss_info *mss);
#endif
static char *ymf_test(device_t dev, struct mss_info *mss);
static void ad_unmute(struct mss_info *mss);
/* mixer set funcs */
static int mss_mixer_set(struct mss_info *mss, int dev, int left, int right);
static int mss_set_recsrc(struct mss_info *mss, int mask);
/* io funcs */
static int ad_wait_init(struct mss_info *mss, int x);
static int ad_read(struct mss_info *mss, int reg);
static void ad_write(struct mss_info *mss, int reg, u_char data);
static void ad_write_cnt(struct mss_info *mss, int reg, u_short data);
static void ad_enter_MCE(struct mss_info *mss);
static void ad_leave_MCE(struct mss_info *mss);
/* OPTi-specific functions */
static void opti_write(struct mss_info *mss, u_char reg,
u_char data);
#ifndef PC98
static u_char opti_read(struct mss_info *mss, u_char reg);
#endif
static int opti_init(device_t dev, struct mss_info *mss);
/* io primitives */
static void conf_wr(struct mss_info *mss, u_char reg, u_char data);
static u_char conf_rd(struct mss_info *mss, u_char reg);
static int pnpmss_probe(device_t dev);
static int pnpmss_attach(device_t dev);
static driver_intr_t opti931_intr;
static u_int32_t mss_fmt[] = {
SND_FORMAT(AFMT_U8, 1, 0),
SND_FORMAT(AFMT_U8, 2, 0),
SND_FORMAT(AFMT_S16_LE, 1, 0),
SND_FORMAT(AFMT_S16_LE, 2, 0),
SND_FORMAT(AFMT_MU_LAW, 1, 0),
SND_FORMAT(AFMT_MU_LAW, 2, 0),
SND_FORMAT(AFMT_A_LAW, 1, 0),
SND_FORMAT(AFMT_A_LAW, 2, 0),
0
};
static struct pcmchan_caps mss_caps = {4000, 48000, mss_fmt, 0};
static u_int32_t guspnp_fmt[] = {
SND_FORMAT(AFMT_U8, 1, 0),
SND_FORMAT(AFMT_U8, 2, 0),
SND_FORMAT(AFMT_S16_LE, 1, 0),
SND_FORMAT(AFMT_S16_LE, 2, 0),
SND_FORMAT(AFMT_A_LAW, 1, 0),
SND_FORMAT(AFMT_A_LAW, 2, 0),
0
};
static struct pcmchan_caps guspnp_caps = {4000, 48000, guspnp_fmt, 0};
static u_int32_t opti931_fmt[] = {
SND_FORMAT(AFMT_U8, 1, 0),
SND_FORMAT(AFMT_U8, 2, 0),
SND_FORMAT(AFMT_S16_LE, 1, 0),
SND_FORMAT(AFMT_S16_LE, 2, 0),
0
};
static struct pcmchan_caps opti931_caps = {4000, 48000, opti931_fmt, 0};
#define MD_AD1848 0x91
#define MD_AD1845 0x92
#define MD_CS42XX 0xA1
#define MD_CS423X 0xA2
#define MD_OPTI930 0xB0
#define MD_OPTI931 0xB1
#define MD_OPTI925 0xB2
#define MD_OPTI924 0xB3
#define MD_GUSPNP 0xB8
#define MD_GUSMAX 0xB9
#define MD_YM0020 0xC1
#define MD_VIVO 0xD1
#define DV_F_TRUE_MSS 0x00010000 /* mss _with_ base regs */
#define FULL_DUPLEX(x) ((x)->bd_flags & BD_F_DUPLEX)
static void
mss_lock(struct mss_info *mss)
{
snd_mtxlock(mss->lock);
}
static void
mss_unlock(struct mss_info *mss)
{
snd_mtxunlock(mss->lock);
}
static int
port_rd(struct resource *port, int off)
{
if (port)
return bus_space_read_1(rman_get_bustag(port),
rman_get_bushandle(port),
off);
else
return -1;
}
static void
port_wr(struct resource *port, int off, u_int8_t data)
{
if (port)
bus_space_write_1(rman_get_bustag(port),
rman_get_bushandle(port),
off, data);
}
static int
io_rd(struct mss_info *mss, int reg)
{
if (mss->bd_flags & BD_F_MSS_OFFSET) reg -= 4;
return port_rd(mss->io_base, reg);
}
static void
io_wr(struct mss_info *mss, int reg, u_int8_t data)
{
if (mss->bd_flags & BD_F_MSS_OFFSET) reg -= 4;
port_wr(mss->io_base, reg, data);
}
static void
conf_wr(struct mss_info *mss, u_char reg, u_char value)
{
port_wr(mss->conf_base, 0, reg);
port_wr(mss->conf_base, 1, value);
}
static u_char
conf_rd(struct mss_info *mss, u_char reg)
{
port_wr(mss->conf_base, 0, reg);
return port_rd(mss->conf_base, 1);
}
static void
opti_wr(struct mss_info *mss, u_char reg, u_char value)
{
port_wr(mss->conf_base, mss->opti_offset + 0, reg);
port_wr(mss->conf_base, mss->opti_offset + 1, value);
}
static u_char
opti_rd(struct mss_info *mss, u_char reg)
{
port_wr(mss->conf_base, mss->opti_offset + 0, reg);
return port_rd(mss->conf_base, mss->opti_offset + 1);
}
static void
gus_wr(struct mss_info *mss, u_char reg, u_char value)
{
port_wr(mss->conf_base, 3, reg);
port_wr(mss->conf_base, 5, value);
}
static u_char
gus_rd(struct mss_info *mss, u_char reg)
{
port_wr(mss->conf_base, 3, reg);
return port_rd(mss->conf_base, 5);
}
static void
mss_release_resources(struct mss_info *mss, device_t dev)
{
if (mss->irq) {
if (mss->ih)
bus_teardown_intr(dev, mss->irq, mss->ih);
bus_release_resource(dev, SYS_RES_IRQ, mss->irq_rid,
mss->irq);
mss->irq = 0;
}
if (mss->drq2) {
if (mss->drq2 != mss->drq1) {
isa_dma_release(rman_get_start(mss->drq2));
bus_release_resource(dev, SYS_RES_DRQ, mss->drq2_rid,
mss->drq2);
}
mss->drq2 = 0;
}
if (mss->drq1) {
isa_dma_release(rman_get_start(mss->drq1));
bus_release_resource(dev, SYS_RES_DRQ, mss->drq1_rid,
mss->drq1);
mss->drq1 = 0;
}
if (mss->io_base) {
bus_release_resource(dev, SYS_RES_IOPORT, mss->io_rid,
mss->io_base);
mss->io_base = 0;
}
if (mss->conf_base) {
bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid,
mss->conf_base);
mss->conf_base = 0;
}
if (mss->indir) {
bus_release_resource(dev, SYS_RES_IOPORT, mss->indir_rid,
mss->indir);
mss->indir = 0;
}
if (mss->parent_dmat) {
bus_dma_tag_destroy(mss->parent_dmat);
mss->parent_dmat = 0;
}
if (mss->lock) snd_mtxfree(mss->lock);
free(mss, M_DEVBUF);
}
static int
mss_alloc_resources(struct mss_info *mss, device_t dev)
{
int pdma, rdma, ok = 1;
if (!mss->io_base)
mss->io_base = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
&mss->io_rid, RF_ACTIVE);
if (!mss->irq)
mss->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&mss->irq_rid, RF_ACTIVE);
if (!mss->drq1)
mss->drq1 = bus_alloc_resource_any(dev, SYS_RES_DRQ,
&mss->drq1_rid,
RF_ACTIVE);
if (mss->conf_rid >= 0 && !mss->conf_base)
mss->conf_base = bus_alloc_resource_any(dev, SYS_RES_IOPORT,
&mss->conf_rid,
RF_ACTIVE);
if (mss->drq2_rid >= 0 && !mss->drq2)
mss->drq2 = bus_alloc_resource_any(dev, SYS_RES_DRQ,
&mss->drq2_rid,
RF_ACTIVE);
if (!mss->io_base || !mss->drq1 || !mss->irq) ok = 0;
if (mss->conf_rid >= 0 && !mss->conf_base) ok = 0;
if (mss->drq2_rid >= 0 && !mss->drq2) ok = 0;
if (ok) {
pdma = rman_get_start(mss->drq1);
isa_dma_acquire(pdma);
isa_dmainit(pdma, mss->bufsize);
mss->bd_flags &= ~BD_F_DUPLEX;
if (mss->drq2) {
rdma = rman_get_start(mss->drq2);
isa_dma_acquire(rdma);
isa_dmainit(rdma, mss->bufsize);
mss->bd_flags |= BD_F_DUPLEX;
} else mss->drq2 = mss->drq1;
}
return ok;
}
/*
* The various mixers use a variety of bitmasks etc. The Voxware
* driver had a very nice technique to describe a mixer and interface
* to it. A table defines, for each channel, which register, bits,
* offset, polarity to use. This procedure creates the new value
* using the table and the old value.
*/
static void
change_bits(mixer_tab *t, u_char *regval, int dev, int chn, int newval)
{
u_char mask;
int shift;
DEB(printf("ch_bits dev %d ch %d val %d old 0x%02x "
"r %d p %d bit %d off %d\n",
dev, chn, newval, *regval,
(*t)[dev][chn].regno, (*t)[dev][chn].polarity,
(*t)[dev][chn].nbits, (*t)[dev][chn].bitoffs ) );
if ( (*t)[dev][chn].polarity == 1) /* reverse */
newval = 100 - newval ;
mask = (1 << (*t)[dev][chn].nbits) - 1;
newval = (int) ((newval * mask) + 50) / 100; /* Scale it */
shift = (*t)[dev][chn].bitoffs /*- (*t)[dev][LEFT_CHN].nbits + 1*/;
*regval &= ~(mask << shift); /* Filter out the previous value */
*regval |= (newval & mask) << shift; /* Set the new value */
}
/* -------------------------------------------------------------------- */
/* only one source can be set... */
static int
mss_set_recsrc(struct mss_info *mss, int mask)
{
u_char recdev;
switch (mask) {
case SOUND_MASK_LINE:
case SOUND_MASK_LINE3:
recdev = 0;
break;
case SOUND_MASK_CD:
case SOUND_MASK_LINE1:
recdev = 0x40;
break;
case SOUND_MASK_IMIX:
recdev = 0xc0;
break;
case SOUND_MASK_MIC:
default:
mask = SOUND_MASK_MIC;
recdev = 0x80;
}
ad_write(mss, 0, (ad_read(mss, 0) & 0x3f) | recdev);
ad_write(mss, 1, (ad_read(mss, 1) & 0x3f) | recdev);
return mask;
}
/* there are differences in the mixer depending on the actual sound card. */
static int
mss_mixer_set(struct mss_info *mss, int dev, int left, int right)
{
int regoffs;
mixer_tab *mix_d;
u_char old, val;
switch (mss->bd_id) {
case MD_OPTI931:
mix_d = &opti931_devices;
break;
case MD_OPTI930:
mix_d = &opti930_devices;
break;
default:
mix_d = &mix_devices;
}
if ((*mix_d)[dev][LEFT_CHN].nbits == 0) {
DEB(printf("nbits = 0 for dev %d\n", dev));
return -1;
}
if ((*mix_d)[dev][RIGHT_CHN].nbits == 0) right = left; /* mono */
/* Set the left channel */
regoffs = (*mix_d)[dev][LEFT_CHN].regno;
old = val = ad_read(mss, regoffs);
/* if volume is 0, mute chan. Otherwise, unmute. */
if (regoffs != 0) val = (left == 0)? old | 0x80 : old & 0x7f;
change_bits(mix_d, &val, dev, LEFT_CHN, left);
ad_write(mss, regoffs, val);
DEB(printf("LEFT: dev %d reg %d old 0x%02x new 0x%02x\n",
dev, regoffs, old, val));
if ((*mix_d)[dev][RIGHT_CHN].nbits != 0) { /* have stereo */
/* Set the right channel */
regoffs = (*mix_d)[dev][RIGHT_CHN].regno;
old = val = ad_read(mss, regoffs);
if (regoffs != 1) val = (right == 0)? old | 0x80 : old & 0x7f;
change_bits(mix_d, &val, dev, RIGHT_CHN, right);
ad_write(mss, regoffs, val);
DEB(printf("RIGHT: dev %d reg %d old 0x%02x new 0x%02x\n",
dev, regoffs, old, val));
}
return 0; /* success */
}
/* -------------------------------------------------------------------- */
static int
mssmix_init(struct snd_mixer *m)
{
struct mss_info *mss = mix_getdevinfo(m);
mix_setdevs(m, MODE2_MIXER_DEVICES);
mix_setrecdevs(m, MSS_REC_DEVICES);
switch(mss->bd_id) {
case MD_OPTI930:
mix_setdevs(m, OPTI930_MIXER_DEVICES);
break;
case MD_OPTI931:
mix_setdevs(m, OPTI931_MIXER_DEVICES);
mss_lock(mss);
ad_write(mss, 20, 0x88);
ad_write(mss, 21, 0x88);
mss_unlock(mss);
break;
case MD_AD1848:
mix_setdevs(m, MODE1_MIXER_DEVICES);
break;
case MD_GUSPNP:
case MD_GUSMAX:
/* this is only necessary in mode 3 ... */
mss_lock(mss);
ad_write(mss, 22, 0x88);
ad_write(mss, 23, 0x88);
mss_unlock(mss);
break;
}
return 0;
}
static int
mssmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right)
{
struct mss_info *mss = mix_getdevinfo(m);
mss_lock(mss);
mss_mixer_set(mss, dev, left, right);
mss_unlock(mss);
return left | (right << 8);
}
static u_int32_t
mssmix_setrecsrc(struct snd_mixer *m, u_int32_t src)
{
struct mss_info *mss = mix_getdevinfo(m);
mss_lock(mss);
src = mss_set_recsrc(mss, src);
mss_unlock(mss);
return src;
}
static kobj_method_t mssmix_mixer_methods[] = {
KOBJMETHOD(mixer_init, mssmix_init),
KOBJMETHOD(mixer_set, mssmix_set),
KOBJMETHOD(mixer_setrecsrc, mssmix_setrecsrc),
KOBJMETHOD_END
};
MIXER_DECLARE(mssmix_mixer);
/* -------------------------------------------------------------------- */
static int
ymmix_init(struct snd_mixer *m)
{
struct mss_info *mss = mix_getdevinfo(m);
mssmix_init(m);
mix_setdevs(m, mix_getdevs(m) | SOUND_MASK_VOLUME | SOUND_MASK_MIC
| SOUND_MASK_BASS | SOUND_MASK_TREBLE);
/* Set master volume */
mss_lock(mss);
conf_wr(mss, OPL3SAx_VOLUMEL, 7);
conf_wr(mss, OPL3SAx_VOLUMER, 7);
mss_unlock(mss);
return 0;
}
static int
ymmix_set(struct snd_mixer *m, unsigned dev, unsigned left, unsigned right)
{
struct mss_info *mss = mix_getdevinfo(m);
int t, l, r;
mss_lock(mss);
switch (dev) {
case SOUND_MIXER_VOLUME:
if (left) t = 15 - (left * 15) / 100;
else t = 0x80; /* mute */
conf_wr(mss, OPL3SAx_VOLUMEL, t);
if (right) t = 15 - (right * 15) / 100;
else t = 0x80; /* mute */
conf_wr(mss, OPL3SAx_VOLUMER, t);
break;
case SOUND_MIXER_MIC:
t = left;
if (left) t = 31 - (left * 31) / 100;
else t = 0x80; /* mute */
conf_wr(mss, OPL3SAx_MIC, t);
break;
case SOUND_MIXER_BASS:
l = (left * 7) / 100;
r = (right * 7) / 100;
t = (r << 4) | l;
conf_wr(mss, OPL3SAx_BASS, t);
break;
case SOUND_MIXER_TREBLE:
l = (left * 7) / 100;
r = (right * 7) / 100;
t = (r << 4) | l;
conf_wr(mss, OPL3SAx_TREBLE, t);
break;
default:
mss_mixer_set(mss, dev, left, right);
}
mss_unlock(mss);
return left | (right << 8);
}
static u_int32_t
ymmix_setrecsrc(struct snd_mixer *m, u_int32_t src)
{
struct mss_info *mss = mix_getdevinfo(m);
mss_lock(mss);
src = mss_set_recsrc(mss, src);
mss_unlock(mss);
return src;
}
static kobj_method_t ymmix_mixer_methods[] = {
KOBJMETHOD(mixer_init, ymmix_init),
KOBJMETHOD(mixer_set, ymmix_set),
KOBJMETHOD(mixer_setrecsrc, ymmix_setrecsrc),
KOBJMETHOD_END
};
MIXER_DECLARE(ymmix_mixer);
/* -------------------------------------------------------------------- */
/*
* XXX This might be better off in the gusc driver.
*/
static void
gusmax_setup(struct mss_info *mss, device_t dev, struct resource *alt)
{
static const unsigned char irq_bits[16] = {
0, 0, 0, 3, 0, 2, 0, 4, 0, 1, 0, 5, 6, 0, 0, 7
};
static const unsigned char dma_bits[8] = {
0, 1, 0, 2, 0, 3, 4, 5
};
device_t parent = device_get_parent(dev);
unsigned char irqctl, dmactl;
int s;
s = splhigh();
port_wr(alt, 0x0f, 0x05);
port_wr(alt, 0x00, 0x0c);
port_wr(alt, 0x0b, 0x00);
port_wr(alt, 0x0f, 0x00);
irqctl = irq_bits[isa_get_irq(parent)];
/* Share the IRQ with the MIDI driver. */
irqctl |= 0x40;
dmactl = dma_bits[isa_get_drq(parent)];
if (device_get_flags(parent) & DV_F_DUAL_DMA)
dmactl |= dma_bits[device_get_flags(parent) & DV_F_DRQ_MASK]
<< 3;
/*
* Set the DMA and IRQ control latches.
*/
port_wr(alt, 0x00, 0x0c);
port_wr(alt, 0x0b, dmactl | 0x80);
port_wr(alt, 0x00, 0x4c);
port_wr(alt, 0x0b, irqctl);
port_wr(alt, 0x00, 0x0c);
port_wr(alt, 0x0b, dmactl);
port_wr(alt, 0x00, 0x4c);
port_wr(alt, 0x0b, irqctl);
port_wr(mss->conf_base, 2, 0);
port_wr(alt, 0x00, 0x0c);
port_wr(mss->conf_base, 2, 0);
splx(s);
}
static int
mss_init(struct mss_info *mss, device_t dev)
{
u_char r6, r9;
struct resource *alt;
int rid, tmp;
mss->bd_flags |= BD_F_MCE_BIT;
switch(mss->bd_id) {
case MD_OPTI931:
/*
* The MED3931 v.1.0 allocates 3 bytes for the config
* space, whereas v.2.0 allocates 4 bytes. What I know
* for sure is that the upper two ports must be used,
* and they should end on a boundary of 4 bytes. So I
* need the following trick.
*/
mss->opti_offset =
(rman_get_start(mss->conf_base) & ~3) + 2
- rman_get_start(mss->conf_base);
BVDDB(printf("mss_init: opti_offset=%d\n", mss->opti_offset));
opti_wr(mss, 4, 0xd6); /* fifo empty, OPL3, audio enable, SB3.2 */
ad_write(mss, 10, 2); /* enable interrupts */
opti_wr(mss, 6, 2); /* MCIR6: mss enable, sb disable */
opti_wr(mss, 5, 0x28); /* MCIR5: codec in exp. mode,fifo */
break;
case MD_GUSPNP:
case MD_GUSMAX:
gus_wr(mss, 0x4c /* _URSTI */, 0);/* Pull reset */
DELAY(1000 * 30);
/* release reset and enable DAC */
gus_wr(mss, 0x4c /* _URSTI */, 3);
DELAY(1000 * 30);
/* end of reset */
rid = 0;
alt = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
RF_ACTIVE);
if (alt == NULL) {
printf("XXX couldn't init GUS PnP/MAX\n");
break;
}
port_wr(alt, 0, 0xC); /* enable int and dma */
if (mss->bd_id == MD_GUSMAX)
gusmax_setup(mss, dev, alt);
bus_release_resource(dev, SYS_RES_IOPORT, rid, alt);
/*
* unmute left & right line. Need to go in mode3, unmute,
* and back to mode 2
*/
tmp = ad_read(mss, 0x0c);
ad_write(mss, 0x0c, 0x6c); /* special value to enter mode 3 */
ad_write(mss, 0x19, 0); /* unmute left */
ad_write(mss, 0x1b, 0); /* unmute right */
ad_write(mss, 0x0c, tmp); /* restore old mode */
/* send codec interrupts on irq1 and only use that one */
gus_wr(mss, 0x5a, 0x4f);
/* enable access to hidden regs */
tmp = gus_rd(mss, 0x5b /* IVERI */);
gus_wr(mss, 0x5b, tmp | 1);
BVDDB(printf("GUS: silicon rev %c\n", 'A' + ((tmp & 0xf) >> 4)));
break;
case MD_YM0020:
conf_wr(mss, OPL3SAx_DMACONF, 0xa9); /* dma-b rec, dma-a play */
r6 = conf_rd(mss, OPL3SAx_DMACONF);
r9 = conf_rd(mss, OPL3SAx_MISC); /* version */
BVDDB(printf("Yamaha: ver 0x%x DMA config 0x%x\n", r6, r9);)
/* yamaha - set volume to max */
conf_wr(mss, OPL3SAx_VOLUMEL, 0);
conf_wr(mss, OPL3SAx_VOLUMER, 0);
conf_wr(mss, OPL3SAx_DMACONF, FULL_DUPLEX(mss)? 0xa9 : 0x8b);
break;
}
if (FULL_DUPLEX(mss) && mss->bd_id != MD_OPTI931)
ad_write(mss, 12, ad_read(mss, 12) | 0x40); /* mode 2 */
ad_enter_MCE(mss);
ad_write(mss, 9, FULL_DUPLEX(mss)? 0 : 4);
ad_leave_MCE(mss);
ad_write(mss, 10, 2); /* int enable */
io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */
/* the following seem required on the CS4232 */
ad_unmute(mss);
return 0;
}
/*
* main irq handler for the CS423x. The OPTi931 code is
* a separate one.
* The correct way to operate for a device with multiple internal
* interrupt sources is to loop on the status register and ack
* interrupts until all interrupts are served and none are reported. At
* this point the IRQ line to the ISA IRQ controller should go low
* and be raised at the next interrupt.
*
* Since the ISA IRQ controller is sent EOI _before_ passing control
* to the isr, it might happen that we serve an interrupt early, in
* which case the status register at the next interrupt should just
* say that there are no more interrupts...
*/
static void
mss_intr(void *arg)
{
struct mss_info *mss = arg;
u_char c = 0, served = 0;
int i;
DEB(printf("mss_intr\n"));
mss_lock(mss);
ad_read(mss, 11); /* fake read of status bits */
/* loop until there are interrupts, but no more than 10 times. */
for (i = 10; i > 0 && io_rd(mss, MSS_STATUS) & 1; i--) {
/* get exact reason for full-duplex boards */
c = FULL_DUPLEX(mss)? ad_read(mss, 24) : 0x30;
c &= ~served;
if (sndbuf_runsz(mss->pch.buffer) && (c & 0x10)) {
served |= 0x10;
mss_unlock(mss);
chn_intr(mss->pch.channel);
mss_lock(mss);
}
if (sndbuf_runsz(mss->rch.buffer) && (c & 0x20)) {
served |= 0x20;
mss_unlock(mss);
chn_intr(mss->rch.channel);
mss_lock(mss);
}
/* now ack the interrupt */
if (FULL_DUPLEX(mss)) ad_write(mss, 24, ~c); /* ack selectively */
else io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */
}
if (i == 10) {
BVDDB(printf("mss_intr: irq, but not from mss\n"));
} else if (served == 0) {
BVDDB(printf("mss_intr: unexpected irq with reason %x\n", c));
/*
* this should not happen... I have no idea what to do now.
* maybe should do a sanity check and restart dmas ?
*/
io_wr(mss, MSS_STATUS, 0); /* Clear interrupt status */
}
mss_unlock(mss);
}
/*
* AD_WAIT_INIT waits if we are initializing the board and
* we cannot modify its settings
*/
static int
ad_wait_init(struct mss_info *mss, int x)
{
int arg = x, n = 0; /* to shut up the compiler... */
for (; x > 0; x--)
if ((n = io_rd(mss, MSS_INDEX)) & MSS_IDXBUSY) DELAY(10);
else return n;
printf("AD_WAIT_INIT FAILED %d 0x%02x\n", arg, n);
return n;
}
static int
ad_read(struct mss_info *mss, int reg)
{
int x;
ad_wait_init(mss, 201000);
x = io_rd(mss, MSS_INDEX) & ~MSS_IDXMASK;
io_wr(mss, MSS_INDEX, (u_char)(reg & MSS_IDXMASK) | x);
x = io_rd(mss, MSS_IDATA);
/* printf("ad_read %d, %x\n", reg, x); */
return x;
}
static void
ad_write(struct mss_info *mss, int reg, u_char data)
{
int x;
/* printf("ad_write %d, %x\n", reg, data); */
ad_wait_init(mss, 1002000);
x = io_rd(mss, MSS_INDEX) & ~MSS_IDXMASK;
io_wr(mss, MSS_INDEX, (u_char)(reg & MSS_IDXMASK) | x);
io_wr(mss, MSS_IDATA, data);
}
static void
ad_write_cnt(struct mss_info *mss, int reg, u_short cnt)
{
ad_write(mss, reg+1, cnt & 0xff);
ad_write(mss, reg, cnt >> 8); /* upper base must be last */
}
static void
wait_for_calibration(struct mss_info *mss)
{
int t;
/*
* Wait until the auto calibration process has finished.
*
* 1) Wait until the chip becomes ready (reads don't return 0x80).
* 2) Wait until the ACI bit of I11 gets on
* 3) Wait until the ACI bit of I11 gets off
*/
t = ad_wait_init(mss, 1000000);
if (t & MSS_IDXBUSY) printf("mss: Auto calibration timed out(1).\n");
/*
* The calibration mode for chips that support it is set so that
* we never see ACI go on.
*/
if (mss->bd_id == MD_GUSMAX || mss->bd_id == MD_GUSPNP) {
for (t = 100; t > 0 && (ad_read(mss, 11) & 0x20) == 0; t--);
} else {
/*
* XXX This should only be enabled for cards that *really*
* need it. Are there any?
*/
for (t = 100; t > 0 && (ad_read(mss, 11) & 0x20) == 0; t--) DELAY(100);
}
for (t = 100; t > 0 && ad_read(mss, 11) & 0x20; t--) DELAY(100);
}
static void
ad_unmute(struct mss_info *mss)
{
ad_write(mss, 6, ad_read(mss, 6) & ~I6_MUTE);
ad_write(mss, 7, ad_read(mss, 7) & ~I6_MUTE);
}
static void
ad_enter_MCE(struct mss_info *mss)
{
int prev;
mss->bd_flags |= BD_F_MCE_BIT;
ad_wait_init(mss, 203000);
prev = io_rd(mss, MSS_INDEX);
prev &= ~MSS_TRD;
io_wr(mss, MSS_INDEX, prev | MSS_MCE);
}
static void
ad_leave_MCE(struct mss_info *mss)
{
u_char prev;
if ((mss->bd_flags & BD_F_MCE_BIT) == 0) {
DEB(printf("--- hey, leave_MCE: MCE bit was not set!\n"));
return;
}
ad_wait_init(mss, 1000000);
mss->bd_flags &= ~BD_F_MCE_BIT;
prev = io_rd(mss, MSS_INDEX);
prev &= ~MSS_TRD;
io_wr(mss, MSS_INDEX, prev & ~MSS_MCE); /* Clear the MCE bit */
wait_for_calibration(mss);
}
static int
mss_speed(struct mss_chinfo *ch, int speed)
{
struct mss_info *mss = ch->parent;
/*
* In the CS4231, the low 4 bits of I8 are used to hold the
* sample rate. Only a fixed number of values is allowed. This
* table lists them. The speed-setting routines scans the table
* looking for the closest match. This is the only supported method.
*
* In the CS4236, there is an alternate metod (which we do not
* support yet) which provides almost arbitrary frequency setting.
* In the AD1845, it looks like the sample rate can be
* almost arbitrary, and written directly to a register.
* In the OPTi931, there is a SB command which provides for
* almost arbitrary frequency setting.
*
*/
ad_enter_MCE(mss);
if (mss->bd_id == MD_AD1845) { /* Use alternate speed select regs */
ad_write(mss, 22, (speed >> 8) & 0xff); /* Speed MSB */
ad_write(mss, 23, speed & 0xff); /* Speed LSB */
/* XXX must also do something in I27 for the ad1845 */
} else {
int i, sel = 0; /* assume entry 0 does not contain -1 */
static int speeds[] =
{8000, 5512, 16000, 11025, 27429, 18900, 32000, 22050,
-1, 37800, -1, 44100, 48000, 33075, 9600, 6615};
for (i = 1; i < 16; i++)
if (speeds[i] > 0 &&
abs(speed-speeds[i]) < abs(speed-speeds[sel])) sel = i;
speed = speeds[sel];
ad_write(mss, 8, (ad_read(mss, 8) & 0xf0) | sel);
ad_wait_init(mss, 10000);
}
ad_leave_MCE(mss);
return speed;
}
/*
* mss_format checks that the format is supported (or defaults to AFMT_U8)
* and returns the bit setting for the 1848 register corresponding to
* the desired format.
*
* fixed lr970724
*/
static int
mss_format(struct mss_chinfo *ch, u_int32_t format)
{
struct mss_info *mss = ch->parent;
int i, arg = AFMT_ENCODING(format);
/*
* The data format uses 3 bits (just 2 on the 1848). For each
* bit setting, the following array returns the corresponding format.
* The code scans the array looking for a suitable format. In
* case it is not found, default to AFMT_U8 (not such a good
* choice, but let's do it for compatibility...).
*/
static int fmts[] =
{AFMT_U8, AFMT_MU_LAW, AFMT_S16_LE, AFMT_A_LAW,
-1, AFMT_IMA_ADPCM, AFMT_U16_BE, -1};
ch->fmt = format;
for (i = 0; i < 8; i++) if (arg == fmts[i]) break;
arg = i << 1;
if (AFMT_CHANNEL(format) > 1) arg |= 1;
arg <<= 4;
ad_enter_MCE(mss);
ad_write(mss, 8, (ad_read(mss, 8) & 0x0f) | arg);
ad_wait_init(mss, 10000);
if (ad_read(mss, 12) & 0x40) { /* mode2? */
ad_write(mss, 28, arg); /* capture mode */
ad_wait_init(mss, 10000);
}
ad_leave_MCE(mss);
return format;
}
static int
mss_trigger(struct mss_chinfo *ch, int go)
{
struct mss_info *mss = ch->parent;
u_char m;
int retry, wr, cnt, ss;
ss = 1;
ss <<= (AFMT_CHANNEL(ch->fmt) > 1)? 1 : 0;
ss <<= (ch->fmt & AFMT_16BIT)? 1 : 0;
wr = (ch->dir == PCMDIR_PLAY)? 1 : 0;
m = ad_read(mss, 9);
switch (go) {
case PCMTRIG_START:
cnt = (ch->blksz / ss) - 1;
DEB(if (m & 4) printf("OUCH! reg 9 0x%02x\n", m););
m |= wr? I9_PEN : I9_CEN; /* enable DMA */
ad_write_cnt(mss, (wr || !FULL_DUPLEX(mss))? 14 : 30, cnt);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT: /* XXX check this... */
m &= ~(wr? I9_PEN : I9_CEN); /* Stop DMA */
#if 0
/*
* try to disable DMA by clearing count registers. Not sure it
* is needed, and it might cause false interrupts when the
* DMA is re-enabled later.
*/
ad_write_cnt(mss, (wr || !FULL_DUPLEX(mss))? 14 : 30, 0);
#endif
}
/* on the OPTi931 the enable bit seems hard to set... */
for (retry = 10; retry > 0; retry--) {
ad_write(mss, 9, m);
if (ad_read(mss, 9) == m) break;
}
if (retry == 0) BVDDB(printf("stop dma, failed to set bit 0x%02x 0x%02x\n", \
m, ad_read(mss, 9)));
return 0;
}
/*
* the opti931 seems to miss interrupts when working in full
* duplex, so we try some heuristics to catch them.
*/
static void
opti931_intr(void *arg)
{
struct mss_info *mss = (struct mss_info *)arg;
u_char masked = 0, i11, mc11, c = 0;
u_char reason; /* b0 = playback, b1 = capture, b2 = timer */
int loops = 10;
#if 0
reason = io_rd(mss, MSS_STATUS);
if (!(reason & 1)) {/* no int, maybe a shared line ? */
DEB(printf("intr: flag 0, mcir11 0x%02x\n", ad_read(mss, 11)));
return;
}
#endif
mss_lock(mss);
i11 = ad_read(mss, 11); /* XXX what's for ? */
again:
c = mc11 = FULL_DUPLEX(mss)? opti_rd(mss, 11) : 0xc;
mc11 &= 0x0c;
if (c & 0x10) {
DEB(printf("Warning: CD interrupt\n");)
mc11 |= 0x10;
}
if (c & 0x20) {
DEB(printf("Warning: MPU interrupt\n");)
mc11 |= 0x20;
}
if (mc11 & masked) BVDDB(printf("irq reset failed, mc11 0x%02x, 0x%02x\n",\
mc11, masked));
masked |= mc11;
/*
* the nice OPTi931 sets the IRQ line before setting the bits in
* mc11. So, on some occasions I have to retry (max 10 times).
*/
if (mc11 == 0) { /* perhaps can return ... */
reason = io_rd(mss, MSS_STATUS);
if (reason & 1) {
DEB(printf("one more try...\n");)
if (--loops) goto again;
else BVDDB(printf("intr, but mc11 not set\n");)
}
if (loops == 0) BVDDB(printf("intr, nothing in mcir11 0x%02x\n", mc11));
mss_unlock(mss);
return;
}
if (sndbuf_runsz(mss->rch.buffer) && (mc11 & 8)) {
mss_unlock(mss);
chn_intr(mss->rch.channel);
mss_lock(mss);
}
if (sndbuf_runsz(mss->pch.buffer) && (mc11 & 4)) {
mss_unlock(mss);
chn_intr(mss->pch.channel);
mss_lock(mss);
}
opti_wr(mss, 11, ~mc11); /* ack */
if (--loops) goto again;
mss_unlock(mss);
DEB(printf("xxx too many loops\n");)
}
/* -------------------------------------------------------------------- */
/* channel interface */
static void *
msschan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b, struct pcm_channel *c, int dir)
{
struct mss_info *mss = devinfo;
struct mss_chinfo *ch = (dir == PCMDIR_PLAY)? &mss->pch : &mss->rch;
ch->parent = mss;
ch->channel = c;
ch->buffer = b;
ch->dir = dir;
if (sndbuf_alloc(ch->buffer, mss->parent_dmat, 0, mss->bufsize) != 0)
return NULL;
sndbuf_dmasetup(ch->buffer, (dir == PCMDIR_PLAY)? mss->drq1 : mss->drq2);
return ch;
}
static int
msschan_setformat(kobj_t obj, void *data, u_int32_t format)
{
struct mss_chinfo *ch = data;
struct mss_info *mss = ch->parent;
mss_lock(mss);
mss_format(ch, format);
mss_unlock(mss);
return 0;
}
static u_int32_t
msschan_setspeed(kobj_t obj, void *data, u_int32_t speed)
{
struct mss_chinfo *ch = data;
struct mss_info *mss = ch->parent;
u_int32_t r;
mss_lock(mss);
r = mss_speed(ch, speed);
mss_unlock(mss);
return r;
}
static u_int32_t
msschan_setblocksize(kobj_t obj, void *data, u_int32_t blocksize)
{
struct mss_chinfo *ch = data;
ch->blksz = blocksize;
sndbuf_resize(ch->buffer, 2, ch->blksz);
return ch->blksz;
}
static int
msschan_trigger(kobj_t obj, void *data, int go)
{
struct mss_chinfo *ch = data;
struct mss_info *mss = ch->parent;
if (!PCMTRIG_COMMON(go))
return 0;
sndbuf_dma(ch->buffer, go);
mss_lock(mss);
mss_trigger(ch, go);
mss_unlock(mss);
return 0;
}
static u_int32_t
msschan_getptr(kobj_t obj, void *data)
{
struct mss_chinfo *ch = data;
return sndbuf_dmaptr(ch->buffer);
}
static struct pcmchan_caps *
msschan_getcaps(kobj_t obj, void *data)
{
struct mss_chinfo *ch = data;
switch(ch->parent->bd_id) {
case MD_OPTI931:
return &opti931_caps;
break;
case MD_GUSPNP:
case MD_GUSMAX:
return &guspnp_caps;
break;
default:
return &mss_caps;
break;
}
}
static kobj_method_t msschan_methods[] = {
KOBJMETHOD(channel_init, msschan_init),
KOBJMETHOD(channel_setformat, msschan_setformat),
KOBJMETHOD(channel_setspeed, msschan_setspeed),
KOBJMETHOD(channel_setblocksize, msschan_setblocksize),
KOBJMETHOD(channel_trigger, msschan_trigger),
KOBJMETHOD(channel_getptr, msschan_getptr),
KOBJMETHOD(channel_getcaps, msschan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(msschan);
/* -------------------------------------------------------------------- */
/*
* mss_probe() is the probe routine. Note, it is not necessary to
* go through this for PnP devices, since they are already
* indentified precisely using their PnP id.
*
* The base address supplied in the device refers to the old MSS
* specs where the four 4 registers in io space contain configuration
* information. Some boards (as an example, early MSS boards)
* has such a block of registers, whereas others (generally CS42xx)
* do not. In order to distinguish between the two and do not have
* to supply two separate probe routines, the flags entry in isa_device
* has a bit to mark this.
*
*/
static int
mss_probe(device_t dev)
{
u_char tmp, tmpx;
int flags, irq, drq, result = ENXIO, setres = 0;
struct mss_info *mss;
if (isa_get_logicalid(dev)) return ENXIO; /* not yet */
mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
if (!mss) return ENXIO;
mss->io_rid = 0;
mss->conf_rid = -1;
mss->irq_rid = 0;
mss->drq1_rid = 0;
mss->drq2_rid = -1;
mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->io_rid,
0, ~0, 8, RF_ACTIVE);
if (!mss->io_base) {
BVDDB(printf("mss_probe: no address given, try 0x%x\n", 0x530));
mss->io_rid = 0;
/* XXX verify this */
setres = 1;
bus_set_resource(dev, SYS_RES_IOPORT, mss->io_rid,
0x530, 8);
mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->io_rid,
0, ~0, 8, RF_ACTIVE);
}
if (!mss->io_base) goto no;
/* got irq/dma regs? */
flags = device_get_flags(dev);
irq = isa_get_irq(dev);
drq = isa_get_drq(dev);
if (!(device_get_flags(dev) & DV_F_TRUE_MSS)) goto mss_probe_end;
/*
* Check if the IO port returns valid signature. The original MS
* Sound system returns 0x04 while some cards
* (AudioTriX Pro for example) return 0x00 or 0x0f.
*/
device_set_desc(dev, "MSS");
tmpx = tmp = io_rd(mss, 3);
if (tmp == 0xff) { /* Bus float */
BVDDB(printf("I/O addr inactive (%x), try pseudo_mss\n", tmp));
device_set_flags(dev, flags & ~DV_F_TRUE_MSS);
goto mss_probe_end;
}
tmp &= 0x3f;
if (!(tmp == 0x04 || tmp == 0x0f || tmp == 0x00 || tmp == 0x05)) {
BVDDB(printf("No MSS signature detected on port 0x%lx (0x%x)\n",
rman_get_start(mss->io_base), tmpx));
goto no;
}
#ifdef PC98
if (irq > 12) {
#else
if (irq > 11) {
#endif
printf("MSS: Bad IRQ %d\n", irq);
goto no;
}
if (!(drq == 0 || drq == 1 || drq == 3)) {
printf("MSS: Bad DMA %d\n", drq);
goto no;
}
if (tmpx & 0x80) {
/* 8-bit board: only drq1/3 and irq7/9 */
if (drq == 0) {
printf("MSS: Can't use DMA0 with a 8 bit card/slot\n");
goto no;
}
if (!(irq == 7 || irq == 9)) {
printf("MSS: Can't use IRQ%d with a 8 bit card/slot\n",
irq);
goto no;
}
}
mss_probe_end:
result = mss_detect(dev, mss);
no:
mss_release_resources(mss, dev);
#if 0
if (setres) ISA_DELETE_RESOURCE(device_get_parent(dev), dev,
SYS_RES_IOPORT, mss->io_rid); /* XXX ? */
#endif
return result;
}
static int
mss_detect(device_t dev, struct mss_info *mss)
{
int i;
u_char tmp = 0, tmp1, tmp2;
char *name, *yamaha;
if (mss->bd_id != 0) {
device_printf(dev, "presel bd_id 0x%04x -- %s\n", mss->bd_id,
device_get_desc(dev));
return 0;
}
name = "AD1848";
mss->bd_id = MD_AD1848; /* AD1848 or CS4248 */
#ifndef PC98
if (opti_detect(dev, mss)) {
switch (mss->bd_id) {
case MD_OPTI924:
name = "OPTi924";
break;
case MD_OPTI930:
name = "OPTi930";
break;
}
printf("Found OPTi device %s\n", name);
if (opti_init(dev, mss) == 0) goto gotit;
}
#endif
/*
* Check that the I/O address is in use.
*
* bit 7 of the base I/O port is known to be 0 after the chip has
* performed its power on initialization. Just assume this has
* happened before the OS is starting.
*
* If the I/O address is unused, it typically returns 0xff.
*/
for (i = 0; i < 10; i++)
if ((tmp = io_rd(mss, MSS_INDEX)) & MSS_IDXBUSY) DELAY(10000);
else break;
if (i >= 10) { /* Not an AD1848 */
BVDDB(printf("mss_detect, busy still set (0x%02x)\n", tmp));
goto no;
}
/*
* Test if it's possible to change contents of the indirect
* registers. Registers 0 and 1 are ADC volume registers. The bit
* 0x10 is read only so try to avoid using it.
*/
ad_write(mss, 0, 0xaa);
ad_write(mss, 1, 0x45);/* 0x55 with bit 0x10 clear */
tmp1 = ad_read(mss, 0);
tmp2 = ad_read(mss, 1);
if (tmp1 != 0xaa || tmp2 != 0x45) {
BVDDB(printf("mss_detect error - IREG (%x/%x)\n", tmp1, tmp2));
goto no;
}
ad_write(mss, 0, 0x45);
ad_write(mss, 1, 0xaa);
tmp1 = ad_read(mss, 0);
tmp2 = ad_read(mss, 1);
if (tmp1 != 0x45 || tmp2 != 0xaa) {
BVDDB(printf("mss_detect error - IREG2 (%x/%x)\n", tmp1, tmp2));
goto no;
}
/*
* The indirect register I12 has some read only bits. Lets try to
* change them.
*/
tmp = ad_read(mss, 12);
ad_write(mss, 12, (~tmp) & 0x0f);
tmp1 = ad_read(mss, 12);
if ((tmp & 0x0f) != (tmp1 & 0x0f)) {
BVDDB(printf("mss_detect - I12 (0x%02x was 0x%02x)\n", tmp1, tmp));
goto no;
}
/*
* NOTE! Last 4 bits of the reg I12 tell the chip revision.
* 0x01=RevB
* 0x0A=RevC. also CS4231/CS4231A and OPTi931
*/
BVDDB(printf("mss_detect - chip revision 0x%02x\n", tmp & 0x0f);)
/*
* The original AD1848/CS4248 has just 16 indirect registers. This
* means that I0 and I16 should return the same value (etc.). Ensure
* that the Mode2 enable bit of I12 is 0. Otherwise this test fails
* with new parts.
*/
ad_write(mss, 12, 0); /* Mode2=disabled */
#if 0
for (i = 0; i < 16; i++) {
if ((tmp1 = ad_read(mss, i)) != (tmp2 = ad_read(mss, i + 16))) {
BVDDB(printf("mss_detect warning - I%d: 0x%02x/0x%02x\n",
i, tmp1, tmp2));
/*
* note - this seems to fail on the 4232 on I11. So we just break
* rather than fail. (which makes this test pointless - cg)
*/
break; /* return 0; */
}
}
#endif
/*
* Try to switch the chip to mode2 (CS4231) by setting the MODE2 bit
* (0x40). The bit 0x80 is always 1 in CS4248 and CS4231.
*
* On the OPTi931, however, I12 is readonly and only contains the
* chip revision ID (as in the CS4231A). The upper bits return 0.
*/
ad_write(mss, 12, 0x40); /* Set mode2, clear 0x80 */
tmp1 = ad_read(mss, 12);
if (tmp1 & 0x80) name = "CS4248"; /* Our best knowledge just now */
if ((tmp1 & 0xf0) == 0x00) {
BVDDB(printf("this should be an OPTi931\n");)
} else if ((tmp1 & 0xc0) != 0xC0) goto gotit;
/*
* The 4231 has bit7=1 always, and bit6 we just set to 1.
* We want to check that this is really a CS4231
* Verify that setting I0 doesn't change I16.
*/
ad_write(mss, 16, 0); /* Set I16 to known value */
ad_write(mss, 0, 0x45);
if ((tmp1 = ad_read(mss, 16)) == 0x45) goto gotit;
ad_write(mss, 0, 0xaa);
if ((tmp1 = ad_read(mss, 16)) == 0xaa) { /* Rotten bits? */
BVDDB(printf("mss_detect error - step H(%x)\n", tmp1));
goto no;
}
/* Verify that some bits of I25 are read only. */
tmp1 = ad_read(mss, 25); /* Original bits */
ad_write(mss, 25, ~tmp1); /* Invert all bits */
if ((ad_read(mss, 25) & 0xe7) == (tmp1 & 0xe7)) {
int id;
/* It's at least CS4231 */
name = "CS4231";
mss->bd_id = MD_CS42XX;
/*
* It could be an AD1845 or CS4231A as well.
* CS4231 and AD1845 report the same revision info in I25
* while the CS4231A reports different.
*/
id = ad_read(mss, 25) & 0xe7;
/*
* b7-b5 = version number;
* 100 : all CS4231
* 101 : CS4231A
*
* b2-b0 = chip id;
*/
switch (id) {
case 0xa0:
name = "CS4231A";
mss->bd_id = MD_CS42XX;
break;
case 0xa2:
name = "CS4232";
mss->bd_id = MD_CS42XX;
break;
case 0xb2:
/* strange: the 4231 data sheet says b4-b3 are XX
* so this should be the same as 0xa2
*/
name = "CS4232A";
mss->bd_id = MD_CS42XX;
break;
case 0x80:
/*
* It must be a CS4231 or AD1845. The register I23
* of CS4231 is undefined and it appears to be read
* only. AD1845 uses I23 for setting sample rate.
* Assume the chip is AD1845 if I23 is changeable.
*/
tmp = ad_read(mss, 23);
ad_write(mss, 23, ~tmp);
if (ad_read(mss, 23) != tmp) { /* AD1845 ? */
name = "AD1845";
mss->bd_id = MD_AD1845;
}
ad_write(mss, 23, tmp); /* Restore */
yamaha = ymf_test(dev, mss);
if (yamaha) {
mss->bd_id = MD_YM0020;
name = yamaha;
}
break;
case 0x83: /* CS4236 */
case 0x03: /* CS4236 on Intel PR440FX motherboard XXX */
name = "CS4236";
mss->bd_id = MD_CS42XX;
break;
default: /* Assume CS4231 */
BVDDB(printf("unknown id 0x%02x, assuming CS4231\n", id);)
mss->bd_id = MD_CS42XX;
}
}
ad_write(mss, 25, tmp1); /* Restore bits */
gotit:
BVDDB(printf("mss_detect() - Detected %s\n", name));
device_set_desc(dev, name);
device_set_flags(dev,
((device_get_flags(dev) & ~DV_F_DEV_MASK) |
((mss->bd_id << DV_F_DEV_SHIFT) & DV_F_DEV_MASK)));
return 0;
no:
return ENXIO;
}
#ifndef PC98
static int
opti_detect(device_t dev, struct mss_info *mss)
{
int c;
static const struct opticard {
int boardid;
int passwdreg;
int password;
int base;
int indir_reg;
} cards[] = {
{ MD_OPTI930, 0, 0xe4, 0xf8f, 0xe0e }, /* 930 */
{ MD_OPTI924, 3, 0xe5, 0xf8c, 0, }, /* 924 */
{ 0 },
};
mss->conf_rid = 3;
mss->indir_rid = 4;
for (c = 0; cards[c].base; c++) {
mss->optibase = cards[c].base;
mss->password = cards[c].password;
mss->passwdreg = cards[c].passwdreg;
mss->bd_id = cards[c].boardid;
if (cards[c].indir_reg)
mss->indir = bus_alloc_resource(dev, SYS_RES_IOPORT,
&mss->indir_rid, cards[c].indir_reg,
cards[c].indir_reg+1, 1, RF_ACTIVE);
mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
&mss->conf_rid, mss->optibase, mss->optibase+9,
9, RF_ACTIVE);
if (opti_read(mss, 1) != 0xff) {
return 1;
} else {
if (mss->indir)
bus_release_resource(dev, SYS_RES_IOPORT, mss->indir_rid, mss->indir);
mss->indir = NULL;
if (mss->conf_base)
bus_release_resource(dev, SYS_RES_IOPORT, mss->conf_rid, mss->conf_base);
mss->conf_base = NULL;
}
}
return 0;
}
#endif
static char *
ymf_test(device_t dev, struct mss_info *mss)
{
static int ports[] = {0x370, 0x310, 0x538};
int p, i, j, version;
static char *chipset[] = {
NULL, /* 0 */
"OPL3-SA2 (YMF711)", /* 1 */
"OPL3-SA3 (YMF715)", /* 2 */
"OPL3-SA3 (YMF715)", /* 3 */
"OPL3-SAx (YMF719)", /* 4 */
"OPL3-SAx (YMF719)", /* 5 */
"OPL3-SAx (YMF719)", /* 6 */
"OPL3-SAx (YMF719)", /* 7 */
};
for (p = 0; p < 3; p++) {
mss->conf_rid = 1;
mss->conf_base = bus_alloc_resource(dev,
SYS_RES_IOPORT,
&mss->conf_rid,
ports[p], ports[p] + 1, 2,
RF_ACTIVE);
if (!mss->conf_base) return 0;
/* Test the index port of the config registers */
i = port_rd(mss->conf_base, 0);
port_wr(mss->conf_base, 0, OPL3SAx_DMACONF);
j = (port_rd(mss->conf_base, 0) == OPL3SAx_DMACONF)? 1 : 0;
port_wr(mss->conf_base, 0, i);
if (!j) {
bus_release_resource(dev, SYS_RES_IOPORT,
mss->conf_rid, mss->conf_base);
#ifdef PC98
/* PC98 need this. I don't know reason why. */
bus_delete_resource(dev, SYS_RES_IOPORT, mss->conf_rid);
#endif
mss->conf_base = 0;
continue;
}
version = conf_rd(mss, OPL3SAx_MISC) & 0x07;
return chipset[version];
}
return NULL;
}
static int
mss_doattach(device_t dev, struct mss_info *mss)
{
int pdma, rdma, flags = device_get_flags(dev);
char status[SND_STATUSLEN], status2[SND_STATUSLEN];
mss->lock = snd_mtxcreate(device_get_nameunit(dev), "snd_mss softc");
mss->bufsize = pcm_getbuffersize(dev, 4096, MSS_DEFAULT_BUFSZ, 65536);
if (!mss_alloc_resources(mss, dev)) goto no;
mss_init(mss, dev);
pdma = rman_get_start(mss->drq1);
rdma = rman_get_start(mss->drq2);
if (flags & DV_F_TRUE_MSS) {
/* has IRQ/DMA registers, set IRQ and DMA addr */
#ifdef PC98 /* CS423[12] in PC98 can use IRQ3,5,10,12 */
static char interrupt_bits[13] =
{-1, -1, -1, 0x08, -1, 0x10, -1, -1, -1, -1, 0x18, -1, 0x20};
#else
static char interrupt_bits[12] =
{-1, -1, -1, -1, -1, 0x28, -1, 0x08, -1, 0x10, 0x18, 0x20};
#endif
static char pdma_bits[4] = {1, 2, -1, 3};
static char valid_rdma[4] = {1, 0, -1, 0};
char bits;
if (!mss->irq || (bits = interrupt_bits[rman_get_start(mss->irq)]) == -1)
goto no;
#ifndef PC98 /* CS423[12] in PC98 don't support this. */
io_wr(mss, 0, bits | 0x40); /* config port */
if ((io_rd(mss, 3) & 0x40) == 0) device_printf(dev, "IRQ Conflict?\n");
#endif
/* Write IRQ+DMA setup */
if (pdma_bits[pdma] == -1) goto no;
bits |= pdma_bits[pdma];
if (pdma != rdma) {
if (rdma == valid_rdma[pdma]) bits |= 4;
else {
printf("invalid dual dma config %d:%d\n", pdma, rdma);
goto no;
}
}
io_wr(mss, 0, bits);
printf("drq/irq conf %x\n", io_rd(mss, 0));
}
mixer_init(dev, (mss->bd_id == MD_YM0020)? &ymmix_mixer_class : &mssmix_mixer_class, mss);
switch (mss->bd_id) {
case MD_OPTI931:
snd_setup_intr(dev, mss->irq, 0, opti931_intr, mss, &mss->ih);
break;
default:
snd_setup_intr(dev, mss->irq, 0, mss_intr, mss, &mss->ih);
}
if (pdma == rdma)
pcm_setflags(dev, pcm_getflags(dev) | SD_F_SIMPLEX);
if (bus_dma_tag_create(/*parent*/bus_get_dma_tag(dev), /*alignment*/2,
/*boundary*/0,
/*lowaddr*/BUS_SPACE_MAXADDR_24BIT,
/*highaddr*/BUS_SPACE_MAXADDR,
/*filter*/NULL, /*filterarg*/NULL,
/*maxsize*/mss->bufsize, /*nsegments*/1,
/*maxsegz*/0x3ffff, /*flags*/0,
/*lockfunc*/busdma_lock_mutex, /*lockarg*/&Giant,
&mss->parent_dmat) != 0) {
device_printf(dev, "unable to create dma tag\n");
goto no;
}
if (pdma != rdma)
snprintf(status2, SND_STATUSLEN, ":%d", rdma);
else
status2[0] = '\0';
snprintf(status, SND_STATUSLEN, "at io 0x%lx irq %ld drq %d%s bufsz %u",
rman_get_start(mss->io_base), rman_get_start(mss->irq), pdma, status2, mss->bufsize);
if (pcm_register(dev, mss, 1, 1)) goto no;
pcm_addchan(dev, PCMDIR_REC, &msschan_class, mss);
pcm_addchan(dev, PCMDIR_PLAY, &msschan_class, mss);
pcm_setstatus(dev, status);
return 0;
no:
mss_release_resources(mss, dev);
return ENXIO;
}
static int
mss_detach(device_t dev)
{
int r;
struct mss_info *mss;
r = pcm_unregister(dev);
if (r)
return r;
mss = pcm_getdevinfo(dev);
mss_release_resources(mss, dev);
return 0;
}
static int
mss_attach(device_t dev)
{
struct mss_info *mss;
int flags = device_get_flags(dev);
mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
if (!mss) return ENXIO;
mss->io_rid = 0;
mss->conf_rid = -1;
mss->irq_rid = 0;
mss->drq1_rid = 0;
mss->drq2_rid = -1;
if (flags & DV_F_DUAL_DMA) {
bus_set_resource(dev, SYS_RES_DRQ, 1,
flags & DV_F_DRQ_MASK, 1);
mss->drq2_rid = 1;
}
mss->bd_id = (device_get_flags(dev) & DV_F_DEV_MASK) >> DV_F_DEV_SHIFT;
if (mss->bd_id == MD_YM0020) ymf_test(dev, mss);
return mss_doattach(dev, mss);
}
/*
* mss_resume() is the code to allow a laptop to resume using the sound
* card.
*
* This routine re-sets the state of the board to the state before going
* to sleep. According to the yamaha docs this is the right thing to do,
* but getting DMA restarted appears to be a bit of a trick, so the device
* has to be closed and re-opened to be re-used, but there is no skipping
* problem, and volume, bass/treble and most other things are restored
* properly.
*
*/
static int
mss_resume(device_t dev)
{
/*
* Restore the state taken below.
*/
struct mss_info *mss;
int i;
mss = pcm_getdevinfo(dev);
if(mss->bd_id == MD_YM0020 || mss->bd_id == MD_CS423X) {
/* This works on a Toshiba Libretto 100CT. */
for (i = 0; i < MSS_INDEXED_REGS; i++)
ad_write(mss, i, mss->mss_indexed_regs[i]);
for (i = 0; i < OPL_INDEXED_REGS; i++)
conf_wr(mss, i, mss->opl_indexed_regs[i]);
mss_intr(mss);
}
if (mss->bd_id == MD_CS423X) {
/* Needed on IBM Thinkpad 600E */
mss_lock(mss);
mss_format(&mss->pch, mss->pch.channel->format);
mss_speed(&mss->pch, mss->pch.channel->speed);
mss_unlock(mss);
}
return 0;
}
/*
* mss_suspend() is the code that gets called right before a laptop
* suspends.
*
* This code saves the state of the sound card right before shutdown
* so it can be restored above.
*
*/
static int
mss_suspend(device_t dev)
{
int i;
struct mss_info *mss;
mss = pcm_getdevinfo(dev);
if(mss->bd_id == MD_YM0020 || mss->bd_id == MD_CS423X)
{
/* this stops playback. */
conf_wr(mss, 0x12, 0x0c);
for(i = 0; i < MSS_INDEXED_REGS; i++)
mss->mss_indexed_regs[i] = ad_read(mss, i);
for(i = 0; i < OPL_INDEXED_REGS; i++)
mss->opl_indexed_regs[i] = conf_rd(mss, i);
mss->opl_indexed_regs[0x12] = 0x0;
}
return 0;
}
static device_method_t mss_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, mss_probe),
DEVMETHOD(device_attach, mss_attach),
DEVMETHOD(device_detach, mss_detach),
DEVMETHOD(device_suspend, mss_suspend),
DEVMETHOD(device_resume, mss_resume),
{ 0, 0 }
};
static driver_t mss_driver = {
"pcm",
mss_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_mss, isa, mss_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(snd_mss, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_mss, 1);
static int
azt2320_mss_mode(struct mss_info *mss, device_t dev)
{
struct resource *sbport;
int i, ret, rid;
rid = 0;
ret = -1;
sbport = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid, RF_ACTIVE);
if (sbport) {
for (i = 0; i < 1000; i++) {
if ((port_rd(sbport, SBDSP_STATUS) & 0x80))
DELAY((i > 100) ? 1000 : 10);
else {
port_wr(sbport, SBDSP_CMD, 0x09);
break;
}
}
for (i = 0; i < 1000; i++) {
if ((port_rd(sbport, SBDSP_STATUS) & 0x80))
DELAY((i > 100) ? 1000 : 10);
else {
port_wr(sbport, SBDSP_CMD, 0x00);
ret = 0;
break;
}
}
DELAY(1000);
bus_release_resource(dev, SYS_RES_IOPORT, rid, sbport);
}
return ret;
}
static struct isa_pnp_id pnpmss_ids[] = {
{0x0000630e, "CS423x"}, /* CSC0000 */
{0x0001630e, "CS423x-PCI"}, /* CSC0100 */
{0x01000000, "CMI8330"}, /* @@@0001 */
{0x2100a865, "Yamaha OPL-SAx"}, /* YMH0021 */
{0x1110d315, "ENSONIQ SoundscapeVIVO"}, /* ENS1011 */
{0x1093143e, "OPTi931"}, /* OPT9310 */
{0x5092143e, "OPTi925"}, /* OPT9250 XXX guess */
{0x0000143e, "OPTi924"}, /* OPT0924 */
{0x1022b839, "Neomagic 256AV (non-ac97)"}, /* NMX2210 */
{0x01005407, "Aztech 2320"}, /* AZT0001 */
#if 0
{0x0000561e, "GusPnP"}, /* GRV0000 */
#endif
{0},
};
static int
pnpmss_probe(device_t dev)
{
u_int32_t lid, vid;
lid = isa_get_logicalid(dev);
vid = isa_get_vendorid(dev);
if (lid == 0x01000000 && vid != 0x0100a90d) /* CMI0001 */
return ENXIO;
return ISA_PNP_PROBE(device_get_parent(dev), dev, pnpmss_ids);
}
static int
pnpmss_attach(device_t dev)
{
struct mss_info *mss;
mss = malloc(sizeof(*mss), M_DEVBUF, M_WAITOK | M_ZERO);
mss->io_rid = 0;
mss->conf_rid = -1;
mss->irq_rid = 0;
mss->drq1_rid = 0;
mss->drq2_rid = 1;
mss->bd_id = MD_CS42XX;
switch (isa_get_logicalid(dev)) {
case 0x0000630e: /* CSC0000 */
case 0x0001630e: /* CSC0100 */
mss->bd_flags |= BD_F_MSS_OFFSET;
mss->bd_id = MD_CS423X;
break;
case 0x2100a865: /* YHM0021 */
mss->io_rid = 1;
mss->conf_rid = 4;
mss->bd_id = MD_YM0020;
break;
case 0x1110d315: /* ENS1011 */
mss->io_rid = 1;
mss->bd_id = MD_VIVO;
break;
case 0x1093143e: /* OPT9310 */
mss->bd_flags |= BD_F_MSS_OFFSET;
mss->conf_rid = 3;
mss->bd_id = MD_OPTI931;
break;
case 0x5092143e: /* OPT9250 XXX guess */
mss->io_rid = 1;
mss->conf_rid = 3;
mss->bd_id = MD_OPTI925;
break;
case 0x0000143e: /* OPT0924 */
mss->password = 0xe5;
mss->passwdreg = 3;
mss->optibase = 0xf0c;
mss->io_rid = 2;
mss->conf_rid = 3;
mss->bd_id = MD_OPTI924;
mss->bd_flags |= BD_F_924PNP;
if(opti_init(dev, mss) != 0) {
free(mss, M_DEVBUF);
return ENXIO;
}
break;
case 0x1022b839: /* NMX2210 */
mss->io_rid = 1;
break;
case 0x01005407: /* AZT0001 */
/* put into MSS mode first (snatched from NetBSD) */
if (azt2320_mss_mode(mss, dev) == -1) {
free(mss, M_DEVBUF);
return ENXIO;
}
mss->bd_flags |= BD_F_MSS_OFFSET;
mss->io_rid = 2;
break;
#if 0
case 0x0000561e: /* GRV0000 */
mss->bd_flags |= BD_F_MSS_OFFSET;
mss->io_rid = 2;
mss->conf_rid = 1;
mss->drq1_rid = 1;
mss->drq2_rid = 0;
mss->bd_id = MD_GUSPNP;
break;
#endif
case 0x01000000: /* @@@0001 */
mss->drq2_rid = -1;
break;
/* Unknown MSS default. We could let the CSC0000 stuff match too */
default:
mss->bd_flags |= BD_F_MSS_OFFSET;
break;
}
return mss_doattach(dev, mss);
}
static int
opti_init(device_t dev, struct mss_info *mss)
{
int flags = device_get_flags(dev);
int basebits = 0;
if (!mss->conf_base) {
bus_set_resource(dev, SYS_RES_IOPORT, mss->conf_rid,
mss->optibase, 0x9);
mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
&mss->conf_rid, mss->optibase, mss->optibase+0x9,
0x9, RF_ACTIVE);
}
if (!mss->conf_base)
return ENXIO;
if (!mss->io_base)
mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
&mss->io_rid, 0, ~0, 8, RF_ACTIVE);
if (!mss->io_base) /* No hint specified, use 0x530 */
mss->io_base = bus_alloc_resource(dev, SYS_RES_IOPORT,
&mss->io_rid, 0x530, 0x537, 8, RF_ACTIVE);
if (!mss->io_base)
return ENXIO;
switch (rman_get_start(mss->io_base)) {
case 0x530:
basebits = 0x0;
break;
case 0xe80:
basebits = 0x10;
break;
case 0xf40:
basebits = 0x20;
break;
case 0x604:
basebits = 0x30;
break;
default:
printf("opti_init: invalid MSS base address!\n");
return ENXIO;
}
switch (mss->bd_id) {
case MD_OPTI924:
opti_write(mss, 1, 0x80 | basebits); /* MSS mode */
opti_write(mss, 2, 0x00); /* Disable CD */
opti_write(mss, 3, 0xf0); /* Disable SB IRQ */
opti_write(mss, 4, 0xf0);
opti_write(mss, 5, 0x00);
opti_write(mss, 6, 0x02); /* MPU stuff */
break;
case MD_OPTI930:
opti_write(mss, 1, 0x00 | basebits);
opti_write(mss, 3, 0x00); /* Disable SB IRQ/DMA */
opti_write(mss, 4, 0x52); /* Empty FIFO */
opti_write(mss, 5, 0x3c); /* Mode 2 */
opti_write(mss, 6, 0x02); /* Enable MSS */
break;
}
if (mss->bd_flags & BD_F_924PNP) {
u_int32_t irq = isa_get_irq(dev);
u_int32_t drq = isa_get_drq(dev);
bus_set_resource(dev, SYS_RES_IRQ, 0, irq, 1);
bus_set_resource(dev, SYS_RES_DRQ, mss->drq1_rid, drq, 1);
if (flags & DV_F_DUAL_DMA) {
bus_set_resource(dev, SYS_RES_DRQ, 1,
flags & DV_F_DRQ_MASK, 1);
mss->drq2_rid = 1;
}
}
/* OPTixxx has I/DRQ registers */
device_set_flags(dev, device_get_flags(dev) | DV_F_TRUE_MSS);
return 0;
}
static void
opti_write(struct mss_info *mss, u_char reg, u_char val)
{
port_wr(mss->conf_base, mss->passwdreg, mss->password);
switch(mss->bd_id) {
case MD_OPTI924:
if (reg > 7) { /* Indirect register */
port_wr(mss->conf_base, mss->passwdreg, reg);
port_wr(mss->conf_base, mss->passwdreg,
mss->password);
port_wr(mss->conf_base, 9, val);
return;
}
port_wr(mss->conf_base, reg, val);
break;
case MD_OPTI930:
port_wr(mss->indir, 0, reg);
port_wr(mss->conf_base, mss->passwdreg, mss->password);
port_wr(mss->indir, 1, val);
break;
}
}
#ifndef PC98
u_char
opti_read(struct mss_info *mss, u_char reg)
{
port_wr(mss->conf_base, mss->passwdreg, mss->password);
switch(mss->bd_id) {
case MD_OPTI924:
if (reg > 7) { /* Indirect register */
port_wr(mss->conf_base, mss->passwdreg, reg);
port_wr(mss->conf_base, mss->passwdreg, mss->password);
return(port_rd(mss->conf_base, 9));
}
return(port_rd(mss->conf_base, reg));
break;
case MD_OPTI930:
port_wr(mss->indir, 0, reg);
port_wr(mss->conf_base, mss->passwdreg, mss->password);
return port_rd(mss->indir, 1);
break;
}
return -1;
}
#endif
static device_method_t pnpmss_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, pnpmss_probe),
DEVMETHOD(device_attach, pnpmss_attach),
DEVMETHOD(device_detach, mss_detach),
DEVMETHOD(device_suspend, mss_suspend),
DEVMETHOD(device_resume, mss_resume),
{ 0, 0 }
};
static driver_t pnpmss_driver = {
"pcm",
pnpmss_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_pnpmss, isa, pnpmss_driver, pcm_devclass, 0, 0);
DRIVER_MODULE(snd_pnpmss, acpi, pnpmss_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(snd_pnpmss, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_pnpmss, 1);
static int
guspcm_probe(device_t dev)
{
struct sndcard_func *func;
func = device_get_ivars(dev);
if (func == NULL || func->func != SCF_PCM)
return ENXIO;
device_set_desc(dev, "GUS CS4231");
return 0;
}
static int
guspcm_attach(device_t dev)
{
device_t parent = device_get_parent(dev);
struct mss_info *mss;
int base, flags;
unsigned char ctl;
mss = (struct mss_info *)malloc(sizeof *mss, M_DEVBUF, M_NOWAIT | M_ZERO);
if (mss == NULL)
return ENOMEM;
mss->bd_flags = BD_F_MSS_OFFSET;
mss->io_rid = 2;
mss->conf_rid = 1;
mss->irq_rid = 0;
mss->drq1_rid = 1;
mss->drq2_rid = -1;
if (isa_get_logicalid(parent) == 0)
mss->bd_id = MD_GUSMAX;
else {
mss->bd_id = MD_GUSPNP;
mss->drq2_rid = 0;
goto skip_setup;
}
flags = device_get_flags(parent);
if (flags & DV_F_DUAL_DMA)
mss->drq2_rid = 0;
mss->conf_base = bus_alloc_resource(dev, SYS_RES_IOPORT, &mss->conf_rid,
0, ~0, 8, RF_ACTIVE);
if (mss->conf_base == NULL) {
mss_release_resources(mss, dev);
return ENXIO;
}
base = isa_get_port(parent);
ctl = 0x40; /* CS4231 enable */
if (isa_get_drq(dev) > 3)
ctl |= 0x10; /* 16-bit dma channel 1 */
if ((flags & DV_F_DUAL_DMA) != 0 && (flags & DV_F_DRQ_MASK) > 3)
ctl |= 0x20; /* 16-bit dma channel 2 */
ctl |= (base >> 4) & 0x0f; /* 2X0 -> 3XC */
port_wr(mss->conf_base, 6, ctl);
skip_setup:
return mss_doattach(dev, mss);
}
static device_method_t guspcm_methods[] = {
DEVMETHOD(device_probe, guspcm_probe),
DEVMETHOD(device_attach, guspcm_attach),
DEVMETHOD(device_detach, mss_detach),
{ 0, 0 }
};
static driver_t guspcm_driver = {
"pcm",
guspcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_guspcm, gusc, guspcm_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(snd_guspcm, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_guspcm, 1);