freebsd-skq/sys/dev/ata/ata-all.c

1165 lines
35 KiB
C

/*-
* Copyright (c) 1998 - 2008 Søren Schmidt <sos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/ata.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/endian.h>
#include <sys/ctype.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/bio.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/sema.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <machine/stdarg.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/ata/ata-all.h>
#include <dev/pci/pcivar.h>
#include <ata_if.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
/* prototypes */
static void ataaction(struct cam_sim *sim, union ccb *ccb);
static void atapoll(struct cam_sim *sim);
static void ata_cam_begin_transaction(device_t dev, union ccb *ccb);
static void ata_cam_end_transaction(device_t dev, struct ata_request *request);
static void ata_cam_request_sense(device_t dev, struct ata_request *request);
static int ata_check_ids(device_t dev, union ccb *ccb);
static void ata_conn_event(void *context, int dummy);
static void ata_init(void);
static void ata_interrupt_locked(void *data);
static int ata_module_event_handler(module_t mod, int what, void *arg);
static void ata_periodic_poll(void *data);
static int ata_str2mode(const char *str);
static void ata_uninit(void);
/* global vars */
MALLOC_DEFINE(M_ATA, "ata_generic", "ATA driver generic layer");
int (*ata_raid_ioctl_func)(u_long cmd, caddr_t data) = NULL;
devclass_t ata_devclass;
uma_zone_t ata_request_zone;
int ata_dma_check_80pin = 1;
/* sysctl vars */
static SYSCTL_NODE(_hw, OID_AUTO, ata, CTLFLAG_RD, 0, "ATA driver parameters");
SYSCTL_INT(_hw_ata, OID_AUTO, ata_dma_check_80pin,
CTLFLAG_RWTUN, &ata_dma_check_80pin, 0,
"Check for 80pin cable before setting ATA DMA mode");
FEATURE(ata_cam, "ATA devices are accessed through the cam(4) driver");
/*
* newbus device interface related functions
*/
int
ata_probe(device_t dev)
{
return (BUS_PROBE_DEFAULT);
}
int
ata_attach(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
int error, rid;
struct cam_devq *devq;
const char *res;
char buf[64];
int i, mode;
/* check that we have a virgin channel to attach */
if (ch->r_irq)
return EEXIST;
/* initialize the softc basics */
ch->dev = dev;
ch->state = ATA_IDLE;
bzero(&ch->state_mtx, sizeof(struct mtx));
mtx_init(&ch->state_mtx, "ATA state lock", NULL, MTX_DEF);
TASK_INIT(&ch->conntask, 0, ata_conn_event, dev);
for (i = 0; i < 16; i++) {
ch->user[i].revision = 0;
snprintf(buf, sizeof(buf), "dev%d.sata_rev", i);
if (resource_int_value(device_get_name(dev),
device_get_unit(dev), buf, &mode) != 0 &&
resource_int_value(device_get_name(dev),
device_get_unit(dev), "sata_rev", &mode) != 0)
mode = -1;
if (mode >= 0)
ch->user[i].revision = mode;
ch->user[i].mode = 0;
snprintf(buf, sizeof(buf), "dev%d.mode", i);
if (resource_string_value(device_get_name(dev),
device_get_unit(dev), buf, &res) == 0)
mode = ata_str2mode(res);
else if (resource_string_value(device_get_name(dev),
device_get_unit(dev), "mode", &res) == 0)
mode = ata_str2mode(res);
else
mode = -1;
if (mode >= 0)
ch->user[i].mode = mode;
if (ch->flags & ATA_SATA)
ch->user[i].bytecount = 8192;
else
ch->user[i].bytecount = MAXPHYS;
ch->user[i].caps = 0;
ch->curr[i] = ch->user[i];
if (ch->flags & ATA_SATA) {
if (ch->pm_level > 0)
ch->user[i].caps |= CTS_SATA_CAPS_H_PMREQ;
if (ch->pm_level > 1)
ch->user[i].caps |= CTS_SATA_CAPS_D_PMREQ;
} else {
if (!(ch->flags & ATA_NO_48BIT_DMA))
ch->user[i].caps |= CTS_ATA_CAPS_H_DMA48;
}
}
callout_init(&ch->poll_callout, 1);
/* allocate DMA resources if DMA HW present*/
if (ch->dma.alloc)
ch->dma.alloc(dev);
/* setup interrupt delivery */
rid = ATA_IRQ_RID;
ch->r_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (!ch->r_irq) {
device_printf(dev, "unable to allocate interrupt\n");
return ENXIO;
}
if ((error = bus_setup_intr(dev, ch->r_irq, ATA_INTR_FLAGS, NULL,
ata_interrupt, ch, &ch->ih))) {
bus_release_resource(dev, SYS_RES_IRQ, rid, ch->r_irq);
device_printf(dev, "unable to setup interrupt\n");
return error;
}
if (ch->flags & ATA_PERIODIC_POLL)
callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch);
mtx_lock(&ch->state_mtx);
/* Create the device queue for our SIM. */
devq = cam_simq_alloc(1);
if (devq == NULL) {
device_printf(dev, "Unable to allocate simq\n");
error = ENOMEM;
goto err1;
}
/* Construct SIM entry */
ch->sim = cam_sim_alloc(ataaction, atapoll, "ata", ch,
device_get_unit(dev), &ch->state_mtx, 1, 0, devq);
if (ch->sim == NULL) {
device_printf(dev, "unable to allocate sim\n");
cam_simq_free(devq);
error = ENOMEM;
goto err1;
}
if (xpt_bus_register(ch->sim, dev, 0) != CAM_SUCCESS) {
device_printf(dev, "unable to register xpt bus\n");
error = ENXIO;
goto err2;
}
if (xpt_create_path(&ch->path, /*periph*/NULL, cam_sim_path(ch->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
device_printf(dev, "unable to create path\n");
error = ENXIO;
goto err3;
}
mtx_unlock(&ch->state_mtx);
return (0);
err3:
xpt_bus_deregister(cam_sim_path(ch->sim));
err2:
cam_sim_free(ch->sim, /*free_devq*/TRUE);
ch->sim = NULL;
err1:
bus_release_resource(dev, SYS_RES_IRQ, rid, ch->r_irq);
mtx_unlock(&ch->state_mtx);
if (ch->flags & ATA_PERIODIC_POLL)
callout_drain(&ch->poll_callout);
return (error);
}
int
ata_detach(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
/* check that we have a valid channel to detach */
if (!ch->r_irq)
return ENXIO;
/* grap the channel lock so no new requests gets launched */
mtx_lock(&ch->state_mtx);
ch->state |= ATA_STALL_QUEUE;
mtx_unlock(&ch->state_mtx);
if (ch->flags & ATA_PERIODIC_POLL)
callout_drain(&ch->poll_callout);
taskqueue_drain(taskqueue_thread, &ch->conntask);
mtx_lock(&ch->state_mtx);
xpt_async(AC_LOST_DEVICE, ch->path, NULL);
xpt_free_path(ch->path);
xpt_bus_deregister(cam_sim_path(ch->sim));
cam_sim_free(ch->sim, /*free_devq*/TRUE);
ch->sim = NULL;
mtx_unlock(&ch->state_mtx);
/* release resources */
bus_teardown_intr(dev, ch->r_irq, ch->ih);
bus_release_resource(dev, SYS_RES_IRQ, ATA_IRQ_RID, ch->r_irq);
ch->r_irq = NULL;
/* free DMA resources if DMA HW present*/
if (ch->dma.free)
ch->dma.free(dev);
mtx_destroy(&ch->state_mtx);
return 0;
}
static void
ata_conn_event(void *context, int dummy)
{
device_t dev = (device_t)context;
struct ata_channel *ch = device_get_softc(dev);
union ccb *ccb;
mtx_lock(&ch->state_mtx);
if (ch->sim == NULL) {
mtx_unlock(&ch->state_mtx);
return;
}
ata_reinit(dev);
if ((ccb = xpt_alloc_ccb_nowait()) == NULL)
return;
if (xpt_create_path(&ccb->ccb_h.path, NULL,
cam_sim_path(ch->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_free_ccb(ccb);
return;
}
xpt_rescan(ccb);
mtx_unlock(&ch->state_mtx);
}
int
ata_reinit(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
struct ata_request *request;
xpt_freeze_simq(ch->sim, 1);
if ((request = ch->running)) {
ch->running = NULL;
if (ch->state == ATA_ACTIVE)
ch->state = ATA_IDLE;
callout_stop(&request->callout);
if (ch->dma.unload)
ch->dma.unload(request);
request->result = ERESTART;
ata_cam_end_transaction(dev, request);
}
/* reset the controller HW, the channel and device(s) */
ATA_RESET(dev);
/* Tell the XPT about the event */
xpt_async(AC_BUS_RESET, ch->path, NULL);
xpt_release_simq(ch->sim, TRUE);
return(0);
}
int
ata_suspend(device_t dev)
{
struct ata_channel *ch;
/* check for valid device */
if (!dev || !(ch = device_get_softc(dev)))
return ENXIO;
if (ch->flags & ATA_PERIODIC_POLL)
callout_drain(&ch->poll_callout);
mtx_lock(&ch->state_mtx);
xpt_freeze_simq(ch->sim, 1);
while (ch->state != ATA_IDLE)
msleep(ch, &ch->state_mtx, PRIBIO, "atasusp", hz/100);
mtx_unlock(&ch->state_mtx);
return(0);
}
int
ata_resume(device_t dev)
{
struct ata_channel *ch;
int error;
/* check for valid device */
if (!dev || !(ch = device_get_softc(dev)))
return ENXIO;
mtx_lock(&ch->state_mtx);
error = ata_reinit(dev);
xpt_release_simq(ch->sim, TRUE);
mtx_unlock(&ch->state_mtx);
if (ch->flags & ATA_PERIODIC_POLL)
callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch);
return error;
}
void
ata_interrupt(void *data)
{
struct ata_channel *ch = (struct ata_channel *)data;
mtx_lock(&ch->state_mtx);
ata_interrupt_locked(data);
mtx_unlock(&ch->state_mtx);
}
static void
ata_interrupt_locked(void *data)
{
struct ata_channel *ch = (struct ata_channel *)data;
struct ata_request *request;
/* ignore interrupt if its not for us */
if (ch->hw.status && !ch->hw.status(ch->dev))
return;
/* do we have a running request */
if (!(request = ch->running))
return;
ATA_DEBUG_RQ(request, "interrupt");
/* safetycheck for the right state */
if (ch->state == ATA_IDLE) {
device_printf(request->dev, "interrupt on idle channel ignored\n");
return;
}
/*
* we have the HW locks, so end the transaction for this request
* if it finishes immediately otherwise wait for next interrupt
*/
if (ch->hw.end_transaction(request) == ATA_OP_FINISHED) {
ch->running = NULL;
if (ch->state == ATA_ACTIVE)
ch->state = ATA_IDLE;
ata_cam_end_transaction(ch->dev, request);
return;
}
}
static void
ata_periodic_poll(void *data)
{
struct ata_channel *ch = (struct ata_channel *)data;
callout_reset(&ch->poll_callout, hz, ata_periodic_poll, ch);
ata_interrupt(ch);
}
void
ata_print_cable(device_t dev, u_int8_t *who)
{
device_printf(dev,
"DMA limited to UDMA33, %s found non-ATA66 cable\n", who);
}
/*
* misc support functions
*/
void
ata_default_registers(device_t dev)
{
struct ata_channel *ch = device_get_softc(dev);
/* fill in the defaults from whats setup already */
ch->r_io[ATA_ERROR].res = ch->r_io[ATA_FEATURE].res;
ch->r_io[ATA_ERROR].offset = ch->r_io[ATA_FEATURE].offset;
ch->r_io[ATA_IREASON].res = ch->r_io[ATA_COUNT].res;
ch->r_io[ATA_IREASON].offset = ch->r_io[ATA_COUNT].offset;
ch->r_io[ATA_STATUS].res = ch->r_io[ATA_COMMAND].res;
ch->r_io[ATA_STATUS].offset = ch->r_io[ATA_COMMAND].offset;
ch->r_io[ATA_ALTSTAT].res = ch->r_io[ATA_CONTROL].res;
ch->r_io[ATA_ALTSTAT].offset = ch->r_io[ATA_CONTROL].offset;
}
void
ata_udelay(int interval)
{
/* for now just use DELAY, the timer/sleep subsytems are not there yet */
if (1 || interval < (1000000/hz) || ata_delayed_attach)
DELAY(interval);
else
pause("ataslp", interval/(1000000/hz));
}
const char *
ata_cmd2str(struct ata_request *request)
{
static char buffer[20];
if (request->flags & ATA_R_ATAPI) {
switch (request->u.atapi.sense.key ?
request->u.atapi.saved_cmd : request->u.atapi.ccb[0]) {
case 0x00: return ("TEST_UNIT_READY");
case 0x01: return ("REZERO");
case 0x03: return ("REQUEST_SENSE");
case 0x04: return ("FORMAT");
case 0x08: return ("READ");
case 0x0a: return ("WRITE");
case 0x10: return ("WEOF");
case 0x11: return ("SPACE");
case 0x12: return ("INQUIRY");
case 0x15: return ("MODE_SELECT");
case 0x19: return ("ERASE");
case 0x1a: return ("MODE_SENSE");
case 0x1b: return ("START_STOP");
case 0x1e: return ("PREVENT_ALLOW");
case 0x23: return ("ATAPI_READ_FORMAT_CAPACITIES");
case 0x25: return ("READ_CAPACITY");
case 0x28: return ("READ_BIG");
case 0x2a: return ("WRITE_BIG");
case 0x2b: return ("LOCATE");
case 0x34: return ("READ_POSITION");
case 0x35: return ("SYNCHRONIZE_CACHE");
case 0x3b: return ("WRITE_BUFFER");
case 0x3c: return ("READ_BUFFER");
case 0x42: return ("READ_SUBCHANNEL");
case 0x43: return ("READ_TOC");
case 0x45: return ("PLAY_10");
case 0x47: return ("PLAY_MSF");
case 0x48: return ("PLAY_TRACK");
case 0x4b: return ("PAUSE");
case 0x51: return ("READ_DISK_INFO");
case 0x52: return ("READ_TRACK_INFO");
case 0x53: return ("RESERVE_TRACK");
case 0x54: return ("SEND_OPC_INFO");
case 0x55: return ("MODE_SELECT_BIG");
case 0x58: return ("REPAIR_TRACK");
case 0x59: return ("READ_MASTER_CUE");
case 0x5a: return ("MODE_SENSE_BIG");
case 0x5b: return ("CLOSE_TRACK/SESSION");
case 0x5c: return ("READ_BUFFER_CAPACITY");
case 0x5d: return ("SEND_CUE_SHEET");
case 0x96: return ("SERVICE_ACTION_IN");
case 0xa1: return ("BLANK_CMD");
case 0xa3: return ("SEND_KEY");
case 0xa4: return ("REPORT_KEY");
case 0xa5: return ("PLAY_12");
case 0xa6: return ("LOAD_UNLOAD");
case 0xad: return ("READ_DVD_STRUCTURE");
case 0xb4: return ("PLAY_CD");
case 0xbb: return ("SET_SPEED");
case 0xbd: return ("MECH_STATUS");
case 0xbe: return ("READ_CD");
case 0xff: return ("POLL_DSC");
}
} else {
switch (request->u.ata.command) {
case 0x00: return ("NOP");
case 0x08: return ("DEVICE_RESET");
case 0x20: return ("READ");
case 0x24: return ("READ48");
case 0x25: return ("READ_DMA48");
case 0x26: return ("READ_DMA_QUEUED48");
case 0x27: return ("READ_NATIVE_MAX_ADDRESS48");
case 0x29: return ("READ_MUL48");
case 0x30: return ("WRITE");
case 0x34: return ("WRITE48");
case 0x35: return ("WRITE_DMA48");
case 0x36: return ("WRITE_DMA_QUEUED48");
case 0x37: return ("SET_MAX_ADDRESS48");
case 0x39: return ("WRITE_MUL48");
case 0x70: return ("SEEK");
case 0xa0: return ("PACKET_CMD");
case 0xa1: return ("ATAPI_IDENTIFY");
case 0xa2: return ("SERVICE");
case 0xb0: return ("SMART");
case 0xc0: return ("CFA ERASE");
case 0xc4: return ("READ_MUL");
case 0xc5: return ("WRITE_MUL");
case 0xc6: return ("SET_MULTI");
case 0xc7: return ("READ_DMA_QUEUED");
case 0xc8: return ("READ_DMA");
case 0xca: return ("WRITE_DMA");
case 0xcc: return ("WRITE_DMA_QUEUED");
case 0xe6: return ("SLEEP");
case 0xe7: return ("FLUSHCACHE");
case 0xea: return ("FLUSHCACHE48");
case 0xec: return ("ATA_IDENTIFY");
case 0xef:
switch (request->u.ata.feature) {
case 0x03: return ("SETFEATURES SET TRANSFER MODE");
case 0x02: return ("SETFEATURES ENABLE WCACHE");
case 0x82: return ("SETFEATURES DISABLE WCACHE");
case 0xaa: return ("SETFEATURES ENABLE RCACHE");
case 0x55: return ("SETFEATURES DISABLE RCACHE");
}
sprintf(buffer, "SETFEATURES 0x%02x",
request->u.ata.feature);
return (buffer);
case 0xf5: return ("SECURITY_FREE_LOCK");
case 0xf8: return ("READ_NATIVE_MAX_ADDRESS");
case 0xf9: return ("SET_MAX_ADDRESS");
}
}
sprintf(buffer, "unknown CMD (0x%02x)", request->u.ata.command);
return (buffer);
}
const char *
ata_mode2str(int mode)
{
switch (mode) {
case -1: return "UNSUPPORTED";
case ATA_PIO0: return "PIO0";
case ATA_PIO1: return "PIO1";
case ATA_PIO2: return "PIO2";
case ATA_PIO3: return "PIO3";
case ATA_PIO4: return "PIO4";
case ATA_WDMA0: return "WDMA0";
case ATA_WDMA1: return "WDMA1";
case ATA_WDMA2: return "WDMA2";
case ATA_UDMA0: return "UDMA16";
case ATA_UDMA1: return "UDMA25";
case ATA_UDMA2: return "UDMA33";
case ATA_UDMA3: return "UDMA40";
case ATA_UDMA4: return "UDMA66";
case ATA_UDMA5: return "UDMA100";
case ATA_UDMA6: return "UDMA133";
case ATA_SA150: return "SATA150";
case ATA_SA300: return "SATA300";
default:
if (mode & ATA_DMA_MASK)
return "BIOSDMA";
else
return "BIOSPIO";
}
}
static int
ata_str2mode(const char *str)
{
if (!strcasecmp(str, "PIO0")) return (ATA_PIO0);
if (!strcasecmp(str, "PIO1")) return (ATA_PIO1);
if (!strcasecmp(str, "PIO2")) return (ATA_PIO2);
if (!strcasecmp(str, "PIO3")) return (ATA_PIO3);
if (!strcasecmp(str, "PIO4")) return (ATA_PIO4);
if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0);
if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1);
if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2);
if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0);
if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0);
if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1);
if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1);
if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2);
if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2);
if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3);
if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3);
if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4);
if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4);
if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5);
if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5);
if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6);
if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6);
return (-1);
}
int
ata_atapi(device_t dev, int target)
{
struct ata_channel *ch = device_get_softc(dev);
return (ch->devices & (ATA_ATAPI_MASTER << target));
}
void
ata_timeout(struct ata_request *request)
{
struct ata_channel *ch;
ch = device_get_softc(request->parent);
//request->flags |= ATA_R_DEBUG;
ATA_DEBUG_RQ(request, "timeout");
/*
* If we have an ATA_ACTIVE request running, we flag the request
* ATA_R_TIMEOUT so ata_cam_end_transaction() will handle it correctly.
* Also, NULL out the running request so we wont loose the race with
* an eventual interrupt arriving late.
*/
if (ch->state == ATA_ACTIVE) {
request->flags |= ATA_R_TIMEOUT;
if (ch->dma.unload)
ch->dma.unload(request);
ch->running = NULL;
ch->state = ATA_IDLE;
ata_cam_end_transaction(ch->dev, request);
}
mtx_unlock(&ch->state_mtx);
}
static void
ata_cam_begin_transaction(device_t dev, union ccb *ccb)
{
struct ata_channel *ch = device_get_softc(dev);
struct ata_request *request;
if (!(request = ata_alloc_request())) {
device_printf(dev, "FAILURE - out of memory in start\n");
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
return;
}
bzero(request, sizeof(*request));
/* setup request */
request->dev = NULL;
request->parent = dev;
request->unit = ccb->ccb_h.target_id;
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
request->data = ccb->ataio.data_ptr;
request->bytecount = ccb->ataio.dxfer_len;
request->u.ata.command = ccb->ataio.cmd.command;
request->u.ata.feature = ((uint16_t)ccb->ataio.cmd.features_exp << 8) |
(uint16_t)ccb->ataio.cmd.features;
request->u.ata.count = ((uint16_t)ccb->ataio.cmd.sector_count_exp << 8) |
(uint16_t)ccb->ataio.cmd.sector_count;
if (ccb->ataio.cmd.flags & CAM_ATAIO_48BIT) {
request->flags |= ATA_R_48BIT;
request->u.ata.lba =
((uint64_t)ccb->ataio.cmd.lba_high_exp << 40) |
((uint64_t)ccb->ataio.cmd.lba_mid_exp << 32) |
((uint64_t)ccb->ataio.cmd.lba_low_exp << 24);
} else {
request->u.ata.lba =
((uint64_t)(ccb->ataio.cmd.device & 0x0f) << 24);
}
request->u.ata.lba |= ((uint64_t)ccb->ataio.cmd.lba_high << 16) |
((uint64_t)ccb->ataio.cmd.lba_mid << 8) |
(uint64_t)ccb->ataio.cmd.lba_low;
if (ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT)
request->flags |= ATA_R_NEEDRESULT;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE &&
ccb->ataio.cmd.flags & CAM_ATAIO_DMA)
request->flags |= ATA_R_DMA;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
request->flags |= ATA_R_READ;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
request->flags |= ATA_R_WRITE;
if (ccb->ataio.cmd.command == ATA_READ_MUL ||
ccb->ataio.cmd.command == ATA_READ_MUL48 ||
ccb->ataio.cmd.command == ATA_WRITE_MUL ||
ccb->ataio.cmd.command == ATA_WRITE_MUL48) {
request->transfersize = min(request->bytecount,
ch->curr[ccb->ccb_h.target_id].bytecount);
} else
request->transfersize = min(request->bytecount, 512);
} else {
request->data = ccb->csio.data_ptr;
request->bytecount = ccb->csio.dxfer_len;
bcopy((ccb->ccb_h.flags & CAM_CDB_POINTER) ?
ccb->csio.cdb_io.cdb_ptr : ccb->csio.cdb_io.cdb_bytes,
request->u.atapi.ccb, ccb->csio.cdb_len);
request->flags |= ATA_R_ATAPI;
if (ch->curr[ccb->ccb_h.target_id].atapi == 16)
request->flags |= ATA_R_ATAPI16;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE &&
ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA)
request->flags |= ATA_R_DMA;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
request->flags |= ATA_R_READ;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
request->flags |= ATA_R_WRITE;
request->transfersize = min(request->bytecount,
ch->curr[ccb->ccb_h.target_id].bytecount);
}
request->retries = 0;
request->timeout = (ccb->ccb_h.timeout + 999) / 1000;
callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED);
request->ccb = ccb;
request->flags |= ATA_R_DATA_IN_CCB;
ch->running = request;
ch->state = ATA_ACTIVE;
if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) {
ch->running = NULL;
ch->state = ATA_IDLE;
ata_cam_end_transaction(dev, request);
return;
}
}
static void
ata_cam_request_sense(device_t dev, struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(dev);
union ccb *ccb = request->ccb;
ch->requestsense = 1;
bzero(request, sizeof(*request));
request->dev = NULL;
request->parent = dev;
request->unit = ccb->ccb_h.target_id;
request->data = (void *)&ccb->csio.sense_data;
request->bytecount = ccb->csio.sense_len;
request->u.atapi.ccb[0] = ATAPI_REQUEST_SENSE;
request->u.atapi.ccb[4] = ccb->csio.sense_len;
request->flags |= ATA_R_ATAPI;
if (ch->curr[ccb->ccb_h.target_id].atapi == 16)
request->flags |= ATA_R_ATAPI16;
if (ch->curr[ccb->ccb_h.target_id].mode >= ATA_DMA)
request->flags |= ATA_R_DMA;
request->flags |= ATA_R_READ;
request->transfersize = min(request->bytecount,
ch->curr[ccb->ccb_h.target_id].bytecount);
request->retries = 0;
request->timeout = (ccb->ccb_h.timeout + 999) / 1000;
callout_init_mtx(&request->callout, &ch->state_mtx, CALLOUT_RETURNUNLOCKED);
request->ccb = ccb;
ch->running = request;
ch->state = ATA_ACTIVE;
if (ch->hw.begin_transaction(request) == ATA_OP_FINISHED) {
ch->running = NULL;
ch->state = ATA_IDLE;
ata_cam_end_transaction(dev, request);
return;
}
}
static void
ata_cam_process_sense(device_t dev, struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(dev);
union ccb *ccb = request->ccb;
int fatalerr = 0;
ch->requestsense = 0;
if (request->flags & ATA_R_TIMEOUT)
fatalerr = 1;
if ((request->flags & ATA_R_TIMEOUT) == 0 &&
(request->status & ATA_S_ERROR) == 0 &&
request->result == 0) {
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
} else {
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_AUTOSENSE_FAIL;
}
ata_free_request(request);
xpt_done(ccb);
/* Do error recovery if needed. */
if (fatalerr)
ata_reinit(dev);
}
static void
ata_cam_end_transaction(device_t dev, struct ata_request *request)
{
struct ata_channel *ch = device_get_softc(dev);
union ccb *ccb = request->ccb;
int fatalerr = 0;
if (ch->requestsense) {
ata_cam_process_sense(dev, request);
return;
}
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
if (request->flags & ATA_R_TIMEOUT) {
xpt_freeze_simq(ch->sim, 1);
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_CMD_TIMEOUT | CAM_RELEASE_SIMQ;
fatalerr = 1;
} else if (request->status & ATA_S_ERROR) {
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
ccb->ccb_h.status |= CAM_ATA_STATUS_ERROR;
} else {
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
ccb->csio.scsi_status = SCSI_STATUS_CHECK_COND;
}
} else if (request->result == ERESTART)
ccb->ccb_h.status |= CAM_REQUEUE_REQ;
else if (request->result != 0)
ccb->ccb_h.status |= CAM_REQ_CMP_ERR;
else
ccb->ccb_h.status |= CAM_REQ_CMP;
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP &&
!(ccb->ccb_h.status & CAM_DEV_QFRZN)) {
xpt_freeze_devq(ccb->ccb_h.path, 1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
if (ccb->ccb_h.func_code == XPT_ATA_IO &&
((request->status & ATA_S_ERROR) ||
(ccb->ataio.cmd.flags & CAM_ATAIO_NEEDRESULT))) {
struct ata_res *res = &ccb->ataio.res;
res->status = request->status;
res->error = request->error;
res->lba_low = request->u.ata.lba;
res->lba_mid = request->u.ata.lba >> 8;
res->lba_high = request->u.ata.lba >> 16;
res->device = request->u.ata.lba >> 24;
res->lba_low_exp = request->u.ata.lba >> 24;
res->lba_mid_exp = request->u.ata.lba >> 32;
res->lba_high_exp = request->u.ata.lba >> 40;
res->sector_count = request->u.ata.count;
res->sector_count_exp = request->u.ata.count >> 8;
}
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if (ccb->ccb_h.func_code == XPT_ATA_IO) {
ccb->ataio.resid =
ccb->ataio.dxfer_len - request->donecount;
} else {
ccb->csio.resid =
ccb->csio.dxfer_len - request->donecount;
}
}
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_SCSI_STATUS_ERROR &&
(ccb->ccb_h.flags & CAM_DIS_AUTOSENSE) == 0)
ata_cam_request_sense(dev, request);
else {
ata_free_request(request);
xpt_done(ccb);
}
/* Do error recovery if needed. */
if (fatalerr)
ata_reinit(dev);
}
static int
ata_check_ids(device_t dev, union ccb *ccb)
{
struct ata_channel *ch = device_get_softc(dev);
if (ccb->ccb_h.target_id > ((ch->flags & ATA_NO_SLAVE) ? 0 : 1)) {
ccb->ccb_h.status = CAM_TID_INVALID;
xpt_done(ccb);
return (-1);
}
if (ccb->ccb_h.target_lun != 0) {
ccb->ccb_h.status = CAM_LUN_INVALID;
xpt_done(ccb);
return (-1);
}
return (0);
}
static void
ataaction(struct cam_sim *sim, union ccb *ccb)
{
device_t dev, parent;
struct ata_channel *ch;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ataaction func_code=%x\n",
ccb->ccb_h.func_code));
ch = (struct ata_channel *)cam_sim_softc(sim);
dev = ch->dev;
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_ATA_IO: /* Execute the requested I/O operation */
case XPT_SCSI_IO:
if (ata_check_ids(dev, ccb))
return;
if ((ch->devices & ((ATA_ATA_MASTER | ATA_ATAPI_MASTER)
<< ccb->ccb_h.target_id)) == 0) {
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
}
if (ch->running)
device_printf(dev, "already running!\n");
if (ccb->ccb_h.func_code == XPT_ATA_IO &&
(ccb->ataio.cmd.flags & CAM_ATAIO_CONTROL) &&
(ccb->ataio.cmd.control & ATA_A_RESET)) {
struct ata_res *res = &ccb->ataio.res;
bzero(res, sizeof(*res));
if (ch->devices & (ATA_ATA_MASTER << ccb->ccb_h.target_id)) {
res->lba_high = 0;
res->lba_mid = 0;
} else {
res->lba_high = 0xeb;
res->lba_mid = 0x14;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
ata_cam_begin_transaction(dev, ccb);
return;
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
struct ata_cam_device *d;
if (ata_check_ids(dev, ccb))
return;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
d = &ch->curr[ccb->ccb_h.target_id];
else
d = &ch->user[ccb->ccb_h.target_id];
if (ch->flags & ATA_SATA) {
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_REVISION)
d->revision = cts->xport_specific.sata.revision;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_MODE) {
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
d->mode = ATA_SETMODE(ch->dev,
ccb->ccb_h.target_id,
cts->xport_specific.sata.mode);
} else
d->mode = cts->xport_specific.sata.mode;
}
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_BYTECOUNT)
d->bytecount = min(8192, cts->xport_specific.sata.bytecount);
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_ATAPI)
d->atapi = cts->xport_specific.sata.atapi;
if (cts->xport_specific.sata.valid & CTS_SATA_VALID_CAPS)
d->caps = cts->xport_specific.sata.caps;
} else {
if (cts->xport_specific.ata.valid & CTS_ATA_VALID_MODE) {
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
d->mode = ATA_SETMODE(ch->dev,
ccb->ccb_h.target_id,
cts->xport_specific.ata.mode);
} else
d->mode = cts->xport_specific.ata.mode;
}
if (cts->xport_specific.ata.valid & CTS_ATA_VALID_BYTECOUNT)
d->bytecount = cts->xport_specific.ata.bytecount;
if (cts->xport_specific.ata.valid & CTS_ATA_VALID_ATAPI)
d->atapi = cts->xport_specific.ata.atapi;
if (cts->xport_specific.ata.valid & CTS_ATA_VALID_CAPS)
d->caps = cts->xport_specific.ata.caps;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_GET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts = &ccb->cts;
struct ata_cam_device *d;
if (ata_check_ids(dev, ccb))
return;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
d = &ch->curr[ccb->ccb_h.target_id];
else
d = &ch->user[ccb->ccb_h.target_id];
cts->protocol = PROTO_UNSPECIFIED;
cts->protocol_version = PROTO_VERSION_UNSPECIFIED;
if (ch->flags & ATA_SATA) {
cts->transport = XPORT_SATA;
cts->transport_version = XPORT_VERSION_UNSPECIFIED;
cts->xport_specific.sata.valid = 0;
cts->xport_specific.sata.mode = d->mode;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_MODE;
cts->xport_specific.sata.bytecount = d->bytecount;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_BYTECOUNT;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
cts->xport_specific.sata.revision =
ATA_GETREV(dev, ccb->ccb_h.target_id);
if (cts->xport_specific.sata.revision != 0xff) {
cts->xport_specific.sata.valid |=
CTS_SATA_VALID_REVISION;
}
cts->xport_specific.sata.caps =
d->caps & CTS_SATA_CAPS_D;
if (ch->pm_level) {
cts->xport_specific.sata.caps |=
CTS_SATA_CAPS_H_PMREQ;
}
cts->xport_specific.sata.caps &=
ch->user[ccb->ccb_h.target_id].caps;
} else {
cts->xport_specific.sata.revision = d->revision;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_REVISION;
cts->xport_specific.sata.caps = d->caps;
}
cts->xport_specific.sata.valid |= CTS_SATA_VALID_CAPS;
cts->xport_specific.sata.atapi = d->atapi;
cts->xport_specific.sata.valid |= CTS_SATA_VALID_ATAPI;
} else {
cts->transport = XPORT_ATA;
cts->transport_version = XPORT_VERSION_UNSPECIFIED;
cts->xport_specific.ata.valid = 0;
cts->xport_specific.ata.mode = d->mode;
cts->xport_specific.ata.valid |= CTS_ATA_VALID_MODE;
cts->xport_specific.ata.bytecount = d->bytecount;
cts->xport_specific.ata.valid |= CTS_ATA_VALID_BYTECOUNT;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
cts->xport_specific.ata.caps =
d->caps & CTS_ATA_CAPS_D;
if (!(ch->flags & ATA_NO_48BIT_DMA))
cts->xport_specific.ata.caps |=
CTS_ATA_CAPS_H_DMA48;
cts->xport_specific.ata.caps &=
ch->user[ccb->ccb_h.target_id].caps;
} else
cts->xport_specific.ata.caps = d->caps;
cts->xport_specific.ata.valid |= CTS_ATA_VALID_CAPS;
cts->xport_specific.ata.atapi = d->atapi;
cts->xport_specific.ata.valid |= CTS_ATA_VALID_ATAPI;
}
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
ata_reinit(dev);
ccb->ccb_h.status = CAM_REQ_CMP;
break;
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
parent = device_get_parent(dev);
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = PIM_SEQSCAN;
cpi->hba_eng_cnt = 0;
if (ch->flags & ATA_NO_SLAVE)
cpi->max_target = 0;
else
cpi->max_target = 1;
cpi->max_lun = 0;
cpi->initiator_id = 0;
cpi->bus_id = cam_sim_bus(sim);
if (ch->flags & ATA_SATA)
cpi->base_transfer_speed = 150000;
else
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "ATA", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
if (ch->flags & ATA_SATA)
cpi->transport = XPORT_SATA;
else
cpi->transport = XPORT_ATA;
cpi->transport_version = XPORT_VERSION_UNSPECIFIED;
cpi->protocol = PROTO_ATA;
cpi->protocol_version = PROTO_VERSION_UNSPECIFIED;
cpi->maxio = ch->dma.max_iosize ? ch->dma.max_iosize : DFLTPHYS;
if (device_get_devclass(device_get_parent(parent)) ==
devclass_find("pci")) {
cpi->hba_vendor = pci_get_vendor(parent);
cpi->hba_device = pci_get_device(parent);
cpi->hba_subvendor = pci_get_subvendor(parent);
cpi->hba_subdevice = pci_get_subdevice(parent);
}
cpi->ccb_h.status = CAM_REQ_CMP;
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
static void
atapoll(struct cam_sim *sim)
{
struct ata_channel *ch = (struct ata_channel *)cam_sim_softc(sim);
ata_interrupt_locked(ch);
}
/*
* module handeling
*/
static int
ata_module_event_handler(module_t mod, int what, void *arg)
{
switch (what) {
case MOD_LOAD:
return 0;
case MOD_UNLOAD:
return 0;
default:
return EOPNOTSUPP;
}
}
static moduledata_t ata_moduledata = { "ata", ata_module_event_handler, NULL };
DECLARE_MODULE(ata, ata_moduledata, SI_SUB_CONFIGURE, SI_ORDER_SECOND);
MODULE_VERSION(ata, 1);
MODULE_DEPEND(ata, cam, 1, 1, 1);
static void
ata_init(void)
{
ata_request_zone = uma_zcreate("ata_request", sizeof(struct ata_request),
NULL, NULL, NULL, NULL, 0, 0);
}
SYSINIT(ata_register, SI_SUB_DRIVERS, SI_ORDER_SECOND, ata_init, NULL);
static void
ata_uninit(void)
{
uma_zdestroy(ata_request_zone);
}
SYSUNINIT(ata_unregister, SI_SUB_DRIVERS, SI_ORDER_SECOND, ata_uninit, NULL);