freebsd-skq/sys/kgssapi/krb5/krb5_mech.c
2020-09-01 22:15:02 +00:00

2129 lines
48 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2008 Isilon Inc http://www.isilon.com/
* Authors: Doug Rabson <dfr@rabson.org>
* Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/kobj.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <kgssapi/gssapi.h>
#include <kgssapi/gssapi_impl.h>
#include "kgss_if.h"
#include "kcrypto.h"
#define GSS_TOKEN_SENT_BY_ACCEPTOR 1
#define GSS_TOKEN_SEALED 2
#define GSS_TOKEN_ACCEPTOR_SUBKEY 4
static gss_OID_desc krb5_mech_oid =
{9, (void *) "\x2a\x86\x48\x86\xf7\x12\x01\x02\x02" };
struct krb5_data {
size_t kd_length;
void *kd_data;
};
struct krb5_keyblock {
uint16_t kk_type; /* encryption type */
struct krb5_data kk_key; /* key data */
};
struct krb5_address {
uint16_t ka_type;
struct krb5_data ka_addr;
};
/*
* The km_elem array is ordered so that the highest received sequence
* number is listed first.
*/
struct krb5_msg_order {
uint32_t km_flags;
uint32_t km_start;
uint32_t km_length;
uint32_t km_jitter_window;
uint32_t km_first_seq;
uint32_t *km_elem;
};
struct krb5_context {
struct _gss_ctx_id_t kc_common;
struct mtx kc_lock;
uint32_t kc_ac_flags;
uint32_t kc_ctx_flags;
uint32_t kc_more_flags;
#define LOCAL 1
#define OPEN 2
#define COMPAT_OLD_DES3 4
#define COMPAT_OLD_DES3_SELECTED 8
#define ACCEPTOR_SUBKEY 16
struct krb5_address kc_local_address;
struct krb5_address kc_remote_address;
uint16_t kc_local_port;
uint16_t kc_remote_port;
struct krb5_keyblock kc_keyblock;
struct krb5_keyblock kc_local_subkey;
struct krb5_keyblock kc_remote_subkey;
volatile uint32_t kc_local_seqnumber;
uint32_t kc_remote_seqnumber;
uint32_t kc_keytype;
uint32_t kc_cksumtype;
struct krb5_data kc_source_name;
struct krb5_data kc_target_name;
uint32_t kc_lifetime;
struct krb5_msg_order kc_msg_order;
struct krb5_key_state *kc_tokenkey;
struct krb5_key_state *kc_encryptkey;
struct krb5_key_state *kc_checksumkey;
struct krb5_key_state *kc_send_seal_Ke;
struct krb5_key_state *kc_send_seal_Ki;
struct krb5_key_state *kc_send_seal_Kc;
struct krb5_key_state *kc_send_sign_Kc;
struct krb5_key_state *kc_recv_seal_Ke;
struct krb5_key_state *kc_recv_seal_Ki;
struct krb5_key_state *kc_recv_seal_Kc;
struct krb5_key_state *kc_recv_sign_Kc;
};
static uint16_t
get_uint16(const uint8_t **pp, size_t *lenp)
{
const uint8_t *p = *pp;
uint16_t v;
if (*lenp < 2)
return (0);
v = (p[0] << 8) | p[1];
*pp = p + 2;
*lenp = *lenp - 2;
return (v);
}
static uint32_t
get_uint32(const uint8_t **pp, size_t *lenp)
{
const uint8_t *p = *pp;
uint32_t v;
if (*lenp < 4)
return (0);
v = (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
*pp = p + 4;
*lenp = *lenp - 4;
return (v);
}
static void
get_data(const uint8_t **pp, size_t *lenp, struct krb5_data *dp)
{
size_t sz = get_uint32(pp, lenp);
dp->kd_length = sz;
dp->kd_data = malloc(sz, M_GSSAPI, M_WAITOK);
if (*lenp < sz)
sz = *lenp;
bcopy(*pp, dp->kd_data, sz);
(*pp) += sz;
(*lenp) -= sz;
}
static void
delete_data(struct krb5_data *dp)
{
if (dp->kd_data) {
free(dp->kd_data, M_GSSAPI);
dp->kd_length = 0;
dp->kd_data = NULL;
}
}
static void
get_address(const uint8_t **pp, size_t *lenp, struct krb5_address *ka)
{
ka->ka_type = get_uint16(pp, lenp);
get_data(pp, lenp, &ka->ka_addr);
}
static void
delete_address(struct krb5_address *ka)
{
delete_data(&ka->ka_addr);
}
static void
get_keyblock(const uint8_t **pp, size_t *lenp, struct krb5_keyblock *kk)
{
kk->kk_type = get_uint16(pp, lenp);
get_data(pp, lenp, &kk->kk_key);
}
static void
delete_keyblock(struct krb5_keyblock *kk)
{
if (kk->kk_key.kd_data)
bzero(kk->kk_key.kd_data, kk->kk_key.kd_length);
delete_data(&kk->kk_key);
}
static void
copy_key(struct krb5_keyblock *from, struct krb5_keyblock **to)
{
if (from->kk_key.kd_length)
*to = from;
else
*to = NULL;
}
/*
* Return non-zero if we are initiator.
*/
static __inline int
is_initiator(struct krb5_context *kc)
{
return (kc->kc_more_flags & LOCAL);
}
/*
* Return non-zero if we are acceptor.
*/
static __inline int
is_acceptor(struct krb5_context *kc)
{
return !(kc->kc_more_flags & LOCAL);
}
static void
get_initiator_subkey(struct krb5_context *kc, struct krb5_keyblock **kdp)
{
if (is_initiator(kc))
copy_key(&kc->kc_local_subkey, kdp);
else
copy_key(&kc->kc_remote_subkey, kdp);
if (!*kdp)
copy_key(&kc->kc_keyblock, kdp);
}
static void
get_acceptor_subkey(struct krb5_context *kc, struct krb5_keyblock **kdp)
{
if (is_initiator(kc))
copy_key(&kc->kc_remote_subkey, kdp);
else
copy_key(&kc->kc_local_subkey, kdp);
}
static OM_uint32
get_keys(struct krb5_context *kc)
{
struct krb5_keyblock *keydata;
struct krb5_encryption_class *ec;
struct krb5_key_state *key;
int etype;
keydata = NULL;
get_acceptor_subkey(kc, &keydata);
if (!keydata)
if ((kc->kc_more_flags & ACCEPTOR_SUBKEY) == 0)
get_initiator_subkey(kc, &keydata);
if (!keydata)
return (GSS_S_FAILURE);
/*
* GSS-API treats all DES etypes the same and all DES3 etypes
* the same.
*/
switch (keydata->kk_type) {
case ETYPE_DES_CBC_CRC:
case ETYPE_DES_CBC_MD4:
case ETYPE_DES_CBC_MD5:
etype = ETYPE_DES_CBC_CRC;
break;
case ETYPE_DES3_CBC_MD5:
case ETYPE_DES3_CBC_SHA1:
case ETYPE_OLD_DES3_CBC_SHA1:
etype = ETYPE_DES3_CBC_SHA1;
break;
default:
etype = keydata->kk_type;
}
ec = krb5_find_encryption_class(etype);
if (!ec)
return (GSS_S_FAILURE);
key = krb5_create_key(ec);
krb5_set_key(key, keydata->kk_key.kd_data);
kc->kc_tokenkey = key;
switch (etype) {
case ETYPE_DES_CBC_CRC:
case ETYPE_ARCFOUR_HMAC_MD5:
case ETYPE_ARCFOUR_HMAC_MD5_56: {
/*
* Single DES and ARCFOUR uses a 'derived' key (XOR
* with 0xf0) for encrypting wrap tokens. The original
* key is used for checksums and sequence numbers.
*/
struct krb5_key_state *ekey;
uint8_t *ekp, *kp;
int i;
ekey = krb5_create_key(ec);
ekp = ekey->ks_key;
kp = key->ks_key;
for (i = 0; i < ec->ec_keylen; i++)
ekp[i] = kp[i] ^ 0xf0;
krb5_set_key(ekey, ekp);
kc->kc_encryptkey = ekey;
refcount_acquire(&key->ks_refs);
kc->kc_checksumkey = key;
break;
}
case ETYPE_DES3_CBC_SHA1:
/*
* Triple DES uses a RFC 3961 style derived key with
* usage number KG_USAGE_SIGN for checksums. The
* original key is used for encryption and sequence
* numbers.
*/
kc->kc_checksumkey = krb5_get_checksum_key(key, KG_USAGE_SIGN);
refcount_acquire(&key->ks_refs);
kc->kc_encryptkey = key;
break;
default:
/*
* We need eight derived keys four for sending and
* four for receiving.
*/
if (is_initiator(kc)) {
/*
* We are initiator.
*/
kc->kc_send_seal_Ke = krb5_get_encryption_key(key,
KG_USAGE_INITIATOR_SEAL);
kc->kc_send_seal_Ki = krb5_get_integrity_key(key,
KG_USAGE_INITIATOR_SEAL);
kc->kc_send_seal_Kc = krb5_get_checksum_key(key,
KG_USAGE_INITIATOR_SEAL);
kc->kc_send_sign_Kc = krb5_get_checksum_key(key,
KG_USAGE_INITIATOR_SIGN);
kc->kc_recv_seal_Ke = krb5_get_encryption_key(key,
KG_USAGE_ACCEPTOR_SEAL);
kc->kc_recv_seal_Ki = krb5_get_integrity_key(key,
KG_USAGE_ACCEPTOR_SEAL);
kc->kc_recv_seal_Kc = krb5_get_checksum_key(key,
KG_USAGE_ACCEPTOR_SEAL);
kc->kc_recv_sign_Kc = krb5_get_checksum_key(key,
KG_USAGE_ACCEPTOR_SIGN);
} else {
/*
* We are acceptor.
*/
kc->kc_send_seal_Ke = krb5_get_encryption_key(key,
KG_USAGE_ACCEPTOR_SEAL);
kc->kc_send_seal_Ki = krb5_get_integrity_key(key,
KG_USAGE_ACCEPTOR_SEAL);
kc->kc_send_seal_Kc = krb5_get_checksum_key(key,
KG_USAGE_ACCEPTOR_SEAL);
kc->kc_send_sign_Kc = krb5_get_checksum_key(key,
KG_USAGE_ACCEPTOR_SIGN);
kc->kc_recv_seal_Ke = krb5_get_encryption_key(key,
KG_USAGE_INITIATOR_SEAL);
kc->kc_recv_seal_Ki = krb5_get_integrity_key(key,
KG_USAGE_INITIATOR_SEAL);
kc->kc_recv_seal_Kc = krb5_get_checksum_key(key,
KG_USAGE_INITIATOR_SEAL);
kc->kc_recv_sign_Kc = krb5_get_checksum_key(key,
KG_USAGE_INITIATOR_SIGN);
}
break;
}
return (GSS_S_COMPLETE);
}
static void
krb5_init(gss_ctx_id_t ctx)
{
struct krb5_context *kc = (struct krb5_context *)ctx;
mtx_init(&kc->kc_lock, "krb5 gss lock", NULL, MTX_DEF);
}
static OM_uint32
krb5_import(gss_ctx_id_t ctx,
enum sec_context_format format,
const gss_buffer_t context_token)
{
struct krb5_context *kc = (struct krb5_context *)ctx;
OM_uint32 res;
const uint8_t *p = (const uint8_t *) context_token->value;
size_t len = context_token->length;
uint32_t flags;
int i;
/*
* We support heimdal 0.6 and heimdal 1.1
*/
if (format != KGSS_HEIMDAL_0_6 && format != KGSS_HEIMDAL_1_1)
return (GSS_S_DEFECTIVE_TOKEN);
#define SC_LOCAL_ADDRESS 1
#define SC_REMOTE_ADDRESS 2
#define SC_KEYBLOCK 4
#define SC_LOCAL_SUBKEY 8
#define SC_REMOTE_SUBKEY 16
/*
* Ensure that the token starts with krb5 oid.
*/
if (p[0] != 0x00 || p[1] != krb5_mech_oid.length
|| len < krb5_mech_oid.length + 2
|| bcmp(krb5_mech_oid.elements, p + 2,
krb5_mech_oid.length))
return (GSS_S_DEFECTIVE_TOKEN);
p += krb5_mech_oid.length + 2;
len -= krb5_mech_oid.length + 2;
flags = get_uint32(&p, &len);
kc->kc_ac_flags = get_uint32(&p, &len);
if (flags & SC_LOCAL_ADDRESS)
get_address(&p, &len, &kc->kc_local_address);
if (flags & SC_REMOTE_ADDRESS)
get_address(&p, &len, &kc->kc_remote_address);
kc->kc_local_port = get_uint16(&p, &len);
kc->kc_remote_port = get_uint16(&p, &len);
if (flags & SC_KEYBLOCK)
get_keyblock(&p, &len, &kc->kc_keyblock);
if (flags & SC_LOCAL_SUBKEY)
get_keyblock(&p, &len, &kc->kc_local_subkey);
if (flags & SC_REMOTE_SUBKEY)
get_keyblock(&p, &len, &kc->kc_remote_subkey);
kc->kc_local_seqnumber = get_uint32(&p, &len);
kc->kc_remote_seqnumber = get_uint32(&p, &len);
kc->kc_keytype = get_uint32(&p, &len);
kc->kc_cksumtype = get_uint32(&p, &len);
get_data(&p, &len, &kc->kc_source_name);
get_data(&p, &len, &kc->kc_target_name);
kc->kc_ctx_flags = get_uint32(&p, &len);
kc->kc_more_flags = get_uint32(&p, &len);
kc->kc_lifetime = get_uint32(&p, &len);
/*
* Heimdal 1.1 adds the message order stuff.
*/
if (format == KGSS_HEIMDAL_1_1) {
kc->kc_msg_order.km_flags = get_uint32(&p, &len);
kc->kc_msg_order.km_start = get_uint32(&p, &len);
kc->kc_msg_order.km_length = get_uint32(&p, &len);
kc->kc_msg_order.km_jitter_window = get_uint32(&p, &len);
kc->kc_msg_order.km_first_seq = get_uint32(&p, &len);
kc->kc_msg_order.km_elem =
malloc(kc->kc_msg_order.km_jitter_window * sizeof(uint32_t),
M_GSSAPI, M_WAITOK);
for (i = 0; i < kc->kc_msg_order.km_jitter_window; i++)
kc->kc_msg_order.km_elem[i] = get_uint32(&p, &len);
} else {
kc->kc_msg_order.km_flags = 0;
}
res = get_keys(kc);
if (GSS_ERROR(res))
return (res);
/*
* We don't need these anymore.
*/
delete_keyblock(&kc->kc_keyblock);
delete_keyblock(&kc->kc_local_subkey);
delete_keyblock(&kc->kc_remote_subkey);
return (GSS_S_COMPLETE);
}
static void
krb5_delete(gss_ctx_id_t ctx, gss_buffer_t output_token)
{
struct krb5_context *kc = (struct krb5_context *)ctx;
delete_address(&kc->kc_local_address);
delete_address(&kc->kc_remote_address);
delete_keyblock(&kc->kc_keyblock);
delete_keyblock(&kc->kc_local_subkey);
delete_keyblock(&kc->kc_remote_subkey);
delete_data(&kc->kc_source_name);
delete_data(&kc->kc_target_name);
if (kc->kc_msg_order.km_elem)
free(kc->kc_msg_order.km_elem, M_GSSAPI);
if (output_token) {
output_token->length = 0;
output_token->value = NULL;
}
if (kc->kc_tokenkey) {
krb5_free_key(kc->kc_tokenkey);
if (kc->kc_encryptkey) {
krb5_free_key(kc->kc_encryptkey);
krb5_free_key(kc->kc_checksumkey);
} else {
krb5_free_key(kc->kc_send_seal_Ke);
krb5_free_key(kc->kc_send_seal_Ki);
krb5_free_key(kc->kc_send_seal_Kc);
krb5_free_key(kc->kc_send_sign_Kc);
krb5_free_key(kc->kc_recv_seal_Ke);
krb5_free_key(kc->kc_recv_seal_Ki);
krb5_free_key(kc->kc_recv_seal_Kc);
krb5_free_key(kc->kc_recv_sign_Kc);
}
}
mtx_destroy(&kc->kc_lock);
}
static gss_OID
krb5_mech_type(gss_ctx_id_t ctx)
{
return (&krb5_mech_oid);
}
/*
* Make a token with the given type and length (the length includes
* the TOK_ID), initialising the token header appropriately. Return a
* pointer to the TOK_ID of the token. A new mbuf is allocated with
* the framing header plus hlen bytes of space.
*
* Format is as follows:
*
* 0x60 [APPLICATION 0] SEQUENCE
* DER encoded length length of oid + type + inner token length
* 0x06 NN <oid data> OID of mechanism type
* TT TT TOK_ID
* <inner token> data for inner token
*
* 1: der encoded length
*/
static void *
krb5_make_token(char tok_id[2], size_t hlen, size_t len, struct mbuf **mp)
{
size_t inside_len, len_len, tlen;
gss_OID oid = &krb5_mech_oid;
struct mbuf *m;
uint8_t *p;
inside_len = 2 + oid->length + len;
if (inside_len < 128)
len_len = 1;
else if (inside_len < 0x100)
len_len = 2;
else if (inside_len < 0x10000)
len_len = 3;
else if (inside_len < 0x1000000)
len_len = 4;
else
len_len = 5;
tlen = 1 + len_len + 2 + oid->length + hlen;
KASSERT(tlen <= MLEN, ("token head too large"));
MGET(m, M_WAITOK, MT_DATA);
M_ALIGN(m, tlen);
m->m_len = tlen;
p = (uint8_t *) m->m_data;
*p++ = 0x60;
switch (len_len) {
case 1:
*p++ = inside_len;
break;
case 2:
*p++ = 0x81;
*p++ = inside_len;
break;
case 3:
*p++ = 0x82;
*p++ = inside_len >> 8;
*p++ = inside_len;
break;
case 4:
*p++ = 0x83;
*p++ = inside_len >> 16;
*p++ = inside_len >> 8;
*p++ = inside_len;
break;
case 5:
*p++ = 0x84;
*p++ = inside_len >> 24;
*p++ = inside_len >> 16;
*p++ = inside_len >> 8;
*p++ = inside_len;
break;
}
*p++ = 0x06;
*p++ = oid->length;
bcopy(oid->elements, p, oid->length);
p += oid->length;
p[0] = tok_id[0];
p[1] = tok_id[1];
*mp = m;
return (p);
}
/*
* Verify a token, checking the inner token length and mechanism oid.
* pointer to the first byte of the TOK_ID. The length of the
* encapsulated data is checked to be at least len bytes; the actual
* length of the encapsulated data (including TOK_ID) is returned in
* *encap_len.
*
* If can_pullup is TRUE and the token header is fragmented, we will
* rearrange it.
*
* Format is as follows:
*
* 0x60 [APPLICATION 0] SEQUENCE
* DER encoded length length of oid + type + inner token length
* 0x06 NN <oid data> OID of mechanism type
* TT TT TOK_ID
* <inner token> data for inner token
*
* 1: der encoded length
*/
static void *
krb5_verify_token(char tok_id[2], size_t len, struct mbuf **mp,
size_t *encap_len, bool_t can_pullup)
{
struct mbuf *m;
size_t tlen, hlen, len_len, inside_len;
gss_OID oid = &krb5_mech_oid;
uint8_t *p;
m = *mp;
tlen = m_length(m, NULL);
if (tlen < 2)
return (NULL);
/*
* Ensure that at least the framing part of the token is
* contigous.
*/
if (m->m_len < 2) {
if (can_pullup)
*mp = m = m_pullup(m, 2);
else
return (NULL);
}
p = m->m_data;
if (*p++ != 0x60)
return (NULL);
if (*p < 0x80) {
inside_len = *p++;
len_len = 1;
} else {
/*
* Ensure there is enough space for the DER encoded length.
*/
len_len = (*p & 0x7f) + 1;
if (tlen < len_len + 1)
return (NULL);
if (m->m_len < len_len + 1) {
if (can_pullup)
*mp = m = m_pullup(m, len_len + 1);
else
return (NULL);
p = m->m_data + 1;
}
switch (*p++) {
case 0x81:
inside_len = *p++;
break;
case 0x82:
inside_len = (p[0] << 8) | p[1];
p += 2;
break;
case 0x83:
inside_len = (p[0] << 16) | (p[1] << 8) | p[2];
p += 3;
break;
case 0x84:
inside_len = (p[0] << 24) | (p[1] << 16)
| (p[2] << 8) | p[3];
p += 4;
break;
default:
return (NULL);
}
}
if (tlen != inside_len + len_len + 1)
return (NULL);
if (inside_len < 2 + oid->length + len)
return (NULL);
/*
* Now that we know the value of len_len, we can pullup the
* whole header. The header is 1 + len_len + 2 + oid->length +
* len bytes.
*/
hlen = 1 + len_len + 2 + oid->length + len;
if (m->m_len < hlen) {
if (can_pullup)
*mp = m = m_pullup(m, hlen);
else
return (NULL);
p = m->m_data + 1 + len_len;
}
if (*p++ != 0x06)
return (NULL);
if (*p++ != oid->length)
return (NULL);
if (bcmp(oid->elements, p, oid->length))
return (NULL);
p += oid->length;
if (p[0] != tok_id[0])
return (NULL);
if (p[1] != tok_id[1])
return (NULL);
*encap_len = inside_len - 2 - oid->length;
return (p);
}
static void
krb5_insert_seq(struct krb5_msg_order *mo, uint32_t seq, int index)
{
int i;
if (mo->km_length < mo->km_jitter_window)
mo->km_length++;
for (i = mo->km_length - 1; i > index; i--)
mo->km_elem[i] = mo->km_elem[i - 1];
mo->km_elem[index] = seq;
}
/*
* Check sequence numbers according to RFC 2743 section 1.2.3.
*/
static OM_uint32
krb5_sequence_check(struct krb5_context *kc, uint32_t seq)
{
OM_uint32 res = GSS_S_FAILURE;
struct krb5_msg_order *mo = &kc->kc_msg_order;
int check_sequence = mo->km_flags & GSS_C_SEQUENCE_FLAG;
int check_replay = mo->km_flags & GSS_C_REPLAY_FLAG;
int i;
mtx_lock(&kc->kc_lock);
/*
* Message is in-sequence with no gap.
*/
if (mo->km_length == 0 || seq == mo->km_elem[0] + 1) {
/*
* This message is received in-sequence with no gaps.
*/
krb5_insert_seq(mo, seq, 0);
res = GSS_S_COMPLETE;
goto out;
}
if (seq > mo->km_elem[0]) {
/*
* This message is received in-sequence with a gap.
*/
krb5_insert_seq(mo, seq, 0);
if (check_sequence)
res = GSS_S_GAP_TOKEN;
else
res = GSS_S_COMPLETE;
goto out;
}
if (seq < mo->km_elem[mo->km_length - 1]) {
if (check_replay && !check_sequence)
res = GSS_S_OLD_TOKEN;
else
res = GSS_S_UNSEQ_TOKEN;
goto out;
}
for (i = 0; i < mo->km_length; i++) {
if (mo->km_elem[i] == seq) {
res = GSS_S_DUPLICATE_TOKEN;
goto out;
}
if (mo->km_elem[i] < seq) {
/*
* We need to insert this seq here,
*/
krb5_insert_seq(mo, seq, i);
if (check_replay && !check_sequence)
res = GSS_S_COMPLETE;
else
res = GSS_S_UNSEQ_TOKEN;
goto out;
}
}
out:
mtx_unlock(&kc->kc_lock);
return (res);
}
static uint8_t sgn_alg_des_md5[] = { 0x00, 0x00 };
static uint8_t seal_alg_des[] = { 0x00, 0x00 };
static uint8_t sgn_alg_des3_sha1[] = { 0x04, 0x00 };
static uint8_t seal_alg_des3[] = { 0x02, 0x00 };
static uint8_t seal_alg_rc4[] = { 0x10, 0x00 };
static uint8_t sgn_alg_hmac_md5[] = { 0x11, 0x00 };
/*
* Return the size of the inner token given the use of the key's
* encryption class. For wrap tokens, the length of the padded
* plaintext will be added to this.
*/
static size_t
token_length(struct krb5_key_state *key)
{
return (16 + key->ks_class->ec_checksumlen);
}
static OM_uint32
krb5_get_mic_old(struct krb5_context *kc, struct mbuf *m,
struct mbuf **micp, uint8_t sgn_alg[2])
{
struct mbuf *mlast, *mic, *tm;
uint8_t *p, dir;
size_t tlen, mlen, cklen;
uint32_t seq;
char buf[8];
mlen = m_length(m, &mlast);
tlen = token_length(kc->kc_tokenkey);
p = krb5_make_token("\x01\x01", tlen, tlen, &mic);
p += 2; /* TOK_ID */
*p++ = sgn_alg[0]; /* SGN_ALG */
*p++ = sgn_alg[1];
*p++ = 0xff; /* filler */
*p++ = 0xff;
*p++ = 0xff;
*p++ = 0xff;
/*
* SGN_CKSUM:
*
* Calculate the keyed checksum of the token header plus the
* message.
*/
cklen = kc->kc_checksumkey->ks_class->ec_checksumlen;
mic->m_len = p - (uint8_t *) mic->m_data;
mic->m_next = m;
MGET(tm, M_WAITOK, MT_DATA);
tm->m_len = cklen;
mlast->m_next = tm;
krb5_checksum(kc->kc_checksumkey, 15, mic, mic->m_len - 8,
8 + mlen, cklen);
bcopy(tm->m_data, p + 8, cklen);
mic->m_next = NULL;
mlast->m_next = NULL;
m_free(tm);
/*
* SND_SEQ:
*
* Take the four bytes of the sequence number least
* significant first followed by four bytes of direction
* marker (zero for initiator and 0xff for acceptor). Encrypt
* that data using the SGN_CKSUM as IV. Note: ARC4 wants the
* sequence number big-endian.
*/
seq = atomic_fetchadd_32(&kc->kc_local_seqnumber, 1);
if (sgn_alg[0] == 0x11) {
p[0] = (seq >> 24);
p[1] = (seq >> 16);
p[2] = (seq >> 8);
p[3] = (seq >> 0);
} else {
p[0] = (seq >> 0);
p[1] = (seq >> 8);
p[2] = (seq >> 16);
p[3] = (seq >> 24);
}
if (is_initiator(kc)) {
dir = 0;
} else {
dir = 0xff;
}
p[4] = dir;
p[5] = dir;
p[6] = dir;
p[7] = dir;
bcopy(p + 8, buf, 8);
/*
* Set the mic buffer to its final size so that the encrypt
* can see the SND_SEQ part.
*/
mic->m_len += 8 + cklen;
krb5_encrypt(kc->kc_tokenkey, mic, mic->m_len - cklen - 8, 8, buf, 8);
*micp = mic;
return (GSS_S_COMPLETE);
}
static OM_uint32
krb5_get_mic_new(struct krb5_context *kc, struct mbuf *m,
struct mbuf **micp)
{
struct krb5_key_state *key = kc->kc_send_sign_Kc;
struct mbuf *mlast, *mic;
uint8_t *p;
int flags;
size_t mlen, cklen;
uint32_t seq;
mlen = m_length(m, &mlast);
cklen = key->ks_class->ec_checksumlen;
KASSERT(16 + cklen <= MLEN, ("checksum too large for an mbuf"));
MGET(mic, M_WAITOK, MT_DATA);
M_ALIGN(mic, 16 + cklen);
mic->m_len = 16 + cklen;
p = mic->m_data;
/* TOK_ID */
p[0] = 0x04;
p[1] = 0x04;
/* Flags */
flags = 0;
if (is_acceptor(kc))
flags |= GSS_TOKEN_SENT_BY_ACCEPTOR;
if (kc->kc_more_flags & ACCEPTOR_SUBKEY)
flags |= GSS_TOKEN_ACCEPTOR_SUBKEY;
p[2] = flags;
/* Filler */
p[3] = 0xff;
p[4] = 0xff;
p[5] = 0xff;
p[6] = 0xff;
p[7] = 0xff;
/* SND_SEQ */
p[8] = 0;
p[9] = 0;
p[10] = 0;
p[11] = 0;
seq = atomic_fetchadd_32(&kc->kc_local_seqnumber, 1);
p[12] = (seq >> 24);
p[13] = (seq >> 16);
p[14] = (seq >> 8);
p[15] = (seq >> 0);
/*
* SGN_CKSUM:
*
* Calculate the keyed checksum of the message plus the first
* 16 bytes of the token header.
*/
mlast->m_next = mic;
krb5_checksum(key, 0, m, 0, mlen + 16, cklen);
mlast->m_next = NULL;
*micp = mic;
return (GSS_S_COMPLETE);
}
static OM_uint32
krb5_get_mic(gss_ctx_id_t ctx, OM_uint32 *minor_status,
gss_qop_t qop_req, struct mbuf *m, struct mbuf **micp)
{
struct krb5_context *kc = (struct krb5_context *)ctx;
*minor_status = 0;
if (qop_req != GSS_C_QOP_DEFAULT)
return (GSS_S_BAD_QOP);
if (time_uptime > kc->kc_lifetime)
return (GSS_S_CONTEXT_EXPIRED);
switch (kc->kc_tokenkey->ks_class->ec_type) {
case ETYPE_DES_CBC_CRC:
return (krb5_get_mic_old(kc, m, micp, sgn_alg_des_md5));
case ETYPE_DES3_CBC_SHA1:
return (krb5_get_mic_old(kc, m, micp, sgn_alg_des3_sha1));
case ETYPE_ARCFOUR_HMAC_MD5:
case ETYPE_ARCFOUR_HMAC_MD5_56:
return (krb5_get_mic_old(kc, m, micp, sgn_alg_hmac_md5));
default:
return (krb5_get_mic_new(kc, m, micp));
}
return (GSS_S_FAILURE);
}
static OM_uint32
krb5_verify_mic_old(struct krb5_context *kc, struct mbuf *m, struct mbuf *mic,
uint8_t sgn_alg[2])
{
struct mbuf *mlast, *tm;
uint8_t *p, *tp, dir;
size_t mlen, tlen, elen, miclen;
size_t cklen;
uint32_t seq;
mlen = m_length(m, &mlast);
tlen = token_length(kc->kc_tokenkey);
p = krb5_verify_token("\x01\x01", tlen, &mic, &elen, FALSE);
if (!p)
return (GSS_S_DEFECTIVE_TOKEN);
#if 0
/*
* Disable this check - heimdal-1.1 generates DES3 MIC tokens
* that are 2 bytes too big.
*/
if (elen != tlen)
return (GSS_S_DEFECTIVE_TOKEN);
#endif
/* TOK_ID */
p += 2;
/* SGN_ALG */
if (p[0] != sgn_alg[0] || p[1] != sgn_alg[1])
return (GSS_S_DEFECTIVE_TOKEN);
p += 2;
if (p[0] != 0xff || p[1] != 0xff || p[2] != 0xff || p[3] != 0xff)
return (GSS_S_DEFECTIVE_TOKEN);
p += 4;
/*
* SGN_CKSUM:
*
* Calculate the keyed checksum of the token header plus the
* message.
*/
cklen = kc->kc_checksumkey->ks_class->ec_checksumlen;
miclen = mic->m_len;
mic->m_len = p - (uint8_t *) mic->m_data;
mic->m_next = m;
MGET(tm, M_WAITOK, MT_DATA);
tm->m_len = cklen;
mlast->m_next = tm;
krb5_checksum(kc->kc_checksumkey, 15, mic, mic->m_len - 8,
8 + mlen, cklen);
mic->m_next = NULL;
mlast->m_next = NULL;
if (bcmp(tm->m_data, p + 8, cklen)) {
m_free(tm);
return (GSS_S_BAD_SIG);
}
/*
* SND_SEQ:
*
* Take the four bytes of the sequence number least
* significant first followed by four bytes of direction
* marker (zero for initiator and 0xff for acceptor). Encrypt
* that data using the SGN_CKSUM as IV. Note: ARC4 wants the
* sequence number big-endian.
*/
bcopy(p, tm->m_data, 8);
tm->m_len = 8;
krb5_decrypt(kc->kc_tokenkey, tm, 0, 8, p + 8, 8);
tp = tm->m_data;
if (sgn_alg[0] == 0x11) {
seq = tp[3] | (tp[2] << 8) | (tp[1] << 16) | (tp[0] << 24);
} else {
seq = tp[0] | (tp[1] << 8) | (tp[2] << 16) | (tp[3] << 24);
}
if (is_initiator(kc)) {
dir = 0xff;
} else {
dir = 0;
}
if (tp[4] != dir || tp[5] != dir || tp[6] != dir || tp[7] != dir) {
m_free(tm);
return (GSS_S_DEFECTIVE_TOKEN);
}
m_free(tm);
if (kc->kc_msg_order.km_flags &
(GSS_C_REPLAY_FLAG | GSS_C_SEQUENCE_FLAG)) {
return (krb5_sequence_check(kc, seq));
}
return (GSS_S_COMPLETE);
}
static OM_uint32
krb5_verify_mic_new(struct krb5_context *kc, struct mbuf *m, struct mbuf *mic)
{
OM_uint32 res;
struct krb5_key_state *key = kc->kc_recv_sign_Kc;
struct mbuf *mlast;
uint8_t *p;
int flags;
size_t mlen, cklen;
char buf[32];
mlen = m_length(m, &mlast);
cklen = key->ks_class->ec_checksumlen;
KASSERT(mic->m_next == NULL, ("MIC should be contiguous"));
if (mic->m_len != 16 + cklen)
return (GSS_S_DEFECTIVE_TOKEN);
p = mic->m_data;
/* TOK_ID */
if (p[0] != 0x04)
return (GSS_S_DEFECTIVE_TOKEN);
if (p[1] != 0x04)
return (GSS_S_DEFECTIVE_TOKEN);
/* Flags */
flags = 0;
if (is_initiator(kc))
flags |= GSS_TOKEN_SENT_BY_ACCEPTOR;
if (kc->kc_more_flags & ACCEPTOR_SUBKEY)
flags |= GSS_TOKEN_ACCEPTOR_SUBKEY;
if (p[2] != flags)
return (GSS_S_DEFECTIVE_TOKEN);
/* Filler */
if (p[3] != 0xff)
return (GSS_S_DEFECTIVE_TOKEN);
if (p[4] != 0xff)
return (GSS_S_DEFECTIVE_TOKEN);
if (p[5] != 0xff)
return (GSS_S_DEFECTIVE_TOKEN);
if (p[6] != 0xff)
return (GSS_S_DEFECTIVE_TOKEN);
if (p[7] != 0xff)
return (GSS_S_DEFECTIVE_TOKEN);
/* SND_SEQ */
if (kc->kc_msg_order.km_flags &
(GSS_C_REPLAY_FLAG | GSS_C_SEQUENCE_FLAG)) {
uint32_t seq;
if (p[8] || p[9] || p[10] || p[11]) {
res = GSS_S_UNSEQ_TOKEN;
} else {
seq = (p[12] << 24) | (p[13] << 16)
| (p[14] << 8) | p[15];
res = krb5_sequence_check(kc, seq);
}
if (GSS_ERROR(res))
return (res);
} else {
res = GSS_S_COMPLETE;
}
/*
* SGN_CKSUM:
*
* Calculate the keyed checksum of the message plus the first
* 16 bytes of the token header.
*/
m_copydata(mic, 16, cklen, buf);
mlast->m_next = mic;
krb5_checksum(key, 0, m, 0, mlen + 16, cklen);
mlast->m_next = NULL;
if (bcmp(buf, p + 16, cklen)) {
return (GSS_S_BAD_SIG);
}
return (GSS_S_COMPLETE);
}
static OM_uint32
krb5_verify_mic(gss_ctx_id_t ctx, OM_uint32 *minor_status,
struct mbuf *m, struct mbuf *mic, gss_qop_t *qop_state)
{
struct krb5_context *kc = (struct krb5_context *)ctx;
*minor_status = 0;
if (qop_state)
*qop_state = GSS_C_QOP_DEFAULT;
if (time_uptime > kc->kc_lifetime)
return (GSS_S_CONTEXT_EXPIRED);
switch (kc->kc_tokenkey->ks_class->ec_type) {
case ETYPE_DES_CBC_CRC:
return (krb5_verify_mic_old(kc, m, mic, sgn_alg_des_md5));
case ETYPE_ARCFOUR_HMAC_MD5:
case ETYPE_ARCFOUR_HMAC_MD5_56:
return (krb5_verify_mic_old(kc, m, mic, sgn_alg_hmac_md5));
case ETYPE_DES3_CBC_SHA1:
return (krb5_verify_mic_old(kc, m, mic, sgn_alg_des3_sha1));
default:
return (krb5_verify_mic_new(kc, m, mic));
}
return (GSS_S_FAILURE);
}
static OM_uint32
krb5_wrap_old(struct krb5_context *kc, int conf_req_flag,
struct mbuf **mp, int *conf_state,
uint8_t sgn_alg[2], uint8_t seal_alg[2])
{
struct mbuf *m, *mlast, *tm, *cm, *pm;
size_t mlen, tlen, padlen, datalen;
uint8_t *p, dir;
size_t cklen;
uint8_t buf[8];
uint32_t seq;
/*
* How many trailing pad bytes do we need?
*/
m = *mp;
mlen = m_length(m, &mlast);
tlen = kc->kc_tokenkey->ks_class->ec_msgblocklen;
padlen = tlen - (mlen % tlen);
/*
* The data part of the token has eight bytes of random
* confounder prepended and followed by up to eight bytes of
* padding bytes each of which is set to the number of padding
* bytes.
*/
datalen = mlen + 8 + padlen;
tlen = token_length(kc->kc_tokenkey);
p = krb5_make_token("\x02\x01", tlen, datalen + tlen, &tm);
p += 2; /* TOK_ID */
*p++ = sgn_alg[0]; /* SGN_ALG */
*p++ = sgn_alg[1];
if (conf_req_flag) {
*p++ = seal_alg[0]; /* SEAL_ALG */
*p++ = seal_alg[1];
} else {
*p++ = 0xff; /* SEAL_ALG = none */
*p++ = 0xff;
}
*p++ = 0xff; /* filler */
*p++ = 0xff;
/*
* Copy the padded message data.
*/
if (M_LEADINGSPACE(m) >= 8) {
m->m_data -= 8;
m->m_len += 8;
} else {
MGET(cm, M_WAITOK, MT_DATA);
cm->m_len = 8;
cm->m_next = m;
m = cm;
}
arc4rand(m->m_data, 8, 0);
if (M_TRAILINGSPACE(mlast) >= padlen) {
memset(mlast->m_data + mlast->m_len, padlen, padlen);
mlast->m_len += padlen;
} else {
MGET(pm, M_WAITOK, MT_DATA);
memset(pm->m_data, padlen, padlen);
pm->m_len = padlen;
mlast->m_next = pm;
mlast = pm;
}
tm->m_next = m;
/*
* SGN_CKSUM:
*
* Calculate the keyed checksum of the token header plus the
* padded message. Fiddle with tm->m_len so that we only
* checksum the 8 bytes of head that we care about.
*/
cklen = kc->kc_checksumkey->ks_class->ec_checksumlen;
tlen = tm->m_len;
tm->m_len = p - (uint8_t *) tm->m_data;
MGET(cm, M_WAITOK, MT_DATA);
cm->m_len = cklen;
mlast->m_next = cm;
krb5_checksum(kc->kc_checksumkey, 13, tm, tm->m_len - 8,
datalen + 8, cklen);
tm->m_len = tlen;
mlast->m_next = NULL;
bcopy(cm->m_data, p + 8, cklen);
m_free(cm);
/*
* SND_SEQ:
*
* Take the four bytes of the sequence number least
* significant first (most significant first for ARCFOUR)
* followed by four bytes of direction marker (zero for
* initiator and 0xff for acceptor). Encrypt that data using
* the SGN_CKSUM as IV.
*/
seq = atomic_fetchadd_32(&kc->kc_local_seqnumber, 1);
if (sgn_alg[0] == 0x11) {
p[0] = (seq >> 24);
p[1] = (seq >> 16);
p[2] = (seq >> 8);
p[3] = (seq >> 0);
} else {
p[0] = (seq >> 0);
p[1] = (seq >> 8);
p[2] = (seq >> 16);
p[3] = (seq >> 24);
}
if (is_initiator(kc)) {
dir = 0;
} else {
dir = 0xff;
}
p[4] = dir;
p[5] = dir;
p[6] = dir;
p[7] = dir;
krb5_encrypt(kc->kc_tokenkey, tm, p - (uint8_t *) tm->m_data,
8, p + 8, 8);
if (conf_req_flag) {
/*
* Encrypt the padded message with an IV of zero for
* DES and DES3, or an IV of the sequence number in
* big-endian format for ARCFOUR.
*/
if (seal_alg[0] == 0x10) {
buf[0] = (seq >> 24);
buf[1] = (seq >> 16);
buf[2] = (seq >> 8);
buf[3] = (seq >> 0);
krb5_encrypt(kc->kc_encryptkey, m, 0, datalen,
buf, 4);
} else {
krb5_encrypt(kc->kc_encryptkey, m, 0, datalen,
NULL, 0);
}
}
if (conf_state)
*conf_state = conf_req_flag;
*mp = tm;
return (GSS_S_COMPLETE);
}
static OM_uint32
krb5_wrap_new(struct krb5_context *kc, int conf_req_flag,
struct mbuf **mp, int *conf_state)
{
struct krb5_key_state *Ke = kc->kc_send_seal_Ke;
struct krb5_key_state *Ki = kc->kc_send_seal_Ki;
struct krb5_key_state *Kc = kc->kc_send_seal_Kc;
const struct krb5_encryption_class *ec = Ke->ks_class;
struct mbuf *m, *mlast, *tm;
uint8_t *p;
int flags, EC;
size_t mlen, blen, mblen, cklen, ctlen;
uint32_t seq;
static char zpad[32];
m = *mp;
mlen = m_length(m, &mlast);
blen = ec->ec_blocklen;
mblen = ec->ec_msgblocklen;
cklen = ec->ec_checksumlen;
if (conf_req_flag) {
/*
* For sealed messages, we need space for 16 bytes of
* header, blen confounder, plaintext, padding, copy
* of header and checksum.
*
* We pad to mblen (which may be different from
* blen). If the encryption class is using CTS, mblen
* will be one (i.e. no padding required).
*/
if (mblen > 1)
EC = mlen % mblen;
else
EC = 0;
ctlen = blen + mlen + EC + 16;
/*
* Put initial header and confounder before the
* message.
*/
M_PREPEND(m, 16 + blen, M_WAITOK);
/*
* Append padding + copy of header and checksum. Try
* to fit this into the end of the original message,
* otherwise allocate a trailer.
*/
if (M_TRAILINGSPACE(mlast) >= EC + 16 + cklen) {
tm = NULL;
mlast->m_len += EC + 16 + cklen;
} else {
MGET(tm, M_WAITOK, MT_DATA);
tm->m_len = EC + 16 + cklen;
mlast->m_next = tm;
}
} else {
/*
* For unsealed messages, we need 16 bytes of header
* plus space for the plaintext and a checksum. EC is
* set to the checksum size. We leave space in tm for
* a copy of the header - this will be trimmed later.
*/
M_PREPEND(m, 16, M_WAITOK);
MGET(tm, M_WAITOK, MT_DATA);
tm->m_len = cklen + 16;
mlast->m_next = tm;
ctlen = 0;
EC = cklen;
}
p = m->m_data;
/* TOK_ID */
p[0] = 0x05;
p[1] = 0x04;
/* Flags */
flags = 0;
if (conf_req_flag)
flags = GSS_TOKEN_SEALED;
if (is_acceptor(kc))
flags |= GSS_TOKEN_SENT_BY_ACCEPTOR;
if (kc->kc_more_flags & ACCEPTOR_SUBKEY)
flags |= GSS_TOKEN_ACCEPTOR_SUBKEY;
p[2] = flags;
/* Filler */
p[3] = 0xff;
/* EC + RRC - set to zero initially */
p[4] = 0;
p[5] = 0;
p[6] = 0;
p[7] = 0;
/* SND_SEQ */
p[8] = 0;
p[9] = 0;
p[10] = 0;
p[11] = 0;
seq = atomic_fetchadd_32(&kc->kc_local_seqnumber, 1);
p[12] = (seq >> 24);
p[13] = (seq >> 16);
p[14] = (seq >> 8);
p[15] = (seq >> 0);
if (conf_req_flag) {
/*
* Encrypt according to RFC 4121 section 4.2 and RFC
* 3961 section 5.3. Note: we don't generate tokens
* with RRC values other than zero. If we did, we
* should zero RRC in the copied header.
*/
arc4rand(p + 16, blen, 0);
if (EC) {
m_copyback(m, 16 + blen + mlen, EC, zpad);
}
m_copyback(m, 16 + blen + mlen + EC, 16, p);
krb5_checksum(Ki, 0, m, 16, ctlen, cklen);
krb5_encrypt(Ke, m, 16, ctlen, NULL, 0);
} else {
/*
* The plaintext message is followed by a checksum of
* the plaintext plus a version of the header where EC
* and RRC are set to zero. Also, the original EC must
* be our checksum size.
*/
bcopy(p, tm->m_data, 16);
krb5_checksum(Kc, 0, m, 16, mlen + 16, cklen);
tm->m_data += 16;
tm->m_len -= 16;
}
/*
* Finally set EC to its actual value
*/
p[4] = EC >> 8;
p[5] = EC;
*mp = m;
return (GSS_S_COMPLETE);
}
static OM_uint32
krb5_wrap(gss_ctx_id_t ctx, OM_uint32 *minor_status,
int conf_req_flag, gss_qop_t qop_req,
struct mbuf **mp, int *conf_state)
{
struct krb5_context *kc = (struct krb5_context *)ctx;
*minor_status = 0;
if (conf_state)
*conf_state = 0;
if (qop_req != GSS_C_QOP_DEFAULT)
return (GSS_S_BAD_QOP);
if (time_uptime > kc->kc_lifetime)
return (GSS_S_CONTEXT_EXPIRED);
switch (kc->kc_tokenkey->ks_class->ec_type) {
case ETYPE_DES_CBC_CRC:
return (krb5_wrap_old(kc, conf_req_flag,
mp, conf_state, sgn_alg_des_md5, seal_alg_des));
case ETYPE_ARCFOUR_HMAC_MD5:
case ETYPE_ARCFOUR_HMAC_MD5_56:
return (krb5_wrap_old(kc, conf_req_flag,
mp, conf_state, sgn_alg_hmac_md5, seal_alg_rc4));
case ETYPE_DES3_CBC_SHA1:
return (krb5_wrap_old(kc, conf_req_flag,
mp, conf_state, sgn_alg_des3_sha1, seal_alg_des3));
default:
return (krb5_wrap_new(kc, conf_req_flag, mp, conf_state));
}
return (GSS_S_FAILURE);
}
static void
m_trim(struct mbuf *m, int len)
{
struct mbuf *n;
int off;
if (m == NULL)
return;
n = m_getptr(m, len, &off);
if (n) {
n->m_len = off;
if (n->m_next) {
m_freem(n->m_next);
n->m_next = NULL;
}
}
}
static OM_uint32
krb5_unwrap_old(struct krb5_context *kc, struct mbuf **mp, int *conf_state,
uint8_t sgn_alg[2], uint8_t seal_alg[2])
{
OM_uint32 res;
struct mbuf *m, *mlast, *hm, *cm, *n;
uint8_t *p, dir;
size_t mlen, tlen, elen, datalen, padlen;
size_t cklen;
uint8_t buf[32];
uint32_t seq;
int i, conf;
m = *mp;
mlen = m_length(m, &mlast);
tlen = token_length(kc->kc_tokenkey);
cklen = kc->kc_tokenkey->ks_class->ec_checksumlen;
p = krb5_verify_token("\x02\x01", tlen, &m, &elen, TRUE);
*mp = m;
if (!p)
return (GSS_S_DEFECTIVE_TOKEN);
datalen = elen - tlen;
/*
* Trim the framing header first to make life a little easier
* later.
*/
m_adj(m, p - (uint8_t *) m->m_data);
/* TOK_ID */
p += 2;
/* SGN_ALG */
if (p[0] != sgn_alg[0] || p[1] != sgn_alg[1])
return (GSS_S_DEFECTIVE_TOKEN);
p += 2;
/* SEAL_ALG */
if (p[0] == seal_alg[0] && p[1] == seal_alg[1])
conf = 1;
else if (p[0] == 0xff && p[1] == 0xff)
conf = 0;
else
return (GSS_S_DEFECTIVE_TOKEN);
p += 2;
if (p[0] != 0xff || p[1] != 0xff)
return (GSS_S_DEFECTIVE_TOKEN);
p += 2;
/*
* SND_SEQ:
*
* Take the four bytes of the sequence number least
* significant first (most significant for ARCFOUR) followed
* by four bytes of direction marker (zero for initiator and
* 0xff for acceptor). Encrypt that data using the SGN_CKSUM
* as IV.
*/
krb5_decrypt(kc->kc_tokenkey, m, 8, 8, p + 8, 8);
if (sgn_alg[0] == 0x11) {
seq = p[3] | (p[2] << 8) | (p[1] << 16) | (p[0] << 24);
} else {
seq = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
}
if (is_initiator(kc)) {
dir = 0xff;
} else {
dir = 0;
}
if (p[4] != dir || p[5] != dir || p[6] != dir || p[7] != dir)
return (GSS_S_DEFECTIVE_TOKEN);
if (kc->kc_msg_order.km_flags &
(GSS_C_REPLAY_FLAG | GSS_C_SEQUENCE_FLAG)) {
res = krb5_sequence_check(kc, seq);
if (GSS_ERROR(res))
return (res);
} else {
res = GSS_S_COMPLETE;
}
/*
* If the token was encrypted, decode it in-place.
*/
if (conf) {
/*
* Decrypt the padded message with an IV of zero for
* DES and DES3 or an IV of the big-endian encoded
* sequence number for ARCFOUR.
*/
if (seal_alg[0] == 0x10) {
krb5_decrypt(kc->kc_encryptkey, m, 16 + cklen,
datalen, p, 4);
} else {
krb5_decrypt(kc->kc_encryptkey, m, 16 + cklen,
datalen, NULL, 0);
}
}
if (conf_state)
*conf_state = conf;
/*
* Check the trailing pad bytes.
* RFC1964 specifies between 1<->8 bytes, each with a binary value
* equal to the number of bytes.
*/
if (mlast->m_len > 0)
padlen = mlast->m_data[mlast->m_len - 1];
else {
n = m_getptr(m, tlen + datalen - 1, &i);
/*
* When the position is exactly equal to the # of data bytes
* in the mbuf list, m_getptr() will return the last mbuf in
* the list and an off == m_len for that mbuf, so that case
* needs to be checked as well as a NULL return.
*/
if (n == NULL || n->m_len == i)
return (GSS_S_DEFECTIVE_TOKEN);
padlen = n->m_data[i];
}
if (padlen < 1 || padlen > 8 || padlen > tlen + datalen)
return (GSS_S_DEFECTIVE_TOKEN);
m_copydata(m, tlen + datalen - padlen, padlen, buf);
for (i = 0; i < padlen; i++) {
if (buf[i] != padlen) {
return (GSS_S_DEFECTIVE_TOKEN);
}
}
/*
* SGN_CKSUM:
*
* Calculate the keyed checksum of the token header plus the
* padded message. We do a little mbuf surgery to trim out the
* parts we don't want to checksum.
*/
hm = m;
*mp = m = m_split(m, 16 + cklen, M_WAITOK);
mlast = m_last(m);
hm->m_len = 8;
hm->m_next = m;
MGET(cm, M_WAITOK, MT_DATA);
cm->m_len = cklen;
mlast->m_next = cm;
krb5_checksum(kc->kc_checksumkey, 13, hm, 0, datalen + 8, cklen);
hm->m_next = NULL;
mlast->m_next = NULL;
if (bcmp(cm->m_data, hm->m_data + 16, cklen)) {
m_freem(hm);
m_free(cm);
return (GSS_S_BAD_SIG);
}
m_freem(hm);
m_free(cm);
/*
* Trim off the confounder and padding.
*/
m_adj(m, 8);
if (mlast->m_len >= padlen) {
mlast->m_len -= padlen;
} else {
m_trim(m, datalen - 8 - padlen);
}
*mp = m;
return (res);
}
static OM_uint32
krb5_unwrap_new(struct krb5_context *kc, struct mbuf **mp, int *conf_state)
{
OM_uint32 res;
struct krb5_key_state *Ke = kc->kc_recv_seal_Ke;
struct krb5_key_state *Ki = kc->kc_recv_seal_Ki;
struct krb5_key_state *Kc = kc->kc_recv_seal_Kc;
const struct krb5_encryption_class *ec = Ke->ks_class;
struct mbuf *m, *mlast, *hm, *cm;
uint8_t *p, *pp;
int sealed, flags, EC, RRC;
size_t blen, cklen, ctlen, mlen, plen, tlen;
char buf[32], buf2[32];
m = *mp;
mlen = m_length(m, &mlast);
if (mlen <= 16)
return (GSS_S_DEFECTIVE_TOKEN);
if (m->m_len < 16) {
m = m_pullup(m, 16);
*mp = m;
}
p = m->m_data;
/* TOK_ID */
if (p[0] != 0x05)
return (GSS_S_DEFECTIVE_TOKEN);
if (p[1] != 0x04)
return (GSS_S_DEFECTIVE_TOKEN);
/* Flags */
sealed = p[2] & GSS_TOKEN_SEALED;
flags = sealed;
if (is_initiator(kc))
flags |= GSS_TOKEN_SENT_BY_ACCEPTOR;
if (kc->kc_more_flags & ACCEPTOR_SUBKEY)
flags |= GSS_TOKEN_ACCEPTOR_SUBKEY;
if (p[2] != flags)
return (GSS_S_DEFECTIVE_TOKEN);
/* Filler */
if (p[3] != 0xff)
return (GSS_S_DEFECTIVE_TOKEN);
/* EC + RRC */
EC = (p[4] << 8) + p[5];
RRC = (p[6] << 8) + p[7];
/* SND_SEQ */
if (kc->kc_msg_order.km_flags &
(GSS_C_REPLAY_FLAG | GSS_C_SEQUENCE_FLAG)) {
uint32_t seq;
if (p[8] || p[9] || p[10] || p[11]) {
res = GSS_S_UNSEQ_TOKEN;
} else {
seq = (p[12] << 24) | (p[13] << 16)
| (p[14] << 8) | p[15];
res = krb5_sequence_check(kc, seq);
}
if (GSS_ERROR(res))
return (res);
} else {
res = GSS_S_COMPLETE;
}
/*
* Separate the header before dealing with RRC. We only need
* to keep the header if the message isn't encrypted.
*/
if (sealed) {
hm = NULL;
m_adj(m, 16);
} else {
hm = m;
*mp = m = m_split(m, 16, M_WAITOK);
mlast = m_last(m);
}
/*
* Undo the effects of RRC by rotating left.
*/
if (RRC > 0) {
struct mbuf *rm;
size_t rlen;
rlen = mlen - 16;
if (RRC <= sizeof(buf) && m->m_len >= rlen) {
/*
* Simple case, just rearrange the bytes in m.
*/
bcopy(m->m_data, buf, RRC);
bcopy(m->m_data + RRC, m->m_data, rlen - RRC);
bcopy(buf, m->m_data + rlen - RRC, RRC);
} else {
/*
* More complicated - rearrange the mbuf
* chain.
*/
rm = m;
*mp = m = m_split(m, RRC, M_WAITOK);
m_cat(m, rm);
mlast = rm;
}
}
blen = ec->ec_blocklen;
cklen = ec->ec_checksumlen;
if (sealed) {
/*
* Decrypt according to RFC 4121 section 4.2 and RFC
* 3961 section 5.3. The message must be large enough
* for a blocksize confounder, at least one block of
* cyphertext and a checksum.
*/
if (mlen < 16 + 2*blen + cklen)
return (GSS_S_DEFECTIVE_TOKEN);
ctlen = mlen - 16 - cklen;
krb5_decrypt(Ke, m, 0, ctlen, NULL, 0);
/*
* The size of the plaintext is ctlen minus blocklen
* (for the confounder), 16 (for the copy of the token
* header) and EC (for the filler). The actual
* plaintext starts after the confounder.
*/
plen = ctlen - blen - 16 - EC;
pp = p + 16 + blen;
/*
* Checksum the padded plaintext.
*/
m_copydata(m, ctlen, cklen, buf);
krb5_checksum(Ki, 0, m, 0, ctlen, cklen);
m_copydata(m, ctlen, cklen, buf2);
if (bcmp(buf, buf2, cklen))
return (GSS_S_BAD_SIG);
/*
* Trim the message back to just plaintext.
*/
m_adj(m, blen);
tlen = 16 + EC + cklen;
if (mlast->m_len >= tlen) {
mlast->m_len -= tlen;
} else {
m_trim(m, plen);
}
} else {
/*
* The plaintext message is followed by a checksum of
* the plaintext plus a version of the header where EC
* and RRC are set to zero. Also, the original EC must
* be our checksum size.
*/
if (mlen < 16 + cklen || EC != cklen)
return (GSS_S_DEFECTIVE_TOKEN);
/*
* The size of the plaintext is simply the message
* size less header and checksum. The plaintext starts
* right after the header (which we have saved in hm).
*/
plen = mlen - 16 - cklen;
/*
* Insert a copy of the header (with EC and RRC set to
* zero) between the plaintext message and the
* checksum.
*/
p = hm->m_data;
p[4] = p[5] = p[6] = p[7] = 0;
cm = m_split(m, plen, M_WAITOK);
mlast = m_last(m);
m->m_next = hm;
hm->m_next = cm;
bcopy(cm->m_data, buf, cklen);
krb5_checksum(Kc, 0, m, 0, plen + 16, cklen);
if (bcmp(cm->m_data, buf, cklen))
return (GSS_S_BAD_SIG);
/*
* The checksum matches, discard all buf the plaintext.
*/
mlast->m_next = NULL;
m_freem(hm);
}
if (conf_state)
*conf_state = (sealed != 0);
return (res);
}
static OM_uint32
krb5_unwrap(gss_ctx_id_t ctx, OM_uint32 *minor_status,
struct mbuf **mp, int *conf_state, gss_qop_t *qop_state)
{
struct krb5_context *kc = (struct krb5_context *)ctx;
OM_uint32 maj_stat;
*minor_status = 0;
if (qop_state)
*qop_state = GSS_C_QOP_DEFAULT;
if (conf_state)
*conf_state = 0;
if (time_uptime > kc->kc_lifetime)
return (GSS_S_CONTEXT_EXPIRED);
switch (kc->kc_tokenkey->ks_class->ec_type) {
case ETYPE_DES_CBC_CRC:
maj_stat = krb5_unwrap_old(kc, mp, conf_state,
sgn_alg_des_md5, seal_alg_des);
break;
case ETYPE_ARCFOUR_HMAC_MD5:
case ETYPE_ARCFOUR_HMAC_MD5_56:
maj_stat = krb5_unwrap_old(kc, mp, conf_state,
sgn_alg_hmac_md5, seal_alg_rc4);
break;
case ETYPE_DES3_CBC_SHA1:
maj_stat = krb5_unwrap_old(kc, mp, conf_state,
sgn_alg_des3_sha1, seal_alg_des3);
break;
default:
maj_stat = krb5_unwrap_new(kc, mp, conf_state);
break;
}
if (GSS_ERROR(maj_stat)) {
m_freem(*mp);
*mp = NULL;
}
return (maj_stat);
}
static OM_uint32
krb5_wrap_size_limit(gss_ctx_id_t ctx, OM_uint32 *minor_status,
int conf_req_flag, gss_qop_t qop_req, OM_uint32 req_output_size,
OM_uint32 *max_input_size)
{
struct krb5_context *kc = (struct krb5_context *)ctx;
const struct krb5_encryption_class *ec;
OM_uint32 overhead;
*minor_status = 0;
*max_input_size = 0;
if (qop_req != GSS_C_QOP_DEFAULT)
return (GSS_S_BAD_QOP);
ec = kc->kc_tokenkey->ks_class;
switch (ec->ec_type) {
case ETYPE_DES_CBC_CRC:
case ETYPE_DES3_CBC_SHA1:
case ETYPE_ARCFOUR_HMAC_MD5:
case ETYPE_ARCFOUR_HMAC_MD5_56:
/*
* up to 5 bytes for [APPLICATION 0] SEQUENCE
* 2 + krb5 oid length
* 8 bytes of header
* 8 bytes of confounder
* maximum of 8 bytes of padding
* checksum
*/
overhead = 5 + 2 + krb5_mech_oid.length;
overhead += 8 + 8 + ec->ec_msgblocklen;
overhead += ec->ec_checksumlen;
break;
default:
if (conf_req_flag) {
/*
* 16 byts of header
* blocklen bytes of confounder
* up to msgblocklen - 1 bytes of padding
* 16 bytes for copy of header
* checksum
*/
overhead = 16 + ec->ec_blocklen;
overhead += ec->ec_msgblocklen - 1;
overhead += 16;
overhead += ec->ec_checksumlen;
} else {
/*
* 16 bytes of header plus checksum.
*/
overhead = 16 + ec->ec_checksumlen;
}
}
*max_input_size = req_output_size - overhead;
return (GSS_S_COMPLETE);
}
static kobj_method_t krb5_methods[] = {
KOBJMETHOD(kgss_init, krb5_init),
KOBJMETHOD(kgss_import, krb5_import),
KOBJMETHOD(kgss_delete, krb5_delete),
KOBJMETHOD(kgss_mech_type, krb5_mech_type),
KOBJMETHOD(kgss_get_mic, krb5_get_mic),
KOBJMETHOD(kgss_verify_mic, krb5_verify_mic),
KOBJMETHOD(kgss_wrap, krb5_wrap),
KOBJMETHOD(kgss_unwrap, krb5_unwrap),
KOBJMETHOD(kgss_wrap_size_limit, krb5_wrap_size_limit),
{ 0, 0 }
};
static struct kobj_class krb5_class = {
"kerberosv5",
krb5_methods,
sizeof(struct krb5_context)
};
/*
* Kernel module glue
*/
static int
kgssapi_krb5_modevent(module_t mod, int type, void *data)
{
switch (type) {
case MOD_LOAD:
kgss_install_mech(&krb5_mech_oid, "kerberosv5", &krb5_class);
break;
case MOD_UNLOAD:
kgss_uninstall_mech(&krb5_mech_oid);
break;
}
return (0);
}
static moduledata_t kgssapi_krb5_mod = {
"kgssapi_krb5",
kgssapi_krb5_modevent,
NULL,
};
DECLARE_MODULE(kgssapi_krb5, kgssapi_krb5_mod, SI_SUB_VFS, SI_ORDER_ANY);
MODULE_DEPEND(kgssapi_krb5, kgssapi, 1, 1, 1);
MODULE_DEPEND(kgssapi_krb5, crypto, 1, 1, 1);
MODULE_DEPEND(kgssapi_krb5, rc4, 1, 1, 1);
MODULE_VERSION(kgssapi_krb5, 1);