freebsd-skq/sys/dev/aic7xxx/aic7xxx_osm.c
Pedro F. Giffuni f0be707d74 sys/dev: replace comma with semicolon when pertinent.
Uses of commas instead of a semicolons can easily go undetected. The comma
can serve as a statement separator but this shouldn't be abused when
statements are meant to be standalone.

Detected with devel/coccinelle following a hint from DragonFlyBSD.

MFC after:	1 month
2016-08-09 19:41:46 +00:00

1452 lines
37 KiB
C

/*-
* Bus independent FreeBSD shim for the aic7xxx based Adaptec SCSI controllers
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU Public License ("GPL").
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $Id: //depot/aic7xxx/freebsd/dev/aic7xxx/aic7xxx_osm.c#20 $
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/aic7xxx/aic7xxx_osm.h>
#include <dev/aic7xxx/aic7xxx_inline.h>
#include <sys/kthread.h>
#ifndef AHC_TMODE_ENABLE
#define AHC_TMODE_ENABLE 0
#endif
#include <dev/aic7xxx/aic_osm_lib.c>
#define ccb_scb_ptr spriv_ptr0
devclass_t ahc_devclass;
#if 0
static void ahc_dump_targcmd(struct target_cmd *cmd);
#endif
static int ahc_modevent(module_t mod, int type, void *data);
static void ahc_action(struct cam_sim *sim, union ccb *ccb);
static void ahc_get_tran_settings(struct ahc_softc *ahc,
int our_id, char channel,
struct ccb_trans_settings *cts);
static void ahc_async(void *callback_arg, uint32_t code,
struct cam_path *path, void *arg);
static void ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs,
int nsegments, int error);
static void ahc_poll(struct cam_sim *sim);
static void ahc_setup_data(struct ahc_softc *ahc, struct cam_sim *sim,
struct ccb_scsiio *csio, struct scb *scb);
static void ahc_abort_ccb(struct ahc_softc *ahc, struct cam_sim *sim,
union ccb *ccb);
static int ahc_create_path(struct ahc_softc *ahc,
char channel, u_int target, u_int lun,
struct cam_path **path);
static int
ahc_create_path(struct ahc_softc *ahc, char channel, u_int target,
u_int lun, struct cam_path **path)
{
path_id_t path_id;
if (channel == 'B')
path_id = cam_sim_path(ahc->platform_data->sim_b);
else
path_id = cam_sim_path(ahc->platform_data->sim);
return (xpt_create_path(path, /*periph*/NULL,
path_id, target, lun));
}
int
ahc_map_int(struct ahc_softc *ahc)
{
int error;
int zero;
int shareable;
zero = 0;
shareable = (ahc->flags & AHC_EDGE_INTERRUPT) ? 0: RF_SHAREABLE;
ahc->platform_data->irq =
bus_alloc_resource_any(ahc->dev_softc, SYS_RES_IRQ, &zero,
RF_ACTIVE | shareable);
if (ahc->platform_data->irq == NULL) {
device_printf(ahc->dev_softc,
"bus_alloc_resource() failed to allocate IRQ\n");
return (ENOMEM);
}
ahc->platform_data->irq_res_type = SYS_RES_IRQ;
/* Hook up our interrupt handler */
error = bus_setup_intr(ahc->dev_softc, ahc->platform_data->irq,
INTR_TYPE_CAM|INTR_MPSAFE, NULL,
ahc_platform_intr, ahc, &ahc->platform_data->ih);
if (error != 0)
device_printf(ahc->dev_softc, "bus_setup_intr() failed: %d\n",
error);
return (error);
}
int
aic7770_map_registers(struct ahc_softc *ahc, u_int unused_ioport_arg)
{
struct resource *regs;
int rid;
rid = 0;
regs = bus_alloc_resource_any(ahc->dev_softc, SYS_RES_IOPORT, &rid,
RF_ACTIVE);
if (regs == NULL) {
device_printf(ahc->dev_softc, "Unable to map I/O space?!\n");
return ENOMEM;
}
ahc->platform_data->regs_res_type = SYS_RES_IOPORT;
ahc->platform_data->regs_res_id = rid;
ahc->platform_data->regs = regs;
ahc->tag = rman_get_bustag(regs);
ahc->bsh = rman_get_bushandle(regs);
return (0);
}
/*
* Attach all the sub-devices we can find
*/
int
ahc_attach(struct ahc_softc *ahc)
{
char ahc_info[256];
struct ccb_setasync csa;
struct cam_devq *devq;
int bus_id;
int bus_id2;
struct cam_sim *sim;
struct cam_sim *sim2;
struct cam_path *path;
struct cam_path *path2;
int count;
count = 0;
sim = NULL;
sim2 = NULL;
path = NULL;
path2 = NULL;
/*
* Create a thread to perform all recovery.
*/
if (ahc_spawn_recovery_thread(ahc) != 0)
goto fail;
ahc_controller_info(ahc, ahc_info);
printf("%s\n", ahc_info);
ahc_lock(ahc);
/*
* Attach secondary channel first if the user has
* declared it the primary channel.
*/
if ((ahc->features & AHC_TWIN) != 0
&& (ahc->flags & AHC_PRIMARY_CHANNEL) != 0) {
bus_id = 1;
bus_id2 = 0;
} else {
bus_id = 0;
bus_id2 = 1;
}
/*
* Create the device queue for our SIM(s).
*/
devq = cam_simq_alloc(AHC_MAX_QUEUE);
if (devq == NULL)
goto fail;
/*
* Construct our first channel SIM entry
*/
sim = cam_sim_alloc(ahc_action, ahc_poll, "ahc", ahc,
device_get_unit(ahc->dev_softc),
&ahc->platform_data->mtx, 1, AHC_MAX_QUEUE, devq);
if (sim == NULL) {
cam_simq_free(devq);
goto fail;
}
if (xpt_bus_register(sim, ahc->dev_softc, bus_id) != CAM_SUCCESS) {
cam_sim_free(sim, /*free_devq*/TRUE);
sim = NULL;
goto fail;
}
if (xpt_create_path(&path, /*periph*/NULL,
cam_sim_path(sim), CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim));
cam_sim_free(sim, /*free_devq*/TRUE);
sim = NULL;
goto fail;
}
xpt_setup_ccb(&csa.ccb_h, path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = ahc_async;
csa.callback_arg = sim;
xpt_action((union ccb *)&csa);
count++;
if (ahc->features & AHC_TWIN) {
sim2 = cam_sim_alloc(ahc_action, ahc_poll, "ahc",
ahc, device_get_unit(ahc->dev_softc),
&ahc->platform_data->mtx, 1,
AHC_MAX_QUEUE, devq);
if (sim2 == NULL) {
printf("ahc_attach: Unable to attach second "
"bus due to resource shortage");
goto fail;
}
if (xpt_bus_register(sim2, ahc->dev_softc, bus_id2) !=
CAM_SUCCESS) {
printf("ahc_attach: Unable to attach second "
"bus due to resource shortage");
/*
* We do not want to destroy the device queue
* because the first bus is using it.
*/
cam_sim_free(sim2, /*free_devq*/FALSE);
goto fail;
}
if (xpt_create_path(&path2, /*periph*/NULL,
cam_sim_path(sim2),
CAM_TARGET_WILDCARD,
CAM_LUN_WILDCARD) != CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(sim2));
cam_sim_free(sim2, /*free_devq*/FALSE);
sim2 = NULL;
goto fail;
}
xpt_setup_ccb(&csa.ccb_h, path2, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_LOST_DEVICE;
csa.callback = ahc_async;
csa.callback_arg = sim2;
xpt_action((union ccb *)&csa);
count++;
}
fail:
if ((ahc->features & AHC_TWIN) != 0
&& (ahc->flags & AHC_PRIMARY_CHANNEL) != 0) {
ahc->platform_data->sim_b = sim;
ahc->platform_data->path_b = path;
ahc->platform_data->sim = sim2;
ahc->platform_data->path = path2;
} else {
ahc->platform_data->sim = sim;
ahc->platform_data->path = path;
ahc->platform_data->sim_b = sim2;
ahc->platform_data->path_b = path2;
}
ahc_unlock(ahc);
if (count != 0) {
/* We have to wait until after any system dumps... */
ahc->platform_data->eh =
EVENTHANDLER_REGISTER(shutdown_final, ahc_shutdown,
ahc, SHUTDOWN_PRI_DEFAULT);
ahc_intr_enable(ahc, TRUE);
}
return (count);
}
/*
* Catch an interrupt from the adapter
*/
void
ahc_platform_intr(void *arg)
{
struct ahc_softc *ahc;
ahc = (struct ahc_softc *)arg;
ahc_lock(ahc);
ahc_intr(ahc);
ahc_unlock(ahc);
}
/*
* We have an scb which has been processed by the
* adaptor, now we look to see how the operation
* went.
*/
void
ahc_done(struct ahc_softc *ahc, struct scb *scb)
{
union ccb *ccb;
CAM_DEBUG(scb->io_ctx->ccb_h.path, CAM_DEBUG_TRACE,
("ahc_done - scb %d\n", scb->hscb->tag));
ccb = scb->io_ctx;
LIST_REMOVE(scb, pending_links);
if ((scb->flags & SCB_TIMEDOUT) != 0)
LIST_REMOVE(scb, timedout_links);
if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
struct scb_tailq *untagged_q;
int target_offset;
target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
untagged_q = &ahc->untagged_queues[target_offset];
TAILQ_REMOVE(untagged_q, scb, links.tqe);
scb->flags &= ~SCB_UNTAGGEDQ;
ahc_run_untagged_queue(ahc, untagged_q);
}
callout_stop(&scb->io_timer);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(ahc->buffer_dmat, scb->dmamap, op);
bus_dmamap_unload(ahc->buffer_dmat, scb->dmamap);
}
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
struct cam_path *ccb_path;
/*
* If we have finally disconnected, clean up our
* pending device state.
* XXX - There may be error states that cause where
* we will remain connected.
*/
ccb_path = ccb->ccb_h.path;
if (ahc->pending_device != NULL
&& xpt_path_comp(ahc->pending_device->path, ccb_path) == 0) {
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) {
ahc->pending_device = NULL;
} else {
if (bootverbose) {
xpt_print_path(ccb->ccb_h.path);
printf("Still connected\n");
}
aic_freeze_ccb(ccb);
}
}
if (aic_get_transaction_status(scb) == CAM_REQ_INPROG)
ccb->ccb_h.status |= CAM_REQ_CMP;
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ahc_free_scb(ahc, scb);
xpt_done(ccb);
return;
}
/*
* If the recovery SCB completes, we have to be
* out of our timeout.
*/
if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
struct scb *list_scb;
ahc->scb_data->recovery_scbs--;
if (aic_get_transaction_status(scb) == CAM_BDR_SENT
|| aic_get_transaction_status(scb) == CAM_REQ_ABORTED)
aic_set_transaction_status(scb, CAM_CMD_TIMEOUT);
if (ahc->scb_data->recovery_scbs == 0) {
/*
* All recovery actions have completed successfully,
* so reinstate the timeouts for all other pending
* commands.
*/
LIST_FOREACH(list_scb, &ahc->pending_scbs,
pending_links) {
aic_scb_timer_reset(list_scb,
aic_get_timeout(scb));
}
ahc_print_path(ahc, scb);
printf("no longer in timeout, status = %x\n",
ccb->ccb_h.status);
}
}
/* Don't clobber any existing error state */
if (aic_get_transaction_status(scb) == CAM_REQ_INPROG) {
ccb->ccb_h.status |= CAM_REQ_CMP;
} else if ((scb->flags & SCB_SENSE) != 0) {
/*
* We performed autosense retrieval.
*
* Zero any sense not transferred by the
* device. The SCSI spec mandates that any
* untransfered data should be assumed to be
* zero. Complete the 'bounce' of sense information
* through buffers accessible via bus-space by
* copying it into the clients csio.
*/
memset(&ccb->csio.sense_data, 0, sizeof(ccb->csio.sense_data));
memcpy(&ccb->csio.sense_data,
ahc_get_sense_buf(ahc, scb),
(aic_le32toh(scb->sg_list->len) & AHC_SG_LEN_MASK)
- ccb->csio.sense_resid);
scb->io_ctx->ccb_h.status |= CAM_AUTOSNS_VALID;
}
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
ahc_free_scb(ahc, scb);
xpt_done(ccb);
}
static void
ahc_action(struct cam_sim *sim, union ccb *ccb)
{
struct ahc_softc *ahc;
struct ahc_tmode_lstate *lstate;
u_int target_id;
u_int our_id;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("ahc_action\n"));
ahc = (struct ahc_softc *)cam_sim_softc(sim);
target_id = ccb->ccb_h.target_id;
our_id = SIM_SCSI_ID(ahc, sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO:/* Continue Host Target I/O Connection*/
{
struct ahc_tmode_tstate *tstate;
cam_status status;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
/* Response from the black hole device */
tstate = NULL;
lstate = ahc->black_hole;
} else {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
}
if (ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO) {
SLIST_INSERT_HEAD(&lstate->accept_tios, &ccb->ccb_h,
sim_links.sle);
ccb->ccb_h.status = CAM_REQ_INPROG;
if ((ahc->flags & AHC_TQINFIFO_BLOCKED) != 0)
ahc_run_tqinfifo(ahc, /*paused*/FALSE);
break;
}
/*
* The target_id represents the target we attempt to
* select. In target mode, this is the initiator of
* the original command.
*/
our_id = target_id;
target_id = ccb->csio.init_id;
/* FALLTHROUGH */
}
case XPT_SCSI_IO: /* Execute the requested I/O operation */
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
{
struct scb *scb;
struct hardware_scb *hscb;
if ((ahc->flags & AHC_INITIATORROLE) == 0
&& (ccb->ccb_h.func_code == XPT_SCSI_IO
|| ccb->ccb_h.func_code == XPT_RESET_DEV)) {
ccb->ccb_h.status = CAM_PROVIDE_FAIL;
xpt_done(ccb);
return;
}
/*
* get an scb to use.
*/
if ((scb = ahc_get_scb(ahc)) == NULL) {
xpt_freeze_simq(sim, /*count*/1);
ahc->flags |= AHC_RESOURCE_SHORTAGE;
ccb->ccb_h.status = CAM_REQUEUE_REQ;
xpt_done(ccb);
return;
}
hscb = scb->hscb;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_SUBTRACE,
("start scb(%p)\n", scb));
scb->io_ctx = ccb;
/*
* So we can find the SCB when an abort is requested
*/
ccb->ccb_h.ccb_scb_ptr = scb;
/*
* Put all the arguments for the xfer in the scb
*/
hscb->control = 0;
hscb->scsiid = BUILD_SCSIID(ahc, sim, target_id, our_id);
hscb->lun = ccb->ccb_h.target_lun;
if (ccb->ccb_h.func_code == XPT_RESET_DEV) {
hscb->cdb_len = 0;
scb->flags |= SCB_DEVICE_RESET;
hscb->control |= MK_MESSAGE;
ahc_execute_scb(scb, NULL, 0, 0);
} else {
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
struct target_data *tdata;
tdata = &hscb->shared_data.tdata;
if (ahc->pending_device == lstate)
scb->flags |= SCB_TARGET_IMMEDIATE;
hscb->control |= TARGET_SCB;
scb->flags |= SCB_TARGET_SCB;
tdata->target_phases = 0;
if ((ccb->ccb_h.flags & CAM_SEND_STATUS) != 0) {
tdata->target_phases |= SPHASE_PENDING;
tdata->scsi_status =
ccb->csio.scsi_status;
}
if (ccb->ccb_h.flags & CAM_DIS_DISCONNECT)
tdata->target_phases |= NO_DISCONNECT;
tdata->initiator_tag = ccb->csio.tag_id;
}
if (ccb->ccb_h.flags & CAM_TAG_ACTION_VALID)
hscb->control |= ccb->csio.tag_action;
ahc_setup_data(ahc, sim, &ccb->csio, scb);
}
break;
}
case XPT_NOTIFY_ACKNOWLEDGE:
case XPT_IMMEDIATE_NOTIFY:
{
struct ahc_tmode_tstate *tstate;
struct ahc_tmode_lstate *lstate;
cam_status status;
status = ahc_find_tmode_devs(ahc, sim, ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
xpt_done(ccb);
break;
}
SLIST_INSERT_HEAD(&lstate->immed_notifies, &ccb->ccb_h,
sim_links.sle);
ccb->ccb_h.status = CAM_REQ_INPROG;
ahc_send_lstate_events(ahc, lstate);
break;
}
case XPT_EN_LUN: /* Enable LUN as a target */
ahc_handle_en_lun(ahc, sim, ccb);
xpt_done(ccb);
break;
case XPT_ABORT: /* Abort the specified CCB */
{
ahc_abort_ccb(ahc, sim, ccb);
break;
}
case XPT_SET_TRAN_SETTINGS:
{
struct ahc_devinfo devinfo;
struct ccb_trans_settings *cts;
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
uint16_t *discenable;
uint16_t *tagenable;
u_int update_type;
cts = &ccb->cts;
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
ahc_compile_devinfo(&devinfo, SIM_SCSI_ID(ahc, sim),
cts->ccb_h.target_id,
cts->ccb_h.target_lun,
SIM_CHANNEL(ahc, sim),
ROLE_UNKNOWN);
tinfo = ahc_fetch_transinfo(ahc, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
update_type = 0;
if (cts->type == CTS_TYPE_CURRENT_SETTINGS) {
update_type |= AHC_TRANS_GOAL;
discenable = &tstate->discenable;
tagenable = &tstate->tagenable;
tinfo->curr.protocol_version =
cts->protocol_version;
tinfo->curr.transport_version =
cts->transport_version;
tinfo->goal.protocol_version =
cts->protocol_version;
tinfo->goal.transport_version =
cts->transport_version;
} else if (cts->type == CTS_TYPE_USER_SETTINGS) {
update_type |= AHC_TRANS_USER;
discenable = &ahc->user_discenable;
tagenable = &ahc->user_tagenable;
tinfo->user.protocol_version =
cts->protocol_version;
tinfo->user.transport_version =
cts->transport_version;
} else {
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
if ((spi->valid & CTS_SPI_VALID_DISC) != 0) {
if ((spi->flags & CTS_SPI_FLAGS_DISC_ENB) != 0)
*discenable |= devinfo.target_mask;
else
*discenable &= ~devinfo.target_mask;
}
if ((scsi->valid & CTS_SCSI_VALID_TQ) != 0) {
if ((scsi->flags & CTS_SCSI_FLAGS_TAG_ENB) != 0)
*tagenable |= devinfo.target_mask;
else
*tagenable &= ~devinfo.target_mask;
}
if ((spi->valid & CTS_SPI_VALID_BUS_WIDTH) != 0) {
ahc_validate_width(ahc, /*tinfo limit*/NULL,
&spi->bus_width, ROLE_UNKNOWN);
ahc_set_width(ahc, &devinfo, spi->bus_width,
update_type, /*paused*/FALSE);
}
if ((spi->valid & CTS_SPI_VALID_PPR_OPTIONS) == 0) {
if (update_type == AHC_TRANS_USER)
spi->ppr_options = tinfo->user.ppr_options;
else
spi->ppr_options = tinfo->goal.ppr_options;
}
if ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) == 0) {
if (update_type == AHC_TRANS_USER)
spi->sync_offset = tinfo->user.offset;
else
spi->sync_offset = tinfo->goal.offset;
}
if ((spi->valid & CTS_SPI_VALID_SYNC_RATE) == 0) {
if (update_type == AHC_TRANS_USER)
spi->sync_period = tinfo->user.period;
else
spi->sync_period = tinfo->goal.period;
}
if (((spi->valid & CTS_SPI_VALID_SYNC_RATE) != 0)
|| ((spi->valid & CTS_SPI_VALID_SYNC_OFFSET) != 0)) {
struct ahc_syncrate *syncrate;
u_int maxsync;
if ((ahc->features & AHC_ULTRA2) != 0)
maxsync = AHC_SYNCRATE_DT;
else if ((ahc->features & AHC_ULTRA) != 0)
maxsync = AHC_SYNCRATE_ULTRA;
else
maxsync = AHC_SYNCRATE_FAST;
if (spi->bus_width != MSG_EXT_WDTR_BUS_16_BIT)
spi->ppr_options &= ~MSG_EXT_PPR_DT_REQ;
syncrate = ahc_find_syncrate(ahc, &spi->sync_period,
&spi->ppr_options,
maxsync);
ahc_validate_offset(ahc, /*tinfo limit*/NULL,
syncrate, &spi->sync_offset,
spi->bus_width, ROLE_UNKNOWN);
/* We use a period of 0 to represent async */
if (spi->sync_offset == 0) {
spi->sync_period = 0;
spi->ppr_options = 0;
}
ahc_set_syncrate(ahc, &devinfo, syncrate,
spi->sync_period, spi->sync_offset,
spi->ppr_options, update_type,
/*paused*/FALSE);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
ahc_get_tran_settings(ahc, SIM_SCSI_ID(ahc, sim),
SIM_CHANNEL(ahc, sim), &ccb->cts);
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
int extended;
extended = SIM_IS_SCSIBUS_B(ahc, sim)
? ahc->flags & AHC_EXTENDED_TRANS_B
: ahc->flags & AHC_EXTENDED_TRANS_A;
aic_calc_geometry(&ccb->ccg, extended);
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
int found;
found = ahc_reset_channel(ahc, SIM_CHANNEL(ahc, sim),
/*initiate reset*/TRUE);
if (bootverbose) {
xpt_print_path(SIM_PATH(ahc, sim));
printf("SCSI bus reset delivered. "
"%d SCBs aborted.\n", found);
}
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
if ((ahc->features & AHC_WIDE) != 0)
cpi->hba_inquiry |= PI_WIDE_16;
if ((ahc->features & AHC_TARGETMODE) != 0) {
cpi->target_sprt = PIT_PROCESSOR
| PIT_DISCONNECT
| PIT_TERM_IO;
} else {
cpi->target_sprt = 0;
}
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = (ahc->features & AHC_WIDE) ? 15 : 7;
cpi->max_lun = AHC_NUM_LUNS - 1;
if (SIM_IS_SCSIBUS_B(ahc, sim)) {
cpi->initiator_id = ahc->our_id_b;
if ((ahc->flags & AHC_RESET_BUS_B) == 0)
cpi->hba_misc |= PIM_NOBUSRESET;
} else {
cpi->initiator_id = ahc->our_id;
if ((ahc->flags & AHC_RESET_BUS_A) == 0)
cpi->hba_misc |= PIM_NOBUSRESET;
}
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Adaptec", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->protocol = PROTO_SCSI;
cpi->protocol_version = SCSI_REV_2;
cpi->transport = XPORT_SPI;
cpi->transport_version = 2;
cpi->xport_specific.spi.ppr_options = SID_SPI_CLOCK_ST;
if ((ahc->features & AHC_DT) != 0) {
cpi->transport_version = 3;
cpi->xport_specific.spi.ppr_options =
SID_SPI_CLOCK_DT_ST;
}
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_PROVIDE_FAIL;
xpt_done(ccb);
break;
}
}
static void
ahc_get_tran_settings(struct ahc_softc *ahc, int our_id, char channel,
struct ccb_trans_settings *cts)
{
struct ahc_devinfo devinfo;
struct ccb_trans_settings_scsi *scsi;
struct ccb_trans_settings_spi *spi;
struct ahc_initiator_tinfo *targ_info;
struct ahc_tmode_tstate *tstate;
struct ahc_transinfo *tinfo;
scsi = &cts->proto_specific.scsi;
spi = &cts->xport_specific.spi;
ahc_compile_devinfo(&devinfo, our_id,
cts->ccb_h.target_id,
cts->ccb_h.target_lun,
channel, ROLE_UNKNOWN);
targ_info = ahc_fetch_transinfo(ahc, devinfo.channel,
devinfo.our_scsiid,
devinfo.target, &tstate);
if (cts->type == CTS_TYPE_CURRENT_SETTINGS)
tinfo = &targ_info->curr;
else
tinfo = &targ_info->user;
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
spi->flags &= ~CTS_SPI_FLAGS_DISC_ENB;
if (cts->type == CTS_TYPE_USER_SETTINGS) {
if ((ahc->user_discenable & devinfo.target_mask) != 0)
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
if ((ahc->user_tagenable & devinfo.target_mask) != 0)
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
} else {
if ((tstate->discenable & devinfo.target_mask) != 0)
spi->flags |= CTS_SPI_FLAGS_DISC_ENB;
if ((tstate->tagenable & devinfo.target_mask) != 0)
scsi->flags |= CTS_SCSI_FLAGS_TAG_ENB;
}
cts->protocol_version = tinfo->protocol_version;
cts->transport_version = tinfo->transport_version;
spi->sync_period = tinfo->period;
spi->sync_offset = tinfo->offset;
spi->bus_width = tinfo->width;
spi->ppr_options = tinfo->ppr_options;
cts->protocol = PROTO_SCSI;
cts->transport = XPORT_SPI;
spi->valid = CTS_SPI_VALID_SYNC_RATE
| CTS_SPI_VALID_SYNC_OFFSET
| CTS_SPI_VALID_BUS_WIDTH
| CTS_SPI_VALID_PPR_OPTIONS;
if (cts->ccb_h.target_lun != CAM_LUN_WILDCARD) {
scsi->valid = CTS_SCSI_VALID_TQ;
spi->valid |= CTS_SPI_VALID_DISC;
} else {
scsi->valid = 0;
}
cts->ccb_h.status = CAM_REQ_CMP;
}
static void
ahc_async(void *callback_arg, uint32_t code, struct cam_path *path, void *arg)
{
struct ahc_softc *ahc;
struct cam_sim *sim;
sim = (struct cam_sim *)callback_arg;
ahc = (struct ahc_softc *)cam_sim_softc(sim);
switch (code) {
case AC_LOST_DEVICE:
{
struct ahc_devinfo devinfo;
ahc_compile_devinfo(&devinfo, SIM_SCSI_ID(ahc, sim),
xpt_path_target_id(path),
xpt_path_lun_id(path),
SIM_CHANNEL(ahc, sim),
ROLE_UNKNOWN);
/*
* Revert to async/narrow transfers
* for the next device.
*/
ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
AHC_TRANS_GOAL|AHC_TRANS_CUR, /*paused*/FALSE);
ahc_set_syncrate(ahc, &devinfo, /*syncrate*/NULL,
/*period*/0, /*offset*/0, /*ppr_options*/0,
AHC_TRANS_GOAL|AHC_TRANS_CUR,
/*paused*/FALSE);
break;
}
default:
break;
}
}
static void
ahc_execute_scb(void *arg, bus_dma_segment_t *dm_segs, int nsegments,
int error)
{
struct scb *scb;
union ccb *ccb;
struct ahc_softc *ahc;
struct ahc_initiator_tinfo *tinfo;
struct ahc_tmode_tstate *tstate;
u_int mask;
scb = (struct scb *)arg;
ccb = scb->io_ctx;
ahc = scb->ahc_softc;
if (error != 0) {
if (error == EFBIG)
aic_set_transaction_status(scb, CAM_REQ_TOO_BIG);
else
aic_set_transaction_status(scb, CAM_REQ_CMP_ERR);
if (nsegments != 0)
bus_dmamap_unload(ahc->buffer_dmat, scb->dmamap);
ahc_free_scb(ahc, scb);
xpt_done(ccb);
return;
}
if (nsegments != 0) {
struct ahc_dma_seg *sg;
bus_dma_segment_t *end_seg;
bus_dmasync_op_t op;
end_seg = dm_segs + nsegments;
/* Copy the segments into our SG list */
sg = scb->sg_list;
while (dm_segs < end_seg) {
uint32_t len;
sg->addr = aic_htole32(dm_segs->ds_addr);
len = dm_segs->ds_len
| ((dm_segs->ds_addr >> 8) & 0x7F000000);
sg->len = aic_htole32(len);
sg++;
dm_segs++;
}
/*
* Note where to find the SG entries in bus space.
* We also set the full residual flag which the
* sequencer will clear as soon as a data transfer
* occurs.
*/
scb->hscb->sgptr = aic_htole32(scb->sg_list_phys|SG_FULL_RESID);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(ahc->buffer_dmat, scb->dmamap, op);
if (ccb->ccb_h.func_code == XPT_CONT_TARGET_IO) {
struct target_data *tdata;
tdata = &scb->hscb->shared_data.tdata;
tdata->target_phases |= DPHASE_PENDING;
/*
* CAM data direction is relative to the initiator.
*/
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT)
tdata->data_phase = P_DATAOUT;
else
tdata->data_phase = P_DATAIN;
/*
* If the transfer is of an odd length and in the
* "in" direction (scsi->HostBus), then it may
* trigger a bug in the 'WideODD' feature of
* non-Ultra2 chips. Force the total data-length
* to be even by adding an extra, 1 byte, SG,
* element. We do this even if we are not currently
* negotiated wide as negotiation could occur before
* this command is executed.
*/
if ((ahc->bugs & AHC_TMODE_WIDEODD_BUG) != 0
&& (ccb->csio.dxfer_len & 0x1) != 0
&& (ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_OUT) {
nsegments++;
if (nsegments > AHC_NSEG) {
aic_set_transaction_status(scb,
CAM_REQ_TOO_BIG);
bus_dmamap_unload(ahc->buffer_dmat,
scb->dmamap);
ahc_free_scb(ahc, scb);
xpt_done(ccb);
return;
}
sg->addr = aic_htole32(ahc->dma_bug_buf);
sg->len = aic_htole32(1);
sg++;
}
}
sg--;
sg->len |= aic_htole32(AHC_DMA_LAST_SEG);
/* Copy the first SG into the "current" data pointer area */
scb->hscb->dataptr = scb->sg_list->addr;
scb->hscb->datacnt = scb->sg_list->len;
} else {
scb->hscb->sgptr = aic_htole32(SG_LIST_NULL);
scb->hscb->dataptr = 0;
scb->hscb->datacnt = 0;
}
scb->sg_count = nsegments;
/*
* Last time we need to check if this SCB needs to
* be aborted.
*/
if (aic_get_transaction_status(scb) != CAM_REQ_INPROG) {
if (nsegments != 0)
bus_dmamap_unload(ahc->buffer_dmat, scb->dmamap);
ahc_free_scb(ahc, scb);
xpt_done(ccb);
return;
}
tinfo = ahc_fetch_transinfo(ahc, SCSIID_CHANNEL(ahc, scb->hscb->scsiid),
SCSIID_OUR_ID(scb->hscb->scsiid),
SCSIID_TARGET(ahc, scb->hscb->scsiid),
&tstate);
mask = SCB_GET_TARGET_MASK(ahc, scb);
scb->hscb->scsirate = tinfo->scsirate;
scb->hscb->scsioffset = tinfo->curr.offset;
if ((tstate->ultraenb & mask) != 0)
scb->hscb->control |= ULTRAENB;
if ((tstate->discenable & mask) != 0
&& (ccb->ccb_h.flags & CAM_DIS_DISCONNECT) == 0)
scb->hscb->control |= DISCENB;
if ((ccb->ccb_h.flags & CAM_NEGOTIATE) != 0
&& (tinfo->goal.width != 0
|| tinfo->goal.offset != 0
|| tinfo->goal.ppr_options != 0)) {
scb->flags |= SCB_NEGOTIATE;
scb->hscb->control |= MK_MESSAGE;
} else if ((tstate->auto_negotiate & mask) != 0) {
scb->flags |= SCB_AUTO_NEGOTIATE;
scb->hscb->control |= MK_MESSAGE;
}
LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
ccb->ccb_h.status |= CAM_SIM_QUEUED;
/*
* We only allow one untagged transaction
* per target in the initiator role unless
* we are storing a full busy target *lun*
* table in SCB space.
*/
if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0
&& (ahc->flags & AHC_SCB_BTT) == 0) {
struct scb_tailq *untagged_q;
int target_offset;
target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
untagged_q = &(ahc->untagged_queues[target_offset]);
TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
scb->flags |= SCB_UNTAGGEDQ;
if (TAILQ_FIRST(untagged_q) != scb) {
return;
}
}
scb->flags |= SCB_ACTIVE;
/*
* Timers are disabled while recovery is in progress.
*/
aic_scb_timer_start(scb);
if ((scb->flags & SCB_TARGET_IMMEDIATE) != 0) {
/* Define a mapping from our tag to the SCB. */
ahc->scb_data->scbindex[scb->hscb->tag] = scb;
ahc_pause(ahc);
if ((ahc->flags & AHC_PAGESCBS) == 0)
ahc_outb(ahc, SCBPTR, scb->hscb->tag);
ahc_outb(ahc, TARG_IMMEDIATE_SCB, scb->hscb->tag);
ahc_unpause(ahc);
} else {
ahc_queue_scb(ahc, scb);
}
}
static void
ahc_poll(struct cam_sim *sim)
{
struct ahc_softc *ahc;
ahc = (struct ahc_softc *)cam_sim_softc(sim);
ahc_intr(ahc);
}
static void
ahc_setup_data(struct ahc_softc *ahc, struct cam_sim *sim,
struct ccb_scsiio *csio, struct scb *scb)
{
struct hardware_scb *hscb;
struct ccb_hdr *ccb_h;
int error;
hscb = scb->hscb;
ccb_h = &csio->ccb_h;
csio->resid = 0;
csio->sense_resid = 0;
if (ccb_h->func_code == XPT_SCSI_IO) {
hscb->cdb_len = csio->cdb_len;
if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
if (hscb->cdb_len > sizeof(hscb->cdb32)
|| (ccb_h->flags & CAM_CDB_PHYS) != 0) {
aic_set_transaction_status(scb,
CAM_REQ_INVALID);
ahc_free_scb(ahc, scb);
xpt_done((union ccb *)csio);
return;
}
if (hscb->cdb_len > 12) {
memcpy(hscb->cdb32,
csio->cdb_io.cdb_ptr,
hscb->cdb_len);
scb->flags |= SCB_CDB32_PTR;
} else {
memcpy(hscb->shared_data.cdb,
csio->cdb_io.cdb_ptr,
hscb->cdb_len);
}
} else {
if (hscb->cdb_len > 12) {
memcpy(hscb->cdb32, csio->cdb_io.cdb_bytes,
hscb->cdb_len);
scb->flags |= SCB_CDB32_PTR;
} else {
memcpy(hscb->shared_data.cdb,
csio->cdb_io.cdb_bytes,
hscb->cdb_len);
}
}
}
error = bus_dmamap_load_ccb(ahc->buffer_dmat,
scb->dmamap,
(union ccb *)csio,
ahc_execute_scb,
scb,
0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
xpt_freeze_simq(sim, /*count*/1);
scb->io_ctx->ccb_h.status |= CAM_RELEASE_SIMQ;
}
}
static void
ahc_abort_ccb(struct ahc_softc *ahc, struct cam_sim *sim, union ccb *ccb)
{
union ccb *abort_ccb;
abort_ccb = ccb->cab.abort_ccb;
switch (abort_ccb->ccb_h.func_code) {
case XPT_ACCEPT_TARGET_IO:
case XPT_IMMEDIATE_NOTIFY:
case XPT_CONT_TARGET_IO:
{
struct ahc_tmode_tstate *tstate;
struct ahc_tmode_lstate *lstate;
struct ccb_hdr_slist *list;
cam_status status;
status = ahc_find_tmode_devs(ahc, sim, abort_ccb, &tstate,
&lstate, TRUE);
if (status != CAM_REQ_CMP) {
ccb->ccb_h.status = status;
break;
}
if (abort_ccb->ccb_h.func_code == XPT_ACCEPT_TARGET_IO)
list = &lstate->accept_tios;
else if (abort_ccb->ccb_h.func_code == XPT_IMMEDIATE_NOTIFY)
list = &lstate->immed_notifies;
else
list = NULL;
if (list != NULL) {
struct ccb_hdr *curelm;
int found;
curelm = SLIST_FIRST(list);
found = 0;
if (curelm == &abort_ccb->ccb_h) {
found = 1;
SLIST_REMOVE_HEAD(list, sim_links.sle);
} else {
while(curelm != NULL) {
struct ccb_hdr *nextelm;
nextelm =
SLIST_NEXT(curelm, sim_links.sle);
if (nextelm == &abort_ccb->ccb_h) {
found = 1;
SLIST_NEXT(curelm,
sim_links.sle) =
SLIST_NEXT(nextelm,
sim_links.sle);
break;
}
curelm = nextelm;
}
}
if (found) {
abort_ccb->ccb_h.status = CAM_REQ_ABORTED;
xpt_done(abort_ccb);
ccb->ccb_h.status = CAM_REQ_CMP;
} else {
xpt_print_path(abort_ccb->ccb_h.path);
printf("Not found\n");
ccb->ccb_h.status = CAM_PATH_INVALID;
}
break;
}
/* FALLTHROUGH */
}
case XPT_SCSI_IO:
/* XXX Fully implement the hard ones */
ccb->ccb_h.status = CAM_UA_ABORT;
break;
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
xpt_done(ccb);
}
void
ahc_send_async(struct ahc_softc *ahc, char channel, u_int target,
u_int lun, ac_code code, void *opt_arg)
{
struct ccb_trans_settings cts;
struct cam_path *path;
void *arg;
int error;
arg = NULL;
error = ahc_create_path(ahc, channel, target, lun, &path);
if (error != CAM_REQ_CMP)
return;
switch (code) {
case AC_TRANSFER_NEG:
{
struct ccb_trans_settings_scsi *scsi;
cts.type = CTS_TYPE_CURRENT_SETTINGS;
scsi = &cts.proto_specific.scsi;
cts.ccb_h.path = path;
cts.ccb_h.target_id = target;
cts.ccb_h.target_lun = lun;
ahc_get_tran_settings(ahc, channel == 'A' ? ahc->our_id
: ahc->our_id_b,
channel, &cts);
arg = &cts;
scsi->valid &= ~CTS_SCSI_VALID_TQ;
scsi->flags &= ~CTS_SCSI_FLAGS_TAG_ENB;
if (opt_arg == NULL)
break;
if (*((ahc_queue_alg *)opt_arg) == AHC_QUEUE_TAGGED)
scsi->flags |= ~CTS_SCSI_FLAGS_TAG_ENB;
scsi->valid |= CTS_SCSI_VALID_TQ;
break;
}
case AC_SENT_BDR:
case AC_BUS_RESET:
break;
default:
panic("ahc_send_async: Unexpected async event");
}
xpt_async(code, path, arg);
xpt_free_path(path);
}
void
ahc_platform_set_tags(struct ahc_softc *ahc,
struct ahc_devinfo *devinfo, int enable)
{
}
int
ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
{
ahc->platform_data = malloc(sizeof(struct ahc_platform_data), M_DEVBUF,
M_NOWAIT | M_ZERO);
if (ahc->platform_data == NULL)
return (ENOMEM);
return (0);
}
void
ahc_platform_free(struct ahc_softc *ahc)
{
struct ahc_platform_data *pdata;
pdata = ahc->platform_data;
if (pdata != NULL) {
if (pdata->regs != NULL)
bus_release_resource(ahc->dev_softc,
pdata->regs_res_type,
pdata->regs_res_id,
pdata->regs);
if (pdata->irq != NULL)
bus_release_resource(ahc->dev_softc,
pdata->irq_res_type,
0, pdata->irq);
if (pdata->sim_b != NULL) {
xpt_async(AC_LOST_DEVICE, pdata->path_b, NULL);
xpt_free_path(pdata->path_b);
xpt_bus_deregister(cam_sim_path(pdata->sim_b));
cam_sim_free(pdata->sim_b, /*free_devq*/TRUE);
}
if (pdata->sim != NULL) {
xpt_async(AC_LOST_DEVICE, pdata->path, NULL);
xpt_free_path(pdata->path);
xpt_bus_deregister(cam_sim_path(pdata->sim));
cam_sim_free(pdata->sim, /*free_devq*/TRUE);
}
if (pdata->eh != NULL)
EVENTHANDLER_DEREGISTER(shutdown_final, pdata->eh);
free(ahc->platform_data, M_DEVBUF);
}
}
int
ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc)
{
/* We don't sort softcs under FreeBSD so report equal always */
return (0);
}
int
ahc_detach(device_t dev)
{
struct ahc_softc *ahc;
device_printf(dev, "detaching device\n");
ahc = device_get_softc(dev);
ahc_lock(ahc);
TAILQ_REMOVE(&ahc_tailq, ahc, links);
ahc_intr_enable(ahc, FALSE);
bus_teardown_intr(dev, ahc->platform_data->irq, ahc->platform_data->ih);
ahc_unlock(ahc);
ahc_free(ahc);
return (0);
}
#if 0
static void
ahc_dump_targcmd(struct target_cmd *cmd)
{
uint8_t *byte;
uint8_t *last_byte;
int i;
byte = &cmd->initiator_channel;
/* Debugging info for received commands */
last_byte = &cmd[1].initiator_channel;
i = 0;
while (byte < last_byte) {
if (i == 0)
printf("\t");
printf("%#x", *byte++);
i++;
if (i == 8) {
printf("\n");
i = 0;
} else {
printf(", ");
}
}
}
#endif
static int
ahc_modevent(module_t mod, int type, void *data)
{
/* XXX Deal with busy status on unload. */
/* XXX Deal with unknown events */
return 0;
}
static moduledata_t ahc_mod = {
"ahc",
ahc_modevent,
NULL
};
DECLARE_MODULE(ahc, ahc_mod, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);
MODULE_DEPEND(ahc, cam, 1, 1, 1);
MODULE_VERSION(ahc, 1);