freebsd-skq/contrib/libstdc++/stl/ropeimpl.h
1999-10-16 03:52:48 +00:00

1551 lines
46 KiB
C++

/*
* Copyright (c) 1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/* NOTE: This is an internal header file, included by other STL headers.
* You should not attempt to use it directly.
*/
# include <stdio.h> /* XXX should use <cstdio> */
# include <iostream.h> /* XXX should use <iostream> */
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif
// Set buf_start, buf_end, and buf_ptr appropriately, filling tmp_buf
// if necessary. Assumes _M_path_end[leaf_index] and leaf_pos are correct.
// Results in a valid buf_ptr if the iterator can be legitimately
// dereferenced.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setbuf(
_Rope_iterator_base<_CharT,_Alloc>& __x)
{
const _RopeRep* __leaf = __x._M_path_end[__x._M_leaf_index];
size_t __leaf_pos = __x._M_leaf_pos;
size_t __pos = __x._M_current_pos;
switch(__leaf->_M_tag) {
case _RopeRep::_S_leaf:
__x._M_buf_start =
((_Rope_RopeLeaf<_CharT,_Alloc>*)__leaf)->_M_data;
__x._M_buf_ptr = __x._M_buf_start + (__pos - __leaf_pos);
__x._M_buf_end = __x._M_buf_start + __leaf->_M_size;
break;
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
size_t __len = _S_iterator_buf_len;
size_t __buf_start_pos = __leaf_pos;
size_t __leaf_end = __leaf_pos + __leaf->_M_size;
char_producer<_CharT>* __fn =
((_Rope_RopeFunction<_CharT,_Alloc>*)__leaf)->_M_fn;
if (__buf_start_pos + __len <= __pos) {
__buf_start_pos = __pos - __len/4;
if (__buf_start_pos + __len > __leaf_end) {
__buf_start_pos = __leaf_end - __len;
}
}
if (__buf_start_pos + __len > __leaf_end) {
__len = __leaf_end - __buf_start_pos;
}
(*__fn)(__buf_start_pos - __leaf_pos, __len, __x._M_tmp_buf);
__x._M_buf_ptr = __x._M_tmp_buf + (__pos - __buf_start_pos);
__x._M_buf_start = __x._M_tmp_buf;
__x._M_buf_end = __x._M_tmp_buf + __len;
}
break;
default:
__stl_assert(0);
}
}
// Set path and buffer inside a rope iterator. We assume that
// pos and root are already set.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setcache
(_Rope_iterator_base<_CharT,_Alloc>& __x)
{
const _RopeRep* __path[_RopeRep::_S_max_rope_depth+1];
const _RopeRep* __curr_rope;
int __curr_depth = -1; /* index into path */
size_t __curr_start_pos = 0;
size_t __pos = __x._M_current_pos;
unsigned char __dirns = 0; // Bit vector marking right turns in the path
__stl_assert(__pos <= __x._M_root->_M_size);
if (__pos >= __x._M_root->_M_size) {
__x._M_buf_ptr = 0;
return;
}
__curr_rope = __x._M_root;
if (0 != __curr_rope->_M_c_string) {
/* Treat the root as a leaf. */
__x._M_buf_start = __curr_rope->_M_c_string;
__x._M_buf_end = __curr_rope->_M_c_string + __curr_rope->_M_size;
__x._M_buf_ptr = __curr_rope->_M_c_string + __pos;
__x._M_path_end[0] = __curr_rope;
__x._M_leaf_index = 0;
__x._M_leaf_pos = 0;
return;
}
for(;;) {
++__curr_depth;
__stl_assert(__curr_depth <= _RopeRep::_S_max_rope_depth);
__path[__curr_depth] = __curr_rope;
switch(__curr_rope->_M_tag) {
case _RopeRep::_S_leaf:
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
__x._M_leaf_pos = __curr_start_pos;
goto done;
case _RopeRep::_S_concat:
{
_Rope_RopeConcatenation<_CharT,_Alloc>* __c =
(_Rope_RopeConcatenation<_CharT,_Alloc>*)__curr_rope;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
__dirns <<= 1;
if (__pos >= __curr_start_pos + __left_len) {
__dirns |= 1;
__curr_rope = __c->_M_right;
__curr_start_pos += __left_len;
} else {
__curr_rope = __left;
}
}
break;
}
}
done:
// Copy last section of path into _M_path_end.
{
int __i = -1;
int __j = __curr_depth + 1 - _S_path_cache_len;
if (__j < 0) __j = 0;
while (__j <= __curr_depth) {
__x._M_path_end[++__i] = __path[__j++];
}
__x._M_leaf_index = __i;
}
__x._M_path_directions = __dirns;
_S_setbuf(__x);
}
// Specialized version of the above. Assumes that
// the path cache is valid for the previous position.
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_S_setcache_for_incr
(_Rope_iterator_base<_CharT,_Alloc>& __x)
{
int __current_index = __x._M_leaf_index;
const _RopeRep* __current_node = __x._M_path_end[__current_index];
size_t __len = __current_node->_M_size;
size_t __node_start_pos = __x._M_leaf_pos;
unsigned char __dirns = __x._M_path_directions;
_Rope_RopeConcatenation<_CharT,_Alloc>* __c;
__stl_assert(__x._M_current_pos <= __x._M_root->_M_size);
if (__x._M_current_pos - __node_start_pos < __len) {
/* More stuff in this leaf, we just didn't cache it. */
_S_setbuf(__x);
return;
}
__stl_assert(__node_start_pos + __len == __x._M_current_pos);
// node_start_pos is starting position of last_node.
while (--__current_index >= 0) {
if (!(__dirns & 1) /* Path turned left */)
break;
__current_node = __x._M_path_end[__current_index];
__c = (_Rope_RopeConcatenation<_CharT,_Alloc>*)__current_node;
// Otherwise we were in the right child. Thus we should pop
// the concatenation node.
__node_start_pos -= __c->_M_left->_M_size;
__dirns >>= 1;
}
if (__current_index < 0) {
// We underflowed the cache. Punt.
_S_setcache(__x);
return;
}
__current_node = __x._M_path_end[__current_index];
__c = (_Rope_RopeConcatenation<_CharT,_Alloc>*)__current_node;
// current_node is a concatenation node. We are positioned on the first
// character in its right child.
// node_start_pos is starting position of current_node.
__node_start_pos += __c->_M_left->_M_size;
__current_node = __c->_M_right;
__x._M_path_end[++__current_index] = __current_node;
__dirns |= 1;
while (_RopeRep::_S_concat == __current_node->_M_tag) {
++__current_index;
if (_S_path_cache_len == __current_index) {
int __i;
for (__i = 0; __i < _S_path_cache_len-1; __i++) {
__x._M_path_end[__i] = __x._M_path_end[__i+1];
}
--__current_index;
}
__current_node =
((_Rope_RopeConcatenation<_CharT,_Alloc>*)__current_node)->_M_left;
__x._M_path_end[__current_index] = __current_node;
__dirns <<= 1;
// node_start_pos is unchanged.
}
__x._M_leaf_index = __current_index;
__x._M_leaf_pos = __node_start_pos;
__x._M_path_directions = __dirns;
_S_setbuf(__x);
}
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_M_incr(size_t __n) {
_M_current_pos += __n;
if (0 != _M_buf_ptr) {
size_t __chars_left = _M_buf_end - _M_buf_ptr;
if (__chars_left > __n) {
_M_buf_ptr += __n;
} else if (__chars_left == __n) {
_M_buf_ptr += __n;
_S_setcache_for_incr(*this);
} else {
_M_buf_ptr = 0;
}
}
}
template <class _CharT, class _Alloc>
void _Rope_iterator_base<_CharT,_Alloc>::_M_decr(size_t __n) {
if (0 != _M_buf_ptr) {
size_t __chars_left = _M_buf_ptr - _M_buf_start;
if (__chars_left >= __n) {
_M_buf_ptr -= __n;
} else {
_M_buf_ptr = 0;
}
}
_M_current_pos -= __n;
}
template <class _CharT, class _Alloc>
void _Rope_iterator<_CharT,_Alloc>::_M_check() {
if (_M_root_rope->_M_tree_ptr != _M_root) {
// _Rope was modified. Get things fixed up.
_RopeRep::_S_unref(_M_root);
_M_root = _M_root_rope->_M_tree_ptr;
_RopeRep::_S_ref(_M_root);
_M_buf_ptr = 0;
}
}
template <class _CharT, class _Alloc>
inline
_Rope_const_iterator<_CharT, _Alloc>::_Rope_const_iterator(
const _Rope_iterator<_CharT,_Alloc>& __x)
: _Rope_iterator_base<_CharT,_Alloc>(__x)
{ }
template <class _CharT, class _Alloc>
inline _Rope_iterator<_CharT,_Alloc>::_Rope_iterator(
rope<_CharT,_Alloc>& __r, size_t __pos)
: _Rope_iterator_base<_CharT,_Alloc>(__r._M_tree_ptr, __pos),
_M_root_rope(&__r)
{
_RopeRep::_S_ref(_M_root);
}
template <class _CharT, class _Alloc>
inline size_t
rope<_CharT,_Alloc>::_S_char_ptr_len(const _CharT* __s)
{
const _CharT* __p = __s;
while (!_S_is0(*__p)) { ++__p; }
return (__p - __s);
}
#ifndef __GC
template <class _CharT, class _Alloc>
inline void _Rope_RopeRep<_CharT,_Alloc>::_M_free_c_string()
{
_CharT* __cstr = _M_c_string;
if (0 != __cstr) {
size_t __size = _M_size + 1;
destroy(__cstr, __cstr + __size);
_Data_deallocate(__cstr, __size);
}
}
template <class _CharT, class _Alloc>
#ifdef __STL_USE_STD_ALLOCATORS
inline void _Rope_RopeRep<_CharT,_Alloc>::_S_free_string(_CharT* __s,
size_t __n,
allocator_type __a)
#else
inline void _Rope_RopeRep<_CharT,_Alloc>::_S_free_string(_CharT* __s,
size_t __n)
#endif
{
if (!_S_is_basic_char_type((_CharT*)0)) {
destroy(__s, __s + __n);
}
// This has to be a static member, so this gets a bit messy
# ifdef __STL_USE_STD_ALLOCATORS
__a.deallocate(
__s, _Rope_RopeLeaf<_CharT,_Alloc>::_S_rounded_up_size(__n));
# else
_Data_deallocate(
__s, _Rope_RopeLeaf<_CharT,_Alloc>::_S_rounded_up_size(__n));
# endif
}
// There are several reasons for not doing this with virtual destructors
// and a class specific delete operator:
// - A class specific delete operator can't easily get access to
// allocator instances if we need them.
// - Any virtual function would need a 4 or byte vtable pointer;
// this only requires a one byte tag per object.
template <class _CharT, class _Alloc>
void _Rope_RopeRep<_CharT,_Alloc>::_M_free_tree()
{
switch(_M_tag) {
case _S_leaf:
{
_Rope_RopeLeaf<_CharT,_Alloc>* __l
= (_Rope_RopeLeaf<_CharT,_Alloc>*)this;
__l->_Rope_RopeLeaf<_CharT,_Alloc>::~_Rope_RopeLeaf();
_L_deallocate(__l, 1);
break;
}
case _S_concat:
{
_Rope_RopeConcatenation<_CharT,_Alloc>* __c
= (_Rope_RopeConcatenation<_CharT,_Alloc>*)this;
__c->_Rope_RopeConcatenation<_CharT,_Alloc>::
~_Rope_RopeConcatenation();
_C_deallocate(__c, 1);
break;
}
case _S_function:
{
_Rope_RopeFunction<_CharT,_Alloc>* __f
= (_Rope_RopeFunction<_CharT,_Alloc>*)this;
__f->_Rope_RopeFunction<_CharT,_Alloc>::~_Rope_RopeFunction();
_F_deallocate(__f, 1);
break;
}
case _S_substringfn:
{
_Rope_RopeSubstring<_CharT,_Alloc>* __ss =
(_Rope_RopeSubstring<_CharT,_Alloc>*)this;
__ss->_Rope_RopeSubstring<_CharT,_Alloc>::
~_Rope_RopeSubstring();
_S_deallocate(__ss, 1);
break;
}
}
}
#else
template <class _CharT, class _Alloc>
#ifdef __STL_USE_STD_ALLOCATORS
inline void _Rope_RopeRep<_CharT,_Alloc>::_S_free_string
(const _CharT*, size_t, allocator_type)
#else
inline void _Rope_RopeRep<_CharT,_Alloc>::_S_free_string
(const _CharT*, size_t)
#endif
{}
#endif
// Concatenate a C string onto a leaf rope by copying the rope data.
// Used for short ropes.
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeLeaf*
rope<_CharT,_Alloc>::_S_leaf_concat_char_iter
(_RopeLeaf* __r, const _CharT* __iter, size_t __len)
{
size_t __old_len = __r->_M_size;
_CharT* __new_data = (_CharT*)
_Data_allocate(_S_rounded_up_size(__old_len + __len));
_RopeLeaf* __result;
uninitialized_copy_n(__r->_M_data, __old_len, __new_data);
uninitialized_copy_n(__iter, __len, __new_data + __old_len);
_S_cond_store_eos(__new_data[__old_len + __len]);
__STL_TRY {
__result = _S_new_RopeLeaf(__new_data, __old_len + __len,
__r->get_allocator());
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__new_data, __old_len + __len,
__r->get_allocator()));
return __result;
}
#ifndef __GC
// As above, but it's OK to clobber original if refcount is 1
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeLeaf*
rope<_CharT,_Alloc>::_S_destr_leaf_concat_char_iter
(_RopeLeaf* __r, const _CharT* __iter, size_t __len)
{
__stl_assert(__r->_M_refcount >= 1);
if (__r->_M_refcount > 1)
return _S_leaf_concat_char_iter(__r, __iter, __len);
size_t __old_len = __r->_M_size;
if (_S_allocated_capacity(__old_len) >= __old_len + __len) {
// The space has been partially initialized for the standard
// character types. But that doesn't matter for those types.
uninitialized_copy_n(__iter, __len, __r->_M_data + __old_len);
if (_S_is_basic_char_type((_CharT*)0)) {
_S_cond_store_eos(__r->_M_data[__old_len + __len]);
__stl_assert(__r->_M_c_string == __r->_M_data);
} else if (__r->_M_c_string != __r->_M_data && 0 != __r->_M_c_string) {
__r->_M_free_c_string();
__r->_M_c_string = 0;
}
__r->_M_size = __old_len + __len;
__stl_assert(__r->_M_refcount == 1);
__r->_M_refcount = 2;
return __r;
} else {
_RopeLeaf* __result = _S_leaf_concat_char_iter(__r, __iter, __len);
__stl_assert(__result->_M_refcount == 1);
return __result;
}
}
#endif
// Assumes left and right are not 0.
// Does not increment (nor decrement on exception) child reference counts.
// Result has ref count 1.
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_tree_concat (_RopeRep* __left, _RopeRep* __right)
{
_RopeConcatenation* __result =
_S_new_RopeConcatenation(__left, __right, __left->get_allocator());
size_t __depth = __result->_M_depth;
# ifdef __STL_USE_STD_ALLOCATORS
__stl_assert(__left->get_allocator() == __right->get_allocator());
# endif
if (__depth > 20 && (__result->_M_size < 1000 ||
__depth > _RopeRep::_S_max_rope_depth)) {
_RopeRep* __balanced;
__STL_TRY {
__balanced = _S_balance(__result);
# ifndef __GC
if (__result != __balanced) {
__stl_assert(1 == __result->_M_refcount
&& 1 == __balanced->_M_refcount);
}
# endif
__result->_M_unref_nonnil();
}
__STL_UNWIND((_C_deallocate(__result,1)));
// In case of exception, we need to deallocate
// otherwise dangling result node. But caller
// still owns its children. Thus unref is
// inappropriate.
return __balanced;
} else {
return __result;
}
}
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep* rope<_CharT,_Alloc>::_S_concat_char_iter
(_RopeRep* __r, const _CharT*__s, size_t __slen)
{
_RopeRep* __result;
if (0 == __slen) {
_S_ref(__r);
return __r;
}
if (0 == __r)
return __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen,
__r->get_allocator());
if (_RopeRep::_S_leaf == __r->_M_tag &&
__r->_M_size + __slen <= _S_copy_max) {
__result = _S_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen);
# ifndef __GC
__stl_assert(1 == __result->_M_refcount);
# endif
return __result;
}
if (_RopeRep::_S_concat == __r->_M_tag
&& _RopeRep::_S_leaf == ((_RopeConcatenation*)__r)->_M_right->_M_tag) {
_RopeLeaf* __right =
(_RopeLeaf* )(((_RopeConcatenation* )__r)->_M_right);
if (__right->_M_size + __slen <= _S_copy_max) {
_RopeRep* __left = ((_RopeConcatenation*)__r)->_M_left;
_RopeRep* __nright =
_S_leaf_concat_char_iter((_RopeLeaf*)__right, __s, __slen);
__left->_M_ref_nonnil();
__STL_TRY {
__result = _S_tree_concat(__left, __nright);
}
__STL_UNWIND(_S_unref(__left); _S_unref(__nright));
# ifndef __GC
__stl_assert(1 == __result->_M_refcount);
# endif
return __result;
}
}
_RopeRep* __nright =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen, __r->get_allocator());
__STL_TRY {
__r->_M_ref_nonnil();
__result = _S_tree_concat(__r, __nright);
}
__STL_UNWIND(_S_unref(__r); _S_unref(__nright));
# ifndef __GC
__stl_assert(1 == __result->_M_refcount);
# endif
return __result;
}
#ifndef __GC
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_destr_concat_char_iter(
_RopeRep* __r, const _CharT* __s, size_t __slen)
{
_RopeRep* __result;
if (0 == __r)
return __STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen,
__r->get_allocator());
size_t __count = __r->_M_refcount;
size_t __orig_size = __r->_M_size;
__stl_assert(__count >= 1);
if (__count > 1) return _S_concat_char_iter(__r, __s, __slen);
if (0 == __slen) {
__r->_M_refcount = 2; // One more than before
return __r;
}
if (__orig_size + __slen <= _S_copy_max &&
_RopeRep::_S_leaf == __r->_M_tag) {
__result = _S_destr_leaf_concat_char_iter((_RopeLeaf*)__r, __s, __slen);
return __result;
}
if (_RopeRep::_S_concat == __r->_M_tag) {
_RopeLeaf* __right = (_RopeLeaf*)(((_RopeConcatenation*)__r)->_M_right);
if (_RopeRep::_S_leaf == __right->_M_tag
&& __right->_M_size + __slen <= _S_copy_max) {
_RopeRep* __new_right =
_S_destr_leaf_concat_char_iter(__right, __s, __slen);
if (__right == __new_right) {
__stl_assert(__new_right->_M_refcount == 2);
__new_right->_M_refcount = 1;
} else {
__stl_assert(__new_right->_M_refcount >= 1);
__right->_M_unref_nonnil();
}
__stl_assert(__r->_M_refcount == 1);
__r->_M_refcount = 2; // One more than before.
((_RopeConcatenation*)__r)->_M_right = __new_right;
__r->_M_size = __orig_size + __slen;
if (0 != __r->_M_c_string) {
__r->_M_free_c_string();
__r->_M_c_string = 0;
}
return __r;
}
}
_RopeRep* __right =
__STL_ROPE_FROM_UNOWNED_CHAR_PTR(__s, __slen, __r->get_allocator());
__r->_M_ref_nonnil();
__STL_TRY {
__result = _S_tree_concat(__r, __right);
}
__STL_UNWIND(_S_unref(__r); _S_unref(__right))
__stl_assert(1 == __result->_M_refcount);
return __result;
}
#endif /* !__GC */
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_concat(_RopeRep* __left, _RopeRep* __right)
{
if (0 == __left) {
_S_ref(__right);
return __right;
}
if (0 == __right) {
__left->_M_ref_nonnil();
return __left;
}
if (_RopeRep::_S_leaf == __right->_M_tag) {
if (_RopeRep::_S_leaf == __left->_M_tag) {
if (__right->_M_size + __left->_M_size <= _S_copy_max) {
return _S_leaf_concat_char_iter((_RopeLeaf*)__left,
((_RopeLeaf*)__right)->_M_data,
__right->_M_size);
}
} else if (_RopeRep::_S_concat == __left->_M_tag
&& _RopeRep::_S_leaf ==
((_RopeConcatenation*)__left)->_M_right->_M_tag) {
_RopeLeaf* __leftright =
(_RopeLeaf*)(((_RopeConcatenation*)__left)->_M_right);
if (__leftright->_M_size + __right->_M_size <= _S_copy_max) {
_RopeRep* __leftleft = ((_RopeConcatenation*)__left)->_M_left;
_RopeRep* __rest = _S_leaf_concat_char_iter(__leftright,
((_RopeLeaf*)__right)->_M_data,
__right->_M_size);
__leftleft->_M_ref_nonnil();
__STL_TRY {
return(_S_tree_concat(__leftleft, __rest));
}
__STL_UNWIND(_S_unref(__leftleft); _S_unref(__rest))
}
}
}
__left->_M_ref_nonnil();
__right->_M_ref_nonnil();
__STL_TRY {
return(_S_tree_concat(__left, __right));
}
__STL_UNWIND(_S_unref(__left); _S_unref(__right));
}
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_substring(_RopeRep* __base,
size_t __start, size_t __endp1)
{
if (0 == __base) return 0;
size_t __len = __base->_M_size;
size_t __adj_endp1;
const size_t __lazy_threshold = 128;
if (__endp1 >= __len) {
if (0 == __start) {
__base->_M_ref_nonnil();
return __base;
} else {
__adj_endp1 = __len;
}
} else {
__adj_endp1 = __endp1;
}
switch(__base->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__base;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
size_t __left_len = __left->_M_size;
_RopeRep* __result;
if (__adj_endp1 <= __left_len) {
return _S_substring(__left, __start, __endp1);
} else if (__start >= __left_len) {
return _S_substring(__right, __start - __left_len,
__adj_endp1 - __left_len);
}
_Self_destruct_ptr __left_result(
_S_substring(__left, __start, __left_len));
_Self_destruct_ptr __right_result(
_S_substring(__right, 0, __endp1 - __left_len));
__result = _S_concat(__left_result, __right_result);
# ifndef __GC
__stl_assert(1 == __result->_M_refcount);
# endif
return __result;
}
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__base;
_RopeLeaf* __result;
size_t __result_len;
if (__start >= __adj_endp1) return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold) goto lazy;
# ifdef __GC
const _CharT* __section = __l->_M_data + __start;
__result = _S_new_RopeLeaf(__section, __result_len,
__base->get_allocator());
__result->_M_c_string = 0; // Not eos terminated.
# else
// We should sometimes create substring node instead.
__result = __STL_ROPE_FROM_UNOWNED_CHAR_PTR(
__l->_M_data + __start, __result_len,
__base->get_allocator());
# endif
return __result;
}
case _RopeRep::_S_substringfn:
// Avoid introducing multiple layers of substring nodes.
{
_RopeSubstring* __old = (_RopeSubstring*)__base;
size_t __result_len;
if (__start >= __adj_endp1) return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold) {
_RopeSubstring* __result =
_S_new_RopeSubstring(__old->_M_base,
__start + __old->_M_start,
__adj_endp1 - __start,
__base->get_allocator());
return __result;
} // *** else fall through: ***
}
case _RopeRep::_S_function:
{
_RopeFunction* __f = (_RopeFunction*)__base;
_CharT* __section;
size_t __result_len;
if (__start >= __adj_endp1) return 0;
__result_len = __adj_endp1 - __start;
if (__result_len > __lazy_threshold) goto lazy;
__section = (_CharT*)
_Data_allocate(_S_rounded_up_size(__result_len));
__STL_TRY {
(*(__f->_M_fn))(__start, __result_len, __section);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(
__section, __result_len, __base->get_allocator()));
_S_cond_store_eos(__section[__result_len]);
return _S_new_RopeLeaf(__section, __result_len,
__base->get_allocator());
}
}
/*NOTREACHED*/
__stl_assert(false);
lazy:
{
// Create substring node.
return _S_new_RopeSubstring(__base, __start, __adj_endp1 - __start,
__base->get_allocator());
}
}
template<class _CharT>
class _Rope_flatten_char_consumer : public _Rope_char_consumer<_CharT> {
private:
_CharT* _M_buf_ptr;
public:
// _CharT* _M_buffer; // XXX not used
_Rope_flatten_char_consumer(_CharT* __buffer) {
_M_buf_ptr = __buffer;
};
~_Rope_flatten_char_consumer() {}
bool operator() (const _CharT* __leaf, size_t __n) {
uninitialized_copy_n(__leaf, __n, _M_buf_ptr);
_M_buf_ptr += __n;
return true;
}
};
template<class _CharT>
class _Rope_find_char_char_consumer : public _Rope_char_consumer<_CharT> {
private:
_CharT _M_pattern;
public:
size_t _M_count; // Number of nonmatching characters
_Rope_find_char_char_consumer(_CharT __p)
: _M_pattern(__p), _M_count(0) {}
~_Rope_find_char_char_consumer() {}
bool operator() (const _CharT* __leaf, size_t __n) {
size_t __i;
for (__i = 0; __i < __n; __i++) {
if (__leaf[__i] == _M_pattern) {
_M_count += __i; return false;
}
}
_M_count += __n; return true;
}
};
template<class _CharT>
class _Rope_insert_char_consumer : public _Rope_char_consumer<_CharT> {
private:
typedef ostream _Insert_ostream;
_Insert_ostream& _M_o;
public:
// _CharT* buffer; // XXX not used
_Rope_insert_char_consumer(_Insert_ostream& __writer)
: _M_o(__writer) {};
~_Rope_insert_char_consumer() { };
// Caller is presumed to own the ostream
bool operator() (const _CharT* __leaf, size_t __n);
// Returns true to continue traversal.
};
template<class _CharT>
bool _Rope_insert_char_consumer<_CharT>::operator()
(const _CharT* __leaf, size_t __n)
{
size_t __i;
// We assume that formatting is set up correctly for each element.
for (__i = 0; __i < __n; __i++) _M_o << __leaf[__i];
return true;
}
inline bool _Rope_insert_char_consumer<char>::operator()
(const char* __leaf, size_t __n)
{
size_t __i;
for (__i = 0; __i < __n; __i++) _M_o.put(__leaf[__i]);
return true;
}
#if 0
// I couldn't get this to work work with the VC++ version of basic_ostream.
// It also doesn't really do the right thing unless o is a wide stream.
// Given that wchar_t is often 4 bytes, its not clear to me how useful
// this stuff is anyway.
inline bool _Rope_insert_char_consumer<wchar_t>::operator()
(const wchar_t* __leaf, size_t __n)
{
size_t __i;
for (__i = 0; __i < __n; __i++) _M_o.put(__leaf[__i]);
return true;
}
#endif /* !_MSC_VER && !BORLAND */
template <class _CharT, class _Alloc>
bool rope<_CharT, _Alloc>::_S_apply_to_pieces(
_Rope_char_consumer<_CharT>& __c,
const _RopeRep* __r,
size_t __begin, size_t __end)
{
if (0 == __r) return true;
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __conc = (_RopeConcatenation*)__r;
_RopeRep* __left = __conc->_M_left;
size_t __left_len = __left->_M_size;
if (__begin < __left_len) {
size_t __left_end = min(__left_len, __end);
if (!_S_apply_to_pieces(__c, __left, __begin, __left_end))
return false;
}
if (__end > __left_len) {
_RopeRep* __right = __conc->_M_right;
size_t __right_start = max(__left_len, __begin);
if (!_S_apply_to_pieces(__c, __right,
__right_start - __left_len,
__end - __left_len)) {
return false;
}
}
}
return true;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return __c(__l->_M_data + __begin, __end - __begin);
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
_RopeFunction* __f = (_RopeFunction*)__r;
size_t __len = __end - __begin;
bool __result;
_CharT* __buffer =
(_CharT*)alloc::allocate(__len * sizeof(_CharT));
__STL_TRY {
(*(__f->_M_fn))(__begin, __end, __buffer);
__result = __c(__buffer, __len);
alloc::deallocate(__buffer, __len * sizeof(_CharT));
}
__STL_UNWIND((alloc::deallocate(__buffer,
__len * sizeof(_CharT))))
return __result;
}
default:
__stl_assert(false);
/*NOTREACHED*/
return false;
}
}
inline void _Rope_fill(ostream& __o, size_t __n)
{
char __f = __o.fill();
size_t __i;
for (__i = 0; __i < __n; __i++) __o.put(__f);
}
template <class _CharT> inline bool _Rope_is_simple(_CharT*) { return false; }
inline bool _Rope_is_simple(char*) { return true; }
inline bool _Rope_is_simple(wchar_t*) { return true; }
template<class _CharT, class _Alloc>
ostream& operator<< (ostream& __o, const rope<_CharT, _Alloc>& __r)
{
size_t __w = __o.width();
bool __left = bool(__o.flags() & ios::left);
size_t __pad_len;
size_t __rope_len = __r.size();
_Rope_insert_char_consumer<_CharT> __c(__o);
bool __is_simple = _Rope_is_simple((_CharT*)0);
if (__rope_len < __w) {
__pad_len = __w - __rope_len;
} else {
__pad_len = 0;
}
if (!__is_simple) __o.width(__w/__rope_len);
__STL_TRY {
if (__is_simple && !__left && __pad_len > 0) {
_Rope_fill(__o, __pad_len);
}
__r.apply_to_pieces(0, __r.size(), __c);
if (__is_simple && __left && __pad_len > 0) {
_Rope_fill(__o, __pad_len);
}
if (!__is_simple)
__o.width(__w);
}
__STL_UNWIND(if (!__is_simple) __o.width(__w))
return __o;
}
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT,_Alloc>::_S_flatten(_RopeRep* __r,
size_t __start, size_t __len,
_CharT* __buffer)
{
_Rope_flatten_char_consumer<_CharT> __c(__buffer);
_S_apply_to_pieces(__c, __r, __start, __start + __len);
return(__buffer + __len);
}
template <class _CharT, class _Alloc>
size_t
rope<_CharT,_Alloc>::find(_CharT __pattern, size_t __start) const
{
_Rope_find_char_char_consumer<_CharT> __c(__pattern);
_S_apply_to_pieces(__c, _M_tree_ptr, __start, size());
size_type __result_pos = __start + __c._M_count;
# ifndef __STL_OLD_ROPE_SEMANTICS
if (__result_pos == size()) __result_pos = npos;
# endif
return __result_pos;
}
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT,_Alloc>::_S_flatten(_RopeRep* __r, _CharT* __buffer)
{
if (0 == __r) return __buffer;
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
_CharT* __rest = _S_flatten(__left, __buffer);
return _S_flatten(__right, __rest);
}
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return copy_n(__l->_M_data, __l->_M_size, __buffer).second;
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
// We dont yet do anything with substring nodes.
// This needs to be fixed before ropefiles will work well.
{
_RopeFunction* __f = (_RopeFunction*)__r;
(*(__f->_M_fn))(0, __f->_M_size, __buffer);
return __buffer + __f->_M_size;
}
default:
__stl_assert(false);
/*NOTREACHED*/
return 0;
}
}
// This needs work for _CharT != char
template <class _CharT, class _Alloc>
void
rope<_CharT,_Alloc>::_S_dump(_RopeRep* __r, int __indent)
{
for (int __i = 0; __i < __indent; __i++) putchar(' ');
if (0 == __r) {
printf("NULL\n"); return;
}
if (_RopeRep::_S_concat == __r->_M_tag) {
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
_RopeRep* __right = __c->_M_right;
# ifdef __GC
printf("Concatenation %p (depth = %d, len = %ld, %s balanced)\n",
__r, __r->_M_depth, __r->_M_size, __r->_M_is_balanced? "" : "not");
# else
printf("Concatenation %p (rc = %ld, depth = %d, "
"len = %ld, %s balanced)\n",
__r, __r->_M_refcount, __r->_M_depth, __r->_M_size,
__r->_M_is_balanced? "" : "not");
# endif
_S_dump(__left, __indent + 2);
_S_dump(__right, __indent + 2);
return;
} else {
char* __kind;
switch (__r->_M_tag) {
case _RopeRep::_S_leaf:
__kind = "Leaf";
break;
case _RopeRep::_S_function:
__kind = "Function";
break;
case _RopeRep::_S_substringfn:
__kind = "Function representing substring";
break;
default:
__kind = "(corrupted kind field!)";
}
# ifdef __GC
printf("%s %p (depth = %d, len = %ld) ",
__kind, __r, __r->_M_depth, __r->_M_size);
# else
printf("%s %p (rc = %ld, depth = %d, len = %ld) ",
__kind, __r, __r->_M_refcount, __r->_M_depth, __r->_M_size);
# endif
if (_S_is_one_byte_char_type((_CharT*)0)) {
const int __max_len = 40;
_Self_destruct_ptr __prefix(_S_substring(__r, 0, __max_len));
_CharT __buffer[__max_len + 1];
bool __too_big = __r->_M_size > __prefix->_M_size;
_S_flatten(__prefix, __buffer);
__buffer[__prefix->_M_size] = _S_eos((_CharT*)0);
printf("%s%s\n",
(char*)__buffer, __too_big? "...\n" : "\n");
} else {
printf("\n");
}
}
}
template <class _CharT, class _Alloc>
const unsigned long
rope<_CharT,_Alloc>::_S_min_len[
_Rope_RopeRep<_CharT,_Alloc>::_S_max_rope_depth + 1] = {
/* 0 */1, /* 1 */2, /* 2 */3, /* 3 */5, /* 4 */8, /* 5 */13, /* 6 */21,
/* 7 */34, /* 8 */55, /* 9 */89, /* 10 */144, /* 11 */233, /* 12 */377,
/* 13 */610, /* 14 */987, /* 15 */1597, /* 16 */2584, /* 17 */4181,
/* 18 */6765, /* 19 */10946, /* 20 */17711, /* 21 */28657, /* 22 */46368,
/* 23 */75025, /* 24 */121393, /* 25 */196418, /* 26 */317811,
/* 27 */514229, /* 28 */832040, /* 29 */1346269, /* 30 */2178309,
/* 31 */3524578, /* 32 */5702887, /* 33 */9227465, /* 34 */14930352,
/* 35 */24157817, /* 36 */39088169, /* 37 */63245986, /* 38 */102334155,
/* 39 */165580141, /* 40 */267914296, /* 41 */433494437,
/* 42 */701408733, /* 43 */1134903170, /* 44 */1836311903,
/* 45 */2971215073u };
// These are Fibonacci numbers < 2**32.
template <class _CharT, class _Alloc>
rope<_CharT,_Alloc>::_RopeRep*
rope<_CharT,_Alloc>::_S_balance(_RopeRep* __r)
{
_RopeRep* __forest[_RopeRep::_S_max_rope_depth + 1];
_RopeRep* __result = 0;
int __i;
// Invariant:
// The concatenation of forest in descending order is equal to __r.
// __forest[__i]._M_size >= _S_min_len[__i]
// __forest[__i]._M_depth = __i
// References from forest are included in refcount.
for (__i = 0; __i <= _RopeRep::_S_max_rope_depth; ++__i)
__forest[__i] = 0;
__STL_TRY {
_S_add_to_forest(__r, __forest);
for (__i = 0; __i <= _RopeRep::_S_max_rope_depth; ++__i)
if (0 != __forest[__i]) {
# ifndef __GC
_Self_destruct_ptr __old(__result);
# endif
__result = _S_concat(__forest[__i], __result);
__forest[__i]->_M_unref_nonnil();
# if !defined(__GC) && defined(__STL_USE_EXCEPTIONS)
__forest[__i] = 0;
# endif
}
}
__STL_UNWIND(for(__i = 0; __i <= _RopeRep::_S_max_rope_depth; __i++)
_S_unref(__forest[__i]))
if (__result->_M_depth > _RopeRep::_S_max_rope_depth) abort();
return(__result);
}
template <class _CharT, class _Alloc>
void
rope<_CharT,_Alloc>::_S_add_to_forest(_RopeRep* __r, _RopeRep** __forest)
{
if (__r->_M_is_balanced) {
_S_add_leaf_to_forest(__r, __forest);
return;
}
__stl_assert(__r->_M_tag == _RopeRep::_S_concat);
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_S_add_to_forest(__c->_M_left, __forest);
_S_add_to_forest(__c->_M_right, __forest);
}
}
template <class _CharT, class _Alloc>
void
rope<_CharT,_Alloc>::_S_add_leaf_to_forest(_RopeRep* __r, _RopeRep** __forest)
{
_RopeRep* __insertee; // included in refcount
_RopeRep* __too_tiny = 0; // included in refcount
int __i; // forest[0..__i-1] is empty
size_t __s = __r->_M_size;
for (__i = 0; __s >= _S_min_len[__i+1]/* not this bucket */; ++__i) {
if (0 != __forest[__i]) {
# ifndef __GC
_Self_destruct_ptr __old(__too_tiny);
# endif
__too_tiny = _S_concat_and_set_balanced(__forest[__i], __too_tiny);
__forest[__i]->_M_unref_nonnil();
__forest[__i] = 0;
}
}
{
# ifndef __GC
_Self_destruct_ptr __old(__too_tiny);
# endif
__insertee = _S_concat_and_set_balanced(__too_tiny, __r);
}
// Too_tiny dead, and no longer included in refcount.
// Insertee is live and included.
__stl_assert(_S_is_almost_balanced(__insertee));
__stl_assert(__insertee->_M_depth <= __r->_M_depth + 1);
for (;; ++__i) {
if (0 != __forest[__i]) {
# ifndef __GC
_Self_destruct_ptr __old(__insertee);
# endif
__insertee = _S_concat_and_set_balanced(__forest[__i], __insertee);
__forest[__i]->_M_unref_nonnil();
__forest[__i] = 0;
__stl_assert(_S_is_almost_balanced(__insertee));
}
__stl_assert(_S_min_len[__i] <= __insertee->_M_size);
__stl_assert(__forest[__i] == 0);
if (__i == _RopeRep::_S_max_rope_depth ||
__insertee->_M_size < _S_min_len[__i+1]) {
__forest[__i] = __insertee;
// refcount is OK since __insertee is now dead.
return;
}
}
}
template <class _CharT, class _Alloc>
_CharT
rope<_CharT,_Alloc>::_S_fetch(_RopeRep* __r, size_type __i)
{
__GC_CONST _CharT* __cstr = __r->_M_c_string;
__stl_assert(__i < __r->_M_size);
if (0 != __cstr) return __cstr[__i];
for(;;) {
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
if (__i >= __left_len) {
__i -= __left_len;
__r = __c->_M_right;
} else {
__r = __left;
}
}
break;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
return __l->_M_data[__i];
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
{
_RopeFunction* __f = (_RopeFunction*)__r;
_CharT __result;
(*(__f->_M_fn))(__i, 1, &__result);
return __result;
}
}
}
}
# ifndef __GC
// Return a uniquely referenced character slot for the given
// position, or 0 if that's not possible.
template <class _CharT, class _Alloc>
_CharT*
rope<_CharT,_Alloc>::_S_fetch_ptr(_RopeRep* __r, size_type __i)
{
_RopeRep* __clrstack[_RopeRep::_S_max_rope_depth];
size_t __csptr = 0;
for(;;) {
if (__r->_M_refcount > 1) return 0;
switch(__r->_M_tag) {
case _RopeRep::_S_concat:
{
_RopeConcatenation* __c = (_RopeConcatenation*)__r;
_RopeRep* __left = __c->_M_left;
size_t __left_len = __left->_M_size;
if (__c->_M_c_string != 0) __clrstack[__csptr++] = __c;
if (__i >= __left_len) {
__i -= __left_len;
__r = __c->_M_right;
} else {
__r = __left;
}
}
break;
case _RopeRep::_S_leaf:
{
_RopeLeaf* __l = (_RopeLeaf*)__r;
if (__l->_M_c_string != __l->_M_data && __l->_M_c_string != 0)
__clrstack[__csptr++] = __l;
while (__csptr > 0) {
-- __csptr;
_RopeRep* __d = __clrstack[__csptr];
__d->_M_free_c_string();
__d->_M_c_string = 0;
}
return __l->_M_data + __i;
}
case _RopeRep::_S_function:
case _RopeRep::_S_substringfn:
return 0;
}
}
}
# endif /* __GC */
// The following could be implemented trivially using
// lexicographical_compare_3way.
// We do a little more work to avoid dealing with rope iterators for
// flat strings.
template <class _CharT, class _Alloc>
int
rope<_CharT,_Alloc>::_S_compare (const _RopeRep* __left,
const _RopeRep* __right)
{
size_t __left_len;
size_t __right_len;
if (0 == __right) return 0 != __left;
if (0 == __left) return -1;
__left_len = __left->_M_size;
__right_len = __right->_M_size;
if (_RopeRep::_S_leaf == __left->_M_tag) {
_RopeLeaf* __l = (_RopeLeaf*) __left;
if (_RopeRep::_S_leaf == __right->_M_tag) {
_RopeLeaf* __r = (_RopeLeaf*) __right;
return lexicographical_compare_3way(
__l->_M_data, __l->_M_data + __left_len,
__r->_M_data, __r->_M_data + __right_len);
} else {
const_iterator __rstart(__right, 0);
const_iterator __rend(__right, __right_len);
return lexicographical_compare_3way(
__l->_M_data, __l->_M_data + __left_len,
__rstart, __rend);
}
} else {
const_iterator __lstart(__left, 0);
const_iterator __lend(__left, __left_len);
if (_RopeRep::_S_leaf == __right->_M_tag) {
_RopeLeaf* __r = (_RopeLeaf*) __right;
return lexicographical_compare_3way(
__lstart, __lend,
__r->_M_data, __r->_M_data + __right_len);
} else {
const_iterator __rstart(__right, 0);
const_iterator __rend(__right, __right_len);
return lexicographical_compare_3way(
__lstart, __lend,
__rstart, __rend);
}
}
}
// Assignment to reference proxies.
template <class _CharT, class _Alloc>
_Rope_char_ref_proxy<_CharT, _Alloc>&
_Rope_char_ref_proxy<_CharT, _Alloc>::operator= (_CharT __c) {
_RopeRep* __old = _M_root->_M_tree_ptr;
# ifndef __GC
// First check for the case in which everything is uniquely
// referenced. In that case we can do this destructively.
_CharT* __ptr = _My_rope::_S_fetch_ptr(__old, _M_pos);
if (0 != __ptr) {
*__ptr = __c;
return *this;
}
# endif
_Self_destruct_ptr __left(
_My_rope::_S_substring(__old, 0, _M_pos));
_Self_destruct_ptr __right(
_My_rope::_S_substring(__old, _M_pos+1, __old->_M_size));
_Self_destruct_ptr __result_left(
_My_rope::_S_destr_concat_char_iter(__left, &__c, 1));
# ifndef __GC
__stl_assert(__left == __result_left || 1 == __result_left->_M_refcount);
# endif
_RopeRep* __result =
_My_rope::_S_concat(__result_left, __right);
# ifndef __GC
__stl_assert(1 <= __result->_M_refcount);
_RopeRep::_S_unref(__old);
# endif
_M_root->_M_tree_ptr = __result;
return *this;
}
template <class _CharT, class _Alloc>
inline _Rope_char_ref_proxy<_CharT, _Alloc>::operator _CharT () const
{
if (_M_current_valid) {
return _M_current;
} else {
return _My_rope::_S_fetch(_M_root->_M_tree_ptr, _M_pos);
}
}
template <class _CharT, class _Alloc>
_Rope_char_ptr_proxy<_CharT, _Alloc>
_Rope_char_ref_proxy<_CharT, _Alloc>::operator& () const {
return _Rope_char_ptr_proxy<_CharT, _Alloc>(*this);
}
template <class _CharT, class _Alloc>
rope<_CharT, _Alloc>::rope(size_t __n, _CharT __c,
const allocator_type& __a)
: _Base(__a)
{
rope<_CharT,_Alloc> __result;
const size_t __exponentiate_threshold = 32;
size_t __exponent;
size_t __rest;
_CharT* __rest_buffer;
_RopeRep* __remainder;
rope<_CharT,_Alloc> __remainder_rope;
if (0 == __n)
return;
__exponent = __n / __exponentiate_threshold;
__rest = __n % __exponentiate_threshold;
if (0 == __rest) {
__remainder = 0;
} else {
__rest_buffer = _Data_allocate(_S_rounded_up_size(__rest));
uninitialized_fill_n(__rest_buffer, __rest, __c);
_S_cond_store_eos(__rest_buffer[__rest]);
__STL_TRY {
__remainder = _S_new_RopeLeaf(__rest_buffer, __rest, __a);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__rest_buffer, __rest, __a))
}
__remainder_rope._M_tree_ptr = __remainder;
if (__exponent != 0) {
_CharT* __base_buffer =
_Data_allocate(_S_rounded_up_size(__exponentiate_threshold));
_RopeLeaf* __base_leaf;
rope __base_rope;
uninitialized_fill_n(__base_buffer, __exponentiate_threshold, __c);
_S_cond_store_eos(__base_buffer[__exponentiate_threshold]);
__STL_TRY {
__base_leaf = _S_new_RopeLeaf(__base_buffer,
__exponentiate_threshold, __a);
}
__STL_UNWIND(_RopeRep::__STL_FREE_STRING(__base_buffer,
__exponentiate_threshold, __a))
__base_rope._M_tree_ptr = __base_leaf;
if (1 == __exponent) {
__result = __base_rope;
# ifndef __GC
__stl_assert(2 == __result._M_tree_ptr->_M_refcount);
// One each for base_rope and __result
# endif
} else {
// XXX what is power()?
__result = power(__base_rope, __exponent, _Concat_fn());
}
if (0 != __remainder) {
__result += __remainder_rope;
}
} else {
__result = __remainder_rope;
}
_M_tree_ptr = __result._M_tree_ptr;
_M_tree_ptr->_M_ref_nonnil();
}
template<class _CharT, class _Alloc>
_CharT rope<_CharT,_Alloc>::_S_empty_c_str[1];
# ifdef __STL_PTHREADS
template<class _CharT, class _Alloc>
pthread_mutex_t
rope<_CharT,_Alloc>::_S_swap_lock = PTHREAD_MUTEX_INITIALIZER;
# endif
template<class _CharT, class _Alloc>
const _CharT* rope<_CharT,_Alloc>::c_str() const {
if (0 == _M_tree_ptr) {
_S_empty_c_str[0] = _S_eos((_CharT*)0); // Possibly redundant,
// but probably fast.
return _S_empty_c_str;
}
__GC_CONST _CharT* __old_c_string = _M_tree_ptr->_M_c_string;
if (0 != __old_c_string) return(__old_c_string);
size_t __s = size();
_CharT* __result = _Data_allocate(__s + 1);
_S_flatten(_M_tree_ptr, __result);
__result[__s] = _S_eos((_CharT*)0);
# ifdef __GC
_M_tree_ptr->_M_c_string = __result;
# else
if ((__old_c_string =
_S_atomic_swap(&(_M_tree_ptr->_M_c_string), __result)) != 0) {
// It must have been added in the interim. Hence it had to have been
// separately allocated. Deallocate the old copy, since we just
// replaced it.
destroy(__old_c_string, __old_c_string + __s + 1);
_Data_deallocate(__old_c_string, __s + 1);
}
# endif
return(__result);
}
template<class _CharT, class _Alloc>
const _CharT* rope<_CharT,_Alloc>::replace_with_c_str() {
if (0 == _M_tree_ptr) {
_S_empty_c_str[0] = _S_eos((_CharT*)0);
return _S_empty_c_str;
}
__GC_CONST _CharT* __old_c_string = _M_tree_ptr->_M_c_string;
if (_RopeRep::_S_leaf == _M_tree_ptr->_M_tag && 0 != __old_c_string) {
return(__old_c_string);
}
size_t __s = size();
_CharT* __result = _Data_allocate(_S_rounded_up_size(__s));
_S_flatten(_M_tree_ptr, __result);
__result[__s] = _S_eos((_CharT*)0);
_M_tree_ptr->_M_unref_nonnil();
_M_tree_ptr = _S_new_RopeLeaf(__result, __s, get_allocator());
return(__result);
}
// Algorithm specializations. More should be added.
#ifndef _MSC_VER
// I couldn't get this to work with VC++
template<class _CharT,class _Alloc>
void
_Rope_rotate(_Rope_iterator<_CharT,_Alloc> __first,
_Rope_iterator<_CharT,_Alloc> __middle,
_Rope_iterator<_CharT,_Alloc> __last)
{
__stl_assert(__first.container() == __middle.container()
&& __middle.container() == __last.container());
rope<_CharT,_Alloc>& __r(__first.container());
rope<_CharT,_Alloc> __prefix = __r.substr(0, __first.index());
rope<_CharT,_Alloc> __suffix =
__r.substr(__last.index(), __r.size() - __last.index());
rope<_CharT,_Alloc> __part1 =
__r.substr(__middle.index(), __last.index() - __middle.index());
rope<_CharT,_Alloc> __part2 =
__r.substr(__first.index(), __middle.index() - __first.index());
__r = __prefix;
__r += __part1;
__r += __part2;
__r += __suffix;
}
#if !defined(__GNUC__)
// Appears to confuse g++
inline void rotate(_Rope_iterator<char,__STL_DEFAULT_ALLOCATOR(char)> __first,
_Rope_iterator<char,__STL_DEFAULT_ALLOCATOR(char)> __middle,
_Rope_iterator<char,__STL_DEFAULT_ALLOCATOR(char)> __last) {
_Rope_rotate(__first, __middle, __last);
}
#endif
# if 0
// Probably not useful for several reasons:
// - for SGIs 7.1 compiler and probably some others,
// this forces lots of rope<wchar_t, ...> instantiations, creating a
// code bloat and compile time problem. (Fixed in 7.2.)
// - wchar_t is 4 bytes wide on most UNIX platforms, making it unattractive
// for unicode strings. Unsigned short may be a better character
// type.
inline void rotate(
_Rope_iterator<wchar_t,__STL_DEFAULT_ALLOCATOR(char)> __first,
_Rope_iterator<wchar_t,__STL_DEFAULT_ALLOCATOR(char)> __middle,
_Rope_iterator<wchar_t,__STL_DEFAULT_ALLOCATOR(char)> __last) {
_Rope_rotate(__first, __middle, __last);
}
# endif
#endif /* _MSC_VER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif
__STL_END_NAMESPACE
// Local Variables:
// mode:C++
// End: