freebsd-skq/sys/kern/subr_epoch.c

626 lines
17 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2018, Matthew Macy <mmacy@freebsd.org>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/epoch.h>
#include <sys/gtaskqueue.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/turnstile.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <ck_epoch.h>
static MALLOC_DEFINE(M_EPOCH, "epoch", "epoch based reclamation");
/* arbitrary --- needs benchmarking */
#define MAX_ADAPTIVE_SPIN 1000
#define MAX_EPOCHS 64
#ifdef __amd64__
#define EPOCH_ALIGN CACHE_LINE_SIZE*2
#else
#define EPOCH_ALIGN CACHE_LINE_SIZE
#endif
CTASSERT(sizeof(epoch_section_t) == sizeof(ck_epoch_section_t));
CTASSERT(sizeof(ck_epoch_entry_t) == sizeof(struct epoch_context));
SYSCTL_NODE(_kern, OID_AUTO, epoch, CTLFLAG_RW, 0, "epoch information");
SYSCTL_NODE(_kern_epoch, OID_AUTO, stats, CTLFLAG_RW, 0, "epoch stats");
/* Stats. */
static counter_u64_t block_count;
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, nblocked, CTLFLAG_RW,
&block_count, "# of times a thread was in an epoch when epoch_wait was called");
static counter_u64_t migrate_count;
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, migrations, CTLFLAG_RW,
&migrate_count, "# of times thread was migrated to another CPU in epoch_wait");
static counter_u64_t turnstile_count;
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, ncontended, CTLFLAG_RW,
&turnstile_count, "# of times a thread was blocked on a lock in an epoch during an epoch_wait");
static counter_u64_t switch_count;
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, switches, CTLFLAG_RW,
&switch_count, "# of times a thread voluntarily context switched in epoch_wait");
static counter_u64_t epoch_call_count;
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_calls, CTLFLAG_RW,
&epoch_call_count, "# of times a callback was deferred");
static counter_u64_t epoch_call_task_count;
SYSCTL_COUNTER_U64(_kern_epoch_stats, OID_AUTO, epoch_call_tasks, CTLFLAG_RW,
&epoch_call_task_count, "# of times a callback task was run");
TAILQ_HEAD(threadlist, thread);
CK_STACK_CONTAINER(struct ck_epoch_entry, stack_entry,
ck_epoch_entry_container)
typedef struct epoch_record {
ck_epoch_record_t er_record;
volatile struct threadlist er_tdlist;
volatile uint32_t er_gen;
uint32_t er_cpuid;
} *epoch_record_t;
struct epoch_pcpu_state {
struct epoch_record eps_record;
} __aligned(EPOCH_ALIGN);
struct epoch {
struct ck_epoch e_epoch __aligned(EPOCH_ALIGN);
struct epoch_pcpu_state *e_pcpu_dom[MAXMEMDOM] __aligned(EPOCH_ALIGN);
int e_idx;
int e_flags;
struct epoch_pcpu_state *e_pcpu[0];
};
epoch_t allepochs[MAX_EPOCHS];
DPCPU_DEFINE(struct grouptask, epoch_cb_task);
DPCPU_DEFINE(int, epoch_cb_count);
static __read_mostly int domcount[MAXMEMDOM];
static __read_mostly int domoffsets[MAXMEMDOM];
static __read_mostly int inited;
static __read_mostly int epoch_count;
__read_mostly epoch_t global_epoch;
__read_mostly epoch_t global_epoch_preempt;
static void epoch_call_task(void *context __unused);
#if defined(__powerpc64__) || defined(__powerpc__) || !defined(NUMA)
static bool usedomains = false;
#else
static bool usedomains = true;
#endif
static void
epoch_init(void *arg __unused)
{
int domain, cpu;
block_count = counter_u64_alloc(M_WAITOK);
migrate_count = counter_u64_alloc(M_WAITOK);
turnstile_count = counter_u64_alloc(M_WAITOK);
switch_count = counter_u64_alloc(M_WAITOK);
epoch_call_count = counter_u64_alloc(M_WAITOK);
epoch_call_task_count = counter_u64_alloc(M_WAITOK);
if (usedomains == false)
goto done;
domain = 0;
domoffsets[0] = 0;
for (domain = 0; domain < vm_ndomains; domain++) {
domcount[domain] = CPU_COUNT(&cpuset_domain[domain]);
if (bootverbose)
printf("domcount[%d] %d\n", domain, domcount[domain]);
}
for (domain = 1; domain < vm_ndomains; domain++)
domoffsets[domain] = domoffsets[domain-1] + domcount[domain-1];
for (domain = 0; domain < vm_ndomains; domain++) {
if (domcount[domain] == 0) {
usedomains = false;
break;
}
}
done:
CPU_FOREACH(cpu) {
GROUPTASK_INIT(DPCPU_ID_PTR(cpu, epoch_cb_task), 0, epoch_call_task, NULL);
taskqgroup_attach_cpu(qgroup_softirq, DPCPU_ID_PTR(cpu, epoch_cb_task), NULL, cpu, -1, "epoch call task");
}
inited = 1;
global_epoch = epoch_alloc(0);
global_epoch_preempt = epoch_alloc(EPOCH_PREEMPT);
}
SYSINIT(epoch, SI_SUB_TASKQ + 1, SI_ORDER_FIRST, epoch_init, NULL);
static void
epoch_init_numa(epoch_t epoch)
{
int domain, cpu_offset;
struct epoch_pcpu_state *eps;
epoch_record_t er;
for (domain = 0; domain < vm_ndomains; domain++) {
eps = malloc_domain(sizeof(*eps)*domcount[domain], M_EPOCH,
domain, M_ZERO|M_WAITOK);
epoch->e_pcpu_dom[domain] = eps;
cpu_offset = domoffsets[domain];
for (int i = 0; i < domcount[domain]; i++, eps++) {
epoch->e_pcpu[cpu_offset + i] = eps;
er = &eps->eps_record;
ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
er->er_cpuid = cpu_offset + i;
}
}
}
static void
epoch_init_legacy(epoch_t epoch)
{
struct epoch_pcpu_state *eps;
epoch_record_t er;
eps = malloc(sizeof(*eps)*mp_ncpus, M_EPOCH, M_ZERO|M_WAITOK);
epoch->e_pcpu_dom[0] = eps;
for (int i = 0; i < mp_ncpus; i++, eps++) {
epoch->e_pcpu[i] = eps;
er = &eps->eps_record;
ck_epoch_register(&epoch->e_epoch, &er->er_record, NULL);
TAILQ_INIT((struct threadlist *)(uintptr_t)&er->er_tdlist);
er->er_cpuid = i;
}
}
epoch_t
epoch_alloc(int flags)
{
epoch_t epoch;
if (__predict_false(!inited))
panic("%s called too early in boot", __func__);
epoch = malloc(sizeof(struct epoch) + mp_ncpus*sizeof(void*),
M_EPOCH, M_ZERO|M_WAITOK);
ck_epoch_init(&epoch->e_epoch);
if (usedomains)
epoch_init_numa(epoch);
else
epoch_init_legacy(epoch);
MPASS(epoch_count < MAX_EPOCHS-2);
epoch->e_flags = flags;
epoch->e_idx = epoch_count;
allepochs[epoch_count++] = epoch;
return (epoch);
}
void
epoch_free(epoch_t epoch)
{
int domain;
#ifdef INVARIANTS
struct epoch_pcpu_state *eps;
int cpu;
CPU_FOREACH(cpu) {
eps = epoch->e_pcpu[cpu];
MPASS(TAILQ_EMPTY(&eps->eps_record.er_tdlist));
}
#endif
allepochs[epoch->e_idx] = NULL;
epoch_wait(global_epoch);
if (usedomains)
for (domain = 0; domain < vm_ndomains; domain++)
free_domain(epoch->e_pcpu_dom[domain], M_EPOCH);
else
free(epoch->e_pcpu_dom[0], M_EPOCH);
free(epoch, M_EPOCH);
}
#define INIT_CHECK(epoch) \
do { \
if (__predict_false((epoch) == NULL)) \
return; \
} while (0)
void
epoch_enter_preempt_internal(epoch_t epoch, struct thread *td)
{
struct epoch_pcpu_state *eps;
MPASS(cold || epoch != NULL);
INIT_CHECK(epoch);
MPASS(epoch->e_flags & EPOCH_PREEMPT);
critical_enter();
td->td_pre_epoch_prio = td->td_priority;
eps = epoch->e_pcpu[curcpu];
#ifdef INVARIANTS
MPASS(td->td_epochnest < UCHAR_MAX - 2);
if (td->td_epochnest > 1) {
struct thread *curtd;
int found = 0;
TAILQ_FOREACH(curtd, &eps->eps_record.er_tdlist, td_epochq)
if (curtd == td)
found = 1;
KASSERT(found, ("recursing on a second epoch"));
critical_exit();
return;
}
#endif
TAILQ_INSERT_TAIL(&eps->eps_record.er_tdlist, td, td_epochq);
sched_pin();
ck_epoch_begin(&eps->eps_record.er_record, (ck_epoch_section_t*)&td->td_epoch_section);
critical_exit();
}
void
epoch_enter(epoch_t epoch)
{
ck_epoch_record_t *record;
ck_epoch_section_t *section;
struct thread *td;
MPASS(cold || epoch != NULL);
section = NULL;
td = curthread;
critical_enter();
if (__predict_true(td->td_epochnest++ == 0))
section = (ck_epoch_section_t*)&td->td_epoch_section;
record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
ck_epoch_begin(record, section);
}
void
epoch_exit_preempt_internal(epoch_t epoch, struct thread *td)
{
struct epoch_pcpu_state *eps;
MPASS(td->td_epochnest == 0);
INIT_CHECK(epoch);
critical_enter();
eps = epoch->e_pcpu[curcpu];
MPASS(epoch->e_flags & EPOCH_PREEMPT);
ck_epoch_end(&eps->eps_record.er_record, (ck_epoch_section_t*)&td->td_epoch_section);
TAILQ_REMOVE(&eps->eps_record.er_tdlist, td, td_epochq);
eps->eps_record.er_gen++;
sched_unpin();
if (__predict_false(td->td_pre_epoch_prio != td->td_priority)) {
thread_lock(td);
sched_prio(td, td->td_pre_epoch_prio);
thread_unlock(td);
}
critical_exit();
}
void
epoch_exit(epoch_t epoch)
{
ck_epoch_record_t *record;
ck_epoch_section_t *section;
struct thread *td;
section = NULL;
td = curthread;
MPASS(td->td_critnest);
if (__predict_true(td->td_epochnest-- == 1))
section = (ck_epoch_section_t*)&td->td_epoch_section;
record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
ck_epoch_end(record, section);
critical_exit();
}
/*
* epoch_block_handler_preempt is a callback from the ck code when another thread is
* currently in an epoch section.
*/
static void
epoch_block_handler_preempt(struct ck_epoch *global __unused, ck_epoch_record_t *cr,
void *arg __unused)
{
epoch_record_t record;
struct thread *td, *tdwait, *owner;
struct turnstile *ts;
struct lock_object *lock;
int spincount, gen;
record = __containerof(cr, struct epoch_record, er_record);
td = curthread;
spincount = 0;
counter_u64_add(block_count, 1);
if (record->er_cpuid != curcpu) {
/*
* If the head of the list is running, we can wait for it
* to remove itself from the list and thus save us the
* overhead of a migration
*/
if ((tdwait = TAILQ_FIRST(&record->er_tdlist)) != NULL &&
TD_IS_RUNNING(tdwait)) {
gen = record->er_gen;
thread_unlock(td);
do {
cpu_spinwait();
} while (tdwait == TAILQ_FIRST(&record->er_tdlist) &&
gen == record->er_gen && TD_IS_RUNNING(tdwait) &&
spincount++ < MAX_ADAPTIVE_SPIN);
thread_lock(td);
return;
}
/*
* Being on the same CPU as that of the record on which
* we need to wait allows us access to the thread
* list associated with that CPU. We can then examine the
* oldest thread in the queue and wait on its turnstile
* until it resumes and so on until a grace period
* elapses.
*
*/
counter_u64_add(migrate_count, 1);
sched_bind(td, record->er_cpuid);
/*
* At this point we need to return to the ck code
* to scan to see if a grace period has elapsed.
* We can't move on to check the thread list, because
* in the meantime new threads may have arrived that
* in fact belong to a different epoch.
*/
return;
}
/*
* Try to find a thread in an epoch section on this CPU
* waiting on a turnstile. Otherwise find the lowest
* priority thread (highest prio value) and drop our priority
* to match to allow it to run.
*/
TAILQ_FOREACH(tdwait, &record->er_tdlist, td_epochq) {
/*
* Propagate our priority to any other waiters to prevent us
* from starving them. They will have their original priority
* restore on exit from epoch_wait().
*/
if (!TD_IS_INHIBITED(tdwait) && tdwait->td_priority > td->td_priority) {
critical_enter();
thread_unlock(td);
thread_lock(tdwait);
sched_prio(tdwait, td->td_priority);
thread_unlock(tdwait);
thread_lock(td);
critical_exit();
}
if (TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait) &&
((ts = tdwait->td_blocked) != NULL)) {
/*
* We unlock td to allow turnstile_wait to reacquire the
* the thread lock. Before unlocking it we enter a critical
* section to prevent preemption after we reenable interrupts
* by dropping the thread lock in order to prevent tdwait
* from getting to run.
*/
critical_enter();
thread_unlock(td);
owner = turnstile_lock(ts, &lock);
/*
* The owner pointer indicates that the lock succeeded. Only
* in case we hold the lock and the turnstile we locked is still
* the one that tdwait is blocked on can we continue. Otherwise
* The turnstile pointer has been changed out from underneath
* us, as in the case where the lock holder has signalled tdwait,
* and we need to continue.
*/
if (owner != NULL && ts == tdwait->td_blocked) {
MPASS(TD_IS_INHIBITED(tdwait) && TD_ON_LOCK(tdwait));
critical_exit();
turnstile_wait(ts, owner, tdwait->td_tsqueue);
counter_u64_add(turnstile_count, 1);
thread_lock(td);
return;
} else if (owner != NULL)
turnstile_unlock(ts, lock);
thread_lock(td);
critical_exit();
KASSERT(td->td_locks == 0,
("%d locks held", td->td_locks));
}
}
/*
* We didn't find any threads actually blocked on a lock
* so we have nothing to do except context switch away.
*/
counter_u64_add(switch_count, 1);
mi_switch(SW_VOL | SWT_RELINQUISH, NULL);
/*
* Release the thread lock while yielding to
* allow other threads to acquire the lock
* pointed to by TDQ_LOCKPTR(td). Else a
* deadlock like situation might happen. (HPS)
*/
thread_unlock(td);
thread_lock(td);
}
void
epoch_wait_preempt(epoch_t epoch)
{
struct thread *td;
int was_bound;
int old_cpu;
int old_pinned;
u_char old_prio;
#ifdef INVARIANTS
int locks;
locks = curthread->td_locks;
#endif
MPASS(cold || epoch != NULL);
INIT_CHECK(epoch);
MPASS(epoch->e_flags & EPOCH_PREEMPT);
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
"epoch_wait() can sleep");
td = curthread;
KASSERT(td->td_epochnest == 0, ("epoch_wait() in the middle of an epoch section"));
thread_lock(td);
DROP_GIANT();
old_cpu = PCPU_GET(cpuid);
old_pinned = td->td_pinned;
old_prio = td->td_priority;
was_bound = sched_is_bound(td);
sched_unbind(td);
td->td_pinned = 0;
sched_bind(td, old_cpu);
ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler_preempt, NULL);
/* restore CPU binding, if any */
if (was_bound != 0) {
sched_bind(td, old_cpu);
} else {
/* get thread back to initial CPU, if any */
if (old_pinned != 0)
sched_bind(td, old_cpu);
sched_unbind(td);
}
/* restore pinned after bind */
td->td_pinned = old_pinned;
/* restore thread priority */
sched_prio(td, old_prio);
thread_unlock(td);
PICKUP_GIANT();
KASSERT(td->td_locks == locks,
("%d residual locks held", td->td_locks - locks));
}
static void
epoch_block_handler(struct ck_epoch *g __unused, ck_epoch_record_t *c __unused,
void *arg __unused)
{
cpu_spinwait();
}
void
epoch_wait(epoch_t epoch)
{
MPASS(cold || epoch != NULL);
INIT_CHECK(epoch);
MPASS(epoch->e_flags == 0);
critical_enter();
ck_epoch_synchronize_wait(&epoch->e_epoch, epoch_block_handler, NULL);
critical_exit();
}
void
epoch_call(epoch_t epoch, epoch_context_t ctx, void (*callback) (epoch_context_t))
{
struct epoch_pcpu_state *eps;
ck_epoch_entry_t *cb;
cb = (void *)ctx;
MPASS(callback);
/* too early in boot to have epoch set up */
if (__predict_false(epoch == NULL))
goto boottime;
critical_enter();
*DPCPU_PTR(epoch_cb_count) += 1;
eps = epoch->e_pcpu[curcpu];
ck_epoch_call(&eps->eps_record.er_record, cb, (ck_epoch_cb_t*)callback);
critical_exit();
return;
boottime:
callback(ctx);
}
static void
epoch_call_task(void *arg __unused)
{
ck_stack_entry_t *cursor, *head, *next;
ck_epoch_record_t *record;
epoch_t epoch;
ck_stack_t cb_stack;
int i, npending, total;
ck_stack_init(&cb_stack);
critical_enter();
epoch_enter(global_epoch);
for (total = i = 0; i < epoch_count; i++) {
if (__predict_false((epoch = allepochs[i]) == NULL))
continue;
record = &epoch->e_pcpu[curcpu]->eps_record.er_record;
if ((npending = record->n_pending) == 0)
continue;
ck_epoch_poll_deferred(record, &cb_stack);
total += npending - record->n_pending;
}
epoch_exit(global_epoch);
*DPCPU_PTR(epoch_cb_count) -= total;
critical_exit();
counter_u64_add(epoch_call_count, total);
counter_u64_add(epoch_call_task_count, 1);
head = ck_stack_batch_pop_npsc(&cb_stack);
for (cursor = head; cursor != NULL; cursor = next) {
struct ck_epoch_entry *entry =
ck_epoch_entry_container(cursor);
next = CK_STACK_NEXT(cursor);
entry->function(entry);
}
}
int
in_epoch(void)
{
return (curthread->td_epochnest != 0);
}