freebsd-skq/sys/net/altq/altq_subr.c
loos 498601242d Add ALTQ(9) support for the CoDel algorithm.
CoDel is a parameterless queue discipline that handles variable bandwidth
and RTT.

It can be used as the single queue discipline on an interface or as a sub
discipline of existing queue disciplines such as PRIQ, CBQ, HFSC, FAIRQ.

Differential Revision:	https://reviews.freebsd.org/D3272
Reviewd by:	rpaulo, gnn (previous version)
Obtained from:	pfSense
Sponsored by:	Rubicon Communications (Netgate)
2015-08-21 22:02:22 +00:00

1976 lines
44 KiB
C

/*-
* Copyright (C) 1997-2003
* Sony Computer Science Laboratories Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $
* $FreeBSD$
*/
#include "opt_altq.h"
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#ifdef INET6
#include <netinet/ip6.h>
#endif
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <netpfil/pf/pf.h>
#include <netpfil/pf/pf_altq.h>
#include <net/altq/altq.h>
#ifdef ALTQ3_COMPAT
#include <net/altq/altq_conf.h>
#endif
/* machine dependent clock related includes */
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/eventhandler.h>
#include <machine/clock.h>
#if defined(__amd64__) || defined(__i386__)
#include <machine/cpufunc.h> /* for pentium tsc */
#include <machine/specialreg.h> /* for CPUID_TSC */
#include <machine/md_var.h> /* for cpu_feature */
#endif /* __amd64 || __i386__ */
/*
* internal function prototypes
*/
static void tbr_timeout(void *);
int (*altq_input)(struct mbuf *, int) = NULL;
static struct mbuf *tbr_dequeue(struct ifaltq *, int);
static int tbr_timer = 0; /* token bucket regulator timer */
#if !defined(__FreeBSD__) || (__FreeBSD_version < 600000)
static struct callout tbr_callout = CALLOUT_INITIALIZER;
#else
static struct callout tbr_callout;
#endif
#ifdef ALTQ3_CLFIER_COMPAT
static int extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
#ifdef INET6
static int extract_ports6(struct mbuf *, struct ip6_hdr *,
struct flowinfo_in6 *);
#endif
static int apply_filter4(u_int32_t, struct flow_filter *,
struct flowinfo_in *);
static int apply_ppfilter4(u_int32_t, struct flow_filter *,
struct flowinfo_in *);
#ifdef INET6
static int apply_filter6(u_int32_t, struct flow_filter6 *,
struct flowinfo_in6 *);
#endif
static int apply_tosfilter4(u_int32_t, struct flow_filter *,
struct flowinfo_in *);
static u_long get_filt_handle(struct acc_classifier *, int);
static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
static u_int32_t filt2fibmask(struct flow_filter *);
static void ip4f_cache(struct ip *, struct flowinfo_in *);
static int ip4f_lookup(struct ip *, struct flowinfo_in *);
static int ip4f_init(void);
static struct ip4_frag *ip4f_alloc(void);
static void ip4f_free(struct ip4_frag *);
#endif /* ALTQ3_CLFIER_COMPAT */
/*
* alternate queueing support routines
*/
/* look up the queue state by the interface name and the queueing type. */
void *
altq_lookup(name, type)
char *name;
int type;
{
struct ifnet *ifp;
if ((ifp = ifunit(name)) != NULL) {
/* read if_snd unlocked */
if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
return (ifp->if_snd.altq_disc);
}
return NULL;
}
int
altq_attach(ifq, type, discipline, enqueue, dequeue, request, clfier, classify)
struct ifaltq *ifq;
int type;
void *discipline;
int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *);
struct mbuf *(*dequeue)(struct ifaltq *, int);
int (*request)(struct ifaltq *, int, void *);
void *clfier;
void *(*classify)(void *, struct mbuf *, int);
{
IFQ_LOCK(ifq);
if (!ALTQ_IS_READY(ifq)) {
IFQ_UNLOCK(ifq);
return ENXIO;
}
#ifdef ALTQ3_COMPAT
/*
* pfaltq can override the existing discipline, but altq3 cannot.
* check these if clfier is not NULL (which implies altq3).
*/
if (clfier != NULL) {
if (ALTQ_IS_ENABLED(ifq)) {
IFQ_UNLOCK(ifq);
return EBUSY;
}
if (ALTQ_IS_ATTACHED(ifq)) {
IFQ_UNLOCK(ifq);
return EEXIST;
}
}
#endif
ifq->altq_type = type;
ifq->altq_disc = discipline;
ifq->altq_enqueue = enqueue;
ifq->altq_dequeue = dequeue;
ifq->altq_request = request;
ifq->altq_clfier = clfier;
ifq->altq_classify = classify;
ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
#ifdef ALTQ3_COMPAT
#ifdef ALTQ_KLD
altq_module_incref(type);
#endif
#endif
IFQ_UNLOCK(ifq);
return 0;
}
int
altq_detach(ifq)
struct ifaltq *ifq;
{
IFQ_LOCK(ifq);
if (!ALTQ_IS_READY(ifq)) {
IFQ_UNLOCK(ifq);
return ENXIO;
}
if (ALTQ_IS_ENABLED(ifq)) {
IFQ_UNLOCK(ifq);
return EBUSY;
}
if (!ALTQ_IS_ATTACHED(ifq)) {
IFQ_UNLOCK(ifq);
return (0);
}
#ifdef ALTQ3_COMPAT
#ifdef ALTQ_KLD
altq_module_declref(ifq->altq_type);
#endif
#endif
ifq->altq_type = ALTQT_NONE;
ifq->altq_disc = NULL;
ifq->altq_enqueue = NULL;
ifq->altq_dequeue = NULL;
ifq->altq_request = NULL;
ifq->altq_clfier = NULL;
ifq->altq_classify = NULL;
ifq->altq_flags &= ALTQF_CANTCHANGE;
IFQ_UNLOCK(ifq);
return 0;
}
int
altq_enable(ifq)
struct ifaltq *ifq;
{
int s;
IFQ_LOCK(ifq);
if (!ALTQ_IS_READY(ifq)) {
IFQ_UNLOCK(ifq);
return ENXIO;
}
if (ALTQ_IS_ENABLED(ifq)) {
IFQ_UNLOCK(ifq);
return 0;
}
s = splnet();
IFQ_PURGE_NOLOCK(ifq);
ASSERT(ifq->ifq_len == 0);
ifq->ifq_drv_maxlen = 0; /* disable bulk dequeue */
ifq->altq_flags |= ALTQF_ENABLED;
if (ifq->altq_clfier != NULL)
ifq->altq_flags |= ALTQF_CLASSIFY;
splx(s);
IFQ_UNLOCK(ifq);
return 0;
}
int
altq_disable(ifq)
struct ifaltq *ifq;
{
int s;
IFQ_LOCK(ifq);
if (!ALTQ_IS_ENABLED(ifq)) {
IFQ_UNLOCK(ifq);
return 0;
}
s = splnet();
IFQ_PURGE_NOLOCK(ifq);
ASSERT(ifq->ifq_len == 0);
ifq->altq_flags &= ~(ALTQF_ENABLED|ALTQF_CLASSIFY);
splx(s);
IFQ_UNLOCK(ifq);
return 0;
}
#ifdef ALTQ_DEBUG
void
altq_assert(file, line, failedexpr)
const char *file, *failedexpr;
int line;
{
(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
failedexpr, file, line);
panic("altq assertion");
/* NOTREACHED */
}
#endif
/*
* internal representation of token bucket parameters
* rate: byte_per_unittime << 32
* (((bits_per_sec) / 8) << 32) / machclk_freq
* depth: byte << 32
*
*/
#define TBR_SHIFT 32
#define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
#define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
static struct mbuf *
tbr_dequeue(ifq, op)
struct ifaltq *ifq;
int op;
{
struct tb_regulator *tbr;
struct mbuf *m;
int64_t interval;
u_int64_t now;
IFQ_LOCK_ASSERT(ifq);
tbr = ifq->altq_tbr;
if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
/* if this is a remove after poll, bypass tbr check */
} else {
/* update token only when it is negative */
if (tbr->tbr_token <= 0) {
now = read_machclk();
interval = now - tbr->tbr_last;
if (interval >= tbr->tbr_filluptime)
tbr->tbr_token = tbr->tbr_depth;
else {
tbr->tbr_token += interval * tbr->tbr_rate;
if (tbr->tbr_token > tbr->tbr_depth)
tbr->tbr_token = tbr->tbr_depth;
}
tbr->tbr_last = now;
}
/* if token is still negative, don't allow dequeue */
if (tbr->tbr_token <= 0)
return (NULL);
}
if (ALTQ_IS_ENABLED(ifq))
m = (*ifq->altq_dequeue)(ifq, op);
else {
if (op == ALTDQ_POLL)
_IF_POLL(ifq, m);
else
_IF_DEQUEUE(ifq, m);
}
if (m != NULL && op == ALTDQ_REMOVE)
tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
tbr->tbr_lastop = op;
return (m);
}
/*
* set a token bucket regulator.
* if the specified rate is zero, the token bucket regulator is deleted.
*/
int
tbr_set(ifq, profile)
struct ifaltq *ifq;
struct tb_profile *profile;
{
struct tb_regulator *tbr, *otbr;
if (tbr_dequeue_ptr == NULL)
tbr_dequeue_ptr = tbr_dequeue;
if (machclk_freq == 0)
init_machclk();
if (machclk_freq == 0) {
printf("tbr_set: no cpu clock available!\n");
return (ENXIO);
}
IFQ_LOCK(ifq);
if (profile->rate == 0) {
/* delete this tbr */
if ((tbr = ifq->altq_tbr) == NULL) {
IFQ_UNLOCK(ifq);
return (ENOENT);
}
ifq->altq_tbr = NULL;
free(tbr, M_DEVBUF);
IFQ_UNLOCK(ifq);
return (0);
}
tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
if (tbr == NULL) {
IFQ_UNLOCK(ifq);
return (ENOMEM);
}
tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
tbr->tbr_depth = TBR_SCALE(profile->depth);
if (tbr->tbr_rate > 0)
tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
else
tbr->tbr_filluptime = 0xffffffffffffffffLL;
tbr->tbr_token = tbr->tbr_depth;
tbr->tbr_last = read_machclk();
tbr->tbr_lastop = ALTDQ_REMOVE;
otbr = ifq->altq_tbr;
ifq->altq_tbr = tbr; /* set the new tbr */
if (otbr != NULL)
free(otbr, M_DEVBUF);
else {
if (tbr_timer == 0) {
CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
tbr_timer = 1;
}
}
IFQ_UNLOCK(ifq);
return (0);
}
/*
* tbr_timeout goes through the interface list, and kicks the drivers
* if necessary.
*
* MPSAFE
*/
static void
tbr_timeout(arg)
void *arg;
{
VNET_ITERATOR_DECL(vnet_iter);
struct ifnet *ifp;
int active, s;
active = 0;
s = splnet();
IFNET_RLOCK_NOSLEEP();
VNET_LIST_RLOCK_NOSLEEP();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
for (ifp = TAILQ_FIRST(&V_ifnet); ifp;
ifp = TAILQ_NEXT(ifp, if_list)) {
/* read from if_snd unlocked */
if (!TBR_IS_ENABLED(&ifp->if_snd))
continue;
active++;
if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
ifp->if_start != NULL)
(*ifp->if_start)(ifp);
}
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK_NOSLEEP();
IFNET_RUNLOCK_NOSLEEP();
splx(s);
if (active > 0)
CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
else
tbr_timer = 0; /* don't need tbr_timer anymore */
}
/*
* get token bucket regulator profile
*/
int
tbr_get(ifq, profile)
struct ifaltq *ifq;
struct tb_profile *profile;
{
struct tb_regulator *tbr;
IFQ_LOCK(ifq);
if ((tbr = ifq->altq_tbr) == NULL) {
profile->rate = 0;
profile->depth = 0;
} else {
profile->rate =
(u_int)TBR_UNSCALE(tbr->tbr_rate * 8 * machclk_freq);
profile->depth = (u_int)TBR_UNSCALE(tbr->tbr_depth);
}
IFQ_UNLOCK(ifq);
return (0);
}
/*
* attach a discipline to the interface. if one already exists, it is
* overridden.
* Locking is done in the discipline specific attach functions. Basically
* they call back to altq_attach which takes care of the attach and locking.
*/
int
altq_pfattach(struct pf_altq *a)
{
int error = 0;
switch (a->scheduler) {
case ALTQT_NONE:
break;
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_pfattach(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_pfattach(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_pfattach(a);
break;
#endif
#ifdef ALTQ_FAIRQ
case ALTQT_FAIRQ:
error = fairq_pfattach(a);
break;
#endif
#ifdef ALTQ_CODEL
case ALTQT_CODEL:
error = codel_pfattach(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* detach a discipline from the interface.
* it is possible that the discipline was already overridden by another
* discipline.
*/
int
altq_pfdetach(struct pf_altq *a)
{
struct ifnet *ifp;
int s, error = 0;
if ((ifp = ifunit(a->ifname)) == NULL)
return (EINVAL);
/* if this discipline is no longer referenced, just return */
/* read unlocked from if_snd */
if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
return (0);
s = splnet();
/* read unlocked from if_snd, _disable and _detach take care */
if (ALTQ_IS_ENABLED(&ifp->if_snd))
error = altq_disable(&ifp->if_snd);
if (error == 0)
error = altq_detach(&ifp->if_snd);
splx(s);
return (error);
}
/*
* add a discipline or a queue
* Locking is done in the discipline specific functions with regards to
* malloc with WAITOK, also it is not yet clear which lock to use.
*/
int
altq_add(struct pf_altq *a)
{
int error = 0;
if (a->qname[0] != 0)
return (altq_add_queue(a));
if (machclk_freq == 0)
init_machclk();
if (machclk_freq == 0)
panic("altq_add: no cpu clock");
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_add_altq(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_add_altq(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_add_altq(a);
break;
#endif
#ifdef ALTQ_FAIRQ
case ALTQT_FAIRQ:
error = fairq_add_altq(a);
break;
#endif
#ifdef ALTQ_CODEL
case ALTQT_CODEL:
error = codel_add_altq(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* remove a discipline or a queue
* It is yet unclear what lock to use to protect this operation, the
* discipline specific functions will determine and grab it
*/
int
altq_remove(struct pf_altq *a)
{
int error = 0;
if (a->qname[0] != 0)
return (altq_remove_queue(a));
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_remove_altq(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_remove_altq(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_remove_altq(a);
break;
#endif
#ifdef ALTQ_FAIRQ
case ALTQT_FAIRQ:
error = fairq_remove_altq(a);
break;
#endif
#ifdef ALTQ_CODEL
case ALTQT_CODEL:
error = codel_remove_altq(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* add a queue to the discipline
* It is yet unclear what lock to use to protect this operation, the
* discipline specific functions will determine and grab it
*/
int
altq_add_queue(struct pf_altq *a)
{
int error = 0;
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_add_queue(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_add_queue(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_add_queue(a);
break;
#endif
#ifdef ALTQ_FAIRQ
case ALTQT_FAIRQ:
error = fairq_add_queue(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* remove a queue from the discipline
* It is yet unclear what lock to use to protect this operation, the
* discipline specific functions will determine and grab it
*/
int
altq_remove_queue(struct pf_altq *a)
{
int error = 0;
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_remove_queue(a);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_remove_queue(a);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_remove_queue(a);
break;
#endif
#ifdef ALTQ_FAIRQ
case ALTQT_FAIRQ:
error = fairq_remove_queue(a);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* get queue statistics
* Locking is done in the discipline specific functions with regards to
* copyout operations, also it is not yet clear which lock to use.
*/
int
altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
{
int error = 0;
switch (a->scheduler) {
#ifdef ALTQ_CBQ
case ALTQT_CBQ:
error = cbq_getqstats(a, ubuf, nbytes);
break;
#endif
#ifdef ALTQ_PRIQ
case ALTQT_PRIQ:
error = priq_getqstats(a, ubuf, nbytes);
break;
#endif
#ifdef ALTQ_HFSC
case ALTQT_HFSC:
error = hfsc_getqstats(a, ubuf, nbytes);
break;
#endif
#ifdef ALTQ_FAIRQ
case ALTQT_FAIRQ:
error = fairq_getqstats(a, ubuf, nbytes);
break;
#endif
#ifdef ALTQ_CODEL
case ALTQT_CODEL:
error = codel_getqstats(a, ubuf, nbytes);
break;
#endif
default:
error = ENXIO;
}
return (error);
}
/*
* read and write diffserv field in IPv4 or IPv6 header
*/
u_int8_t
read_dsfield(m, pktattr)
struct mbuf *m;
struct altq_pktattr *pktattr;
{
struct mbuf *m0;
u_int8_t ds_field = 0;
if (pktattr == NULL ||
(pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
return ((u_int8_t)0);
/* verify that pattr_hdr is within the mbuf data */
for (m0 = m; m0 != NULL; m0 = m0->m_next)
if ((pktattr->pattr_hdr >= m0->m_data) &&
(pktattr->pattr_hdr < m0->m_data + m0->m_len))
break;
if (m0 == NULL) {
/* ick, pattr_hdr is stale */
pktattr->pattr_af = AF_UNSPEC;
#ifdef ALTQ_DEBUG
printf("read_dsfield: can't locate header!\n");
#endif
return ((u_int8_t)0);
}
if (pktattr->pattr_af == AF_INET) {
struct ip *ip = (struct ip *)pktattr->pattr_hdr;
if (ip->ip_v != 4)
return ((u_int8_t)0); /* version mismatch! */
ds_field = ip->ip_tos;
}
#ifdef INET6
else if (pktattr->pattr_af == AF_INET6) {
struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
u_int32_t flowlabel;
flowlabel = ntohl(ip6->ip6_flow);
if ((flowlabel >> 28) != 6)
return ((u_int8_t)0); /* version mismatch! */
ds_field = (flowlabel >> 20) & 0xff;
}
#endif
return (ds_field);
}
void
write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
{
struct mbuf *m0;
if (pktattr == NULL ||
(pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
return;
/* verify that pattr_hdr is within the mbuf data */
for (m0 = m; m0 != NULL; m0 = m0->m_next)
if ((pktattr->pattr_hdr >= m0->m_data) &&
(pktattr->pattr_hdr < m0->m_data + m0->m_len))
break;
if (m0 == NULL) {
/* ick, pattr_hdr is stale */
pktattr->pattr_af = AF_UNSPEC;
#ifdef ALTQ_DEBUG
printf("write_dsfield: can't locate header!\n");
#endif
return;
}
if (pktattr->pattr_af == AF_INET) {
struct ip *ip = (struct ip *)pktattr->pattr_hdr;
u_int8_t old;
int32_t sum;
if (ip->ip_v != 4)
return; /* version mismatch! */
old = ip->ip_tos;
dsfield |= old & 3; /* leave CU bits */
if (old == dsfield)
return;
ip->ip_tos = dsfield;
/*
* update checksum (from RFC1624)
* HC' = ~(~HC + ~m + m')
*/
sum = ~ntohs(ip->ip_sum) & 0xffff;
sum += 0xff00 + (~old & 0xff) + dsfield;
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16); /* add carry */
ip->ip_sum = htons(~sum & 0xffff);
}
#ifdef INET6
else if (pktattr->pattr_af == AF_INET6) {
struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
u_int32_t flowlabel;
flowlabel = ntohl(ip6->ip6_flow);
if ((flowlabel >> 28) != 6)
return; /* version mismatch! */
flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
ip6->ip6_flow = htonl(flowlabel);
}
#endif
return;
}
/*
* high resolution clock support taking advantage of a machine dependent
* high resolution time counter (e.g., timestamp counter of intel pentium).
* we assume
* - 64-bit-long monotonically-increasing counter
* - frequency range is 100M-4GHz (CPU speed)
*/
/* if pcc is not available or disabled, emulate 256MHz using microtime() */
#define MACHCLK_SHIFT 8
int machclk_usepcc;
u_int32_t machclk_freq;
u_int32_t machclk_per_tick;
#if defined(__i386__) && defined(__NetBSD__)
extern u_int64_t cpu_tsc_freq;
#endif
#if (__FreeBSD_version >= 700035)
/* Update TSC freq with the value indicated by the caller. */
static void
tsc_freq_changed(void *arg, const struct cf_level *level, int status)
{
/* If there was an error during the transition, don't do anything. */
if (status != 0)
return;
#if (__FreeBSD_version >= 701102) && (defined(__amd64__) || defined(__i386__))
/* If TSC is P-state invariant, don't do anything. */
if (tsc_is_invariant)
return;
#endif
/* Total setting for this level gives the new frequency in MHz. */
init_machclk();
}
EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
EVENTHANDLER_PRI_LAST);
#endif /* __FreeBSD_version >= 700035 */
static void
init_machclk_setup(void)
{
#if (__FreeBSD_version >= 600000)
callout_init(&tbr_callout, 0);
#endif
machclk_usepcc = 1;
#if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
machclk_usepcc = 0;
#endif
#if defined(__FreeBSD__) && defined(SMP)
machclk_usepcc = 0;
#endif
#if defined(__NetBSD__) && defined(MULTIPROCESSOR)
machclk_usepcc = 0;
#endif
#if defined(__amd64__) || defined(__i386__)
/* check if TSC is available */
if ((cpu_feature & CPUID_TSC) == 0 ||
atomic_load_acq_64(&tsc_freq) == 0)
machclk_usepcc = 0;
#endif
}
void
init_machclk(void)
{
static int called;
/* Call one-time initialization function. */
if (!called) {
init_machclk_setup();
called = 1;
}
if (machclk_usepcc == 0) {
/* emulate 256MHz using microtime() */
machclk_freq = 1000000 << MACHCLK_SHIFT;
machclk_per_tick = machclk_freq / hz;
#ifdef ALTQ_DEBUG
printf("altq: emulate %uHz cpu clock\n", machclk_freq);
#endif
return;
}
/*
* if the clock frequency (of Pentium TSC or Alpha PCC) is
* accessible, just use it.
*/
#if defined(__amd64__) || defined(__i386__)
machclk_freq = atomic_load_acq_64(&tsc_freq);
#endif
/*
* if we don't know the clock frequency, measure it.
*/
if (machclk_freq == 0) {
static int wait;
struct timeval tv_start, tv_end;
u_int64_t start, end, diff;
int timo;
microtime(&tv_start);
start = read_machclk();
timo = hz; /* 1 sec */
(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
microtime(&tv_end);
end = read_machclk();
diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
+ tv_end.tv_usec - tv_start.tv_usec;
if (diff != 0)
machclk_freq = (u_int)((end - start) * 1000000 / diff);
}
machclk_per_tick = machclk_freq / hz;
#ifdef ALTQ_DEBUG
printf("altq: CPU clock: %uHz\n", machclk_freq);
#endif
}
#if defined(__OpenBSD__) && defined(__i386__)
static __inline u_int64_t
rdtsc(void)
{
u_int64_t rv;
__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
return (rv);
}
#endif /* __OpenBSD__ && __i386__ */
u_int64_t
read_machclk(void)
{
u_int64_t val;
if (machclk_usepcc) {
#if defined(__amd64__) || defined(__i386__)
val = rdtsc();
#else
panic("read_machclk");
#endif
} else {
struct timeval tv;
microtime(&tv);
val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
+ tv.tv_usec) << MACHCLK_SHIFT);
}
return (val);
}
#ifdef ALTQ3_CLFIER_COMPAT
#ifndef IPPROTO_ESP
#define IPPROTO_ESP 50 /* encapsulating security payload */
#endif
#ifndef IPPROTO_AH
#define IPPROTO_AH 51 /* authentication header */
#endif
/*
* extract flow information from a given packet.
* filt_mask shows flowinfo fields required.
* we assume the ip header is in one mbuf, and addresses and ports are
* in network byte order.
*/
int
altq_extractflow(m, af, flow, filt_bmask)
struct mbuf *m;
int af;
struct flowinfo *flow;
u_int32_t filt_bmask;
{
switch (af) {
case PF_INET: {
struct flowinfo_in *fin;
struct ip *ip;
ip = mtod(m, struct ip *);
if (ip->ip_v != 4)
break;
fin = (struct flowinfo_in *)flow;
fin->fi_len = sizeof(struct flowinfo_in);
fin->fi_family = AF_INET;
fin->fi_proto = ip->ip_p;
fin->fi_tos = ip->ip_tos;
fin->fi_src.s_addr = ip->ip_src.s_addr;
fin->fi_dst.s_addr = ip->ip_dst.s_addr;
if (filt_bmask & FIMB4_PORTS)
/* if port info is required, extract port numbers */
extract_ports4(m, ip, fin);
else {
fin->fi_sport = 0;
fin->fi_dport = 0;
fin->fi_gpi = 0;
}
return (1);
}
#ifdef INET6
case PF_INET6: {
struct flowinfo_in6 *fin6;
struct ip6_hdr *ip6;
ip6 = mtod(m, struct ip6_hdr *);
/* should we check the ip version? */
fin6 = (struct flowinfo_in6 *)flow;
fin6->fi6_len = sizeof(struct flowinfo_in6);
fin6->fi6_family = AF_INET6;
fin6->fi6_proto = ip6->ip6_nxt;
fin6->fi6_tclass = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
fin6->fi6_src = ip6->ip6_src;
fin6->fi6_dst = ip6->ip6_dst;
if ((filt_bmask & FIMB6_PORTS) ||
((filt_bmask & FIMB6_PROTO)
&& ip6->ip6_nxt > IPPROTO_IPV6))
/*
* if port info is required, or proto is required
* but there are option headers, extract port
* and protocol numbers.
*/
extract_ports6(m, ip6, fin6);
else {
fin6->fi6_sport = 0;
fin6->fi6_dport = 0;
fin6->fi6_gpi = 0;
}
return (1);
}
#endif /* INET6 */
default:
break;
}
/* failed */
flow->fi_len = sizeof(struct flowinfo);
flow->fi_family = AF_UNSPEC;
return (0);
}
/*
* helper routine to extract port numbers
*/
/* structure for ipsec and ipv6 option header template */
struct _opt6 {
u_int8_t opt6_nxt; /* next header */
u_int8_t opt6_hlen; /* header extension length */
u_int16_t _pad;
u_int32_t ah_spi; /* security parameter index
for authentication header */
};
/*
* extract port numbers from a ipv4 packet.
*/
static int
extract_ports4(m, ip, fin)
struct mbuf *m;
struct ip *ip;
struct flowinfo_in *fin;
{
struct mbuf *m0;
u_short ip_off;
u_int8_t proto;
int off;
fin->fi_sport = 0;
fin->fi_dport = 0;
fin->fi_gpi = 0;
ip_off = ntohs(ip->ip_off);
/* if it is a fragment, try cached fragment info */
if (ip_off & IP_OFFMASK) {
ip4f_lookup(ip, fin);
return (1);
}
/* locate the mbuf containing the protocol header */
for (m0 = m; m0 != NULL; m0 = m0->m_next)
if (((caddr_t)ip >= m0->m_data) &&
((caddr_t)ip < m0->m_data + m0->m_len))
break;
if (m0 == NULL) {
#ifdef ALTQ_DEBUG
printf("extract_ports4: can't locate header! ip=%p\n", ip);
#endif
return (0);
}
off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
proto = ip->ip_p;
#ifdef ALTQ_IPSEC
again:
#endif
while (off >= m0->m_len) {
off -= m0->m_len;
m0 = m0->m_next;
if (m0 == NULL)
return (0); /* bogus ip_hl! */
}
if (m0->m_len < off + 4)
return (0);
switch (proto) {
case IPPROTO_TCP:
case IPPROTO_UDP: {
struct udphdr *udp;
udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
fin->fi_sport = udp->uh_sport;
fin->fi_dport = udp->uh_dport;
fin->fi_proto = proto;
}
break;
#ifdef ALTQ_IPSEC
case IPPROTO_ESP:
if (fin->fi_gpi == 0){
u_int32_t *gpi;
gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
fin->fi_gpi = *gpi;
}
fin->fi_proto = proto;
break;
case IPPROTO_AH: {
/* get next header and header length */
struct _opt6 *opt6;
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
proto = opt6->opt6_nxt;
off += 8 + (opt6->opt6_hlen * 4);
if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
fin->fi_gpi = opt6->ah_spi;
}
/* goto the next header */
goto again;
#endif /* ALTQ_IPSEC */
default:
fin->fi_proto = proto;
return (0);
}
/* if this is a first fragment, cache it. */
if (ip_off & IP_MF)
ip4f_cache(ip, fin);
return (1);
}
#ifdef INET6
static int
extract_ports6(m, ip6, fin6)
struct mbuf *m;
struct ip6_hdr *ip6;
struct flowinfo_in6 *fin6;
{
struct mbuf *m0;
int off;
u_int8_t proto;
fin6->fi6_gpi = 0;
fin6->fi6_sport = 0;
fin6->fi6_dport = 0;
/* locate the mbuf containing the protocol header */
for (m0 = m; m0 != NULL; m0 = m0->m_next)
if (((caddr_t)ip6 >= m0->m_data) &&
((caddr_t)ip6 < m0->m_data + m0->m_len))
break;
if (m0 == NULL) {
#ifdef ALTQ_DEBUG
printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
#endif
return (0);
}
off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
proto = ip6->ip6_nxt;
do {
while (off >= m0->m_len) {
off -= m0->m_len;
m0 = m0->m_next;
if (m0 == NULL)
return (0);
}
if (m0->m_len < off + 4)
return (0);
switch (proto) {
case IPPROTO_TCP:
case IPPROTO_UDP: {
struct udphdr *udp;
udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
fin6->fi6_sport = udp->uh_sport;
fin6->fi6_dport = udp->uh_dport;
fin6->fi6_proto = proto;
}
return (1);
case IPPROTO_ESP:
if (fin6->fi6_gpi == 0) {
u_int32_t *gpi;
gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
fin6->fi6_gpi = *gpi;
}
fin6->fi6_proto = proto;
return (1);
case IPPROTO_AH: {
/* get next header and header length */
struct _opt6 *opt6;
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
fin6->fi6_gpi = opt6->ah_spi;
proto = opt6->opt6_nxt;
off += 8 + (opt6->opt6_hlen * 4);
/* goto the next header */
break;
}
case IPPROTO_HOPOPTS:
case IPPROTO_ROUTING:
case IPPROTO_DSTOPTS: {
/* get next header and header length */
struct _opt6 *opt6;
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
proto = opt6->opt6_nxt;
off += (opt6->opt6_hlen + 1) * 8;
/* goto the next header */
break;
}
case IPPROTO_FRAGMENT:
/* ipv6 fragmentations are not supported yet */
default:
fin6->fi6_proto = proto;
return (0);
}
} while (1);
/*NOTREACHED*/
}
#endif /* INET6 */
/*
* altq common classifier
*/
int
acc_add_filter(classifier, filter, class, phandle)
struct acc_classifier *classifier;
struct flow_filter *filter;
void *class;
u_long *phandle;
{
struct acc_filter *afp, *prev, *tmp;
int i, s;
#ifdef INET6
if (filter->ff_flow.fi_family != AF_INET &&
filter->ff_flow.fi_family != AF_INET6)
return (EINVAL);
#else
if (filter->ff_flow.fi_family != AF_INET)
return (EINVAL);
#endif
afp = malloc(sizeof(struct acc_filter),
M_DEVBUF, M_WAITOK);
if (afp == NULL)
return (ENOMEM);
bzero(afp, sizeof(struct acc_filter));
afp->f_filter = *filter;
afp->f_class = class;
i = ACC_WILDCARD_INDEX;
if (filter->ff_flow.fi_family == AF_INET) {
struct flow_filter *filter4 = &afp->f_filter;
/*
* if address is 0, it's a wildcard. if address mask
* isn't set, use full mask.
*/
if (filter4->ff_flow.fi_dst.s_addr == 0)
filter4->ff_mask.mask_dst.s_addr = 0;
else if (filter4->ff_mask.mask_dst.s_addr == 0)
filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
if (filter4->ff_flow.fi_src.s_addr == 0)
filter4->ff_mask.mask_src.s_addr = 0;
else if (filter4->ff_mask.mask_src.s_addr == 0)
filter4->ff_mask.mask_src.s_addr = 0xffffffff;
/* clear extra bits in addresses */
filter4->ff_flow.fi_dst.s_addr &=
filter4->ff_mask.mask_dst.s_addr;
filter4->ff_flow.fi_src.s_addr &=
filter4->ff_mask.mask_src.s_addr;
/*
* if dst address is a wildcard, use hash-entry
* ACC_WILDCARD_INDEX.
*/
if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
i = ACC_WILDCARD_INDEX;
else
i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
}
#ifdef INET6
else if (filter->ff_flow.fi_family == AF_INET6) {
struct flow_filter6 *filter6 =
(struct flow_filter6 *)&afp->f_filter;
#ifndef IN6MASK0 /* taken from kame ipv6 */
#define IN6MASK0 {{{ 0, 0, 0, 0 }}}
#define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
const struct in6_addr in6mask0 = IN6MASK0;
const struct in6_addr in6mask128 = IN6MASK128;
#endif
if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
filter6->ff_mask6.mask6_dst = in6mask0;
else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
filter6->ff_mask6.mask6_dst = in6mask128;
if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
filter6->ff_mask6.mask6_src = in6mask0;
else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
filter6->ff_mask6.mask6_src = in6mask128;
/* clear extra bits in addresses */
for (i = 0; i < 16; i++)
filter6->ff_flow6.fi6_dst.s6_addr[i] &=
filter6->ff_mask6.mask6_dst.s6_addr[i];
for (i = 0; i < 16; i++)
filter6->ff_flow6.fi6_src.s6_addr[i] &=
filter6->ff_mask6.mask6_src.s6_addr[i];
if (filter6->ff_flow6.fi6_flowlabel == 0)
i = ACC_WILDCARD_INDEX;
else
i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
}
#endif /* INET6 */
afp->f_handle = get_filt_handle(classifier, i);
/* update filter bitmask */
afp->f_fbmask = filt2fibmask(filter);
classifier->acc_fbmask |= afp->f_fbmask;
/*
* add this filter to the filter list.
* filters are ordered from the highest rule number.
*/
s = splnet();
prev = NULL;
LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
prev = tmp;
else
break;
}
if (prev == NULL)
LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
else
LIST_INSERT_AFTER(prev, afp, f_chain);
splx(s);
*phandle = afp->f_handle;
return (0);
}
int
acc_delete_filter(classifier, handle)
struct acc_classifier *classifier;
u_long handle;
{
struct acc_filter *afp;
int s;
if ((afp = filth_to_filtp(classifier, handle)) == NULL)
return (EINVAL);
s = splnet();
LIST_REMOVE(afp, f_chain);
splx(s);
free(afp, M_DEVBUF);
/* todo: update filt_bmask */
return (0);
}
/*
* delete filters referencing to the specified class.
* if the all flag is not 0, delete all the filters.
*/
int
acc_discard_filters(classifier, class, all)
struct acc_classifier *classifier;
void *class;
int all;
{
struct acc_filter *afp;
int i, s;
s = splnet();
for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
do {
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
if (all || afp->f_class == class) {
LIST_REMOVE(afp, f_chain);
free(afp, M_DEVBUF);
/* start again from the head */
break;
}
} while (afp != NULL);
}
splx(s);
if (all)
classifier->acc_fbmask = 0;
return (0);
}
void *
acc_classify(clfier, m, af)
void *clfier;
struct mbuf *m;
int af;
{
struct acc_classifier *classifier;
struct flowinfo flow;
struct acc_filter *afp;
int i;
classifier = (struct acc_classifier *)clfier;
altq_extractflow(m, af, &flow, classifier->acc_fbmask);
if (flow.fi_family == AF_INET) {
struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
/* only tos is used */
LIST_FOREACH(afp,
&classifier->acc_filters[ACC_WILDCARD_INDEX],
f_chain)
if (apply_tosfilter4(afp->f_fbmask,
&afp->f_filter, fp))
/* filter matched */
return (afp->f_class);
} else if ((classifier->acc_fbmask &
(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
== 0) {
/* only proto and ports are used */
LIST_FOREACH(afp,
&classifier->acc_filters[ACC_WILDCARD_INDEX],
f_chain)
if (apply_ppfilter4(afp->f_fbmask,
&afp->f_filter, fp))
/* filter matched */
return (afp->f_class);
} else {
/* get the filter hash entry from its dest address */
i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
do {
/*
* go through this loop twice. first for dst
* hash, second for wildcards.
*/
LIST_FOREACH(afp, &classifier->acc_filters[i],
f_chain)
if (apply_filter4(afp->f_fbmask,
&afp->f_filter, fp))
/* filter matched */
return (afp->f_class);
/*
* check again for filters with a dst addr
* wildcard.
* (daddr == 0 || dmask != 0xffffffff).
*/
if (i != ACC_WILDCARD_INDEX)
i = ACC_WILDCARD_INDEX;
else
break;
} while (1);
}
}
#ifdef INET6
else if (flow.fi_family == AF_INET6) {
struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
/* get the filter hash entry from its flow ID */
if (fp6->fi6_flowlabel != 0)
i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
else
/* flowlable can be zero */
i = ACC_WILDCARD_INDEX;
/* go through this loop twice. first for flow hash, second
for wildcards. */
do {
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
if (apply_filter6(afp->f_fbmask,
(struct flow_filter6 *)&afp->f_filter,
fp6))
/* filter matched */
return (afp->f_class);
/*
* check again for filters with a wildcard.
*/
if (i != ACC_WILDCARD_INDEX)
i = ACC_WILDCARD_INDEX;
else
break;
} while (1);
}
#endif /* INET6 */
/* no filter matched */
return (NULL);
}
static int
apply_filter4(fbmask, filt, pkt)
u_int32_t fbmask;
struct flow_filter *filt;
struct flowinfo_in *pkt;
{
if (filt->ff_flow.fi_family != AF_INET)
return (0);
if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
return (0);
if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
return (0);
if ((fbmask & FIMB4_DADDR) &&
filt->ff_flow.fi_dst.s_addr !=
(pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
return (0);
if ((fbmask & FIMB4_SADDR) &&
filt->ff_flow.fi_src.s_addr !=
(pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
return (0);
if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
return (0);
if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
(pkt->fi_tos & filt->ff_mask.mask_tos))
return (0);
if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
return (0);
/* match */
return (1);
}
/*
* filter matching function optimized for a common case that checks
* only protocol and port numbers
*/
static int
apply_ppfilter4(fbmask, filt, pkt)
u_int32_t fbmask;
struct flow_filter *filt;
struct flowinfo_in *pkt;
{
if (filt->ff_flow.fi_family != AF_INET)
return (0);
if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
return (0);
if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
return (0);
if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
return (0);
/* match */
return (1);
}
/*
* filter matching function only for tos field.
*/
static int
apply_tosfilter4(fbmask, filt, pkt)
u_int32_t fbmask;
struct flow_filter *filt;
struct flowinfo_in *pkt;
{
if (filt->ff_flow.fi_family != AF_INET)
return (0);
if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
(pkt->fi_tos & filt->ff_mask.mask_tos))
return (0);
/* match */
return (1);
}
#ifdef INET6
static int
apply_filter6(fbmask, filt, pkt)
u_int32_t fbmask;
struct flow_filter6 *filt;
struct flowinfo_in6 *pkt;
{
int i;
if (filt->ff_flow6.fi6_family != AF_INET6)
return (0);
if ((fbmask & FIMB6_FLABEL) &&
filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
return (0);
if ((fbmask & FIMB6_PROTO) &&
filt->ff_flow6.fi6_proto != pkt->fi6_proto)
return (0);
if ((fbmask & FIMB6_SPORT) &&
filt->ff_flow6.fi6_sport != pkt->fi6_sport)
return (0);
if ((fbmask & FIMB6_DPORT) &&
filt->ff_flow6.fi6_dport != pkt->fi6_dport)
return (0);
if (fbmask & FIMB6_SADDR) {
for (i = 0; i < 4; i++)
if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
(pkt->fi6_src.s6_addr32[i] &
filt->ff_mask6.mask6_src.s6_addr32[i]))
return (0);
}
if (fbmask & FIMB6_DADDR) {
for (i = 0; i < 4; i++)
if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
(pkt->fi6_dst.s6_addr32[i] &
filt->ff_mask6.mask6_dst.s6_addr32[i]))
return (0);
}
if ((fbmask & FIMB6_TCLASS) &&
filt->ff_flow6.fi6_tclass !=
(pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
return (0);
if ((fbmask & FIMB6_GPI) &&
filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
return (0);
/* match */
return (1);
}
#endif /* INET6 */
/*
* filter handle:
* bit 20-28: index to the filter hash table
* bit 0-19: unique id in the hash bucket.
*/
static u_long
get_filt_handle(classifier, i)
struct acc_classifier *classifier;
int i;
{
static u_long handle_number = 1;
u_long handle;
struct acc_filter *afp;
while (1) {
handle = handle_number++ & 0x000fffff;
if (LIST_EMPTY(&classifier->acc_filters[i]))
break;
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
if ((afp->f_handle & 0x000fffff) == handle)
break;
if (afp == NULL)
break;
/* this handle is already used, try again */
}
return ((i << 20) | handle);
}
/* convert filter handle to filter pointer */
static struct acc_filter *
filth_to_filtp(classifier, handle)
struct acc_classifier *classifier;
u_long handle;
{
struct acc_filter *afp;
int i;
i = ACC_GET_HINDEX(handle);
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
if (afp->f_handle == handle)
return (afp);
return (NULL);
}
/* create flowinfo bitmask */
static u_int32_t
filt2fibmask(filt)
struct flow_filter *filt;
{
u_int32_t mask = 0;
#ifdef INET6
struct flow_filter6 *filt6;
#endif
switch (filt->ff_flow.fi_family) {
case AF_INET:
if (filt->ff_flow.fi_proto != 0)
mask |= FIMB4_PROTO;
if (filt->ff_flow.fi_tos != 0)
mask |= FIMB4_TOS;
if (filt->ff_flow.fi_dst.s_addr != 0)
mask |= FIMB4_DADDR;
if (filt->ff_flow.fi_src.s_addr != 0)
mask |= FIMB4_SADDR;
if (filt->ff_flow.fi_sport != 0)
mask |= FIMB4_SPORT;
if (filt->ff_flow.fi_dport != 0)
mask |= FIMB4_DPORT;
if (filt->ff_flow.fi_gpi != 0)
mask |= FIMB4_GPI;
break;
#ifdef INET6
case AF_INET6:
filt6 = (struct flow_filter6 *)filt;
if (filt6->ff_flow6.fi6_proto != 0)
mask |= FIMB6_PROTO;
if (filt6->ff_flow6.fi6_tclass != 0)
mask |= FIMB6_TCLASS;
if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
mask |= FIMB6_DADDR;
if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
mask |= FIMB6_SADDR;
if (filt6->ff_flow6.fi6_sport != 0)
mask |= FIMB6_SPORT;
if (filt6->ff_flow6.fi6_dport != 0)
mask |= FIMB6_DPORT;
if (filt6->ff_flow6.fi6_gpi != 0)
mask |= FIMB6_GPI;
if (filt6->ff_flow6.fi6_flowlabel != 0)
mask |= FIMB6_FLABEL;
break;
#endif /* INET6 */
}
return (mask);
}
/*
* helper functions to handle IPv4 fragments.
* currently only in-sequence fragments are handled.
* - fragment info is cached in a LRU list.
* - when a first fragment is found, cache its flow info.
* - when a non-first fragment is found, lookup the cache.
*/
struct ip4_frag {
TAILQ_ENTRY(ip4_frag) ip4f_chain;
char ip4f_valid;
u_short ip4f_id;
struct flowinfo_in ip4f_info;
};
static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
#define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
static void
ip4f_cache(ip, fin)
struct ip *ip;
struct flowinfo_in *fin;
{
struct ip4_frag *fp;
if (TAILQ_EMPTY(&ip4f_list)) {
/* first time call, allocate fragment cache entries. */
if (ip4f_init() < 0)
/* allocation failed! */
return;
}
fp = ip4f_alloc();
fp->ip4f_id = ip->ip_id;
fp->ip4f_info.fi_proto = ip->ip_p;
fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
/* save port numbers */
fp->ip4f_info.fi_sport = fin->fi_sport;
fp->ip4f_info.fi_dport = fin->fi_dport;
fp->ip4f_info.fi_gpi = fin->fi_gpi;
}
static int
ip4f_lookup(ip, fin)
struct ip *ip;
struct flowinfo_in *fin;
{
struct ip4_frag *fp;
for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
fp = TAILQ_NEXT(fp, ip4f_chain))
if (ip->ip_id == fp->ip4f_id &&
ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
ip->ip_p == fp->ip4f_info.fi_proto) {
/* found the matching entry */
fin->fi_sport = fp->ip4f_info.fi_sport;
fin->fi_dport = fp->ip4f_info.fi_dport;
fin->fi_gpi = fp->ip4f_info.fi_gpi;
if ((ntohs(ip->ip_off) & IP_MF) == 0)
/* this is the last fragment,
release the entry. */
ip4f_free(fp);
return (1);
}
/* no matching entry found */
return (0);
}
static int
ip4f_init(void)
{
struct ip4_frag *fp;
int i;
TAILQ_INIT(&ip4f_list);
for (i=0; i<IP4F_TABSIZE; i++) {
fp = malloc(sizeof(struct ip4_frag),
M_DEVBUF, M_NOWAIT);
if (fp == NULL) {
printf("ip4f_init: can't alloc %dth entry!\n", i);
if (i == 0)
return (-1);
return (0);
}
fp->ip4f_valid = 0;
TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
}
return (0);
}
static struct ip4_frag *
ip4f_alloc(void)
{
struct ip4_frag *fp;
/* reclaim an entry at the tail, put it at the head */
fp = TAILQ_LAST(&ip4f_list, ip4f_list);
TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
fp->ip4f_valid = 1;
TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
return (fp);
}
static void
ip4f_free(fp)
struct ip4_frag *fp;
{
TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
fp->ip4f_valid = 0;
TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
}
#endif /* ALTQ3_CLFIER_COMPAT */