imp 0bfb5dbc86 Create an API to reset a struct bio (g_reset_bio). This is mandatory
for all struct bio you get back from g_{new,alloc}_bio. Temporary
bios that you create on the stack or elsewhere should use this before
first use of the bio, and between uses of the bio. At the moment, it
is nothing more than a wrapper around bzero, but that may change in
the future. The wrapper also removes one place where we encode the
size of struct bio in the KBI.
2016-02-17 17:16:02 +00:00

588 lines
16 KiB
C

/*-
* Copyright (c) 2006 Bernd Walter. All rights reserved.
* Copyright (c) 2006 M. Warner Losh. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Portions of this software may have been developed with reference to
* the SD Simplified Specification. The following disclaimer may apply:
*
* The following conditions apply to the release of the simplified
* specification ("Simplified Specification") by the SD Card Association and
* the SD Group. The Simplified Specification is a subset of the complete SD
* Specification which is owned by the SD Card Association and the SD
* Group. This Simplified Specification is provided on a non-confidential
* basis subject to the disclaimers below. Any implementation of the
* Simplified Specification may require a license from the SD Card
* Association, SD Group, SD-3C LLC or other third parties.
*
* Disclaimers:
*
* The information contained in the Simplified Specification is presented only
* as a standard specification for SD Cards and SD Host/Ancillary products and
* is provided "AS-IS" without any representations or warranties of any
* kind. No responsibility is assumed by the SD Group, SD-3C LLC or the SD
* Card Association for any damages, any infringements of patents or other
* right of the SD Group, SD-3C LLC, the SD Card Association or any third
* parties, which may result from its use. No license is granted by
* implication, estoppel or otherwise under any patent or other rights of the
* SD Group, SD-3C LLC, the SD Card Association or any third party. Nothing
* herein shall be construed as an obligation by the SD Group, the SD-3C LLC
* or the SD Card Association to disclose or distribute any technical
* information, know-how or other confidential information to any third party.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/time.h>
#include <geom/geom.h>
#include <geom/geom_disk.h>
#include <dev/mmc/mmcbrvar.h>
#include <dev/mmc/mmcreg.h>
#include <dev/mmc/mmcvar.h>
#include "mmcbus_if.h"
#if __FreeBSD_version < 800002
#define kproc_create kthread_create
#define kproc_exit kthread_exit
#endif
struct mmcsd_softc {
device_t dev;
struct mtx sc_mtx;
struct disk *disk;
struct proc *p;
struct bio_queue_head bio_queue;
daddr_t eblock, eend; /* Range remaining after the last erase. */
int running;
int suspend;
int log_count;
struct timeval log_time;
};
static const char *errmsg[] =
{
"None",
"Timeout",
"Bad CRC",
"Fifo",
"Failed",
"Invalid",
"NO MEMORY"
};
#define LOG_PPS 5 /* Log no more than 5 errors per second. */
/* bus entry points */
static int mmcsd_attach(device_t dev);
static int mmcsd_detach(device_t dev);
static int mmcsd_probe(device_t dev);
/* disk routines */
static int mmcsd_close(struct disk *dp);
static int mmcsd_dump(void *arg, void *virtual, vm_offset_t physical,
off_t offset, size_t length);
static int mmcsd_open(struct disk *dp);
static void mmcsd_strategy(struct bio *bp);
static void mmcsd_task(void *arg);
static int mmcsd_bus_bit_width(device_t dev);
static daddr_t mmcsd_delete(struct mmcsd_softc *sc, struct bio *bp);
static daddr_t mmcsd_rw(struct mmcsd_softc *sc, struct bio *bp);
#define MMCSD_LOCK(_sc) mtx_lock(&(_sc)->sc_mtx)
#define MMCSD_UNLOCK(_sc) mtx_unlock(&(_sc)->sc_mtx)
#define MMCSD_LOCK_INIT(_sc) \
mtx_init(&_sc->sc_mtx, device_get_nameunit(_sc->dev), \
"mmcsd", MTX_DEF)
#define MMCSD_LOCK_DESTROY(_sc) mtx_destroy(&_sc->sc_mtx);
#define MMCSD_ASSERT_LOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_OWNED);
#define MMCSD_ASSERT_UNLOCKED(_sc) mtx_assert(&_sc->sc_mtx, MA_NOTOWNED);
static int
mmcsd_probe(device_t dev)
{
device_quiet(dev);
device_set_desc(dev, "MMC/SD Memory Card");
return (0);
}
static int
mmcsd_attach(device_t dev)
{
struct mmcsd_softc *sc;
struct disk *d;
intmax_t mb;
uint32_t speed;
uint32_t maxblocks;
char unit;
sc = device_get_softc(dev);
sc->dev = dev;
MMCSD_LOCK_INIT(sc);
d = sc->disk = disk_alloc();
d->d_open = mmcsd_open;
d->d_close = mmcsd_close;
d->d_strategy = mmcsd_strategy;
d->d_dump = mmcsd_dump;
d->d_name = "mmcsd";
d->d_drv1 = sc;
d->d_sectorsize = mmc_get_sector_size(dev);
d->d_maxsize = mmc_get_max_data(dev) * d->d_sectorsize;
d->d_mediasize = (off_t)mmc_get_media_size(dev) * d->d_sectorsize;
d->d_stripesize = mmc_get_erase_sector(dev) * d->d_sectorsize;
d->d_unit = device_get_unit(dev);
d->d_flags = DISKFLAG_CANDELETE;
d->d_delmaxsize = mmc_get_erase_sector(dev) * d->d_sectorsize;
strlcpy(d->d_ident, mmc_get_card_sn_string(dev), sizeof(d->d_ident));
strlcpy(d->d_descr, mmc_get_card_id_string(dev), sizeof(d->d_descr));
/*
* Display in most natural units. There's no cards < 1MB. The SD
* standard goes to 2GiB due to its reliance on FAT, but the data
* format supports up to 4GiB and some card makers push it up to this
* limit. The SDHC standard only goes to 32GiB due to FAT32, but the
* data format supports up to 2TiB however. 2048GB isn't too ugly, so
* we note it in passing here and don't add the code to print
* TB). Since these cards are sold in terms of MB and GB not MiB and
* GiB, report them like that. We also round to the nearest unit, since
* many cards are a few percent short, even of the power of 10 size.
*/
mb = (d->d_mediasize + 1000000 / 2 - 1) / 1000000;
unit = 'M';
if (mb >= 1000) {
unit = 'G';
mb = (mb + 1000 / 2 - 1) / 1000;
}
/*
* Report the clock speed of the underlying hardware, which might be
* different than what the card reports due to hardware limitations.
* Report how many blocks the hardware transfers at once.
*/
speed = mmcbr_get_clock(device_get_parent(dev));
maxblocks = mmc_get_max_data(dev);
device_printf(dev, "%ju%cB <%s>%s at %s %d.%01dMHz/%dbit/%d-block\n",
mb, unit, d->d_descr,
mmc_get_read_only(dev) ? " (read-only)" : "",
device_get_nameunit(device_get_parent(dev)),
speed / 1000000, (speed / 100000) % 10,
mmcsd_bus_bit_width(dev), maxblocks);
disk_create(d, DISK_VERSION);
bioq_init(&sc->bio_queue);
sc->running = 1;
sc->suspend = 0;
sc->eblock = sc->eend = 0;
kproc_create(&mmcsd_task, sc, &sc->p, 0, 0, "%s: mmc/sd card",
device_get_nameunit(dev));
return (0);
}
static int
mmcsd_detach(device_t dev)
{
struct mmcsd_softc *sc = device_get_softc(dev);
MMCSD_LOCK(sc);
sc->suspend = 0;
if (sc->running > 0) {
/* kill thread */
sc->running = 0;
wakeup(sc);
/* wait for thread to finish. */
while (sc->running != -1)
msleep(sc, &sc->sc_mtx, 0, "detach", 0);
}
MMCSD_UNLOCK(sc);
/* Flush the request queue. */
bioq_flush(&sc->bio_queue, NULL, ENXIO);
/* kill disk */
disk_destroy(sc->disk);
MMCSD_LOCK_DESTROY(sc);
return (0);
}
static int
mmcsd_suspend(device_t dev)
{
struct mmcsd_softc *sc = device_get_softc(dev);
MMCSD_LOCK(sc);
sc->suspend = 1;
if (sc->running > 0) {
/* kill thread */
sc->running = 0;
wakeup(sc);
/* wait for thread to finish. */
while (sc->running != -1)
msleep(sc, &sc->sc_mtx, 0, "detach", 0);
}
MMCSD_UNLOCK(sc);
return (0);
}
static int
mmcsd_resume(device_t dev)
{
struct mmcsd_softc *sc = device_get_softc(dev);
MMCSD_LOCK(sc);
sc->suspend = 0;
if (sc->running <= 0) {
sc->running = 1;
MMCSD_UNLOCK(sc);
kproc_create(&mmcsd_task, sc, &sc->p, 0, 0, "%s: mmc/sd card",
device_get_nameunit(dev));
} else
MMCSD_UNLOCK(sc);
return (0);
}
static int
mmcsd_open(struct disk *dp)
{
return (0);
}
static int
mmcsd_close(struct disk *dp)
{
return (0);
}
static void
mmcsd_strategy(struct bio *bp)
{
struct mmcsd_softc *sc;
sc = (struct mmcsd_softc *)bp->bio_disk->d_drv1;
MMCSD_LOCK(sc);
if (sc->running > 0 || sc->suspend > 0) {
bioq_disksort(&sc->bio_queue, bp);
MMCSD_UNLOCK(sc);
wakeup(sc);
} else {
MMCSD_UNLOCK(sc);
biofinish(bp, NULL, ENXIO);
}
}
static const char *
mmcsd_errmsg(int e)
{
if (e < 0 || e > MMC_ERR_MAX)
return "Bad error code";
return errmsg[e];
}
static daddr_t
mmcsd_rw(struct mmcsd_softc *sc, struct bio *bp)
{
daddr_t block, end;
struct mmc_command cmd;
struct mmc_command stop;
struct mmc_request req;
struct mmc_data data;
device_t dev = sc->dev;
int sz = sc->disk->d_sectorsize;
device_t mmcbr = device_get_parent(dev);
block = bp->bio_pblkno;
end = bp->bio_pblkno + (bp->bio_bcount / sz);
while (block < end) {
char *vaddr = bp->bio_data +
(block - bp->bio_pblkno) * sz;
int numblocks = min(end - block, mmc_get_max_data(dev));
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
memset(&stop, 0, sizeof(stop));
memset(&data, 0, sizeof(data));
cmd.mrq = &req;
req.cmd = &cmd;
cmd.data = &data;
if (bp->bio_cmd == BIO_READ) {
if (numblocks > 1)
cmd.opcode = MMC_READ_MULTIPLE_BLOCK;
else
cmd.opcode = MMC_READ_SINGLE_BLOCK;
} else {
if (numblocks > 1)
cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
else
cmd.opcode = MMC_WRITE_BLOCK;
}
cmd.arg = block;
if (!mmc_get_high_cap(dev))
cmd.arg <<= 9;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
data.data = vaddr;
data.mrq = &req;
if (bp->bio_cmd == BIO_READ)
data.flags = MMC_DATA_READ;
else
data.flags = MMC_DATA_WRITE;
data.len = numblocks * sz;
if (numblocks > 1) {
data.flags |= MMC_DATA_MULTI;
stop.opcode = MMC_STOP_TRANSMISSION;
stop.arg = 0;
stop.flags = MMC_RSP_R1B | MMC_CMD_AC;
stop.mrq = &req;
req.stop = &stop;
}
MMCBUS_WAIT_FOR_REQUEST(mmcbr, dev, &req);
if (req.cmd->error != MMC_ERR_NONE) {
if (ppsratecheck(&sc->log_time, &sc->log_count, LOG_PPS)) {
device_printf(dev, "Error indicated: %d %s\n",
req.cmd->error, mmcsd_errmsg(req.cmd->error));
}
break;
}
block += numblocks;
}
return (block);
}
static daddr_t
mmcsd_delete(struct mmcsd_softc *sc, struct bio *bp)
{
daddr_t block, end, start, stop;
struct mmc_command cmd;
struct mmc_request req;
device_t dev = sc->dev;
int sz = sc->disk->d_sectorsize;
int erase_sector;
device_t mmcbr = device_get_parent(dev);
block = bp->bio_pblkno;
end = bp->bio_pblkno + (bp->bio_bcount / sz);
/* Coalesce with part remaining from previous request. */
if (block > sc->eblock && block <= sc->eend)
block = sc->eblock;
if (end >= sc->eblock && end < sc->eend)
end = sc->eend;
/* Safe round to the erase sector boundaries. */
erase_sector = mmc_get_erase_sector(dev);
start = block + erase_sector - 1; /* Round up. */
start -= start % erase_sector;
stop = end; /* Round down. */
stop -= end % erase_sector;
/* We can't erase area smaller then sector, store it for later. */
if (start >= stop) {
sc->eblock = block;
sc->eend = end;
return (end);
}
/* Set erase start position. */
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
cmd.mrq = &req;
req.cmd = &cmd;
if (mmc_get_card_type(dev) == mode_sd)
cmd.opcode = SD_ERASE_WR_BLK_START;
else
cmd.opcode = MMC_ERASE_GROUP_START;
cmd.arg = start;
if (!mmc_get_high_cap(dev))
cmd.arg <<= 9;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
MMCBUS_WAIT_FOR_REQUEST(mmcbr, dev, &req);
if (req.cmd->error != MMC_ERR_NONE) {
printf("erase err1: %d\n", req.cmd->error);
return (block);
}
/* Set erase stop position. */
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
req.cmd = &cmd;
if (mmc_get_card_type(dev) == mode_sd)
cmd.opcode = SD_ERASE_WR_BLK_END;
else
cmd.opcode = MMC_ERASE_GROUP_END;
cmd.arg = stop;
if (!mmc_get_high_cap(dev))
cmd.arg <<= 9;
cmd.arg--;
cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
MMCBUS_WAIT_FOR_REQUEST(mmcbr, dev, &req);
if (req.cmd->error != MMC_ERR_NONE) {
printf("erase err2: %d\n", req.cmd->error);
return (block);
}
/* Erase range. */
memset(&req, 0, sizeof(req));
memset(&cmd, 0, sizeof(cmd));
req.cmd = &cmd;
cmd.opcode = MMC_ERASE;
cmd.arg = 0;
cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
MMCBUS_WAIT_FOR_REQUEST(mmcbr, dev, &req);
if (req.cmd->error != MMC_ERR_NONE) {
printf("erase err3 %d\n", req.cmd->error);
return (block);
}
/* Store one of remaining parts for the next call. */
if (bp->bio_pblkno >= sc->eblock || block == start) {
sc->eblock = stop; /* Predict next forward. */
sc->eend = end;
} else {
sc->eblock = block; /* Predict next backward. */
sc->eend = start;
}
return (end);
}
static int
mmcsd_dump(void *arg, void *virtual, vm_offset_t physical,
off_t offset, size_t length)
{
struct disk *disk = arg;
struct mmcsd_softc *sc = (struct mmcsd_softc *)disk->d_drv1;
device_t dev = sc->dev;
struct bio bp;
daddr_t block, end;
device_t mmcbr = device_get_parent(dev);
/* length zero is special and really means flush buffers to media */
if (!length)
return (0);
g_reset_bio(&bp);
bp.bio_disk = disk;
bp.bio_pblkno = offset / disk->d_sectorsize;
bp.bio_bcount = length;
bp.bio_data = virtual;
bp.bio_cmd = BIO_WRITE;
end = bp.bio_pblkno + bp.bio_bcount / sc->disk->d_sectorsize;
MMCBUS_ACQUIRE_BUS(mmcbr, dev);
block = mmcsd_rw(sc, &bp);
MMCBUS_RELEASE_BUS(mmcbr, dev);
return ((end < block) ? EIO : 0);
}
static void
mmcsd_task(void *arg)
{
struct mmcsd_softc *sc = (struct mmcsd_softc*)arg;
struct bio *bp;
int sz;
daddr_t block, end;
device_t dev = sc->dev;
device_t mmcbr = device_get_parent(sc->dev);
while (1) {
MMCSD_LOCK(sc);
do {
if (sc->running == 0)
goto out;
bp = bioq_takefirst(&sc->bio_queue);
if (bp == NULL)
msleep(sc, &sc->sc_mtx, PRIBIO, "jobqueue", 0);
} while (bp == NULL);
MMCSD_UNLOCK(sc);
if (bp->bio_cmd != BIO_READ && mmc_get_read_only(dev)) {
bp->bio_error = EROFS;
bp->bio_resid = bp->bio_bcount;
bp->bio_flags |= BIO_ERROR;
biodone(bp);
continue;
}
MMCBUS_ACQUIRE_BUS(mmcbr, dev);
sz = sc->disk->d_sectorsize;
block = bp->bio_pblkno;
end = bp->bio_pblkno + (bp->bio_bcount / sz);
if (bp->bio_cmd == BIO_READ || bp->bio_cmd == BIO_WRITE) {
/* Access to the remaining erase block obsoletes it. */
if (block < sc->eend && end > sc->eblock)
sc->eblock = sc->eend = 0;
block = mmcsd_rw(sc, bp);
} else if (bp->bio_cmd == BIO_DELETE) {
block = mmcsd_delete(sc, bp);
}
MMCBUS_RELEASE_BUS(mmcbr, dev);
if (block < end) {
bp->bio_error = EIO;
bp->bio_resid = (end - block) * sz;
bp->bio_flags |= BIO_ERROR;
}
biodone(bp);
}
out:
/* tell parent we're done */
sc->running = -1;
MMCSD_UNLOCK(sc);
wakeup(sc);
kproc_exit(0);
}
static int
mmcsd_bus_bit_width(device_t dev)
{
if (mmc_get_bus_width(dev) == bus_width_1)
return (1);
if (mmc_get_bus_width(dev) == bus_width_4)
return (4);
return (8);
}
static device_method_t mmcsd_methods[] = {
DEVMETHOD(device_probe, mmcsd_probe),
DEVMETHOD(device_attach, mmcsd_attach),
DEVMETHOD(device_detach, mmcsd_detach),
DEVMETHOD(device_suspend, mmcsd_suspend),
DEVMETHOD(device_resume, mmcsd_resume),
DEVMETHOD_END
};
static driver_t mmcsd_driver = {
"mmcsd",
mmcsd_methods,
sizeof(struct mmcsd_softc),
};
static devclass_t mmcsd_devclass;
DRIVER_MODULE(mmcsd, mmc, mmcsd_driver, mmcsd_devclass, NULL, NULL);