1958 lines
57 KiB
C
1958 lines
57 KiB
C
/*
|
|
* refclock_nmea.c - clock driver for an NMEA GPS CLOCK
|
|
* Michael Petry Jun 20, 1994
|
|
* based on refclock_heathn.c
|
|
*
|
|
* Updated to add support for Accord GPS Clock
|
|
* Venu Gopal Dec 05, 2007
|
|
* neo.venu@gmail.com, venugopal_d@pgad.gov.in
|
|
*
|
|
* Updated to process 'time1' fudge factor
|
|
* Venu Gopal May 05, 2008
|
|
*
|
|
* Converted to common PPSAPI code, separate PPS fudge time1
|
|
* from serial timecode fudge time2.
|
|
* Dave Hart July 1, 2009
|
|
* hart@ntp.org, davehart@davehart.com
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include "ntp_types.h"
|
|
|
|
#if defined(REFCLOCK) && defined(CLOCK_NMEA)
|
|
|
|
#define NMEA_WRITE_SUPPORT 0 /* no write support at the moment */
|
|
|
|
#include <sys/stat.h>
|
|
#include <stdio.h>
|
|
#include <ctype.h>
|
|
#ifdef HAVE_SYS_SOCKET_H
|
|
#include <sys/socket.h>
|
|
#endif
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_io.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_refclock.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_calendar.h"
|
|
#include "timespecops.h"
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
# include "ppsapi_timepps.h"
|
|
# include "refclock_atom.h"
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
|
|
/*
|
|
* This driver supports NMEA-compatible GPS receivers
|
|
*
|
|
* Prototype was refclock_trak.c, Thanks a lot.
|
|
*
|
|
* The receiver used spits out the NMEA sentences for boat navigation.
|
|
* And you thought it was an information superhighway. Try a raging river
|
|
* filled with rapids and whirlpools that rip away your data and warp time.
|
|
*
|
|
* If HAVE_PPSAPI is defined code to use the PPSAPI will be compiled in.
|
|
* On startup if initialization of the PPSAPI fails, it will fall back
|
|
* to the "normal" timestamps.
|
|
*
|
|
* The PPSAPI part of the driver understands fudge flag2 and flag3. If
|
|
* flag2 is set, it will use the clear edge of the pulse. If flag3 is
|
|
* set, kernel hardpps is enabled.
|
|
*
|
|
* GPS sentences other than RMC (the default) may be enabled by setting
|
|
* the relevent bits of 'mode' in the server configuration line
|
|
* server 127.127.20.x mode X
|
|
*
|
|
* bit 0 - enables RMC (1)
|
|
* bit 1 - enables GGA (2)
|
|
* bit 2 - enables GLL (4)
|
|
* bit 3 - enables ZDA (8) - Standard Time & Date
|
|
* bit 3 - enables ZDG (8) - Accord GPS Clock's custom sentence with GPS time
|
|
* very close to standard ZDA
|
|
*
|
|
* Multiple sentences may be selected except when ZDG/ZDA is selected.
|
|
*
|
|
* bit 4/5/6 - selects the baudrate for serial port :
|
|
* 0 for 4800 (default)
|
|
* 1 for 9600
|
|
* 2 for 19200
|
|
* 3 for 38400
|
|
* 4 for 57600
|
|
* 5 for 115200
|
|
*/
|
|
#define NMEA_MESSAGE_MASK 0x0000FF0FU
|
|
#define NMEA_BAUDRATE_MASK 0x00000070U
|
|
#define NMEA_BAUDRATE_SHIFT 4
|
|
|
|
#define NMEA_DELAYMEAS_MASK 0x80
|
|
#define NMEA_EXTLOG_MASK 0x00010000U
|
|
#define NMEA_DATETRUST_MASK 0x02000000U
|
|
|
|
#define NMEA_PROTO_IDLEN 5 /* tag name must be at least 5 chars */
|
|
#define NMEA_PROTO_MINLEN 6 /* min chars in sentence, excluding CS */
|
|
#define NMEA_PROTO_MAXLEN 80 /* max chars in sentence, excluding CS */
|
|
#define NMEA_PROTO_FIELDS 32 /* not official; limit on fields per record */
|
|
|
|
/*
|
|
* We check the timecode format and decode its contents. We only care
|
|
* about a few of them, the most important being the $GPRMC format:
|
|
*
|
|
* $GPRMC,hhmmss,a,fddmm.xx,n,dddmmm.xx,w,zz.z,yyy.,ddmmyy,dd,v*CC
|
|
*
|
|
* mode (0,1,2,3) selects sentence ANY/ALL, RMC, GGA, GLL, ZDA
|
|
* $GPGLL,3513.8385,S,14900.7851,E,232420.594,A*21
|
|
* $GPGGA,232420.59,3513.8385,S,14900.7851,E,1,05,3.4,00519,M,,,,*3F
|
|
* $GPRMC,232418.19,A,3513.8386,S,14900.7853,E,00.0,000.0,121199,12.,E*77
|
|
*
|
|
* Defining GPZDA to support Standard Time & Date
|
|
* sentence. The sentence has the following format
|
|
*
|
|
* $--ZDA,HHMMSS.SS,DD,MM,YYYY,TH,TM,*CS<CR><LF>
|
|
*
|
|
* Apart from the familiar fields,
|
|
* 'TH' Time zone Hours
|
|
* 'TM' Time zone Minutes
|
|
*
|
|
* Defining GPZDG to support Accord GPS Clock's custom NMEA
|
|
* sentence. The sentence has the following format
|
|
*
|
|
* $GPZDG,HHMMSS.S,DD,MM,YYYY,AA.BB,V*CS<CR><LF>
|
|
*
|
|
* It contains the GPS timestamp valid for next PPS pulse.
|
|
* Apart from the familiar fields,
|
|
* 'AA.BB' denotes the signal strength( should be < 05.00 )
|
|
* 'V' denotes the GPS sync status :
|
|
* '0' indicates INVALID time,
|
|
* '1' indicates accuracy of +/-20 ms
|
|
* '2' indicates accuracy of +/-100 ns
|
|
*
|
|
* Defining PGRMF for Garmin GPS Fix Data
|
|
* $PGRMF,WN,WS,DATE,TIME,LS,LAT,LAT_DIR,LON,LON_DIR,MODE,FIX,SPD,DIR,PDOP,TDOP
|
|
* WN -- GPS week number (weeks since 1980-01-06, mod 1024)
|
|
* WS -- GPS seconds in week
|
|
* LS -- GPS leap seconds, accumulated ( UTC + LS == GPS )
|
|
* FIX -- Fix type: 0=nofix, 1=2D, 2=3D
|
|
* DATE/TIME are standard date/time strings in UTC time scale
|
|
*
|
|
* The GPS time can be used to get the full century for the truncated
|
|
* date spec.
|
|
*/
|
|
|
|
/*
|
|
* Definitions
|
|
*/
|
|
#define DEVICE "/dev/gps%d" /* GPS serial device */
|
|
#define PPSDEV "/dev/gpspps%d" /* PPSAPI device override */
|
|
#define SPEED232 B4800 /* uart speed (4800 bps) */
|
|
#define PRECISION (-9) /* precision assumed (about 2 ms) */
|
|
#define PPS_PRECISION (-20) /* precision assumed (about 1 us) */
|
|
#define REFID "GPS\0" /* reference id */
|
|
#define DESCRIPTION "NMEA GPS Clock" /* who we are */
|
|
#ifndef O_NOCTTY
|
|
#define M_NOCTTY 0
|
|
#else
|
|
#define M_NOCTTY O_NOCTTY
|
|
#endif
|
|
#ifndef O_NONBLOCK
|
|
#define M_NONBLOCK 0
|
|
#else
|
|
#define M_NONBLOCK O_NONBLOCK
|
|
#endif
|
|
#define PPSOPENMODE (O_RDWR | M_NOCTTY | M_NONBLOCK)
|
|
|
|
/* NMEA sentence array indexes for those we use */
|
|
#define NMEA_GPRMC 0 /* recommended min. nav. */
|
|
#define NMEA_GPGGA 1 /* fix and quality */
|
|
#define NMEA_GPGLL 2 /* geo. lat/long */
|
|
#define NMEA_GPZDA 3 /* date/time */
|
|
/*
|
|
* $GPZDG is a proprietary sentence that violates the spec, by not
|
|
* using $P and an assigned company identifier to prefix the sentence
|
|
* identifier. When used with this driver, the system needs to be
|
|
* isolated from other NTP networks, as it operates in GPS time, not
|
|
* UTC as is much more common. GPS time is >15 seconds different from
|
|
* UTC due to not respecting leap seconds since 1970 or so. Other
|
|
* than the different timebase, $GPZDG is similar to $GPZDA.
|
|
*/
|
|
#define NMEA_GPZDG 4
|
|
#define NMEA_PGRMF 5
|
|
#define NMEA_ARRAY_SIZE (NMEA_PGRMF + 1)
|
|
|
|
/*
|
|
* Sentence selection mode bits
|
|
*/
|
|
#define USE_GPRMC 0x00000001u
|
|
#define USE_GPGGA 0x00000002u
|
|
#define USE_GPGLL 0x00000004u
|
|
#define USE_GPZDA 0x00000008u
|
|
#define USE_PGRMF 0x00000100u
|
|
|
|
/* mapping from sentence index to controlling mode bit */
|
|
static const u_int32 sentence_mode[NMEA_ARRAY_SIZE] =
|
|
{
|
|
USE_GPRMC,
|
|
USE_GPGGA,
|
|
USE_GPGLL,
|
|
USE_GPZDA,
|
|
USE_GPZDA,
|
|
USE_PGRMF
|
|
};
|
|
|
|
/* date formats we support */
|
|
enum date_fmt {
|
|
DATE_1_DDMMYY, /* use 1 field with 2-digit year */
|
|
DATE_3_DDMMYYYY /* use 3 fields with 4-digit year */
|
|
};
|
|
|
|
/* results for 'field_init()'
|
|
*
|
|
* Note: If a checksum is present, the checksum test must pass OK or the
|
|
* sentence is tagged invalid.
|
|
*/
|
|
#define CHECK_EMPTY -1 /* no data */
|
|
#define CHECK_INVALID 0 /* not a valid NMEA sentence */
|
|
#define CHECK_VALID 1 /* valid but without checksum */
|
|
#define CHECK_CSVALID 2 /* valid with checksum OK */
|
|
|
|
/*
|
|
* Unit control structure
|
|
*/
|
|
typedef struct {
|
|
#ifdef HAVE_PPSAPI
|
|
struct refclock_atom atom; /* PPSAPI structure */
|
|
int ppsapi_fd; /* fd used with PPSAPI */
|
|
u_char ppsapi_tried; /* attempt PPSAPI once */
|
|
u_char ppsapi_lit; /* time_pps_create() worked */
|
|
u_char ppsapi_gate; /* system is on PPS */
|
|
#endif /* HAVE_PPSAPI */
|
|
u_char gps_time; /* use GPS time, not UTC */
|
|
u_short century_cache; /* cached current century */
|
|
l_fp last_reftime; /* last processed reference stamp */
|
|
short epoch_warp; /* last epoch warp, for logging */
|
|
/* tally stats, reset each poll cycle */
|
|
struct
|
|
{
|
|
u_int total;
|
|
u_int accepted;
|
|
u_int rejected; /* GPS said not enough signal */
|
|
u_int malformed; /* Bad checksum, invalid date or time */
|
|
u_int filtered; /* mode bits, not GPZDG, same second */
|
|
u_int pps_used;
|
|
}
|
|
tally;
|
|
/* per sentence checksum seen flag */
|
|
u_char cksum_type[NMEA_ARRAY_SIZE];
|
|
} nmea_unit;
|
|
|
|
/*
|
|
* helper for faster field access
|
|
*/
|
|
typedef struct {
|
|
char *base; /* buffer base */
|
|
char *cptr; /* current field ptr */
|
|
int blen; /* buffer length */
|
|
int cidx; /* current field index */
|
|
} nmea_data;
|
|
|
|
/*
|
|
* NMEA gps week/time information
|
|
* This record contains the number of weeks since 1980-01-06 modulo
|
|
* 1024, the seconds elapsed since start of the week, and the number of
|
|
* leap seconds that are the difference between GPS and UTC time scale.
|
|
*/
|
|
typedef struct {
|
|
u_int32 wt_time; /* seconds since weekstart */
|
|
u_short wt_week; /* week number */
|
|
short wt_leap; /* leap seconds */
|
|
} gps_weektm;
|
|
|
|
/*
|
|
* The GPS week time scale starts on Sunday, 1980-01-06. We need the
|
|
* rata die number of this day.
|
|
*/
|
|
#ifndef DAY_GPS_STARTS
|
|
#define DAY_GPS_STARTS 722820
|
|
#endif
|
|
|
|
/*
|
|
* Function prototypes
|
|
*/
|
|
static void nmea_init (void);
|
|
static int nmea_start (int, struct peer *);
|
|
static void nmea_shutdown (int, struct peer *);
|
|
static void nmea_receive (struct recvbuf *);
|
|
static void nmea_poll (int, struct peer *);
|
|
#ifdef HAVE_PPSAPI
|
|
static void nmea_control (int, const struct refclockstat *,
|
|
struct refclockstat *, struct peer *);
|
|
#define NMEA_CONTROL nmea_control
|
|
#else
|
|
#define NMEA_CONTROL noentry
|
|
#endif /* HAVE_PPSAPI */
|
|
static void nmea_timer (int, struct peer *);
|
|
|
|
/* parsing helpers */
|
|
static int field_init (nmea_data * data, char * cp, int len);
|
|
static char * field_parse (nmea_data * data, int fn);
|
|
static void field_wipe (nmea_data * data, ...);
|
|
static u_char parse_qual (nmea_data * data, int idx,
|
|
char tag, int inv);
|
|
static int parse_time (struct calendar * jd, long * nsec,
|
|
nmea_data *, int idx);
|
|
static int parse_date (struct calendar *jd, nmea_data*,
|
|
int idx, enum date_fmt fmt);
|
|
static int parse_weekdata (gps_weektm *, nmea_data *,
|
|
int weekidx, int timeidx, int leapidx);
|
|
/* calendar / date helpers */
|
|
static int unfold_day (struct calendar * jd, u_int32 rec_ui);
|
|
static int unfold_century (struct calendar * jd, u_int32 rec_ui);
|
|
static int gpsfix_century (struct calendar * jd, const gps_weektm * wd,
|
|
u_short * ccentury);
|
|
static l_fp eval_gps_time (struct peer * peer, const struct calendar * gpst,
|
|
const struct timespec * gpso, const l_fp * xrecv);
|
|
|
|
static int nmead_open (const char * device);
|
|
static void save_ltc (struct refclockproc * const, const char * const,
|
|
size_t);
|
|
|
|
/*
|
|
* If we want the driver to ouput sentences, too: re-enable the send
|
|
* support functions by defining NMEA_WRITE_SUPPORT to non-zero...
|
|
*/
|
|
#if NMEA_WRITE_SUPPORT
|
|
|
|
static void gps_send(int, const char *, struct peer *);
|
|
# ifdef SYS_WINNT
|
|
# undef write /* ports/winnt/include/config.h: #define write _write */
|
|
extern int async_write(int, const void *, unsigned int);
|
|
# define write(fd, data, octets) async_write(fd, data, octets)
|
|
# endif /* SYS_WINNT */
|
|
|
|
#endif /* NMEA_WRITE_SUPPORT */
|
|
|
|
static int32_t g_gpsMinBase;
|
|
static int32_t g_gpsMinYear;
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* Transfer vector
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
struct refclock refclock_nmea = {
|
|
nmea_start, /* start up driver */
|
|
nmea_shutdown, /* shut down driver */
|
|
nmea_poll, /* transmit poll message */
|
|
NMEA_CONTROL, /* fudge control */
|
|
nmea_init, /* initialize driver */
|
|
noentry, /* buginfo */
|
|
nmea_timer /* called once per second */
|
|
};
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* nmea_init - initialise data
|
|
*
|
|
* calculates a few runtime constants that cannot be made compile time
|
|
* constants.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
nmea_init(void)
|
|
{
|
|
struct calendar date;
|
|
|
|
/* - calculate min. base value for GPS epoch & century unfolding
|
|
* This assumes that the build system was roughly in sync with
|
|
* the world, and that really synchronising to a time before the
|
|
* program was created would be unsafe or insane. If the build
|
|
* date cannot be stablished, at least use the start of GPS
|
|
* (1980-01-06) as minimum, because GPS can surely NOT
|
|
* synchronise beyond it's own big bang. We add a little safety
|
|
* margin for the fuzziness of the build date, which is in an
|
|
* undefined time zone. */
|
|
if (ntpcal_get_build_date(&date))
|
|
g_gpsMinBase = ntpcal_date_to_rd(&date) - 2;
|
|
else
|
|
g_gpsMinBase = 0;
|
|
|
|
if (g_gpsMinBase < DAY_GPS_STARTS)
|
|
g_gpsMinBase = DAY_GPS_STARTS;
|
|
|
|
ntpcal_rd_to_date(&date, g_gpsMinBase);
|
|
g_gpsMinYear = date.year;
|
|
g_gpsMinBase -= DAY_NTP_STARTS;
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* nmea_start - open the GPS devices and initialize data for processing
|
|
*
|
|
* return 0 on error, 1 on success. Even on error the peer structures
|
|
* must be in a state that permits 'nmea_shutdown()' to clean up all
|
|
* resources, because it will be called immediately to do so.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
nmea_start(
|
|
int unit,
|
|
struct peer * peer
|
|
)
|
|
{
|
|
struct refclockproc * const pp = peer->procptr;
|
|
nmea_unit * const up = emalloc_zero(sizeof(*up));
|
|
char device[20];
|
|
size_t devlen;
|
|
u_int32 rate;
|
|
int baudrate;
|
|
const char * baudtext;
|
|
|
|
|
|
/* Get baudrate choice from mode byte bits 4/5/6 */
|
|
rate = (peer->ttl & NMEA_BAUDRATE_MASK) >> NMEA_BAUDRATE_SHIFT;
|
|
|
|
switch (rate) {
|
|
case 0:
|
|
baudrate = SPEED232;
|
|
baudtext = "4800";
|
|
break;
|
|
case 1:
|
|
baudrate = B9600;
|
|
baudtext = "9600";
|
|
break;
|
|
case 2:
|
|
baudrate = B19200;
|
|
baudtext = "19200";
|
|
break;
|
|
case 3:
|
|
baudrate = B38400;
|
|
baudtext = "38400";
|
|
break;
|
|
#ifdef B57600
|
|
case 4:
|
|
baudrate = B57600;
|
|
baudtext = "57600";
|
|
break;
|
|
#endif
|
|
#ifdef B115200
|
|
case 5:
|
|
baudrate = B115200;
|
|
baudtext = "115200";
|
|
break;
|
|
#endif
|
|
default:
|
|
baudrate = SPEED232;
|
|
baudtext = "4800 (fallback)";
|
|
break;
|
|
}
|
|
|
|
/* Allocate and initialize unit structure */
|
|
pp->unitptr = (caddr_t)up;
|
|
pp->io.fd = -1;
|
|
pp->io.clock_recv = nmea_receive;
|
|
pp->io.srcclock = peer;
|
|
pp->io.datalen = 0;
|
|
/* force change detection on first valid message */
|
|
memset(&up->last_reftime, 0xFF, sizeof(up->last_reftime));
|
|
/* force checksum on GPRMC, see below */
|
|
up->cksum_type[NMEA_GPRMC] = CHECK_CSVALID;
|
|
#ifdef HAVE_PPSAPI
|
|
up->ppsapi_fd = -1;
|
|
#endif
|
|
ZERO(up->tally);
|
|
|
|
/* Initialize miscellaneous variables */
|
|
peer->precision = PRECISION;
|
|
pp->clockdesc = DESCRIPTION;
|
|
memcpy(&pp->refid, REFID, 4);
|
|
|
|
/* Open serial port. Use CLK line discipline, if available. */
|
|
devlen = snprintf(device, sizeof(device), DEVICE, unit);
|
|
if (devlen >= sizeof(device)) {
|
|
msyslog(LOG_ERR, "%s clock device name too long",
|
|
refnumtoa(&peer->srcadr));
|
|
return FALSE; /* buffer overflow */
|
|
}
|
|
pp->io.fd = refclock_open(device, baudrate, LDISC_CLK);
|
|
if (0 >= pp->io.fd) {
|
|
pp->io.fd = nmead_open(device);
|
|
if (-1 == pp->io.fd)
|
|
return FALSE;
|
|
}
|
|
LOGIF(CLOCKINFO, (LOG_NOTICE, "%s serial %s open at %s bps",
|
|
refnumtoa(&peer->srcadr), device, baudtext));
|
|
|
|
/* succeed if this clock can be added */
|
|
return io_addclock(&pp->io) != 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* nmea_shutdown - shut down a GPS clock
|
|
*
|
|
* NOTE this routine is called after nmea_start() returns failure,
|
|
* as well as during a normal shutdown due to ntpq :config unpeer.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
nmea_shutdown(
|
|
int unit,
|
|
struct peer * peer
|
|
)
|
|
{
|
|
struct refclockproc * const pp = peer->procptr;
|
|
nmea_unit * const up = (nmea_unit *)pp->unitptr;
|
|
|
|
UNUSED_ARG(unit);
|
|
|
|
if (up != NULL) {
|
|
#ifdef HAVE_PPSAPI
|
|
if (up->ppsapi_lit)
|
|
time_pps_destroy(up->atom.handle);
|
|
if (up->ppsapi_tried && up->ppsapi_fd != pp->io.fd)
|
|
close(up->ppsapi_fd);
|
|
#endif
|
|
free(up);
|
|
}
|
|
pp->unitptr = (caddr_t)NULL;
|
|
if (-1 != pp->io.fd)
|
|
io_closeclock(&pp->io);
|
|
pp->io.fd = -1;
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* nmea_control - configure fudge params
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
#ifdef HAVE_PPSAPI
|
|
static void
|
|
nmea_control(
|
|
int unit,
|
|
const struct refclockstat * in_st,
|
|
struct refclockstat * out_st,
|
|
struct peer * peer
|
|
)
|
|
{
|
|
struct refclockproc * const pp = peer->procptr;
|
|
nmea_unit * const up = (nmea_unit *)pp->unitptr;
|
|
|
|
char device[32];
|
|
size_t devlen;
|
|
|
|
UNUSED_ARG(in_st);
|
|
UNUSED_ARG(out_st);
|
|
|
|
/*
|
|
* PPS control
|
|
*
|
|
* If /dev/gpspps$UNIT can be opened that will be used for
|
|
* PPSAPI. Otherwise, the GPS serial device /dev/gps$UNIT
|
|
* already opened is used for PPSAPI as well. (This might not
|
|
* work, in which case the PPS API remains unavailable...)
|
|
*/
|
|
|
|
/* Light up the PPSAPI interface if not yet attempted. */
|
|
if ((CLK_FLAG1 & pp->sloppyclockflag) && !up->ppsapi_tried) {
|
|
up->ppsapi_tried = TRUE;
|
|
devlen = snprintf(device, sizeof(device), PPSDEV, unit);
|
|
if (devlen < sizeof(device)) {
|
|
up->ppsapi_fd = open(device, PPSOPENMODE,
|
|
S_IRUSR | S_IWUSR);
|
|
} else {
|
|
up->ppsapi_fd = -1;
|
|
msyslog(LOG_ERR, "%s PPS device name too long",
|
|
refnumtoa(&peer->srcadr));
|
|
}
|
|
if (-1 == up->ppsapi_fd)
|
|
up->ppsapi_fd = pp->io.fd;
|
|
if (refclock_ppsapi(up->ppsapi_fd, &up->atom)) {
|
|
/* use the PPS API for our own purposes now. */
|
|
up->ppsapi_lit = refclock_params(
|
|
pp->sloppyclockflag, &up->atom);
|
|
if (!up->ppsapi_lit) {
|
|
/* failed to configure, drop PPS unit */
|
|
time_pps_destroy(up->atom.handle);
|
|
msyslog(LOG_WARNING,
|
|
"%s set PPSAPI params fails",
|
|
refnumtoa(&peer->srcadr));
|
|
}
|
|
/* note: the PPS I/O handle remains valid until
|
|
* flag1 is cleared or the clock is shut down.
|
|
*/
|
|
} else {
|
|
msyslog(LOG_WARNING,
|
|
"%s flag1 1 but PPSAPI fails",
|
|
refnumtoa(&peer->srcadr));
|
|
}
|
|
}
|
|
|
|
/* shut down PPS API if activated */
|
|
if (!(CLK_FLAG1 & pp->sloppyclockflag) && up->ppsapi_tried) {
|
|
/* shutdown PPS API */
|
|
if (up->ppsapi_lit)
|
|
time_pps_destroy(up->atom.handle);
|
|
up->atom.handle = 0;
|
|
/* close/drop PPS fd */
|
|
if (up->ppsapi_fd != pp->io.fd)
|
|
close(up->ppsapi_fd);
|
|
up->ppsapi_fd = -1;
|
|
|
|
/* clear markers and peer items */
|
|
up->ppsapi_gate = FALSE;
|
|
up->ppsapi_lit = FALSE;
|
|
up->ppsapi_tried = FALSE;
|
|
|
|
peer->flags &= ~FLAG_PPS;
|
|
peer->precision = PRECISION;
|
|
}
|
|
}
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* nmea_timer - called once per second
|
|
* this only polls (older?) Oncore devices now
|
|
*
|
|
* Usually 'nmea_receive()' can get a timestamp every second, but at
|
|
* least one Motorola unit needs prompting each time. Doing so in
|
|
* 'nmea_poll()' gives only one sample per poll cycle, which actually
|
|
* defeats the purpose of the median filter. Polling once per second
|
|
* seems a much better idea.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
nmea_timer(
|
|
int unit,
|
|
struct peer * peer
|
|
)
|
|
{
|
|
#if NMEA_WRITE_SUPPORT
|
|
|
|
struct refclockproc * const pp = peer->procptr;
|
|
|
|
UNUSED_ARG(unit);
|
|
|
|
if (-1 != pp->io.fd) /* any mode bits to evaluate here? */
|
|
gps_send(pp->io.fd, "$PMOTG,RMC,0000*1D\r\n", peer);
|
|
#else
|
|
|
|
UNUSED_ARG(unit);
|
|
UNUSED_ARG(peer);
|
|
|
|
#endif /* NMEA_WRITE_SUPPORT */
|
|
}
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* refclock_ppsrelate(...) -- correlate with PPS edge
|
|
*
|
|
* This function is used to correlate a receive time stamp and a
|
|
* reference time with a PPS edge time stamp. It applies the necessary
|
|
* fudges (fudge1 for PPS, fudge2 for receive time) and then tries to
|
|
* move the receive time stamp to the corresponding edge. This can warp
|
|
* into future, if a transmission delay of more than 500ms is not
|
|
* compensated with a corresponding fudge time2 value, because then the
|
|
* next PPS edge is nearer than the last. (Similiar to what the PPS ATOM
|
|
* driver does, but we deal with full time stamps here, not just phase
|
|
* shift information.) Likewise, a negative fudge time2 value must be
|
|
* used if the reference time stamp correlates with the *following* PPS
|
|
* pulse.
|
|
*
|
|
* Note that the receive time fudge value only needs to move the receive
|
|
* stamp near a PPS edge but that close proximity is not required;
|
|
* +/-100ms precision should be enough. But since the fudge value will
|
|
* probably also be used to compensate the transmission delay when no
|
|
* PPS edge can be related to the time stamp, it's best to get it as
|
|
* close as possible.
|
|
*
|
|
* It should also be noted that the typical use case is matching to the
|
|
* preceeding edge, as most units relate their sentences to the current
|
|
* second.
|
|
*
|
|
* The function returns PPS_RELATE_NONE (0) if no PPS edge correlation
|
|
* can be fixed; PPS_RELATE_EDGE (1) when a PPS edge could be fixed, but
|
|
* the distance to the reference time stamp is too big (exceeds
|
|
* +/-400ms) and the ATOM driver PLL cannot be used to fix the phase;
|
|
* and PPS_RELATE_PHASE (2) when the ATOM driver PLL code can be used.
|
|
*
|
|
* On output, the receive time stamp is replaced with the corresponding
|
|
* PPS edge time if a fix could be made; the PPS fudge is updated to
|
|
* reflect the proper fudge time to apply. (This implies that
|
|
* 'refclock_process_offset()' must be used!)
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
#define PPS_RELATE_NONE 0 /* no pps correlation possible */
|
|
#define PPS_RELATE_EDGE 1 /* recv time fixed, no phase lock */
|
|
#define PPS_RELATE_PHASE 2 /* recv time fixed, phase lock ok */
|
|
|
|
static int
|
|
refclock_ppsrelate(
|
|
const struct refclockproc * pp , /* for sanity */
|
|
const struct refclock_atom * ap , /* for PPS io */
|
|
const l_fp * reftime ,
|
|
l_fp * rd_stamp, /* i/o read stamp */
|
|
double pp_fudge, /* pps fudge */
|
|
double * rd_fudge /* i/o read fudge */
|
|
)
|
|
{
|
|
pps_info_t pps_info;
|
|
struct timespec timeout;
|
|
l_fp pp_stamp, pp_delta;
|
|
double delta, idelta;
|
|
|
|
if (pp->leap == LEAP_NOTINSYNC)
|
|
return PPS_RELATE_NONE; /* clock is insane, no chance */
|
|
|
|
ZERO(timeout);
|
|
ZERO(pps_info);
|
|
if (time_pps_fetch(ap->handle, PPS_TSFMT_TSPEC,
|
|
&pps_info, &timeout) < 0)
|
|
return PPS_RELATE_NONE; /* can't get time stamps */
|
|
|
|
/* get last active PPS edge before receive */
|
|
if (ap->pps_params.mode & PPS_CAPTUREASSERT)
|
|
timeout = pps_info.assert_timestamp;
|
|
else if (ap->pps_params.mode & PPS_CAPTURECLEAR)
|
|
timeout = pps_info.clear_timestamp;
|
|
else
|
|
return PPS_RELATE_NONE; /* WHICH edge, please?!? */
|
|
|
|
/* get delta between receive time and PPS time */
|
|
pp_stamp = tspec_stamp_to_lfp(timeout);
|
|
pp_delta = *rd_stamp;
|
|
L_SUB(&pp_delta, &pp_stamp);
|
|
LFPTOD(&pp_delta, delta);
|
|
delta += pp_fudge - *rd_fudge;
|
|
if (fabs(delta) > 1.5)
|
|
return PPS_RELATE_NONE; /* PPS timeout control */
|
|
|
|
/* eventually warp edges, check phase */
|
|
idelta = floor(delta + 0.5);
|
|
pp_fudge -= idelta;
|
|
delta -= idelta;
|
|
if (fabs(delta) > 0.45)
|
|
return PPS_RELATE_NONE; /* dead band control */
|
|
|
|
/* we actually have a PPS edge to relate with! */
|
|
*rd_stamp = pp_stamp;
|
|
*rd_fudge = pp_fudge;
|
|
|
|
/* if whole system out-of-sync, do not try to PLL */
|
|
if (sys_leap == LEAP_NOTINSYNC)
|
|
return PPS_RELATE_EDGE; /* cannot PLL with atom code */
|
|
|
|
/* check against reftime if ATOM PLL can be used */
|
|
pp_delta = *reftime;
|
|
L_SUB(&pp_delta, &pp_stamp);
|
|
LFPTOD(&pp_delta, delta);
|
|
delta += pp_fudge;
|
|
if (fabs(delta) > 0.45)
|
|
return PPS_RELATE_EDGE; /* cannot PLL with atom code */
|
|
|
|
/* all checks passed, gets an AAA rating here! */
|
|
return PPS_RELATE_PHASE; /* can PLL with atom code */
|
|
}
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* nmea_receive - receive data from the serial interface
|
|
*
|
|
* This is the workhorse for NMEA data evaluation:
|
|
*
|
|
* + it checks all NMEA data, and rejects sentences that are not valid
|
|
* NMEA sentences
|
|
* + it checks whether a sentence is known and to be used
|
|
* + it parses the time and date data from the NMEA data string and
|
|
* augments the missing bits. (century in dat, whole date, ...)
|
|
* + it rejects data that is not from the first accepted sentence in a
|
|
* burst
|
|
* + it eventually replaces the receive time with the PPS edge time.
|
|
* + it feeds the data to the internal processing stages.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
nmea_receive(
|
|
struct recvbuf * rbufp
|
|
)
|
|
{
|
|
/* declare & init control structure ptrs */
|
|
struct peer * const peer = rbufp->recv_peer;
|
|
struct refclockproc * const pp = peer->procptr;
|
|
nmea_unit * const up = (nmea_unit*)pp->unitptr;
|
|
|
|
/* Use these variables to hold data until we decide its worth keeping */
|
|
nmea_data rdata;
|
|
char rd_lastcode[BMAX];
|
|
l_fp rd_timestamp, rd_reftime;
|
|
int rd_lencode;
|
|
double rd_fudge;
|
|
|
|
/* working stuff */
|
|
struct calendar date; /* to keep & convert the time stamp */
|
|
struct timespec tofs; /* offset to full-second reftime */
|
|
gps_weektm gpsw; /* week time storage */
|
|
/* results of sentence/date/time parsing */
|
|
u_char sentence; /* sentence tag */
|
|
int checkres;
|
|
char * cp;
|
|
int rc_date;
|
|
int rc_time;
|
|
|
|
/* make sure data has defined pristine state */
|
|
ZERO(tofs);
|
|
ZERO(date);
|
|
ZERO(gpsw);
|
|
|
|
/*
|
|
* Read the timecode and timestamp, then initialise field
|
|
* processing. The <CR><LF> at the NMEA line end is translated
|
|
* to <LF><LF> by the terminal input routines on most systems,
|
|
* and this gives us one spurious empty read per record which we
|
|
* better ignore silently.
|
|
*/
|
|
rd_lencode = refclock_gtlin(rbufp, rd_lastcode,
|
|
sizeof(rd_lastcode), &rd_timestamp);
|
|
checkres = field_init(&rdata, rd_lastcode, rd_lencode);
|
|
switch (checkres) {
|
|
|
|
case CHECK_INVALID:
|
|
DPRINTF(1, ("%s invalid data: '%s'\n",
|
|
refnumtoa(&peer->srcadr), rd_lastcode));
|
|
refclock_report(peer, CEVNT_BADREPLY);
|
|
return;
|
|
|
|
case CHECK_EMPTY:
|
|
return;
|
|
|
|
default:
|
|
DPRINTF(1, ("%s gpsread: %d '%s'\n",
|
|
refnumtoa(&peer->srcadr), rd_lencode,
|
|
rd_lastcode));
|
|
break;
|
|
}
|
|
up->tally.total++;
|
|
|
|
/*
|
|
* --> below this point we have a valid NMEA sentence <--
|
|
*
|
|
* Check sentence name. Skip first 2 chars (talker ID) in most
|
|
* cases, to allow for $GLGGA and $GPGGA etc. Since the name
|
|
* field has at least 5 chars we can simply shift the field
|
|
* start.
|
|
*/
|
|
cp = field_parse(&rdata, 0);
|
|
if (strncmp(cp + 2, "RMC,", 4) == 0)
|
|
sentence = NMEA_GPRMC;
|
|
else if (strncmp(cp + 2, "GGA,", 4) == 0)
|
|
sentence = NMEA_GPGGA;
|
|
else if (strncmp(cp + 2, "GLL,", 4) == 0)
|
|
sentence = NMEA_GPGLL;
|
|
else if (strncmp(cp + 2, "ZDA,", 4) == 0)
|
|
sentence = NMEA_GPZDA;
|
|
else if (strncmp(cp + 2, "ZDG,", 4) == 0)
|
|
sentence = NMEA_GPZDG;
|
|
else if (strncmp(cp, "PGRMF,", 6) == 0)
|
|
sentence = NMEA_PGRMF;
|
|
else
|
|
return; /* not something we know about */
|
|
|
|
/* Eventually output delay measurement now. */
|
|
if (peer->ttl & NMEA_DELAYMEAS_MASK) {
|
|
mprintf_clock_stats(&peer->srcadr, "delay %0.6f %.*s",
|
|
ldexp(rd_timestamp.l_uf, -32),
|
|
(int)(strchr(rd_lastcode, ',') - rd_lastcode),
|
|
rd_lastcode);
|
|
}
|
|
|
|
/* See if I want to process this message type */
|
|
if ((peer->ttl & NMEA_MESSAGE_MASK) &&
|
|
!(peer->ttl & sentence_mode[sentence])) {
|
|
up->tally.filtered++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* make sure it came in clean
|
|
*
|
|
* Apparently, older NMEA specifications (which are expensive)
|
|
* did not require the checksum for all sentences. $GPMRC is
|
|
* the only one so far identified which has always been required
|
|
* to include a checksum.
|
|
*
|
|
* Today, most NMEA GPS receivers checksum every sentence. To
|
|
* preserve its error-detection capabilities with modern GPSes
|
|
* while allowing operation without checksums on all but $GPMRC,
|
|
* we keep track of whether we've ever seen a valid checksum on
|
|
* a given sentence, and if so, reject future instances without
|
|
* checksum. ('up->cksum_type[NMEA_GPRMC]' is set in
|
|
* 'nmea_start()' to enforce checksums for $GPRMC right from the
|
|
* start.)
|
|
*/
|
|
if (up->cksum_type[sentence] <= (u_char)checkres) {
|
|
up->cksum_type[sentence] = (u_char)checkres;
|
|
} else {
|
|
DPRINTF(1, ("%s checksum missing: '%s'\n",
|
|
refnumtoa(&peer->srcadr), rd_lastcode));
|
|
refclock_report(peer, CEVNT_BADREPLY);
|
|
up->tally.malformed++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* $GPZDG provides GPS time not UTC, and the two mix poorly.
|
|
* Once have processed a $GPZDG, do not process any further UTC
|
|
* sentences (all but $GPZDG currently).
|
|
*/
|
|
if (up->gps_time && NMEA_GPZDG != sentence) {
|
|
up->tally.filtered++;
|
|
return;
|
|
}
|
|
|
|
DPRINTF(1, ("%s processing %d bytes, timecode '%s'\n",
|
|
refnumtoa(&peer->srcadr), rd_lencode, rd_lastcode));
|
|
|
|
/*
|
|
* Grab fields depending on clock string type and possibly wipe
|
|
* sensitive data from the last timecode.
|
|
*/
|
|
switch (sentence) {
|
|
|
|
case NMEA_GPRMC:
|
|
/* Check quality byte, fetch data & time */
|
|
rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
|
|
pp->leap = parse_qual(&rdata, 2, 'A', 0);
|
|
rc_date = parse_date(&date, &rdata, 9, DATE_1_DDMMYY)
|
|
&& unfold_century(&date, rd_timestamp.l_ui);
|
|
if (CLK_FLAG4 & pp->sloppyclockflag)
|
|
field_wipe(&rdata, 3, 4, 5, 6, -1);
|
|
break;
|
|
|
|
case NMEA_GPGGA:
|
|
/* Check quality byte, fetch time only */
|
|
rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
|
|
pp->leap = parse_qual(&rdata, 6, '0', 1);
|
|
rc_date = unfold_day(&date, rd_timestamp.l_ui);
|
|
if (CLK_FLAG4 & pp->sloppyclockflag)
|
|
field_wipe(&rdata, 2, 4, -1);
|
|
break;
|
|
|
|
case NMEA_GPGLL:
|
|
/* Check quality byte, fetch time only */
|
|
rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 5);
|
|
pp->leap = parse_qual(&rdata, 6, 'A', 0);
|
|
rc_date = unfold_day(&date, rd_timestamp.l_ui);
|
|
if (CLK_FLAG4 & pp->sloppyclockflag)
|
|
field_wipe(&rdata, 1, 3, -1);
|
|
break;
|
|
|
|
case NMEA_GPZDA:
|
|
/* No quality. Assume best, fetch time & full date */
|
|
pp->leap = LEAP_NOWARNING;
|
|
rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
|
|
rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
|
|
break;
|
|
|
|
case NMEA_GPZDG:
|
|
/* Check quality byte, fetch time & full date */
|
|
rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 1);
|
|
rc_date = parse_date(&date, &rdata, 2, DATE_3_DDMMYYYY);
|
|
pp->leap = parse_qual(&rdata, 4, '0', 1);
|
|
tofs.tv_sec = -1; /* GPZDG is following second */
|
|
break;
|
|
|
|
case NMEA_PGRMF:
|
|
/* get date, time, qualifier and GPS weektime. We need
|
|
* date and time-of-day for the century fix, so we read
|
|
* them first.
|
|
*/
|
|
rc_date = parse_weekdata(&gpsw, &rdata, 1, 2, 5)
|
|
&& parse_date(&date, &rdata, 3, DATE_1_DDMMYY);
|
|
rc_time = parse_time(&date, &tofs.tv_nsec, &rdata, 4);
|
|
pp->leap = parse_qual(&rdata, 11, '0', 1);
|
|
rc_date = rc_date
|
|
&& gpsfix_century(&date, &gpsw, &up->century_cache);
|
|
if (CLK_FLAG4 & pp->sloppyclockflag)
|
|
field_wipe(&rdata, 6, 8, -1);
|
|
break;
|
|
|
|
default:
|
|
INVARIANT(0); /* Coverity 97123 */
|
|
return;
|
|
}
|
|
|
|
/* Check sanity of time-of-day. */
|
|
if (rc_time == 0) { /* no time or conversion error? */
|
|
checkres = CEVNT_BADTIME;
|
|
up->tally.malformed++;
|
|
}
|
|
/* Check sanity of date. */
|
|
else if (rc_date == 0) {/* no date or conversion error? */
|
|
checkres = CEVNT_BADDATE;
|
|
up->tally.malformed++;
|
|
}
|
|
/* check clock sanity; [bug 2143] */
|
|
else if (pp->leap == LEAP_NOTINSYNC) { /* no good status? */
|
|
checkres = CEVNT_BADREPLY;
|
|
up->tally.rejected++;
|
|
}
|
|
else
|
|
checkres = -1;
|
|
|
|
if (checkres != -1) {
|
|
save_ltc(pp, rd_lastcode, rd_lencode);
|
|
refclock_report(peer, checkres);
|
|
return;
|
|
}
|
|
|
|
DPRINTF(1, ("%s effective timecode: %04u-%02u-%02u %02d:%02d:%02d\n",
|
|
refnumtoa(&peer->srcadr),
|
|
date.year, date.month, date.monthday,
|
|
date.hour, date.minute, date.second));
|
|
|
|
/* Check if we must enter GPS time mode; log so if we do */
|
|
if (!up->gps_time && (sentence == NMEA_GPZDG)) {
|
|
msyslog(LOG_INFO, "%s using GPS time as if it were UTC",
|
|
refnumtoa(&peer->srcadr));
|
|
up->gps_time = 1;
|
|
}
|
|
|
|
/*
|
|
* Get the reference time stamp from the calendar buffer.
|
|
* Process the new sample in the median filter and determine the
|
|
* timecode timestamp, but only if the PPS is not in control.
|
|
* Discard sentence if reference time did not change.
|
|
*/
|
|
rd_reftime = eval_gps_time(peer, &date, &tofs, &rd_timestamp);
|
|
if (L_ISEQU(&up->last_reftime, &rd_reftime)) {
|
|
/* Do not touch pp->a_lastcode on purpose! */
|
|
up->tally.filtered++;
|
|
return;
|
|
}
|
|
up->last_reftime = rd_reftime;
|
|
rd_fudge = pp->fudgetime2;
|
|
|
|
DPRINTF(1, ("%s using '%s'\n",
|
|
refnumtoa(&peer->srcadr), rd_lastcode));
|
|
|
|
/* Data will be accepted. Update stats & log data. */
|
|
up->tally.accepted++;
|
|
save_ltc(pp, rd_lastcode, rd_lencode);
|
|
pp->lastrec = rd_timestamp;
|
|
|
|
#ifdef HAVE_PPSAPI
|
|
/*
|
|
* If we have PPS running, we try to associate the sentence
|
|
* with the last active edge of the PPS signal.
|
|
*/
|
|
if (up->ppsapi_lit)
|
|
switch (refclock_ppsrelate(
|
|
pp, &up->atom, &rd_reftime, &rd_timestamp,
|
|
pp->fudgetime1, &rd_fudge))
|
|
{
|
|
case PPS_RELATE_PHASE:
|
|
up->ppsapi_gate = TRUE;
|
|
peer->precision = PPS_PRECISION;
|
|
peer->flags |= FLAG_PPS;
|
|
DPRINTF(2, ("%s PPS_RELATE_PHASE\n",
|
|
refnumtoa(&peer->srcadr)));
|
|
up->tally.pps_used++;
|
|
break;
|
|
|
|
case PPS_RELATE_EDGE:
|
|
up->ppsapi_gate = TRUE;
|
|
peer->precision = PPS_PRECISION;
|
|
DPRINTF(2, ("%s PPS_RELATE_EDGE\n",
|
|
refnumtoa(&peer->srcadr)));
|
|
break;
|
|
|
|
case PPS_RELATE_NONE:
|
|
default:
|
|
/*
|
|
* Resetting precision and PPS flag is done in
|
|
* 'nmea_poll', since it might be a glitch. But
|
|
* at the end of the poll cycle we know...
|
|
*/
|
|
DPRINTF(2, ("%s PPS_RELATE_NONE\n",
|
|
refnumtoa(&peer->srcadr)));
|
|
break;
|
|
}
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
refclock_process_offset(pp, rd_reftime, rd_timestamp, rd_fudge);
|
|
}
|
|
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* nmea_poll - called by the transmit procedure
|
|
*
|
|
* Does the necessary bookkeeping stuff to keep the reported state of
|
|
* the clock in sync with reality.
|
|
*
|
|
* We go to great pains to avoid changing state here, since there may
|
|
* be more than one eavesdropper receiving the same timecode.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
nmea_poll(
|
|
int unit,
|
|
struct peer * peer
|
|
)
|
|
{
|
|
struct refclockproc * const pp = peer->procptr;
|
|
nmea_unit * const up = (nmea_unit *)pp->unitptr;
|
|
|
|
/*
|
|
* Process median filter samples. If none received, declare a
|
|
* timeout and keep going.
|
|
*/
|
|
#ifdef HAVE_PPSAPI
|
|
/*
|
|
* If we don't have PPS pulses and time stamps, turn PPS down
|
|
* for now.
|
|
*/
|
|
if (!up->ppsapi_gate) {
|
|
peer->flags &= ~FLAG_PPS;
|
|
peer->precision = PRECISION;
|
|
} else {
|
|
up->ppsapi_gate = FALSE;
|
|
}
|
|
#endif /* HAVE_PPSAPI */
|
|
|
|
/*
|
|
* If the median filter is empty, claim a timeout. Else process
|
|
* the input data and keep the stats going.
|
|
*/
|
|
if (pp->coderecv == pp->codeproc) {
|
|
refclock_report(peer, CEVNT_TIMEOUT);
|
|
} else {
|
|
pp->polls++;
|
|
pp->lastref = pp->lastrec;
|
|
refclock_receive(peer);
|
|
}
|
|
|
|
/*
|
|
* If extended logging is required, write the tally stats to the
|
|
* clockstats file; otherwise just do a normal clock stats
|
|
* record. Clear the tally stats anyway.
|
|
*/
|
|
if (peer->ttl & NMEA_EXTLOG_MASK) {
|
|
/* Log & reset counters with extended logging */
|
|
const char *nmea = pp->a_lastcode;
|
|
if (*nmea == '\0') nmea = "(none)";
|
|
mprintf_clock_stats(
|
|
&peer->srcadr, "%s %u %u %u %u %u %u",
|
|
nmea,
|
|
up->tally.total, up->tally.accepted,
|
|
up->tally.rejected, up->tally.malformed,
|
|
up->tally.filtered, up->tally.pps_used);
|
|
} else {
|
|
record_clock_stats(&peer->srcadr, pp->a_lastcode);
|
|
}
|
|
ZERO(up->tally);
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* Save the last timecode string, making sure it's properly truncated
|
|
* if necessary and NUL terminated in any case.
|
|
*/
|
|
static void
|
|
save_ltc(
|
|
struct refclockproc * const pp,
|
|
const char * const tc,
|
|
size_t len
|
|
)
|
|
{
|
|
if (len >= sizeof(pp->a_lastcode))
|
|
len = sizeof(pp->a_lastcode) - 1;
|
|
pp->lencode = (u_short)len;
|
|
memcpy(pp->a_lastcode, tc, len);
|
|
pp->a_lastcode[len] = '\0';
|
|
}
|
|
|
|
|
|
#if NMEA_WRITE_SUPPORT
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* gps_send(fd, cmd, peer) Sends a command to the GPS receiver.
|
|
* as in gps_send(fd, "rqts,u", peer);
|
|
*
|
|
* If 'cmd' starts with a '$' it is assumed that this command is in raw
|
|
* format, that is, starts with '$', ends with '<cr><lf>' and that any
|
|
* checksum is correctly provided; the command will be send 'as is' in
|
|
* that case. Otherwise the function will create the necessary frame
|
|
* (start char, chksum, final CRLF) on the fly.
|
|
*
|
|
* We don't currently send any data, but would like to send RTCM SC104
|
|
* messages for differential positioning. It should also give us better
|
|
* time. Without a PPS output, we're Just fooling ourselves because of
|
|
* the serial code paths
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
gps_send(
|
|
int fd,
|
|
const char * cmd,
|
|
struct peer * peer
|
|
)
|
|
{
|
|
/* $...*xy<CR><LF><NUL> add 7 */
|
|
char buf[NMEA_PROTO_MAXLEN + 7];
|
|
int len;
|
|
u_char dcs;
|
|
const u_char *beg, *end;
|
|
|
|
if (*cmd != '$') {
|
|
/* get checksum and length */
|
|
beg = end = (const u_char*)cmd;
|
|
dcs = 0;
|
|
while (*end >= ' ' && *end != '*')
|
|
dcs ^= *end++;
|
|
len = end - beg;
|
|
/* format into output buffer with overflow check */
|
|
len = snprintf(buf, sizeof(buf), "$%.*s*%02X\r\n",
|
|
len, beg, dcs);
|
|
if ((size_t)len >= sizeof(buf)) {
|
|
DPRINTF(1, ("%s gps_send: buffer overflow for command '%s'\n",
|
|
refnumtoa(&peer->srcadr), cmd));
|
|
return; /* game over player 1 */
|
|
}
|
|
cmd = buf;
|
|
} else {
|
|
len = strlen(cmd);
|
|
}
|
|
|
|
DPRINTF(1, ("%s gps_send: '%.*s'\n", refnumtoa(&peer->srcadr),
|
|
len - 2, cmd));
|
|
|
|
/* send out the whole stuff */
|
|
if (write(fd, cmd, len) == -1)
|
|
refclock_report(peer, CEVNT_FAULT);
|
|
}
|
|
#endif /* NMEA_WRITE_SUPPORT */
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* helpers for faster field splitting
|
|
* -------------------------------------------------------------------
|
|
*
|
|
* set up a field record, check syntax and verify checksum
|
|
*
|
|
* format is $XXXXX,1,2,3,4*ML
|
|
*
|
|
* 8-bit XOR of characters between $ and * noninclusive is transmitted
|
|
* in last two chars M and L holding most and least significant nibbles
|
|
* in hex representation such as:
|
|
*
|
|
* $GPGLL,5057.970,N,00146.110,E,142451,A*27
|
|
* $GPVTG,089.0,T,,,15.2,N,,*7F
|
|
*
|
|
* Some other constraints:
|
|
* + The field name must at least 5 upcase characters or digits and must
|
|
* start with a character.
|
|
* + The checksum (if present) must be uppercase hex digits.
|
|
* + The length of a sentence is limited to 80 characters (not including
|
|
* the final CR/LF nor the checksum, but including the leading '$')
|
|
*
|
|
* Return values:
|
|
* + CHECK_INVALID
|
|
* The data does not form a valid NMEA sentence or a checksum error
|
|
* occurred.
|
|
* + CHECK_VALID
|
|
* The data is a valid NMEA sentence but contains no checksum.
|
|
* + CHECK_CSVALID
|
|
* The data is a valid NMEA sentence and passed the checksum test.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
field_init(
|
|
nmea_data * data, /* context structure */
|
|
char * cptr, /* start of raw data */
|
|
int dlen /* data len, not counting trailing NUL */
|
|
)
|
|
{
|
|
u_char cs_l; /* checksum local computed */
|
|
u_char cs_r; /* checksum remote given */
|
|
char * eptr; /* buffer end end pointer */
|
|
char tmp; /* char buffer */
|
|
|
|
cs_l = 0;
|
|
cs_r = 0;
|
|
/* some basic input constraints */
|
|
if (dlen < 0)
|
|
dlen = 0;
|
|
eptr = cptr + dlen;
|
|
*eptr = '\0';
|
|
|
|
/* load data context */
|
|
data->base = cptr;
|
|
data->cptr = cptr;
|
|
data->cidx = 0;
|
|
data->blen = dlen;
|
|
|
|
/* syntax check follows here. check allowed character
|
|
* sequences, updating the local computed checksum as we go.
|
|
*
|
|
* regex equiv: '^\$[A-Z][A-Z0-9]{4,}[^*]*(\*[0-9A-F]{2})?$'
|
|
*/
|
|
|
|
/* -*- start character: '^\$' */
|
|
if (*cptr == '\0')
|
|
return CHECK_EMPTY;
|
|
if (*cptr++ != '$')
|
|
return CHECK_INVALID;
|
|
|
|
/* -*- advance context beyond start character */
|
|
data->base++;
|
|
data->cptr++;
|
|
data->blen--;
|
|
|
|
/* -*- field name: '[A-Z][A-Z0-9]{4,},' */
|
|
if (*cptr < 'A' || *cptr > 'Z')
|
|
return CHECK_INVALID;
|
|
cs_l ^= *cptr++;
|
|
while ((*cptr >= 'A' && *cptr <= 'Z') ||
|
|
(*cptr >= '0' && *cptr <= '9') )
|
|
cs_l ^= *cptr++;
|
|
if (*cptr != ',' || (cptr - data->base) < NMEA_PROTO_IDLEN)
|
|
return CHECK_INVALID;
|
|
cs_l ^= *cptr++;
|
|
|
|
/* -*- data: '[^*]*' */
|
|
while (*cptr && *cptr != '*')
|
|
cs_l ^= *cptr++;
|
|
|
|
/* -*- checksum field: (\*[0-9A-F]{2})?$ */
|
|
if (*cptr == '\0')
|
|
return CHECK_VALID;
|
|
if (*cptr != '*' || cptr != eptr - 3 ||
|
|
(cptr - data->base) >= NMEA_PROTO_MAXLEN)
|
|
return CHECK_INVALID;
|
|
|
|
for (cptr++; (tmp = *cptr) != '\0'; cptr++) {
|
|
if (tmp >= '0' && tmp <= '9')
|
|
cs_r = (cs_r << 4) + (tmp - '0');
|
|
else if (tmp >= 'A' && tmp <= 'F')
|
|
cs_r = (cs_r << 4) + (tmp - 'A' + 10);
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* -*- make sure we are at end of string and csum matches */
|
|
if (cptr != eptr || cs_l != cs_r)
|
|
return CHECK_INVALID;
|
|
|
|
return CHECK_CSVALID;
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* fetch a data field by index, zero being the name field. If this
|
|
* function is called repeatedly with increasing indices, the total load
|
|
* is O(n), n being the length of the string; if it is called with
|
|
* decreasing indices, the total load is O(n^2). Try not to go backwards
|
|
* too often.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static char *
|
|
field_parse(
|
|
nmea_data * data,
|
|
int fn
|
|
)
|
|
{
|
|
char tmp;
|
|
|
|
if (fn < data->cidx) {
|
|
data->cidx = 0;
|
|
data->cptr = data->base;
|
|
}
|
|
while ((fn > data->cidx) && (tmp = *data->cptr) != '\0') {
|
|
data->cidx += (tmp == ',');
|
|
data->cptr++;
|
|
}
|
|
return data->cptr;
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* Wipe (that is, overwrite with '_') data fields and the checksum in
|
|
* the last timecode. The list of field indices is given as integers
|
|
* in a varargs list, preferrably in ascending order, in any case
|
|
* terminated by a negative field index.
|
|
*
|
|
* A maximum number of 8 fields can be overwritten at once to guard
|
|
* against runaway (that is, unterminated) argument lists.
|
|
*
|
|
* This function affects what a remote user can see with
|
|
*
|
|
* ntpq -c clockvar <server>
|
|
*
|
|
* Note that this also removes the wiped fields from any clockstats
|
|
* log. Some NTP operators monitor their NMEA GPS using the change in
|
|
* location in clockstats over time as as a proxy for the quality of
|
|
* GPS reception and thereby time reported.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static void
|
|
field_wipe(
|
|
nmea_data * data,
|
|
...
|
|
)
|
|
{
|
|
va_list va; /* vararg index list */
|
|
int fcnt; /* safeguard against runaway arglist */
|
|
int fidx; /* field to nuke, or -1 for checksum */
|
|
char * cp; /* overwrite destination */
|
|
|
|
fcnt = 8;
|
|
cp = NULL;
|
|
va_start(va, data);
|
|
do {
|
|
fidx = va_arg(va, int);
|
|
if (fidx >= 0 && fidx <= NMEA_PROTO_FIELDS) {
|
|
cp = field_parse(data, fidx);
|
|
} else {
|
|
cp = data->base + data->blen;
|
|
if (data->blen >= 3 && cp[-3] == '*')
|
|
cp -= 2;
|
|
}
|
|
for ( ; '\0' != *cp && '*' != *cp && ',' != *cp; cp++)
|
|
if ('.' != *cp)
|
|
*cp = '_';
|
|
} while (fcnt-- && fidx >= 0);
|
|
va_end(va);
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* PARSING HELPERS
|
|
* -------------------------------------------------------------------
|
|
*
|
|
* Check sync status
|
|
*
|
|
* If the character at the data field start matches the tag value,
|
|
* return LEAP_NOWARNING and LEAP_NOTINSYNC otherwise. If the 'inverted'
|
|
* flag is given, just the opposite value is returned. If there is no
|
|
* data field (*cp points to the NUL byte) the result is LEAP_NOTINSYNC.
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static u_char
|
|
parse_qual(
|
|
nmea_data * rd,
|
|
int idx,
|
|
char tag,
|
|
int inv
|
|
)
|
|
{
|
|
static const u_char table[2] =
|
|
{ LEAP_NOTINSYNC, LEAP_NOWARNING };
|
|
char * dp;
|
|
|
|
dp = field_parse(rd, idx);
|
|
|
|
return table[ *dp && ((*dp == tag) == !inv) ];
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* Parse a time stamp in HHMMSS[.sss] format with error checking.
|
|
*
|
|
* returns 1 on success, 0 on failure
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
parse_time(
|
|
struct calendar * jd, /* result calendar pointer */
|
|
long * ns, /* storage for nsec fraction */
|
|
nmea_data * rd,
|
|
int idx
|
|
)
|
|
{
|
|
static const unsigned long weight[4] = {
|
|
0, 100000000, 10000000, 1000000
|
|
};
|
|
|
|
int rc;
|
|
u_int h;
|
|
u_int m;
|
|
u_int s;
|
|
int p1;
|
|
int p2;
|
|
u_long f;
|
|
char * dp;
|
|
|
|
dp = field_parse(rd, idx);
|
|
rc = sscanf(dp, "%2u%2u%2u%n.%3lu%n", &h, &m, &s, &p1, &f, &p2);
|
|
if (rc < 3 || p1 != 6) {
|
|
DPRINTF(1, ("nmea: invalid time code: '%.6s'\n", dp));
|
|
return FALSE;
|
|
}
|
|
|
|
/* value sanity check */
|
|
if (h > 23 || m > 59 || s > 60) {
|
|
DPRINTF(1, ("nmea: invalid time spec %02u:%02u:%02u\n",
|
|
h, m, s));
|
|
return FALSE;
|
|
}
|
|
|
|
jd->hour = (u_char)h;
|
|
jd->minute = (u_char)m;
|
|
jd->second = (u_char)s;
|
|
/* if we have a fraction, scale it up to nanoseconds. */
|
|
if (rc == 4)
|
|
*ns = f * weight[p2 - p1 - 1];
|
|
else
|
|
*ns = 0;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* Parse a date string from an NMEA sentence. This could either be a
|
|
* partial date in DDMMYY format in one field, or DD,MM,YYYY full date
|
|
* spec spanning three fields. This function does some extensive error
|
|
* checking to make sure the date string was consistent.
|
|
*
|
|
* returns 1 on success, 0 on failure
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
parse_date(
|
|
struct calendar * jd, /* result pointer */
|
|
nmea_data * rd,
|
|
int idx,
|
|
enum date_fmt fmt
|
|
)
|
|
{
|
|
int rc;
|
|
u_int y;
|
|
u_int m;
|
|
u_int d;
|
|
int p;
|
|
char * dp;
|
|
|
|
dp = field_parse(rd, idx);
|
|
switch (fmt) {
|
|
|
|
case DATE_1_DDMMYY:
|
|
rc = sscanf(dp, "%2u%2u%2u%n", &d, &m, &y, &p);
|
|
if (rc != 3 || p != 6) {
|
|
DPRINTF(1, ("nmea: invalid date code: '%.6s'\n",
|
|
dp));
|
|
return FALSE;
|
|
}
|
|
break;
|
|
|
|
case DATE_3_DDMMYYYY:
|
|
rc = sscanf(dp, "%2u,%2u,%4u%n", &d, &m, &y, &p);
|
|
if (rc != 3 || p != 10) {
|
|
DPRINTF(1, ("nmea: invalid date code: '%.10s'\n",
|
|
dp));
|
|
return FALSE;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
DPRINTF(1, ("nmea: invalid parse format: %d\n", fmt));
|
|
return FALSE;
|
|
}
|
|
|
|
/* value sanity check */
|
|
if (d < 1 || d > 31 || m < 1 || m > 12) {
|
|
DPRINTF(1, ("nmea: invalid date spec (YMD) %04u:%02u:%02u\n",
|
|
y, m, d));
|
|
return FALSE;
|
|
}
|
|
|
|
/* store results */
|
|
jd->monthday = (u_char)d;
|
|
jd->month = (u_char)m;
|
|
jd->year = (u_short)y;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* Parse GPS week time info from an NMEA sentence. This info contains
|
|
* the GPS week number, the GPS time-of-week and the leap seconds GPS
|
|
* to UTC.
|
|
*
|
|
* returns 1 on success, 0 on failure
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
parse_weekdata(
|
|
gps_weektm * wd,
|
|
nmea_data * rd,
|
|
int weekidx,
|
|
int timeidx,
|
|
int leapidx
|
|
)
|
|
{
|
|
u_long secs;
|
|
int fcnt;
|
|
|
|
/* parse fields and count success */
|
|
fcnt = sscanf(field_parse(rd, weekidx), "%hu", &wd->wt_week);
|
|
fcnt += sscanf(field_parse(rd, timeidx), "%lu", &secs);
|
|
fcnt += sscanf(field_parse(rd, leapidx), "%hd", &wd->wt_leap);
|
|
if (fcnt != 3 || wd->wt_week >= 1024 || secs >= 7*SECSPERDAY) {
|
|
DPRINTF(1, ("nmea: parse_weekdata: invalid weektime spec\n"));
|
|
return FALSE;
|
|
}
|
|
wd->wt_time = (u_int32)secs;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* funny calendar-oriented stuff -- perhaps a bit hard to grok.
|
|
* -------------------------------------------------------------------
|
|
*
|
|
* Unfold a time-of-day (seconds since midnight) around the current
|
|
* system time in a manner that guarantees an absolute difference of
|
|
* less than 12hrs.
|
|
*
|
|
* This function is used for NMEA sentences that contain no date
|
|
* information. This requires the system clock to be in +/-12hrs
|
|
* around the true time, or the clock will synchronize the system 1day
|
|
* off if not augmented with a time sources that also provide the
|
|
* necessary date information.
|
|
*
|
|
* The function updates the calendar structure it also uses as
|
|
* input to fetch the time from.
|
|
*
|
|
* returns 1 on success, 0 on failure
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
unfold_day(
|
|
struct calendar * jd,
|
|
u_int32 rec_ui
|
|
)
|
|
{
|
|
vint64 rec_qw;
|
|
ntpcal_split rec_ds;
|
|
|
|
/*
|
|
* basically this is the peridiodic extension of the receive
|
|
* time - 12hrs to the time-of-day with a period of 1 day.
|
|
* But we would have to execute this in 64bit arithmetic, and we
|
|
* cannot assume we can do this; therefore this is done
|
|
* in split representation.
|
|
*/
|
|
rec_qw = ntpcal_ntp_to_ntp(rec_ui - SECSPERDAY/2, NULL);
|
|
rec_ds = ntpcal_daysplit(&rec_qw);
|
|
rec_ds.lo = ntpcal_periodic_extend(rec_ds.lo,
|
|
ntpcal_date_to_daysec(jd),
|
|
SECSPERDAY);
|
|
rec_ds.hi += ntpcal_daysec_to_date(jd, rec_ds.lo);
|
|
return (ntpcal_rd_to_date(jd, rec_ds.hi + DAY_NTP_STARTS) >= 0);
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* A 2-digit year is expanded into full year spec around the year found
|
|
* in 'jd->year'. This should be in +79/-19 years around the system time,
|
|
* or the result will be off by 100 years. The assymetric behaviour was
|
|
* chosen to enable inital sync for systems that do not have a
|
|
* battery-backup clock and start with a date that is typically years in
|
|
* the past.
|
|
*
|
|
* Since the GPS epoch starts at 1980-01-06, the resulting year will be
|
|
* not be before 1980 in any case.
|
|
*
|
|
* returns 1 on success, 0 on failure
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
unfold_century(
|
|
struct calendar * jd,
|
|
u_int32 rec_ui
|
|
)
|
|
{
|
|
struct calendar rec;
|
|
int32 baseyear;
|
|
|
|
ntpcal_ntp_to_date(&rec, rec_ui, NULL);
|
|
baseyear = rec.year - 20;
|
|
if (baseyear < g_gpsMinYear)
|
|
baseyear = g_gpsMinYear;
|
|
jd->year = (u_short)ntpcal_periodic_extend(baseyear, jd->year,
|
|
100);
|
|
|
|
return ((baseyear <= jd->year) && (baseyear + 100 > jd->year));
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* A 2-digit year is expanded into a full year spec by correlation with
|
|
* a GPS week number and the current leap second count.
|
|
*
|
|
* The GPS week time scale counts weeks since Sunday, 1980-01-06, modulo
|
|
* 1024 and seconds since start of the week. The GPS time scale is based
|
|
* on international atomic time (TAI), so the leap second difference to
|
|
* UTC is also needed for a proper conversion.
|
|
*
|
|
* A brute-force analysis (that is, test for every date) shows that a
|
|
* wrong assignment of the century can not happen between the years 1900
|
|
* to 2399 when comparing the week signatures for different
|
|
* centuries. (I *think* that will not happen for 400*1024 years, but I
|
|
* have no valid proof. -*-perlinger@ntp.org-*-)
|
|
*
|
|
* This function is bound to to work between years 1980 and 2399
|
|
* (inclusive), which should suffice for now ;-)
|
|
*
|
|
* Note: This function needs a full date&time spec on input due to the
|
|
* necessary leap second corrections!
|
|
*
|
|
* returns 1 on success, 0 on failure
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static int
|
|
gpsfix_century(
|
|
struct calendar * jd,
|
|
const gps_weektm * wd,
|
|
u_short * century
|
|
)
|
|
{
|
|
int32 days;
|
|
int32 doff;
|
|
u_short week;
|
|
u_short year;
|
|
int loop;
|
|
|
|
/* Get day offset. Assumes that the input time is in range and
|
|
* that the leap seconds do not shift more than +/-1 day.
|
|
*/
|
|
doff = ntpcal_date_to_daysec(jd) + wd->wt_leap;
|
|
doff = (doff >= SECSPERDAY) - (doff < 0);
|
|
|
|
/*
|
|
* Loop over centuries to get a match, starting with the last
|
|
* successful one. (Or with the 19th century if the cached value
|
|
* is out of range...)
|
|
*/
|
|
year = jd->year % 100;
|
|
for (loop = 5; loop > 0; loop--,(*century)++) {
|
|
if (*century < 19 || *century >= 24)
|
|
*century = 19;
|
|
/* Get days and week in GPS epoch */
|
|
jd->year = year + *century * 100;
|
|
days = ntpcal_date_to_rd(jd) - DAY_GPS_STARTS + doff;
|
|
week = (days / 7) % 1024;
|
|
if (days >= 0 && wd->wt_week == week)
|
|
return TRUE; /* matched... */
|
|
}
|
|
|
|
jd->year = year;
|
|
return FALSE; /* match failed... */
|
|
}
|
|
|
|
/*
|
|
* -------------------------------------------------------------------
|
|
* And now the final execise: Considering the fact that many (most?)
|
|
* GPS receivers cannot handle a GPS epoch wrap well, we try to
|
|
* compensate for that problem by unwrapping a GPS epoch around the
|
|
* receive stamp. Another execise in periodic unfolding, of course,
|
|
* but with enough points to take care of.
|
|
*
|
|
* Note: The integral part of 'tofs' is intended to handle small(!)
|
|
* systematic offsets, as -1 for handling $GPZDG, which gives the
|
|
* following second. (sigh...) The absolute value shall be less than a
|
|
* day (86400 seconds).
|
|
* -------------------------------------------------------------------
|
|
*/
|
|
static l_fp
|
|
eval_gps_time(
|
|
struct peer * peer, /* for logging etc */
|
|
const struct calendar * gpst, /* GPS time stamp */
|
|
const struct timespec * tofs, /* GPS frac second & offset */
|
|
const l_fp * xrecv /* receive time stamp */
|
|
)
|
|
{
|
|
struct refclockproc * const pp = peer->procptr;
|
|
nmea_unit * const up = (nmea_unit *)pp->unitptr;
|
|
|
|
l_fp retv;
|
|
|
|
/* components of calculation */
|
|
int32_t rcv_sec, rcv_day; /* receive ToD and day */
|
|
int32_t gps_sec, gps_day; /* GPS ToD and day in NTP epoch */
|
|
int32_t adj_day, weeks; /* adjusted GPS day and week shift */
|
|
|
|
/* some temporaries to shuffle data */
|
|
vint64 vi64;
|
|
ntpcal_split rs64;
|
|
|
|
/* evaluate time stamp from receiver. */
|
|
gps_sec = ntpcal_date_to_daysec(gpst);
|
|
gps_day = ntpcal_date_to_rd(gpst) - DAY_NTP_STARTS;
|
|
|
|
/* merge in fractional offset */
|
|
retv = tspec_intv_to_lfp(*tofs);
|
|
gps_sec += retv.l_i;
|
|
|
|
/* If we fully trust the GPS receiver, just combine days and
|
|
* seconds and be done. */
|
|
if (peer->ttl & NMEA_DATETRUST_MASK) {
|
|
retv.l_ui = ntpcal_dayjoin(gps_day, gps_sec).D_s.lo;
|
|
return retv;
|
|
}
|
|
|
|
/* So we do not trust the GPS receiver to deliver a correct date
|
|
* due to the GPS epoch changes. We map the date from the
|
|
* receiver into the +/-512 week interval around the receive
|
|
* time in that case. This would be a tad easier with 64bit
|
|
* calculations, but again, we restrict the code to 32bit ops
|
|
* when possible. */
|
|
|
|
/* - make sure the GPS fractional day is normalised
|
|
* Applying the offset value might have put us slightly over the
|
|
* edge of the allowed range for seconds-of-day. Doing a full
|
|
* division with floor correction is overkill here; a simple
|
|
* addition or subtraction step is sufficient. Using WHILE loops
|
|
* gives the right result even if the offset exceeds one day,
|
|
* which is NOT what it's intented for! */
|
|
while (gps_sec >= SECSPERDAY) {
|
|
gps_sec -= SECSPERDAY;
|
|
gps_day += 1;
|
|
}
|
|
while (gps_sec < 0) {
|
|
gps_sec += SECSPERDAY;
|
|
gps_day -= 1;
|
|
}
|
|
|
|
/* - get unfold base: day of full recv time - 512 weeks */
|
|
vi64 = ntpcal_ntp_to_ntp(xrecv->l_ui, NULL);
|
|
rs64 = ntpcal_daysplit(&vi64);
|
|
rcv_sec = rs64.lo;
|
|
rcv_day = rs64.hi - 512 * 7;
|
|
|
|
/* - take the fractional days into account
|
|
* If the fractional day of the GPS time is smaller than the
|
|
* fractional day of the receive time, we shift the base day for
|
|
* the unfold by 1. */
|
|
if ( gps_sec < rcv_sec
|
|
|| (gps_sec == rcv_sec && retv.l_uf < xrecv->l_uf))
|
|
rcv_day += 1;
|
|
|
|
/* - don't warp ahead of GPS invention! */
|
|
if (rcv_day < g_gpsMinBase)
|
|
rcv_day = g_gpsMinBase;
|
|
|
|
/* - let the magic happen: */
|
|
adj_day = ntpcal_periodic_extend(rcv_day, gps_day, 1024*7);
|
|
|
|
/* - check if we should log a GPS epoch warp */
|
|
weeks = (adj_day - gps_day) / 7;
|
|
if (weeks != up->epoch_warp) {
|
|
up->epoch_warp = weeks;
|
|
LOGIF(CLOCKINFO, (LOG_INFO,
|
|
"%s Changed GPS epoch warp to %d weeks",
|
|
refnumtoa(&peer->srcadr), weeks));
|
|
}
|
|
|
|
/* - build result and be done */
|
|
retv.l_ui = ntpcal_dayjoin(adj_day, gps_sec).D_s.lo;
|
|
return retv;
|
|
}
|
|
|
|
/*
|
|
* ===================================================================
|
|
*
|
|
* NMEAD support
|
|
*
|
|
* original nmead support added by Jon Miner (cp_n18@yahoo.com)
|
|
*
|
|
* See http://home.hiwaay.net/~taylorc/gps/nmea-server/
|
|
* for information about nmead
|
|
*
|
|
* To use this, you need to create a link from /dev/gpsX to
|
|
* the server:port where nmead is running. Something like this:
|
|
*
|
|
* ln -s server:port /dev/gps1
|
|
*
|
|
* Split into separate function by Juergen Perlinger
|
|
* (perlinger-at-ntp-dot-org)
|
|
*
|
|
* ===================================================================
|
|
*/
|
|
static int
|
|
nmead_open(
|
|
const char * device
|
|
)
|
|
{
|
|
int fd = -1; /* result file descriptor */
|
|
|
|
#ifdef HAVE_READLINK
|
|
char host[80]; /* link target buffer */
|
|
char * port; /* port name or number */
|
|
int rc; /* result code (several)*/
|
|
int sh; /* socket handle */
|
|
struct addrinfo ai_hint; /* resolution hint */
|
|
struct addrinfo *ai_list; /* resolution result */
|
|
struct addrinfo *ai; /* result scan ptr */
|
|
|
|
fd = -1;
|
|
|
|
/* try to read as link, make sure no overflow occurs */
|
|
rc = readlink(device, host, sizeof(host));
|
|
if ((size_t)rc >= sizeof(host))
|
|
return fd; /* error / overflow / truncation */
|
|
host[rc] = '\0'; /* readlink does not place NUL */
|
|
|
|
/* get port */
|
|
port = strchr(host, ':');
|
|
if (!port)
|
|
return fd; /* not 'host:port' syntax ? */
|
|
*port++ = '\0'; /* put in separator */
|
|
|
|
/* get address infos and try to open socket
|
|
*
|
|
* This getaddrinfo() is naughty in ntpd's nonblocking main
|
|
* thread, but you have to go out of your wary to use this code
|
|
* and typically the blocking is at startup where its impact is
|
|
* reduced. The same holds for the 'connect()', as it is
|
|
* blocking, too...
|
|
*/
|
|
ZERO(ai_hint);
|
|
ai_hint.ai_protocol = IPPROTO_TCP;
|
|
ai_hint.ai_socktype = SOCK_STREAM;
|
|
if (getaddrinfo(host, port, &ai_hint, &ai_list))
|
|
return fd;
|
|
|
|
for (ai = ai_list; ai && (fd == -1); ai = ai->ai_next) {
|
|
sh = socket(ai->ai_family, ai->ai_socktype,
|
|
ai->ai_protocol);
|
|
if (INVALID_SOCKET == sh)
|
|
continue;
|
|
rc = connect(sh, ai->ai_addr, ai->ai_addrlen);
|
|
if (-1 != rc)
|
|
fd = sh;
|
|
else
|
|
close(sh);
|
|
}
|
|
freeaddrinfo(ai_list);
|
|
#else
|
|
fd = -1;
|
|
#endif
|
|
|
|
return fd;
|
|
}
|
|
#else
|
|
NONEMPTY_TRANSLATION_UNIT
|
|
#endif /* REFCLOCK && CLOCK_NMEA */
|