freebsd-skq/sys/powerpc/booke/machdep.c
raj b86fc67839 Make Book-E debug register state part of the PCB context.
Previously, DBCR0 flags were set "globally", but this leads to problems
because Book-E fine grained debug settings work only in conjuction with the
debug master enable bit in MSR: in scenarios when the DBCR0 was set with
intention to debug one process, but another one with MSR[DE] set got
scheduled, the latter would immediately cause debug exceptions to occur upon
execution of its own code instructions (and not the one intended for
debugging).

To avoid such problems and properly handle debugging context, DBCR0 state
should be managed individually per process.

Submitted by:	Grzegorz Bernacki gjb ! semihalf dot com
Reviewed by:	marcel
2009-02-27 12:08:24 +00:00

1011 lines
24 KiB
C

/*-
* Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (C) 2001 Benno Rice
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* $NetBSD: machdep.c,v 1.74.2.1 2000/11/01 16:13:48 tv Exp $
*/
/*-
* Copyright (C) 1995, 1996 Wolfgang Solfrank.
* Copyright (C) 1995, 1996 TooLs GmbH.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by TooLs GmbH.
* 4. The name of TooLs GmbH may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include "opt_kstack_pages.h"
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/cons.h>
#include <sys/cpu.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/exec.h>
#include <sys/ktr.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/sysent.h>
#include <sys/imgact.h>
#include <sys/msgbuf.h>
#include <sys/ptrace.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_page.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <machine/cpu.h>
#include <machine/kdb.h>
#include <machine/reg.h>
#include <machine/vmparam.h>
#include <machine/spr.h>
#include <machine/hid.h>
#include <machine/psl.h>
#include <machine/trap.h>
#include <machine/md_var.h>
#include <machine/mmuvar.h>
#include <machine/pmap.h>
#include <machine/sigframe.h>
#include <machine/metadata.h>
#include <machine/bootinfo.h>
#include <machine/powerpc.h>
#include <sys/linker.h>
#include <sys/reboot.h>
#include <powerpc/mpc85xx/ocpbus.h>
#include <powerpc/mpc85xx/mpc85xx.h>
#ifdef DEBUG
#define debugf(fmt, args...) printf(fmt, ##args)
#else
#define debugf(fmt, args...)
#endif
extern unsigned char kernel_text[];
extern unsigned char _etext[];
extern unsigned char _edata[];
extern unsigned char __bss_start[];
extern unsigned char __sbss_start[];
extern unsigned char __sbss_end[];
extern unsigned char _end[];
extern struct mem_region availmem_regions[];
extern int availmem_regions_sz;
extern void dcache_enable(void);
extern void dcache_inval(void);
extern void icache_enable(void);
extern void icache_inval(void);
struct kva_md_info kmi;
struct pcpu __pcpu[MAXCPU];
struct trapframe frame0;
int cold = 1;
long realmem = 0;
long Maxmem = 0;
struct bootinfo *bootinfo;
char machine[] = "powerpc";
SYSCTL_STRING(_hw, HW_MACHINE, machine, CTLFLAG_RD, machine, 0, "");
int cacheline_size = 32;
SYSCTL_INT(_machdep, CPU_CACHELINE, cacheline_size,
CTLFLAG_RD, &cacheline_size, 0, "");
static void cpu_e500_startup(void *);
SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_e500_startup, NULL);
void print_kernel_section_addr(void);
void print_bootinfo(void);
void print_kenv(void);
u_int e500_init(u_int32_t, u_int32_t, void *);
static void
cpu_e500_startup(void *dummy)
{
int indx, size;
/* Initialise the decrementer-based clock. */
decr_init();
/* Good {morning,afternoon,evening,night}. */
cpu_setup(PCPU_GET(cpuid));
printf("real memory = %ld (%ld MB)\n", ptoa(physmem),
ptoa(physmem) / 1048576);
realmem = physmem;
/* Display any holes after the first chunk of extended memory. */
if (bootverbose) {
printf("Physical memory chunk(s):\n");
for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
size = phys_avail[indx + 1] - phys_avail[indx];
printf("0x%08x - 0x%08x, %d bytes (%d pages)\n",
phys_avail[indx], phys_avail[indx + 1] - 1,
size, size / PAGE_SIZE);
}
}
vm_ksubmap_init(&kmi);
printf("avail memory = %ld (%ld MB)\n", ptoa(cnt.v_free_count),
ptoa(cnt.v_free_count) / 1048576);
/* Set up buffers, so they can be used to read disk labels. */
bufinit();
vm_pager_bufferinit();
}
static char *
kenv_next(char *cp)
{
if (cp != NULL) {
while (*cp != 0)
cp++;
cp++;
if (*cp == 0)
cp = NULL;
}
return (cp);
}
void
print_kenv(void)
{
int len;
char *cp;
debugf("loader passed (static) kenv:\n");
if (kern_envp == NULL) {
debugf(" no env, null ptr\n");
return;
}
debugf(" kern_envp = 0x%08x\n", (u_int32_t)kern_envp);
len = 0;
for (cp = kern_envp; cp != NULL; cp = kenv_next(cp))
debugf(" %x %s\n", (u_int32_t)cp, cp);
}
void
print_bootinfo(void)
{
struct bi_mem_region *mr;
struct bi_eth_addr *eth;
int i, j;
debugf("bootinfo:\n");
if (bootinfo == NULL) {
debugf(" no bootinfo, null ptr\n");
return;
}
debugf(" version = 0x%08x\n", bootinfo->bi_version);
debugf(" ccsrbar = 0x%08x\n", bootinfo->bi_bar_base);
debugf(" cpu_clk = 0x%08x\n", bootinfo->bi_cpu_clk);
debugf(" bus_clk = 0x%08x\n", bootinfo->bi_bus_clk);
debugf(" mem regions:\n");
mr = (struct bi_mem_region *)bootinfo->bi_data;
for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++)
debugf(" #%d, base = 0x%08x, size = 0x%08x\n", i,
mr->mem_base, mr->mem_size);
debugf(" eth addresses:\n");
eth = (struct bi_eth_addr *)mr;
for (i = 0; i < bootinfo->bi_eth_addr_no; i++, eth++) {
debugf(" #%d, addr = ", i);
for (j = 0; j < 6; j++)
debugf("%02x ", eth->mac_addr[j]);
debugf("\n");
}
}
void
print_kernel_section_addr(void)
{
debugf("kernel image addresses:\n");
debugf(" kernel_text = 0x%08x\n", (uint32_t)kernel_text);
debugf(" _etext (sdata) = 0x%08x\n", (uint32_t)_etext);
debugf(" _edata = 0x%08x\n", (uint32_t)_edata);
debugf(" __sbss_start = 0x%08x\n", (uint32_t)__sbss_start);
debugf(" __sbss_end = 0x%08x\n", (uint32_t)__sbss_end);
debugf(" __sbss_start = 0x%08x\n", (uint32_t)__bss_start);
debugf(" _end = 0x%08x\n", (uint32_t)_end);
}
struct bi_mem_region *
bootinfo_mr(void)
{
return ((struct bi_mem_region *)bootinfo->bi_data);
}
struct bi_eth_addr *
bootinfo_eth(void)
{
struct bi_mem_region *mr;
struct bi_eth_addr *eth;
int i;
/* Advance to the eth section */
mr = bootinfo_mr();
for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++)
;
eth = (struct bi_eth_addr *)mr;
return (eth);
}
u_int
e500_init(u_int32_t startkernel, u_int32_t endkernel, void *mdp)
{
struct pcpu *pc;
void *kmdp;
vm_offset_t end;
struct bi_mem_region *mr;
uint32_t csr;
int i;
kmdp = NULL;
end = endkernel;
/*
* Parse metadata and fetch parameters. This must be done as the first
* step as we need bootinfo data to at least init the console
*/
if (mdp != NULL) {
preload_metadata = mdp;
kmdp = preload_search_by_type("elf kernel");
if (kmdp != NULL) {
bootinfo = (struct bootinfo *)preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_BOOTINFO);
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
kern_envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
end = MD_FETCH(kmdp, MODINFOMD_KERNEND, vm_offset_t);
}
} else {
/*
* We should scream but how? - without CCSR bar (in bootinfo)
* cannot even output anything...
*/
/*
* FIXME add return value and handle in the locore so we can
* return to the loader maybe? (this seems not very easy to
* restore everything as the TLB have all been reprogrammed
* in the locore etc...)
*/
while(1);
}
/* Initialize memory regions table */
mr = bootinfo_mr();
for (i = 0; i < bootinfo->bi_mem_reg_no; i++, mr++) {
if (i == MEM_REGIONS)
break;
availmem_regions[i].mr_start = mr->mem_base;
availmem_regions[i].mr_size = mr->mem_size;
}
availmem_regions_sz = i;
/* Initialize TLB1 handling */
tlb1_init(bootinfo->bi_bar_base);
/*
* Time Base and Decrementer are updated every 8 CCB bus clocks.
* HID0[SEL_TBCLK] = 0
*/
decr_config(bootinfo->bi_bus_clk / 8);
/* Init params/tunables that can be overridden by the loader. */
init_param1();
/* Start initializing proc0 and thread0. */
proc_linkup(&proc0, &thread0);
thread0.td_frame = &frame0;
/* Set up per-cpu data and store the pointer in SPR general 0. */
pc = &__pcpu[0];
pcpu_init(pc, 0, sizeof(struct pcpu));
pc->pc_curthread = &thread0;
__asm __volatile("mtsprg 0, %0" :: "r"(pc));
/* Initialize system mutexes. */
mutex_init();
/* Initialize the console before printing anything. */
cninit();
/* Print out some debug info... */
debugf("e500_init: console initialized\n");
debugf(" arg1 startkernel = 0x%08x\n", startkernel);
debugf(" arg2 endkernel = 0x%08x\n", endkernel);
debugf(" arg3 mdp = 0x%08x\n", (u_int32_t)mdp);
debugf(" end = 0x%08x\n", (u_int32_t)end);
debugf(" boothowto = 0x%08x\n", boothowto);
debugf(" kernel ccsrbar = 0x%08x\n", CCSRBAR_VA);
debugf(" MSR = 0x%08x\n", mfmsr());
debugf(" HID0 = 0x%08x\n", mfspr(SPR_HID0));
debugf(" HID1 = 0x%08x\n", mfspr(SPR_HID1));
print_bootinfo();
print_kernel_section_addr();
print_kenv();
//tlb1_print_entries();
//tlb1_print_tlbentries();
kdb_init();
#ifdef KDB
if (boothowto & RB_KDB)
kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
#endif
/* Initialise virtual memory. */
pmap_mmu_install(MMU_TYPE_BOOKE, 0);
pmap_bootstrap(startkernel, end);
debugf("MSR = 0x%08x\n", mfmsr());
//tlb1_print_entries();
//tlb1_print_tlbentries();
/* Initialize params/tunables that are derived from memsize. */
init_param2(physmem);
/* Finish setting up thread0. */
thread0.td_pcb = (struct pcb *)
((thread0.td_kstack + thread0.td_kstack_pages * PAGE_SIZE -
sizeof(struct pcb)) & ~15);
bzero((void *)thread0.td_pcb, sizeof(struct pcb));
pc->pc_curpcb = thread0.td_pcb;
/* Initialise the message buffer. */
msgbufinit(msgbufp, MSGBUF_SIZE);
/* Enable Machine Check interrupt. */
mtmsr(mfmsr() | PSL_ME);
isync();
/* Enable D-cache if applicable */
csr = mfspr(SPR_L1CSR0);
if ((csr & L1CSR0_DCE) == 0) {
dcache_inval();
dcache_enable();
}
csr = mfspr(SPR_L1CSR0);
if ((boothowto & RB_VERBOSE) != 0 || (csr & L1CSR0_DCE) == 0)
printf("L1 D-cache %sabled\n",
(csr & L1CSR0_DCE) ? "en" : "dis");
/* Enable L1 I-cache if applicable. */
csr = mfspr(SPR_L1CSR1);
if ((csr & L1CSR1_ICE) == 0) {
icache_inval();
icache_enable();
}
csr = mfspr(SPR_L1CSR1);
if ((boothowto & RB_VERBOSE) != 0 || (csr & L1CSR1_ICE) == 0)
printf("L1 I-cache %sabled\n",
(csr & L1CSR1_ICE) ? "en" : "dis");
debugf("e500_init: SP = 0x%08x\n", ((uintptr_t)thread0.td_pcb - 16) & ~15);
debugf("e500_init: e\n");
return (((uintptr_t)thread0.td_pcb - 16) & ~15);
}
/* Initialise a struct pcpu. */
void
cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t sz)
{
pcpu->pc_tid_next = TID_MIN;
}
/* Set set up registers on exec. */
void
exec_setregs(struct thread *td, u_long entry, u_long stack, u_long ps_strings)
{
struct trapframe *tf;
struct ps_strings arginfo;
tf = trapframe(td);
bzero(tf, sizeof *tf);
tf->fixreg[1] = -roundup(-stack + 8, 16);
/*
* XXX Machine-independent code has already copied arguments and
* XXX environment to userland. Get them back here.
*/
(void)copyin((char *)PS_STRINGS, &arginfo, sizeof(arginfo));
/*
* Set up arguments for _start():
* _start(argc, argv, envp, obj, cleanup, ps_strings);
*
* Notes:
* - obj and cleanup are the auxilliary and termination
* vectors. They are fixed up by ld.elf_so.
* - ps_strings is a NetBSD extention, and will be
* ignored by executables which are strictly
* compliant with the SVR4 ABI.
*
* XXX We have to set both regs and retval here due to different
* XXX calling convention in trap.c and init_main.c.
*/
/*
* XXX PG: these get overwritten in the syscall return code.
* execve() should return EJUSTRETURN, like it does on NetBSD.
* Emulate by setting the syscall return value cells. The
* registers still have to be set for init's fork trampoline.
*/
td->td_retval[0] = arginfo.ps_nargvstr;
td->td_retval[1] = (register_t)arginfo.ps_argvstr;
tf->fixreg[3] = arginfo.ps_nargvstr;
tf->fixreg[4] = (register_t)arginfo.ps_argvstr;
tf->fixreg[5] = (register_t)arginfo.ps_envstr;
tf->fixreg[6] = 0; /* auxillary vector */
tf->fixreg[7] = 0; /* termination vector */
tf->fixreg[8] = (register_t)PS_STRINGS; /* NetBSD extension */
tf->srr0 = entry;
tf->srr1 = PSL_USERSET;
td->td_pcb->pcb_flags = 0;
}
int
fill_regs(struct thread *td, struct reg *regs)
{
struct trapframe *tf;
tf = td->td_frame;
memcpy(regs, tf, sizeof(struct reg));
return (0);
}
int
fill_fpregs(struct thread *td, struct fpreg *fpregs)
{
return (0);
}
/* Get current clock frequency for the given cpu id. */
int
cpu_est_clockrate(int cpu_id, uint64_t *rate)
{
return (ENXIO);
}
/*
* Construct a PCB from a trapframe. This is called from kdb_trap() where
* we want to start a backtrace from the function that caused us to enter
* the debugger. We have the context in the trapframe, but base the trace
* on the PCB. The PCB doesn't have to be perfect, as long as it contains
* enough for a backtrace.
*/
void
makectx(struct trapframe *tf, struct pcb *pcb)
{
pcb->pcb_lr = tf->srr0;
pcb->pcb_sp = tf->fixreg[1];
}
/*
* get_mcontext/sendsig helper routine that doesn't touch the
* proc lock.
*/
static int
grab_mcontext(struct thread *td, mcontext_t *mcp, int flags)
{
struct pcb *pcb;
pcb = td->td_pcb;
memset(mcp, 0, sizeof(mcontext_t));
mcp->mc_vers = _MC_VERSION;
mcp->mc_flags = 0;
memcpy(&mcp->mc_frame, td->td_frame, sizeof(struct trapframe));
if (flags & GET_MC_CLEAR_RET) {
mcp->mc_gpr[3] = 0;
mcp->mc_gpr[4] = 0;
}
/* XXX Altivec context ? */
mcp->mc_len = sizeof(*mcp);
return (0);
}
int
get_mcontext(struct thread *td, mcontext_t *mcp, int flags)
{
int error;
error = grab_mcontext(td, mcp, flags);
if (error == 0) {
PROC_LOCK(curthread->td_proc);
mcp->mc_onstack = sigonstack(td->td_frame->fixreg[1]);
PROC_UNLOCK(curthread->td_proc);
}
return (error);
}
int
set_mcontext(struct thread *td, const mcontext_t *mcp)
{
struct pcb *pcb;
struct trapframe *tf;
pcb = td->td_pcb;
tf = td->td_frame;
if (mcp->mc_vers != _MC_VERSION || mcp->mc_len != sizeof(*mcp))
return (EINVAL);
memcpy(tf, mcp->mc_frame, sizeof(mcp->mc_frame));
/* XXX Altivec context? */
return (0);
}
int
sigreturn(struct thread *td, struct sigreturn_args *uap)
{
struct proc *p;
ucontext_t uc;
int error;
CTR2(KTR_SIG, "sigreturn: td=%p ucp=%p", td, uap->sigcntxp);
if (copyin(uap->sigcntxp, &uc, sizeof(uc)) != 0) {
CTR1(KTR_SIG, "sigreturn: efault td=%p", td);
return (EFAULT);
}
error = set_mcontext(td, &uc.uc_mcontext);
if (error != 0)
return (error);
p = td->td_proc;
PROC_LOCK(p);
td->td_sigmask = uc.uc_sigmask;
SIG_CANTMASK(td->td_sigmask);
signotify(td);
PROC_UNLOCK(p);
CTR3(KTR_SIG, "sigreturn: return td=%p pc=%#x sp=%#x",
td, uc.uc_mcontext.mc_srr0, uc.uc_mcontext.mc_gpr[1]);
return (EJUSTRETURN);
}
#ifdef COMPAT_FREEBSD4
int
freebsd4_sigreturn(struct thread *td, struct freebsd4_sigreturn_args *uap)
{
return sigreturn(td, (struct sigreturn_args *)uap);
}
#endif
/*
* cpu_idle
*
* Set Wait state enable.
*/
void
cpu_idle (int busy)
{
register_t msr;
msr = mfmsr();
#ifdef INVARIANTS
if ((msr & PSL_EE) != PSL_EE) {
struct thread *td = curthread;
printf("td msr %x\n", td->td_md.md_saved_msr);
panic("ints disabled in idleproc!");
}
#endif
#if 0
/*
* Freescale E500 core RM section 6.4.1
*/
msr = msr | PSL_WE;
__asm__(" msync;"
" mtmsr %0;"
" isync;"
"loop: b loop" :
/* no output */ :
"r" (msr));
#endif
}
int
cpu_idle_wakeup(int cpu)
{
return (0);
}
void
spinlock_enter(void)
{
struct thread *td;
td = curthread;
if (td->td_md.md_spinlock_count == 0)
td->td_md.md_saved_msr = intr_disable();
td->td_md.md_spinlock_count++;
critical_enter();
}
void
spinlock_exit(void)
{
struct thread *td;
td = curthread;
critical_exit();
td->td_md.md_spinlock_count--;
if (td->td_md.md_spinlock_count == 0)
intr_restore(td->td_md.md_saved_msr);
}
/* Shutdown the CPU as much as possible. */
void
cpu_halt(void)
{
mtmsr(mfmsr() & ~(PSL_CE | PSL_EE | PSL_ME | PSL_DE));
while (1);
}
int
set_regs(struct thread *td, struct reg *regs)
{
struct trapframe *tf;
tf = td->td_frame;
memcpy(tf, regs, sizeof(struct reg));
return (0);
}
int
fill_dbregs(struct thread *td, struct dbreg *dbregs)
{
/* No debug registers on PowerPC */
return (ENOSYS);
}
int
set_dbregs(struct thread *td, struct dbreg *dbregs)
{
/* No debug registers on PowerPC */
return (ENOSYS);
}
int
set_fpregs(struct thread *td, struct fpreg *fpregs)
{
return (0);
}
int
ptrace_set_pc(struct thread *td, unsigned long addr)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr0 = (register_t)addr;
return (0);
}
int
ptrace_single_step(struct thread *td)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr1 |= PSL_DE;
tf->cpu.booke.dbcr0 |= (DBCR0_IDM | DBCR0_IC);
return (0);
}
int
ptrace_clear_single_step(struct thread *td)
{
struct trapframe *tf;
tf = td->td_frame;
tf->srr1 &= ~PSL_DE;
tf->cpu.booke.dbcr0 &= ~(DBCR0_IDM | DBCR0_IC);
return (0);
}
void
kdb_cpu_clear_singlestep(void)
{
register_t r;
r = mfspr(SPR_DBCR0);
mtspr(SPR_DBCR0, r & ~DBCR0_IC);
kdb_frame->srr1 &= ~PSL_DE;
}
void
kdb_cpu_set_singlestep(void)
{
register_t r;
r = mfspr(SPR_DBCR0);
mtspr(SPR_DBCR0, r | DBCR0_IC | DBCR0_IDM);
kdb_frame->srr1 |= PSL_DE;
}
void
sendsig(sig_t catcher, ksiginfo_t *ksi, sigset_t *mask)
{
struct trapframe *tf;
struct sigframe *sfp;
struct sigacts *psp;
struct sigframe sf;
struct thread *td;
struct proc *p;
int oonstack, rndfsize;
int sig, code;
td = curthread;
p = td->td_proc;
PROC_LOCK_ASSERT(p, MA_OWNED);
sig = ksi->ksi_signo;
code = ksi->ksi_code;
psp = p->p_sigacts;
mtx_assert(&psp->ps_mtx, MA_OWNED);
tf = td->td_frame;
oonstack = sigonstack(tf->fixreg[1]);
rndfsize = ((sizeof(sf) + 15) / 16) * 16;
CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
catcher, sig);
/*
* Save user context
*/
memset(&sf, 0, sizeof(sf));
grab_mcontext(td, &sf.sf_uc.uc_mcontext, 0);
sf.sf_uc.uc_sigmask = *mask;
sf.sf_uc.uc_stack = td->td_sigstk;
sf.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK)
? ((oonstack) ? SS_ONSTACK : 0) : SS_DISABLE;
sf.sf_uc.uc_mcontext.mc_onstack = (oonstack) ? 1 : 0;
/*
* Allocate and validate space for the signal handler context.
*/
if ((td->td_pflags & TDP_ALTSTACK) != 0 && !oonstack &&
SIGISMEMBER(psp->ps_sigonstack, sig)) {
sfp = (struct sigframe *)((caddr_t)td->td_sigstk.ss_sp +
td->td_sigstk.ss_size - rndfsize);
} else {
sfp = (struct sigframe *)(tf->fixreg[1] - rndfsize);
}
/*
* Translate the signal if appropriate (Linux emu ?)
*/
if (p->p_sysent->sv_sigtbl && sig <= p->p_sysent->sv_sigsize)
sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
/*
* Save the floating-point state, if necessary, then copy it.
*/
/* XXX */
/*
* Set up the registers to return to sigcode.
*
* r1/sp - sigframe ptr
* lr - sig function, dispatched to by blrl in trampoline
* r3 - sig number
* r4 - SIGINFO ? &siginfo : exception code
* r5 - user context
* srr0 - trampoline function addr
*/
tf->lr = (register_t)catcher;
tf->fixreg[1] = (register_t)sfp;
tf->fixreg[FIRSTARG] = sig;
tf->fixreg[FIRSTARG+2] = (register_t)&sfp->sf_uc;
if (SIGISMEMBER(psp->ps_siginfo, sig)) {
/*
* Signal handler installed with SA_SIGINFO.
*/
tf->fixreg[FIRSTARG+1] = (register_t)&sfp->sf_si;
/*
* Fill siginfo structure.
*/
sf.sf_si = ksi->ksi_info;
sf.sf_si.si_signo = sig;
sf.sf_si.si_addr = (void *) ((tf->exc == EXC_DSI) ?
tf->cpu.booke.dear : tf->srr0);
} else {
/* Old FreeBSD-style arguments. */
tf->fixreg[FIRSTARG+1] = code;
tf->fixreg[FIRSTARG+3] = (tf->exc == EXC_DSI) ?
tf->cpu.booke.dear : tf->srr0;
}
mtx_unlock(&psp->ps_mtx);
PROC_UNLOCK(p);
tf->srr0 = (register_t)(PS_STRINGS - *(p->p_sysent->sv_szsigcode));
/*
* copy the frame out to userland.
*/
if (copyout((caddr_t)&sf, (caddr_t)sfp, sizeof(sf)) != 0) {
/*
* Process has trashed its stack. Kill it.
*/
CTR2(KTR_SIG, "sendsig: sigexit td=%p sfp=%p", td, sfp);
PROC_LOCK(p);
sigexit(td, SIGILL);
}
CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td,
tf->srr0, tf->fixreg[1]);
PROC_LOCK(p);
mtx_lock(&psp->ps_mtx);
}
void
bzero(void *buf, size_t len)
{
caddr_t p;
p = buf;
while (((vm_offset_t) p & (sizeof(u_long) - 1)) && len) {
*p++ = 0;
len--;
}
while (len >= sizeof(u_long) * 8) {
*(u_long*) p = 0;
*((u_long*) p + 1) = 0;
*((u_long*) p + 2) = 0;
*((u_long*) p + 3) = 0;
len -= sizeof(u_long) * 8;
*((u_long*) p + 4) = 0;
*((u_long*) p + 5) = 0;
*((u_long*) p + 6) = 0;
*((u_long*) p + 7) = 0;
p += sizeof(u_long) * 8;
}
while (len >= sizeof(u_long)) {
*(u_long*) p = 0;
len -= sizeof(u_long);
p += sizeof(u_long);
}
while (len) {
*p++ = 0;
len--;
}
}
/*
* XXX what is the better/proper place for this routine?
*/
int
mem_valid(vm_offset_t addr, int len)
{
return (1);
}