freebsd-skq/sys/kern/kern_rwlock.c
John Baldwin b80ad3eea1 - Drop memory barriers in rw_try_upgrade(). We don't need an 'acq' memory
barrier here as the earlier rw_rlock() already contained one.
- Comment fix.
2007-03-30 18:08:55 +00:00

880 lines
25 KiB
C

/*-
* Copyright (c) 2006 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Machine independent bits of reader/writer lock implementation.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_no_adaptive_rwlocks.h"
#include <sys/param.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/systm.h>
#include <sys/turnstile.h>
#include <sys/lock_profile.h>
#include <machine/cpu.h>
#if defined(SMP) && !defined(NO_ADAPTIVE_RWLOCKS)
#define ADAPTIVE_RWLOCKS
#endif
#ifdef DDB
#include <ddb/ddb.h>
static void db_show_rwlock(struct lock_object *lock);
#endif
static void lock_rw(struct lock_object *lock, int how);
static int unlock_rw(struct lock_object *lock);
struct lock_class lock_class_rw = {
.lc_name = "rw",
.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE | LC_UPGRADABLE,
#ifdef DDB
.lc_ddb_show = db_show_rwlock,
#endif
.lc_lock = lock_rw,
.lc_unlock = unlock_rw,
};
/*
* Return a pointer to the owning thread if the lock is write-locked or
* NULL if the lock is unlocked or read-locked.
*/
#define rw_wowner(rw) \
((rw)->rw_lock & RW_LOCK_READ ? NULL : \
(struct thread *)RW_OWNER((rw)->rw_lock))
/*
* Return a pointer to the owning thread for this lock who should receive
* any priority lent by threads that block on this lock. Currently this
* is identical to rw_wowner().
*/
#define rw_owner(rw) rw_wowner(rw)
#ifndef INVARIANTS
#define _rw_assert(rw, what, file, line)
#endif
void
lock_rw(struct lock_object *lock, int how)
{
struct rwlock *rw;
rw = (struct rwlock *)lock;
if (how)
rw_wlock(rw);
else
rw_rlock(rw);
}
int
unlock_rw(struct lock_object *lock)
{
struct rwlock *rw;
rw = (struct rwlock *)lock;
rw_assert(rw, RA_LOCKED | LA_NOTRECURSED);
if (rw->rw_lock & RW_LOCK_READ) {
rw_runlock(rw);
return (0);
} else {
rw_wunlock(rw);
return (1);
}
}
void
rw_init(struct rwlock *rw, const char *name)
{
rw->rw_lock = RW_UNLOCKED;
lock_profile_object_init(&rw->lock_object, &lock_class_rw, name);
lock_init(&rw->lock_object, &lock_class_rw, name, NULL, LO_WITNESS |
LO_RECURSABLE | LO_UPGRADABLE);
}
void
rw_destroy(struct rwlock *rw)
{
KASSERT(rw->rw_lock == RW_UNLOCKED, ("rw lock not unlocked"));
lock_profile_object_destroy(&rw->lock_object);
lock_destroy(&rw->lock_object);
}
void
rw_sysinit(void *arg)
{
struct rw_args *args = arg;
rw_init(args->ra_rw, args->ra_desc);
}
int
rw_wowned(struct rwlock *rw)
{
return (rw_wowner(rw) == curthread);
}
void
_rw_wlock(struct rwlock *rw, const char *file, int line)
{
MPASS(curthread != NULL);
KASSERT(rw_wowner(rw) != curthread,
("%s (%s): wlock already held @ %s:%d", __func__,
rw->lock_object.lo_name, file, line));
WITNESS_CHECKORDER(&rw->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file,
line);
__rw_wlock(rw, curthread, file, line);
LOCK_LOG_LOCK("WLOCK", &rw->lock_object, 0, 0, file, line);
WITNESS_LOCK(&rw->lock_object, LOP_EXCLUSIVE, file, line);
curthread->td_locks++;
}
void
_rw_wunlock(struct rwlock *rw, const char *file, int line)
{
MPASS(curthread != NULL);
_rw_assert(rw, RA_WLOCKED, file, line);
curthread->td_locks--;
WITNESS_UNLOCK(&rw->lock_object, LOP_EXCLUSIVE, file, line);
LOCK_LOG_LOCK("WUNLOCK", &rw->lock_object, 0, 0, file, line);
lock_profile_release_lock(&rw->lock_object);
__rw_wunlock(rw, curthread, file, line);
}
void
_rw_rlock(struct rwlock *rw, const char *file, int line)
{
#ifdef ADAPTIVE_RWLOCKS
volatile struct thread *owner;
#endif
uint64_t waittime = 0;
int contested = 0;
uintptr_t x;
KASSERT(rw_wowner(rw) != curthread,
("%s (%s): wlock already held @ %s:%d", __func__,
rw->lock_object.lo_name, file, line));
WITNESS_CHECKORDER(&rw->lock_object, LOP_NEWORDER, file, line);
/*
* Note that we don't make any attempt to try to block read
* locks once a writer has blocked on the lock. The reason is
* that we currently allow for read locks to recurse and we
* don't keep track of all the holders of read locks. Thus, if
* we were to block readers once a writer blocked and a reader
* tried to recurse on their reader lock after a writer had
* blocked we would end up in a deadlock since the reader would
* be blocked on the writer, and the writer would be blocked
* waiting for the reader to release its original read lock.
*/
for (;;) {
/*
* Handle the easy case. If no other thread has a write
* lock, then try to bump up the count of read locks. Note
* that we have to preserve the current state of the
* RW_LOCK_WRITE_WAITERS flag. If we fail to acquire a
* read lock, then rw_lock must have changed, so restart
* the loop. Note that this handles the case of a
* completely unlocked rwlock since such a lock is encoded
* as a read lock with no waiters.
*/
x = rw->rw_lock;
if (x & RW_LOCK_READ) {
/*
* The RW_LOCK_READ_WAITERS flag should only be set
* if another thread currently holds a write lock,
* and in that case RW_LOCK_READ should be clear.
*/
MPASS((x & RW_LOCK_READ_WAITERS) == 0);
if (atomic_cmpset_acq_ptr(&rw->rw_lock, x,
x + RW_ONE_READER)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR4(KTR_LOCK,
"%s: %p succeed %p -> %p", __func__,
rw, (void *)x,
(void *)(x + RW_ONE_READER));
if (RW_READERS(x) == 0)
lock_profile_obtain_lock_success(
&rw->lock_object, contested, waittime,
file, line);
break;
}
cpu_spinwait();
continue;
}
lock_profile_obtain_lock_failed(&rw->lock_object, &contested,
&waittime);
/*
* Okay, now it's the hard case. Some other thread already
* has a write lock, so acquire the turnstile lock so we can
* begin the process of blocking.
*/
turnstile_lock(&rw->lock_object);
/*
* The lock might have been released while we spun, so
* recheck its state and restart the loop if there is no
* longer a write lock.
*/
x = rw->rw_lock;
if (x & RW_LOCK_READ) {
turnstile_release(&rw->lock_object);
cpu_spinwait();
continue;
}
/*
* Ok, it's still a write lock. If the RW_LOCK_READ_WAITERS
* flag is already set, then we can go ahead and block. If
* it is not set then try to set it. If we fail to set it
* drop the turnstile lock and restart the loop.
*/
if (!(x & RW_LOCK_READ_WAITERS)) {
if (!atomic_cmpset_ptr(&rw->rw_lock, x,
x | RW_LOCK_READ_WAITERS)) {
turnstile_release(&rw->lock_object);
cpu_spinwait();
continue;
}
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p set read waiters flag",
__func__, rw);
}
#ifdef ADAPTIVE_RWLOCKS
/*
* If the owner is running on another CPU, spin until
* the owner stops running or the state of the lock
* changes.
*/
owner = (struct thread *)RW_OWNER(x);
if (TD_IS_RUNNING(owner)) {
turnstile_release(&rw->lock_object);
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR3(KTR_LOCK, "%s: spinning on %p held by %p",
__func__, rw, owner);
while ((struct thread*)RW_OWNER(rw->rw_lock)== owner &&
TD_IS_RUNNING(owner))
cpu_spinwait();
continue;
}
#endif
/*
* We were unable to acquire the lock and the read waiters
* flag is set, so we must block on the turnstile.
*/
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__,
rw);
turnstile_wait(&rw->lock_object, rw_owner(rw), TS_SHARED_QUEUE);
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p resuming from turnstile",
__func__, rw);
}
/*
* TODO: acquire "owner of record" here. Here be turnstile dragons
* however. turnstiles don't like owners changing between calls to
* turnstile_wait() currently.
*/
LOCK_LOG_LOCK("RLOCK", &rw->lock_object, 0, 0, file, line);
WITNESS_LOCK(&rw->lock_object, 0, file, line);
curthread->td_locks++;
}
void
_rw_runlock(struct rwlock *rw, const char *file, int line)
{
struct turnstile *ts;
uintptr_t x;
_rw_assert(rw, RA_RLOCKED, file, line);
curthread->td_locks--;
WITNESS_UNLOCK(&rw->lock_object, 0, file, line);
LOCK_LOG_LOCK("RUNLOCK", &rw->lock_object, 0, 0, file, line);
/* TODO: drop "owner of record" here. */
for (;;) {
/*
* See if there is more than one read lock held. If so,
* just drop one and return.
*/
x = rw->rw_lock;
if (RW_READERS(x) > 1) {
if (atomic_cmpset_ptr(&rw->rw_lock, x,
x - RW_ONE_READER)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR4(KTR_LOCK,
"%s: %p succeeded %p -> %p",
__func__, rw, (void *)x,
(void *)(x - RW_ONE_READER));
break;
}
continue;
}
/*
* We should never have read waiters while at least one
* thread holds a read lock. (See note above)
*/
KASSERT(!(x & RW_LOCK_READ_WAITERS),
("%s: waiting readers", __func__));
/*
* If there aren't any waiters for a write lock, then try
* to drop it quickly.
*/
if (!(x & RW_LOCK_WRITE_WAITERS)) {
/*
* There shouldn't be any flags set and we should
* be the only read lock. If we fail to release
* the single read lock, then another thread might
* have just acquired a read lock, so go back up
* to the multiple read locks case.
*/
MPASS(x == RW_READERS_LOCK(1));
if (atomic_cmpset_ptr(&rw->rw_lock, RW_READERS_LOCK(1),
RW_UNLOCKED)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p last succeeded",
__func__, rw);
break;
}
continue;
}
/*
* There should just be one reader with one or more
* writers waiting.
*/
MPASS(x == (RW_READERS_LOCK(1) | RW_LOCK_WRITE_WAITERS));
/*
* Ok, we know we have a waiting writer and we think we
* are the last reader, so grab the turnstile lock.
*/
turnstile_lock(&rw->lock_object);
/*
* Try to drop our lock leaving the lock in a unlocked
* state.
*
* If you wanted to do explicit lock handoff you'd have to
* do it here. You'd also want to use turnstile_signal()
* and you'd have to handle the race where a higher
* priority thread blocks on the write lock before the
* thread you wakeup actually runs and have the new thread
* "steal" the lock. For now it's a lot simpler to just
* wakeup all of the waiters.
*
* As above, if we fail, then another thread might have
* acquired a read lock, so drop the turnstile lock and
* restart.
*/
if (!atomic_cmpset_ptr(&rw->rw_lock,
RW_READERS_LOCK(1) | RW_LOCK_WRITE_WAITERS, RW_UNLOCKED)) {
turnstile_release(&rw->lock_object);
continue;
}
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p last succeeded with waiters",
__func__, rw);
/*
* Ok. The lock is released and all that's left is to
* wake up the waiters. Note that the lock might not be
* free anymore, but in that case the writers will just
* block again if they run before the new lock holder(s)
* release the lock.
*/
ts = turnstile_lookup(&rw->lock_object);
MPASS(ts != NULL);
turnstile_broadcast(ts, TS_EXCLUSIVE_QUEUE);
turnstile_unpend(ts, TS_SHARED_LOCK);
break;
}
lock_profile_release_lock(&rw->lock_object);
}
/*
* This function is called when we are unable to obtain a write lock on the
* first try. This means that at least one other thread holds either a
* read or write lock.
*/
void
_rw_wlock_hard(struct rwlock *rw, uintptr_t tid, const char *file, int line)
{
#ifdef ADAPTIVE_RWLOCKS
volatile struct thread *owner;
#endif
uintptr_t v;
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__,
rw->lock_object.lo_name, (void *)rw->rw_lock, file, line);
while (!_rw_write_lock(rw, tid)) {
turnstile_lock(&rw->lock_object);
v = rw->rw_lock;
/*
* If the lock was released while spinning on the
* turnstile chain lock, try again.
*/
if (v == RW_UNLOCKED) {
turnstile_release(&rw->lock_object);
cpu_spinwait();
continue;
}
/*
* If the lock was released by a writer with both readers
* and writers waiting and a reader hasn't woken up and
* acquired the lock yet, rw_lock will be set to the
* value RW_UNLOCKED | RW_LOCK_WRITE_WAITERS. If we see
* that value, try to acquire it once. Note that we have
* to preserve the RW_LOCK_WRITE_WAITERS flag as there are
* other writers waiting still. If we fail, restart the
* loop.
*/
if (v == (RW_UNLOCKED | RW_LOCK_WRITE_WAITERS)) {
if (atomic_cmpset_acq_ptr(&rw->rw_lock,
RW_UNLOCKED | RW_LOCK_WRITE_WAITERS,
tid | RW_LOCK_WRITE_WAITERS)) {
turnstile_claim(&rw->lock_object);
CTR2(KTR_LOCK, "%s: %p claimed by new writer",
__func__, rw);
break;
}
turnstile_release(&rw->lock_object);
cpu_spinwait();
continue;
}
/*
* If the RW_LOCK_WRITE_WAITERS flag isn't set, then try to
* set it. If we fail to set it, then loop back and try
* again.
*/
if (!(v & RW_LOCK_WRITE_WAITERS)) {
if (!atomic_cmpset_ptr(&rw->rw_lock, v,
v | RW_LOCK_WRITE_WAITERS)) {
turnstile_release(&rw->lock_object);
cpu_spinwait();
continue;
}
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p set write waiters flag",
__func__, rw);
}
#ifdef ADAPTIVE_RWLOCKS
/*
* If the lock is write locked and the owner is
* running on another CPU, spin until the owner stops
* running or the state of the lock changes.
*/
owner = (struct thread *)RW_OWNER(v);
if (!(v & RW_LOCK_READ) && TD_IS_RUNNING(owner)) {
turnstile_release(&rw->lock_object);
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR3(KTR_LOCK, "%s: spinning on %p held by %p",
__func__, rw, owner);
while ((struct thread*)RW_OWNER(rw->rw_lock)== owner &&
TD_IS_RUNNING(owner))
cpu_spinwait();
continue;
}
#endif
/*
* We were unable to acquire the lock and the write waiters
* flag is set, so we must block on the turnstile.
*/
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__,
rw);
turnstile_wait(&rw->lock_object, rw_owner(rw),
TS_EXCLUSIVE_QUEUE);
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p resuming from turnstile",
__func__, rw);
}
}
/*
* This function is called if the first try at releasing a write lock failed.
* This means that one of the 2 waiter bits must be set indicating that at
* least one thread is waiting on this lock.
*/
void
_rw_wunlock_hard(struct rwlock *rw, uintptr_t tid, const char *file, int line)
{
struct turnstile *ts;
uintptr_t v;
int queue;
KASSERT(rw->rw_lock & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS),
("%s: neither of the waiter flags are set", __func__));
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p contested", __func__, rw);
turnstile_lock(&rw->lock_object);
ts = turnstile_lookup(&rw->lock_object);
#ifdef ADAPTIVE_RWLOCKS
/*
* There might not be a turnstile for this lock if all of
* the waiters are adaptively spinning. In that case, just
* reset the lock to the unlocked state and return.
*/
if (ts == NULL) {
atomic_store_rel_ptr(&rw->rw_lock, RW_UNLOCKED);
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p no sleepers", __func__, rw);
turnstile_release(&rw->lock_object);
return;
}
#else
MPASS(ts != NULL);
#endif
/*
* Use the same algo as sx locks for now. Prefer waking up shared
* waiters if we have any over writers. This is probably not ideal.
*
* 'v' is the value we are going to write back to rw_lock. If we
* have waiters on both queues, we need to preserve the state of
* the waiter flag for the queue we don't wake up. For now this is
* hardcoded for the algorithm mentioned above.
*
* In the case of both readers and writers waiting we wakeup the
* readers but leave the RW_LOCK_WRITE_WAITERS flag set. If a
* new writer comes in before a reader it will claim the lock up
* above. There is probably a potential priority inversion in
* there that could be worked around either by waking both queues
* of waiters or doing some complicated lock handoff gymnastics.
*
* Note that in the ADAPTIVE_RWLOCKS case, if both flags are
* set, there might not be any actual writers on the turnstile
* as they might all be spinning. In that case, we don't want
* to preserve the RW_LOCK_WRITE_WAITERS flag as the turnstile
* is going to go away once we wakeup all the readers.
*/
v = RW_UNLOCKED;
if (rw->rw_lock & RW_LOCK_READ_WAITERS) {
queue = TS_SHARED_QUEUE;
#ifdef ADAPTIVE_RWLOCKS
if (rw->rw_lock & RW_LOCK_WRITE_WAITERS &&
!turnstile_empty(ts, TS_EXCLUSIVE_QUEUE))
v |= RW_LOCK_WRITE_WAITERS;
#else
v |= (rw->rw_lock & RW_LOCK_WRITE_WAITERS);
#endif
} else
queue = TS_EXCLUSIVE_QUEUE;
#ifdef ADAPTIVE_RWLOCKS
/*
* We have to make sure that we actually have waiters to
* wakeup. If they are all spinning, then we just need to
* disown the turnstile and return.
*/
if (turnstile_empty(ts, queue)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p no sleepers 2", __func__, rw);
atomic_store_rel_ptr(&rw->rw_lock, v);
turnstile_disown(ts);
return;
}
#endif
/* Wake up all waiters for the specific queue. */
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR3(KTR_LOCK, "%s: %p waking up %s waiters", __func__, rw,
queue == TS_SHARED_QUEUE ? "read" : "write");
turnstile_broadcast(ts, queue);
atomic_store_rel_ptr(&rw->rw_lock, v);
turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
}
/*
* Attempt to do a non-blocking upgrade from a read lock to a write
* lock. This will only succeed if this thread holds a single read
* lock. Returns true if the upgrade succeeded and false otherwise.
*/
int
_rw_try_upgrade(struct rwlock *rw, const char *file, int line)
{
uintptr_t v, tid;
int success;
_rw_assert(rw, RA_RLOCKED, file, line);
/*
* Attempt to switch from one reader to a writer. If there
* are any write waiters, then we will have to lock the
* turnstile first to prevent races with another writer
* calling turnstile_wait() before we have claimed this
* turnstile. So, do the simple case of no waiters first.
*/
tid = (uintptr_t)curthread;
if (!(rw->rw_lock & RW_LOCK_WRITE_WAITERS)) {
success = atomic_cmpset_ptr(&rw->rw_lock, RW_READERS_LOCK(1),
tid);
goto out;
}
/*
* Ok, we think we have write waiters, so lock the
* turnstile.
*/
turnstile_lock(&rw->lock_object);
/*
* Try to switch from one reader to a writer again. This time
* we honor the current state of the RW_LOCK_WRITE_WAITERS
* flag. If we obtain the lock with the flag set, then claim
* ownership of the turnstile. In the ADAPTIVE_RWLOCKS case
* it is possible for there to not be an associated turnstile
* even though there are waiters if all of the waiters are
* spinning.
*/
v = rw->rw_lock & RW_LOCK_WRITE_WAITERS;
success = atomic_cmpset_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | v,
tid | v);
#ifdef ADAPTIVE_RWLOCKS
if (success && v && turnstile_lookup(&rw->lock_object) != NULL)
#else
if (success && v)
#endif
turnstile_claim(&rw->lock_object);
else
turnstile_release(&rw->lock_object);
out:
LOCK_LOG_TRY("WUPGRADE", &rw->lock_object, 0, success, file, line);
if (success)
WITNESS_UPGRADE(&rw->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
file, line);
return (success);
}
/*
* Downgrade a write lock into a single read lock.
*/
void
_rw_downgrade(struct rwlock *rw, const char *file, int line)
{
struct turnstile *ts;
uintptr_t tid, v;
_rw_assert(rw, RA_WLOCKED, file, line);
WITNESS_DOWNGRADE(&rw->lock_object, 0, file, line);
/*
* Convert from a writer to a single reader. First we handle
* the easy case with no waiters. If there are any waiters, we
* lock the turnstile, "disown" the lock, and awaken any read
* waiters.
*/
tid = (uintptr_t)curthread;
if (atomic_cmpset_rel_ptr(&rw->rw_lock, tid, RW_READERS_LOCK(1)))
goto out;
/*
* Ok, we think we have waiters, so lock the turnstile so we can
* read the waiter flags without any races.
*/
turnstile_lock(&rw->lock_object);
v = rw->rw_lock;
MPASS(v & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS));
/*
* Downgrade from a write lock while preserving
* RW_LOCK_WRITE_WAITERS and give up ownership of the
* turnstile. If there are any read waiters, wake them up.
*
* For ADAPTIVE_RWLOCKS, we have to allow for the fact that
* all of the read waiters might be spinning. In that case,
* act as if RW_LOCK_READ_WAITERS is not set. Also, only
* preserve the RW_LOCK_WRITE_WAITERS flag if at least one
* writer is blocked on the turnstile.
*/
ts = turnstile_lookup(&rw->lock_object);
#ifdef ADAPTIVE_RWLOCKS
if (ts == NULL)
v &= ~(RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS);
else if (v & RW_LOCK_READ_WAITERS &&
turnstile_empty(ts, TS_SHARED_QUEUE))
v &= ~RW_LOCK_READ_WAITERS;
else if (v & RW_LOCK_WRITE_WAITERS &&
turnstile_empty(ts, TS_EXCLUSIVE_QUEUE))
v &= ~RW_LOCK_WRITE_WAITERS;
#else
MPASS(ts != NULL);
#endif
if (v & RW_LOCK_READ_WAITERS)
turnstile_broadcast(ts, TS_SHARED_QUEUE);
atomic_store_rel_ptr(&rw->rw_lock, RW_READERS_LOCK(1) |
(v & RW_LOCK_WRITE_WAITERS));
if (v & RW_LOCK_READ_WAITERS)
turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
#ifdef ADAPTIVE_RWLOCKS
else if (ts == NULL)
turnstile_release(&rw->lock_object);
#endif
else
turnstile_disown(ts);
out:
LOCK_LOG_LOCK("WDOWNGRADE", &rw->lock_object, 0, 0, file, line);
}
#ifdef INVARIANT_SUPPORT
#ifndef INVARIANTS
#undef _rw_assert
#endif
/*
* In the non-WITNESS case, rw_assert() can only detect that at least
* *some* thread owns an rlock, but it cannot guarantee that *this*
* thread owns an rlock.
*/
void
_rw_assert(struct rwlock *rw, int what, const char *file, int line)
{
if (panicstr != NULL)
return;
switch (what) {
case RA_LOCKED:
case RA_LOCKED | LA_NOTRECURSED:
case RA_RLOCKED:
#ifdef WITNESS
witness_assert(&rw->lock_object, what, file, line);
#else
/*
* If some other thread has a write lock or we have one
* and are asserting a read lock, fail. Also, if no one
* has a lock at all, fail.
*/
if (rw->rw_lock == RW_UNLOCKED ||
(!(rw->rw_lock & RW_LOCK_READ) && (what == RA_RLOCKED ||
rw_wowner(rw) != curthread)))
panic("Lock %s not %slocked @ %s:%d\n",
rw->lock_object.lo_name, (what == RA_RLOCKED) ?
"read " : "", file, line);
#endif
break;
case RA_WLOCKED:
if (rw_wowner(rw) != curthread)
panic("Lock %s not exclusively locked @ %s:%d\n",
rw->lock_object.lo_name, file, line);
break;
case RA_UNLOCKED:
#ifdef WITNESS
witness_assert(&rw->lock_object, what, file, line);
#else
/*
* If we hold a write lock fail. We can't reliably check
* to see if we hold a read lock or not.
*/
if (rw_wowner(rw) == curthread)
panic("Lock %s exclusively locked @ %s:%d\n",
rw->lock_object.lo_name, file, line);
#endif
break;
default:
panic("Unknown rw lock assertion: %d @ %s:%d", what, file,
line);
}
}
#endif /* INVARIANT_SUPPORT */
#ifdef DDB
void
db_show_rwlock(struct lock_object *lock)
{
struct rwlock *rw;
struct thread *td;
rw = (struct rwlock *)lock;
db_printf(" state: ");
if (rw->rw_lock == RW_UNLOCKED)
db_printf("UNLOCKED\n");
else if (rw->rw_lock & RW_LOCK_READ)
db_printf("RLOCK: %ju locks\n",
(uintmax_t)(RW_READERS(rw->rw_lock)));
else {
td = rw_wowner(rw);
db_printf("WLOCK: %p (tid %d, pid %d, \"%s\")\n", td,
td->td_tid, td->td_proc->p_pid, td->td_proc->p_comm);
}
db_printf(" waiters: ");
switch (rw->rw_lock & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS)) {
case RW_LOCK_READ_WAITERS:
db_printf("readers\n");
break;
case RW_LOCK_WRITE_WAITERS:
db_printf("writers\n");
break;
case RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS:
db_printf("readers and writers\n");
break;
default:
db_printf("none\n");
break;
}
}
#endif