freebsd-skq/sys/dev/bce/if_bce.c
2006-10-14 04:28:23 +00:00

6864 lines
214 KiB
C

/*-
* Copyright (c) 2006 Broadcom Corporation
* David Christensen <davidch@broadcom.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Broadcom Corporation nor the name of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written consent.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* The following controllers are supported by this driver:
* BCM5706C A2, A3
* BCM5708C B1
*
* The following controllers are not supported by this driver:
* (These are not "Production" versions of the controller.)
*
* BCM5706C A0, A1
* BCM5706S A0, A1, A2, A3
* BCM5708C A0, B0
* BCM5708S A0, B0, B1
*/
#include "opt_bce.h"
#include <dev/bce/if_bcereg.h>
#include <dev/bce/if_bcefw.h>
/****************************************************************************/
/* BCE Driver Version */
/****************************************************************************/
char bce_driver_version[] = "v0.9.6";
/****************************************************************************/
/* BCE Debug Options */
/****************************************************************************/
#ifdef BCE_DEBUG
u32 bce_debug = BCE_WARN;
/* 0 = Never */
/* 1 = 1 in 2,147,483,648 */
/* 256 = 1 in 8,388,608 */
/* 2048 = 1 in 1,048,576 */
/* 65536 = 1 in 32,768 */
/* 1048576 = 1 in 2,048 */
/* 268435456 = 1 in 8 */
/* 536870912 = 1 in 4 */
/* 1073741824 = 1 in 2 */
/* Controls how often the l2_fhdr frame error check will fail. */
int bce_debug_l2fhdr_status_check = 0;
/* Controls how often the unexpected attention check will fail. */
int bce_debug_unexpected_attention = 0;
/* Controls how often to simulate an mbuf allocation failure. */
int bce_debug_mbuf_allocation_failure = 0;
/* Controls how often to simulate a DMA mapping failure. */
int bce_debug_dma_map_addr_failure = 0;
/* Controls how often to simulate a bootcode failure. */
int bce_debug_bootcode_running_failure = 0;
#endif
/****************************************************************************/
/* PCI Device ID Table */
/* */
/* Used by bce_probe() to identify the devices supported by this driver. */
/****************************************************************************/
#define BCE_DEVDESC_MAX 64
static struct bce_type bce_devs[] = {
/* BCM5706C Controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3101,
"HP NC370T Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, HP_VENDORID, 0x3106,
"HP NC370i Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706, PCI_ANY_ID, PCI_ANY_ID,
"Broadcom NetXtreme II BCM5706 1000Base-T" },
/* BCM5706S controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, HP_VENDORID, 0x3102,
"HP NC370F Multifunction Gigabit Server Adapter" },
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5706S, PCI_ANY_ID, PCI_ANY_ID,
"Broadcom NetXtreme II BCM5706 1000Base-SX" },
/* BCM5708C controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID,
"Broadcom NetXtreme II BCM5708 1000Base-T" },
/* BCM5708S controllers and OEM boards. */
{ BRCM_VENDORID, BRCM_DEVICEID_BCM5708, PCI_ANY_ID, PCI_ANY_ID,
"Broadcom NetXtreme II BCM5708 1000Base-T" },
{ 0, 0, 0, 0, NULL }
};
/****************************************************************************/
/* Supported Flash NVRAM device data. */
/****************************************************************************/
static struct flash_spec flash_table[] =
{
/* Slow EEPROM */
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - slow"},
/* Expansion entry 0001 */
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0001"},
/* Saifun SA25F010 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
"Non-buffered flash (128kB)"},
/* Saifun SA25F020 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
"Non-buffered flash (256kB)"},
/* Expansion entry 0100 */
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0100"},
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
/* Saifun SA25F005 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
"Non-buffered flash (64kB)"},
/* Fast EEPROM */
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - fast"},
/* Expansion entry 1001 */
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1001"},
/* Expansion entry 1010 */
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1010"},
/* ATMEL AT45DB011B (buffered flash) */
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
"Buffered flash (128kB)"},
/* Expansion entry 1100 */
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1100"},
/* Expansion entry 1101 */
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1101"},
/* Ateml Expansion entry 1110 */
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1110 (Atmel)"},
/* ATMEL AT45DB021B (buffered flash) */
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
"Buffered flash (256kB)"},
};
/****************************************************************************/
/* FreeBSD device entry points. */
/****************************************************************************/
static int bce_probe (device_t);
static int bce_attach (device_t);
static int bce_detach (device_t);
static void bce_shutdown (device_t);
/****************************************************************************/
/* BCE Debug Data Structure Dump Routines */
/****************************************************************************/
#ifdef BCE_DEBUG
static void bce_dump_mbuf (struct bce_softc *, struct mbuf *);
static void bce_dump_tx_mbuf_chain (struct bce_softc *, int, int);
static void bce_dump_rx_mbuf_chain (struct bce_softc *, int, int);
static void bce_dump_txbd (struct bce_softc *, int, struct tx_bd *);
static void bce_dump_rxbd (struct bce_softc *, int, struct rx_bd *);
static void bce_dump_l2fhdr (struct bce_softc *, int, struct l2_fhdr *);
static void bce_dump_tx_chain (struct bce_softc *, int, int);
static void bce_dump_rx_chain (struct bce_softc *, int, int);
static void bce_dump_status_block (struct bce_softc *);
static void bce_dump_stats_block (struct bce_softc *);
static void bce_dump_driver_state (struct bce_softc *);
static void bce_dump_hw_state (struct bce_softc *);
static void bce_breakpoint (struct bce_softc *);
#endif
/****************************************************************************/
/* BCE Register/Memory Access Routines */
/****************************************************************************/
static u32 bce_reg_rd_ind (struct bce_softc *, u32);
static void bce_reg_wr_ind (struct bce_softc *, u32, u32);
static void bce_ctx_wr (struct bce_softc *, u32, u32, u32);
static int bce_miibus_read_reg (device_t, int, int);
static int bce_miibus_write_reg (device_t, int, int, int);
static void bce_miibus_statchg (device_t);
/****************************************************************************/
/* BCE NVRAM Access Routines */
/****************************************************************************/
static int bce_acquire_nvram_lock (struct bce_softc *);
static int bce_release_nvram_lock (struct bce_softc *);
static void bce_enable_nvram_access (struct bce_softc *);
static void bce_disable_nvram_access(struct bce_softc *);
static int bce_nvram_read_dword (struct bce_softc *, u32, u8 *, u32);
static int bce_init_nvram (struct bce_softc *);
static int bce_nvram_read (struct bce_softc *, u32, u8 *, int);
static int bce_nvram_test (struct bce_softc *);
#ifdef BCE_NVRAM_WRITE_SUPPORT
static int bce_enable_nvram_write (struct bce_softc *);
static void bce_disable_nvram_write (struct bce_softc *);
static int bce_nvram_erase_page (struct bce_softc *, u32);
static int bce_nvram_write_dword (struct bce_softc *, u32, u8 *, u32);
static int bce_nvram_write (struct bce_softc *, u32, u8 *, int);
#endif
/****************************************************************************/
/* */
/****************************************************************************/
static void bce_dma_map_addr (void *, bus_dma_segment_t *, int, int);
static void bce_dma_map_tx_desc (void *, bus_dma_segment_t *, int, bus_size_t, int);
static int bce_dma_alloc (device_t);
static void bce_dma_free (struct bce_softc *);
static void bce_release_resources (struct bce_softc *);
/****************************************************************************/
/* BCE Firmware Synchronization and Load */
/****************************************************************************/
static int bce_fw_sync (struct bce_softc *, u32);
static void bce_load_rv2p_fw (struct bce_softc *, u32 *, u32, u32);
static void bce_load_cpu_fw (struct bce_softc *, struct cpu_reg *, struct fw_info *);
static void bce_init_cpus (struct bce_softc *);
static void bce_stop (struct bce_softc *);
static int bce_reset (struct bce_softc *, u32);
static int bce_chipinit (struct bce_softc *);
static int bce_blockinit (struct bce_softc *);
static int bce_get_buf (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *);
static int bce_init_tx_chain (struct bce_softc *);
static int bce_init_rx_chain (struct bce_softc *);
static void bce_free_rx_chain (struct bce_softc *);
static void bce_free_tx_chain (struct bce_softc *);
static int bce_tx_encap (struct bce_softc *, struct mbuf *, u16 *, u16 *, u32 *);
static void bce_start_locked (struct ifnet *);
static void bce_start (struct ifnet *);
static int bce_ioctl (struct ifnet *, u_long, caddr_t);
static void bce_watchdog (struct ifnet *);
static int bce_ifmedia_upd (struct ifnet *);
static void bce_ifmedia_sts (struct ifnet *, struct ifmediareq *);
static void bce_init_locked (struct bce_softc *);
static void bce_init (void *);
static void bce_mgmt_init_locked(struct bce_softc *sc);
static void bce_init_context (struct bce_softc *);
static void bce_get_mac_addr (struct bce_softc *);
static void bce_set_mac_addr (struct bce_softc *);
static void bce_phy_intr (struct bce_softc *);
static void bce_rx_intr (struct bce_softc *);
static void bce_tx_intr (struct bce_softc *);
static void bce_disable_intr (struct bce_softc *);
static void bce_enable_intr (struct bce_softc *);
#ifdef DEVICE_POLLING
static void bce_poll_locked (struct ifnet *, enum poll_cmd, int);
static void bce_poll (struct ifnet *, enum poll_cmd, int);
#endif
static void bce_intr (void *);
static void bce_set_rx_mode (struct bce_softc *);
static void bce_stats_update (struct bce_softc *);
static void bce_tick_locked (struct bce_softc *);
static void bce_tick (void *);
static void bce_add_sysctls (struct bce_softc *);
/****************************************************************************/
/* FreeBSD device dispatch table. */
/****************************************************************************/
static device_method_t bce_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, bce_probe),
DEVMETHOD(device_attach, bce_attach),
DEVMETHOD(device_detach, bce_detach),
DEVMETHOD(device_shutdown, bce_shutdown),
/* bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
/* MII interface */
DEVMETHOD(miibus_readreg, bce_miibus_read_reg),
DEVMETHOD(miibus_writereg, bce_miibus_write_reg),
DEVMETHOD(miibus_statchg, bce_miibus_statchg),
{ 0, 0 }
};
static driver_t bce_driver = {
"bce",
bce_methods,
sizeof(struct bce_softc)
};
static devclass_t bce_devclass;
MODULE_DEPEND(bce, pci, 1, 1, 1);
MODULE_DEPEND(bce, ether, 1, 1, 1);
MODULE_DEPEND(bce, miibus, 1, 1, 1);
DRIVER_MODULE(bce, pci, bce_driver, bce_devclass, 0, 0);
DRIVER_MODULE(miibus, bce, miibus_driver, miibus_devclass, 0, 0);
/****************************************************************************/
/* Device probe function. */
/* */
/* Compares the device to the driver's list of supported devices and */
/* reports back to the OS whether this is the right driver for the device. */
/* */
/* Returns: */
/* BUS_PROBE_DEFAULT on success, positive value on failure. */
/****************************************************************************/
static int
bce_probe(device_t dev)
{
struct bce_type *t;
struct bce_softc *sc;
char *descbuf;
u16 vid = 0, did = 0, svid = 0, sdid = 0;
t = bce_devs;
sc = device_get_softc(dev);
bzero(sc, sizeof(struct bce_softc));
sc->bce_unit = device_get_unit(dev);
sc->bce_dev = dev;
/* Get the data for the device to be probed. */
vid = pci_get_vendor(dev);
did = pci_get_device(dev);
svid = pci_get_subvendor(dev);
sdid = pci_get_subdevice(dev);
DBPRINT(sc, BCE_VERBOSE_LOAD,
"%s(); VID = 0x%04X, DID = 0x%04X, SVID = 0x%04X, "
"SDID = 0x%04X\n", __FUNCTION__, vid, did, svid, sdid);
/* Look through the list of known devices for a match. */
while(t->bce_name != NULL) {
if ((vid == t->bce_vid) && (did == t->bce_did) &&
((svid == t->bce_svid) || (t->bce_svid == PCI_ANY_ID)) &&
((sdid == t->bce_sdid) || (t->bce_sdid == PCI_ANY_ID))) {
descbuf = malloc(BCE_DEVDESC_MAX, M_TEMP, M_NOWAIT);
if (descbuf == NULL)
return(ENOMEM);
/* Print out the device identity. */
snprintf(descbuf, BCE_DEVDESC_MAX, "%s (%c%d), %s",
t->bce_name,
(((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
(pci_read_config(dev, PCIR_REVID, 4) & 0xf),
bce_driver_version);
device_set_desc_copy(dev, descbuf);
free(descbuf, M_TEMP);
return(BUS_PROBE_DEFAULT);
}
t++;
}
DBPRINT(sc, BCE_VERBOSE_LOAD, "%s(%d): No IOCTL match found!\n",
__FILE__, __LINE__);
return(ENXIO);
}
/****************************************************************************/
/* Device attach function. */
/* */
/* Allocates device resources, performs secondary chip identification, */
/* resets and initializes the hardware, and initializes driver instance */
/* variables. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_attach(device_t dev)
{
struct bce_softc *sc;
struct ifnet *ifp;
u32 val;
int mbuf, rid, rc = 0;
sc = device_get_softc(dev);
sc->bce_dev = dev;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
mbuf = device_get_unit(dev);
sc->bce_unit = mbuf;
pci_enable_busmaster(dev);
/* Allocate PCI memory resources. */
rid = PCIR_BAR(0);
sc->bce_res = bus_alloc_resource_any(
dev, /* dev */
SYS_RES_MEMORY, /* type */
&rid, /* rid */
RF_ACTIVE | PCI_RF_DENSE); /* flags */
if (sc->bce_res == NULL) {
BCE_PRINTF(sc, "%s(%d): PCI memory allocation failed\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Get various resource handles. */
sc->bce_btag = rman_get_bustag(sc->bce_res);
sc->bce_bhandle = rman_get_bushandle(sc->bce_res);
sc->bce_vhandle = (vm_offset_t) rman_get_virtual(sc->bce_res);
/* Allocate PCI IRQ resources. */
rid = 0;
sc->bce_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->bce_irq == NULL) {
BCE_PRINTF(sc, "%s(%d): PCI map interrupt failed\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Initialize mutex for the current device instance. */
BCE_LOCK_INIT(sc, device_get_nameunit(dev));
/*
* Configure byte swap and enable indirect register access.
* Rely on CPU to do target byte swapping on big endian systems.
* Access to registers outside of PCI configurtion space are not
* valid until this is done.
*/
pci_write_config(dev, BCE_PCICFG_MISC_CONFIG,
BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP, 4);
/* Save ASIC revsion info. */
sc->bce_chipid = REG_RD(sc, BCE_MISC_ID);
/* Weed out any non-production controller revisions. */
switch(BCE_CHIP_ID(sc)) {
case BCE_CHIP_ID_5706_A0:
case BCE_CHIP_ID_5706_A1:
case BCE_CHIP_ID_5708_A0:
case BCE_CHIP_ID_5708_B0:
BCE_PRINTF(sc, "%s(%d): Unsupported controller revision (%c%d)!\n",
__FILE__, __LINE__,
(((pci_read_config(dev, PCIR_REVID, 4) & 0xf0) >> 4) + 'A'),
(pci_read_config(dev, PCIR_REVID, 4) & 0xf));
rc = ENODEV;
goto bce_attach_fail;
}
if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
BCE_PRINTF(sc, "%s(%d): SerDes controllers are not supported!\n",
__FILE__, __LINE__);
rc = ENODEV;
goto bce_attach_fail;
}
/*
* The embedded PCIe to PCI-X bridge (EPB)
* in the 5708 cannot address memory above
* 40 bits (E7_5708CB1_23043 & E6_5708SB1_23043).
*/
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708)
sc->max_bus_addr = BCE_BUS_SPACE_MAXADDR;
else
sc->max_bus_addr = BUS_SPACE_MAXADDR;
/*
* Find the base address for shared memory access.
* Newer versions of bootcode use a signature and offset
* while older versions use a fixed address.
*/
val = REG_RD_IND(sc, BCE_SHM_HDR_SIGNATURE);
if ((val & BCE_SHM_HDR_SIGNATURE_SIG_MASK) == BCE_SHM_HDR_SIGNATURE_SIG)
sc->bce_shmem_base = REG_RD_IND(sc, BCE_SHM_HDR_ADDR_0);
else
sc->bce_shmem_base = HOST_VIEW_SHMEM_BASE;
DBPRINT(sc, BCE_INFO, "bce_shmem_base = 0x%08X\n", sc->bce_shmem_base);
/* Set initial device and PHY flags */
sc->bce_flags = 0;
sc->bce_phy_flags = 0;
/* Get PCI bus information (speed and type). */
val = REG_RD(sc, BCE_PCICFG_MISC_STATUS);
if (val & BCE_PCICFG_MISC_STATUS_PCIX_DET) {
u32 clkreg;
sc->bce_flags |= BCE_PCIX_FLAG;
clkreg = REG_RD(sc, BCE_PCICFG_PCI_CLOCK_CONTROL_BITS);
clkreg &= BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
switch (clkreg) {
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
sc->bus_speed_mhz = 133;
break;
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
sc->bus_speed_mhz = 100;
break;
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
sc->bus_speed_mhz = 66;
break;
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
sc->bus_speed_mhz = 50;
break;
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
case BCE_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
sc->bus_speed_mhz = 33;
break;
}
} else {
if (val & BCE_PCICFG_MISC_STATUS_M66EN)
sc->bus_speed_mhz = 66;
else
sc->bus_speed_mhz = 33;
}
if (val & BCE_PCICFG_MISC_STATUS_32BIT_DET)
sc->bce_flags |= BCE_PCI_32BIT_FLAG;
BCE_PRINTF(sc, "ASIC ID 0x%08X; Revision (%c%d); PCI%s %s %dMHz\n",
sc->bce_chipid,
((BCE_CHIP_ID(sc) & 0xf000) >> 12) + 'A',
((BCE_CHIP_ID(sc) & 0x0ff0) >> 4),
((sc->bce_flags & BCE_PCIX_FLAG) ? "-X" : ""),
((sc->bce_flags & BCE_PCI_32BIT_FLAG) ? "32-bit" : "64-bit"),
sc->bus_speed_mhz);
/* Reset the controller. */
if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
rc = ENXIO;
goto bce_attach_fail;
}
/* Initialize the controller. */
if (bce_chipinit(sc)) {
BCE_PRINTF(sc, "%s(%d): Controller initialization failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Perform NVRAM test. */
if (bce_nvram_test(sc)) {
BCE_PRINTF(sc, "%s(%d): NVRAM test failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Fetch the permanent Ethernet MAC address. */
bce_get_mac_addr(sc);
/*
* Trip points control how many BDs
* should be ready before generating an
* interrupt while ticks control how long
* a BD can sit in the chain before
* generating an interrupt. Set the default
* values for the RX and TX rings.
*/
#ifdef BCE_DRBUG
/* Force more frequent interrupts. */
sc->bce_tx_quick_cons_trip_int = 1;
sc->bce_tx_quick_cons_trip = 1;
sc->bce_tx_ticks_int = 0;
sc->bce_tx_ticks = 0;
sc->bce_rx_quick_cons_trip_int = 1;
sc->bce_rx_quick_cons_trip = 1;
sc->bce_rx_ticks_int = 0;
sc->bce_rx_ticks = 0;
#else
sc->bce_tx_quick_cons_trip_int = 20;
sc->bce_tx_quick_cons_trip = 20;
sc->bce_tx_ticks_int = 80;
sc->bce_tx_ticks = 80;
sc->bce_rx_quick_cons_trip_int = 6;
sc->bce_rx_quick_cons_trip = 6;
sc->bce_rx_ticks_int = 18;
sc->bce_rx_ticks = 18;
#endif
/* Update statistics once every second. */
sc->bce_stats_ticks = 1000000 & 0xffff00;
/*
* The copper based NetXtreme II controllers
* use an integrated PHY at address 1 while
* the SerDes controllers use a PHY at
* address 2.
*/
sc->bce_phy_addr = 1;
if (BCE_CHIP_BOND_ID(sc) & BCE_CHIP_BOND_ID_SERDES_BIT) {
sc->bce_phy_flags |= BCE_PHY_SERDES_FLAG;
sc->bce_flags |= BCE_NO_WOL_FLAG;
if (BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5708) {
sc->bce_phy_addr = 2;
val = REG_RD_IND(sc, sc->bce_shmem_base +
BCE_SHARED_HW_CFG_CONFIG);
if (val & BCE_SHARED_HW_CFG_PHY_2_5G)
sc->bce_phy_flags |= BCE_PHY_2_5G_CAPABLE_FLAG;
}
}
/* Allocate DMA memory resources. */
if (bce_dma_alloc(dev)) {
BCE_PRINTF(sc, "%s(%d): DMA resource allocation failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Allocate an ifnet structure. */
ifp = sc->bce_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
BCE_PRINTF(sc, "%s(%d): Interface allocation failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
/* Initialize the ifnet interface. */
ifp->if_softc = sc;
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = bce_ioctl;
ifp->if_start = bce_start;
ifp->if_timer = 0;
ifp->if_watchdog = bce_watchdog;
ifp->if_init = bce_init;
ifp->if_mtu = ETHERMTU;
ifp->if_hwassist = BCE_IF_HWASSIST;
ifp->if_capabilities = BCE_IF_CAPABILITIES;
ifp->if_capenable = ifp->if_capabilities;
/* Assume a standard 1500 byte MTU size for mbuf allocations. */
sc->mbuf_alloc_size = MCLBYTES;
#ifdef DEVICE_POLLING
ifp->if_capabilities |= IFCAP_POLLING;
#endif
ifp->if_snd.ifq_drv_maxlen = USABLE_TX_BD;
if (sc->bce_phy_flags & BCE_PHY_2_5G_CAPABLE_FLAG)
ifp->if_baudrate = IF_Gbps(2.5);
else
ifp->if_baudrate = IF_Gbps(1);
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
IFQ_SET_READY(&ifp->if_snd);
if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
BCE_PRINTF(sc, "%s(%d): SerDes is not supported by this driver!\n",
__FILE__, __LINE__);
rc = ENODEV;
goto bce_attach_fail;
} else {
/* Look for our PHY. */
if (mii_phy_probe(dev, &sc->bce_miibus, bce_ifmedia_upd,
bce_ifmedia_sts)) {
BCE_PRINTF(sc, "%s(%d): PHY probe failed!\n",
__FILE__, __LINE__);
rc = ENXIO;
goto bce_attach_fail;
}
}
/* Attach to the Ethernet interface list. */
ether_ifattach(ifp, sc->eaddr);
#if __FreeBSD_version < 500000
callout_init(&sc->bce_stat_ch);
#else
callout_init(&sc->bce_stat_ch, CALLOUT_MPSAFE);
#endif
/* Hookup IRQ last. */
rc = bus_setup_intr(dev, sc->bce_irq, INTR_TYPE_NET | INTR_MPSAFE,
bce_intr, sc, &sc->bce_intrhand);
if (rc) {
BCE_PRINTF(sc, "%s(%d): Failed to setup IRQ!\n",
__FILE__, __LINE__);
bce_detach(dev);
goto bce_attach_exit;
}
/* Print some important debugging info. */
DBRUN(BCE_INFO, bce_dump_driver_state(sc));
/* Add the supported sysctls to the kernel. */
bce_add_sysctls(sc);
/* Get the firmware running so IPMI still works */
BCE_LOCK(sc);
bce_mgmt_init_locked(sc);
BCE_UNLOCK(sc);
goto bce_attach_exit;
bce_attach_fail:
bce_release_resources(sc);
bce_attach_exit:
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return(rc);
}
/****************************************************************************/
/* Device detach function. */
/* */
/* Stops the controller, resets the controller, and releases resources. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_detach(device_t dev)
{
struct bce_softc *sc;
struct ifnet *ifp;
sc = device_get_softc(dev);
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
ifp = sc->bce_ifp;
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING)
ether_poll_deregister(ifp);
#endif
/* Stop and reset the controller. */
BCE_LOCK(sc);
bce_stop(sc);
bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
BCE_UNLOCK(sc);
ether_ifdetach(ifp);
/* If we have a child device on the MII bus remove it too. */
if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
ifmedia_removeall(&sc->bce_ifmedia);
} else {
bus_generic_detach(dev);
device_delete_child(dev, sc->bce_miibus);
}
/* Release all remaining resources. */
bce_release_resources(sc);
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return(0);
}
/****************************************************************************/
/* Device shutdown function. */
/* */
/* Stops and resets the controller. */
/* */
/* Returns: */
/* Nothing */
/****************************************************************************/
static void
bce_shutdown(device_t dev)
{
struct bce_softc *sc = device_get_softc(dev);
BCE_LOCK(sc);
bce_stop(sc);
bce_reset(sc, BCE_DRV_MSG_CODE_RESET);
BCE_UNLOCK(sc);
}
/****************************************************************************/
/* Indirect register read. */
/* */
/* Reads NetXtreme II registers using an index/data register pair in PCI */
/* configuration space. Using this mechanism avoids issues with posted */
/* reads but is much slower than memory-mapped I/O. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
static u32
bce_reg_rd_ind(struct bce_softc *sc, u32 offset)
{
device_t dev;
dev = sc->bce_dev;
pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
#ifdef BCE_DEBUG
{
u32 val;
val = pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
__FUNCTION__, offset, val);
return val;
}
#else
return pci_read_config(dev, BCE_PCICFG_REG_WINDOW, 4);
#endif
}
/****************************************************************************/
/* Indirect register write. */
/* */
/* Writes NetXtreme II registers using an index/data register pair in PCI */
/* configuration space. Using this mechanism avoids issues with posted */
/* writes but is muchh slower than memory-mapped I/O. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_reg_wr_ind(struct bce_softc *sc, u32 offset, u32 val)
{
device_t dev;
dev = sc->bce_dev;
DBPRINT(sc, BCE_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
__FUNCTION__, offset, val);
pci_write_config(dev, BCE_PCICFG_REG_WINDOW_ADDRESS, offset, 4);
pci_write_config(dev, BCE_PCICFG_REG_WINDOW, val, 4);
}
/****************************************************************************/
/* Context memory write. */
/* */
/* The NetXtreme II controller uses context memory to track connection */
/* information for L2 and higher network protocols. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_ctx_wr(struct bce_softc *sc, u32 cid_addr, u32 offset, u32 val)
{
DBPRINT(sc, BCE_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
"val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val);
offset += cid_addr;
REG_WR(sc, BCE_CTX_DATA_ADR, offset);
REG_WR(sc, BCE_CTX_DATA, val);
}
/****************************************************************************/
/* PHY register read. */
/* */
/* Implements register reads on the MII bus. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
static int
bce_miibus_read_reg(device_t dev, int phy, int reg)
{
struct bce_softc *sc;
u32 val;
int i;
sc = device_get_softc(dev);
/* Make sure we are accessing the correct PHY address. */
if (phy != sc->bce_phy_addr) {
DBPRINT(sc, BCE_VERBOSE, "Invalid PHY address %d for PHY read!\n", phy);
return(0);
}
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
val &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
REG_RD(sc, BCE_EMAC_MDIO_MODE);
DELAY(40);
}
val = BCE_MIPHY(phy) | BCE_MIREG(reg) |
BCE_EMAC_MDIO_COMM_COMMAND_READ | BCE_EMAC_MDIO_COMM_DISEXT |
BCE_EMAC_MDIO_COMM_START_BUSY;
REG_WR(sc, BCE_EMAC_MDIO_COMM, val);
for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
DELAY(10);
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
if (!(val & BCE_EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
val &= BCE_EMAC_MDIO_COMM_DATA;
break;
}
}
if (val & BCE_EMAC_MDIO_COMM_START_BUSY) {
BCE_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, reg = 0x%04X\n",
__FILE__, __LINE__, phy, reg);
val = 0x0;
} else {
val = REG_RD(sc, BCE_EMAC_MDIO_COMM);
}
DBPRINT(sc, BCE_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
__FUNCTION__, phy, (u16) reg & 0xffff, (u16) val & 0xffff);
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val = REG_RD(sc, BCE_EMAC_MDIO_MODE);
val |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BCE_EMAC_MDIO_MODE, val);
REG_RD(sc, BCE_EMAC_MDIO_MODE);
DELAY(40);
}
return (val & 0xffff);
}
/****************************************************************************/
/* PHY register write. */
/* */
/* Implements register writes on the MII bus. */
/* */
/* Returns: */
/* The value of the register. */
/****************************************************************************/
static int
bce_miibus_write_reg(device_t dev, int phy, int reg, int val)
{
struct bce_softc *sc;
u32 val1;
int i;
sc = device_get_softc(dev);
/* Make sure we are accessing the correct PHY address. */
if (phy != sc->bce_phy_addr) {
DBPRINT(sc, BCE_WARN, "Invalid PHY address %d for PHY write!\n", phy);
return(0);
}
DBPRINT(sc, BCE_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n",
__FUNCTION__, phy, (u16) reg & 0xffff, (u16) val & 0xffff);
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
val1 &= ~BCE_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
REG_RD(sc, BCE_EMAC_MDIO_MODE);
DELAY(40);
}
val1 = BCE_MIPHY(phy) | BCE_MIREG(reg) | val |
BCE_EMAC_MDIO_COMM_COMMAND_WRITE |
BCE_EMAC_MDIO_COMM_START_BUSY | BCE_EMAC_MDIO_COMM_DISEXT;
REG_WR(sc, BCE_EMAC_MDIO_COMM, val1);
for (i = 0; i < BCE_PHY_TIMEOUT; i++) {
DELAY(10);
val1 = REG_RD(sc, BCE_EMAC_MDIO_COMM);
if (!(val1 & BCE_EMAC_MDIO_COMM_START_BUSY)) {
DELAY(5);
break;
}
}
if (val1 & BCE_EMAC_MDIO_COMM_START_BUSY)
BCE_PRINTF(sc, "%s(%d): PHY write timeout!\n",
__FILE__, __LINE__);
if (sc->bce_phy_flags & BCE_PHY_INT_MODE_AUTO_POLLING_FLAG) {
val1 = REG_RD(sc, BCE_EMAC_MDIO_MODE);
val1 |= BCE_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(sc, BCE_EMAC_MDIO_MODE, val1);
REG_RD(sc, BCE_EMAC_MDIO_MODE);
DELAY(40);
}
return 0;
}
/****************************************************************************/
/* MII bus status change. */
/* */
/* Called by the MII bus driver when the PHY establishes link to set the */
/* MAC interface registers. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_miibus_statchg(device_t dev)
{
struct bce_softc *sc;
struct mii_data *mii;
sc = device_get_softc(dev);
mii = device_get_softc(sc->bce_miibus);
BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT);
/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
DBPRINT(sc, BCE_INFO, "Setting GMII interface.\n");
BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_GMII);
} else {
DBPRINT(sc, BCE_INFO, "Setting MII interface.\n");
BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_PORT_MII);
}
/* Set half or full duplex based on the duplicity negotiated by the PHY. */
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
DBPRINT(sc, BCE_INFO, "Setting Full-Duplex interface.\n");
BCE_CLRBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
} else {
DBPRINT(sc, BCE_INFO, "Setting Half-Duplex interface.\n");
BCE_SETBIT(sc, BCE_EMAC_MODE, BCE_EMAC_MODE_HALF_DUPLEX);
}
}
/****************************************************************************/
/* Acquire NVRAM lock. */
/* */
/* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
/* for use by the driver. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_acquire_nvram_lock(struct bce_softc *sc)
{
u32 val;
int j;
DBPRINT(sc, BCE_VERBOSE, "Acquiring NVRAM lock.\n");
/* Request access to the flash interface. */
REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_SET2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(sc, BCE_NVM_SW_ARB);
if (val & BCE_NVM_SW_ARB_ARB_ARB2)
break;
DELAY(5);
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BCE_WARN, "Timeout acquiring NVRAM lock!\n");
return EBUSY;
}
return 0;
}
/****************************************************************************/
/* Release NVRAM lock. */
/* */
/* When the caller is finished accessing NVRAM the lock must be released. */
/* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
/* for use by the driver. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_release_nvram_lock(struct bce_softc *sc)
{
int j;
u32 val;
DBPRINT(sc, BCE_VERBOSE, "Releasing NVRAM lock.\n");
/*
* Relinquish nvram interface.
*/
REG_WR(sc, BCE_NVM_SW_ARB, BCE_NVM_SW_ARB_ARB_REQ_CLR2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(sc, BCE_NVM_SW_ARB);
if (!(val & BCE_NVM_SW_ARB_ARB_ARB2))
break;
DELAY(5);
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BCE_WARN, "Timeout reeasing NVRAM lock!\n");
return EBUSY;
}
return 0;
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Enable NVRAM write access. */
/* */
/* Before writing to NVRAM the caller must enable NVRAM writes. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_enable_nvram_write(struct bce_softc *sc)
{
u32 val;
DBPRINT(sc, BCE_VERBOSE, "Enabling NVRAM write.\n");
val = REG_RD(sc, BCE_MISC_CFG);
REG_WR(sc, BCE_MISC_CFG, val | BCE_MISC_CFG_NVM_WR_EN_PCI);
if (!sc->bce_flash_info->buffered) {
int j;
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_WREN | BCE_NVM_COMMAND_DOIT);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
DELAY(5);
val = REG_RD(sc, BCE_NVM_COMMAND);
if (val & BCE_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BCE_WARN, "Timeout writing NVRAM!\n");
return EBUSY;
}
}
return 0;
}
/****************************************************************************/
/* Disable NVRAM write access. */
/* */
/* When the caller is finished writing to NVRAM write access must be */
/* disabled. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_disable_nvram_write(struct bce_softc *sc)
{
u32 val;
DBPRINT(sc, BCE_VERBOSE, "Disabling NVRAM write.\n");
val = REG_RD(sc, BCE_MISC_CFG);
REG_WR(sc, BCE_MISC_CFG, val & ~BCE_MISC_CFG_NVM_WR_EN);
}
#endif
/****************************************************************************/
/* Enable NVRAM access. */
/* */
/* Before accessing NVRAM for read or write operations the caller must */
/* enabled NVRAM access. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_enable_nvram_access(struct bce_softc *sc)
{
u32 val;
DBPRINT(sc, BCE_VERBOSE, "Enabling NVRAM access.\n");
val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
/* Enable both bits, even on read. */
REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
val | BCE_NVM_ACCESS_ENABLE_EN | BCE_NVM_ACCESS_ENABLE_WR_EN);
}
/****************************************************************************/
/* Disable NVRAM access. */
/* */
/* When the caller is finished accessing NVRAM access must be disabled. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_disable_nvram_access(struct bce_softc *sc)
{
u32 val;
DBPRINT(sc, BCE_VERBOSE, "Disabling NVRAM access.\n");
val = REG_RD(sc, BCE_NVM_ACCESS_ENABLE);
/* Disable both bits, even after read. */
REG_WR(sc, BCE_NVM_ACCESS_ENABLE,
val & ~(BCE_NVM_ACCESS_ENABLE_EN |
BCE_NVM_ACCESS_ENABLE_WR_EN));
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Erase NVRAM page before writing. */
/* */
/* Non-buffered flash parts require that a page be erased before it is */
/* written. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_erase_page(struct bce_softc *sc, u32 offset)
{
u32 cmd;
int j;
/* Buffered flash doesn't require an erase. */
if (sc->bce_flash_info->buffered)
return 0;
DBPRINT(sc, BCE_VERBOSE, "Erasing NVRAM page.\n");
/* Build an erase command. */
cmd = BCE_NVM_COMMAND_ERASE | BCE_NVM_COMMAND_WR |
BCE_NVM_COMMAND_DOIT;
/*
* Clear the DONE bit separately, set the NVRAM adress to erase,
* and issue the erase command.
*/
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BCE_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
u32 val;
DELAY(5);
val = REG_RD(sc, BCE_NVM_COMMAND);
if (val & BCE_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
DBPRINT(sc, BCE_WARN, "Timeout erasing NVRAM.\n");
return EBUSY;
}
return 0;
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Read a dword (32 bits) from NVRAM. */
/* */
/* Read a 32 bit word from NVRAM. The caller is assumed to have already */
/* obtained the NVRAM lock and enabled the controller for NVRAM access. */
/* */
/* Returns: */
/* 0 on success and the 32 bit value read, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_read_dword(struct bce_softc *sc, u32 offset, u8 *ret_val,
u32 cmd_flags)
{
u32 cmd;
int i, rc = 0;
/* Build the command word. */
cmd = BCE_NVM_COMMAND_DOIT | cmd_flags;
/* Calculate the offset for buffered flash. */
if (sc->bce_flash_info->buffered) {
offset = ((offset / sc->bce_flash_info->page_size) <<
sc->bce_flash_info->page_bits) +
(offset % sc->bce_flash_info->page_size);
}
/*
* Clear the DONE bit separately, set the address to read,
* and issue the read.
*/
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BCE_NVM_COMMAND, cmd);
/* Wait for completion. */
for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
u32 val;
DELAY(5);
val = REG_RD(sc, BCE_NVM_COMMAND);
if (val & BCE_NVM_COMMAND_DONE) {
val = REG_RD(sc, BCE_NVM_READ);
val = bce_be32toh(val);
memcpy(ret_val, &val, 4);
break;
}
}
/* Check for errors. */
if (i >= NVRAM_TIMEOUT_COUNT) {
BCE_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at offset 0x%08X!\n",
__FILE__, __LINE__, offset);
rc = EBUSY;
}
return(rc);
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Write a dword (32 bits) to NVRAM. */
/* */
/* Write a 32 bit word to NVRAM. The caller is assumed to have already */
/* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
/* enabled NVRAM write access. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_write_dword(struct bce_softc *sc, u32 offset, u8 *val,
u32 cmd_flags)
{
u32 cmd, val32;
int j;
/* Build the command word. */
cmd = BCE_NVM_COMMAND_DOIT | BCE_NVM_COMMAND_WR | cmd_flags;
/* Calculate the offset for buffered flash. */
if (sc->bce_flash_info->buffered) {
offset = ((offset / sc->bce_flash_info->page_size) <<
sc->bce_flash_info->page_bits) +
(offset % sc->bce_flash_info->page_size);
}
/*
* Clear the DONE bit separately, convert NVRAM data to big-endian,
* set the NVRAM address to write, and issue the write command
*/
REG_WR(sc, BCE_NVM_COMMAND, BCE_NVM_COMMAND_DONE);
memcpy(&val32, val, 4);
val32 = htobe32(val32);
REG_WR(sc, BCE_NVM_WRITE, val32);
REG_WR(sc, BCE_NVM_ADDR, offset & BCE_NVM_ADDR_NVM_ADDR_VALUE);
REG_WR(sc, BCE_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
DELAY(5);
if (REG_RD(sc, BCE_NVM_COMMAND) & BCE_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT) {
BCE_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at offset 0x%08X\n",
__FILE__, __LINE__, offset);
return EBUSY;
}
return 0;
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Initialize NVRAM access. */
/* */
/* Identify the NVRAM device in use and prepare the NVRAM interface to */
/* access that device. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_init_nvram(struct bce_softc *sc)
{
u32 val;
int j, entry_count, rc;
struct flash_spec *flash;
DBPRINT(sc,BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Determine the selected interface. */
val = REG_RD(sc, BCE_NVM_CFG1);
entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
rc = 0;
/*
* Flash reconfiguration is required to support additional
* NVRAM devices not directly supported in hardware.
* Check if the flash interface was reconfigured
* by the bootcode.
*/
if (val & 0x40000000) {
/* Flash interface reconfigured by bootcode. */
DBPRINT(sc,BCE_INFO_LOAD,
"bce_init_nvram(): Flash WAS reconfigured.\n");
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & FLASH_BACKUP_STRAP_MASK) ==
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
sc->bce_flash_info = flash;
break;
}
}
} else {
/* Flash interface not yet reconfigured. */
u32 mask;
DBPRINT(sc,BCE_INFO_LOAD,
"bce_init_nvram(): Flash was NOT reconfigured.\n");
if (val & (1 << 23))
mask = FLASH_BACKUP_STRAP_MASK;
else
mask = FLASH_STRAP_MASK;
/* Look for the matching NVRAM device configuration data. */
for (j = 0, flash = &flash_table[0]; j < entry_count; j++, flash++) {
/* Check if the device matches any of the known devices. */
if ((val & mask) == (flash->strapping & mask)) {
/* Found a device match. */
sc->bce_flash_info = flash;
/* Request access to the flash interface. */
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
return rc;
/* Reconfigure the flash interface. */
bce_enable_nvram_access(sc);
REG_WR(sc, BCE_NVM_CFG1, flash->config1);
REG_WR(sc, BCE_NVM_CFG2, flash->config2);
REG_WR(sc, BCE_NVM_CFG3, flash->config3);
REG_WR(sc, BCE_NVM_WRITE1, flash->write1);
bce_disable_nvram_access(sc);
bce_release_nvram_lock(sc);
break;
}
}
}
/* Check if a matching device was found. */
if (j == entry_count) {
sc->bce_flash_info = NULL;
BCE_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
__FILE__, __LINE__);
rc = ENODEV;
}
/* Write the flash config data to the shared memory interface. */
val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_SHARED_HW_CFG_CONFIG2);
val &= BCE_SHARED_HW_CFG2_NVM_SIZE_MASK;
if (val)
sc->bce_flash_size = val;
else
sc->bce_flash_size = sc->bce_flash_info->total_size;
DBPRINT(sc, BCE_INFO_LOAD, "bce_init_nvram() flash->total_size = 0x%08X\n",
sc->bce_flash_info->total_size);
DBPRINT(sc,BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return rc;
}
/****************************************************************************/
/* Read an arbitrary range of data from NVRAM. */
/* */
/* Prepares the NVRAM interface for access and reads the requested data */
/* into the supplied buffer. */
/* */
/* Returns: */
/* 0 on success and the data read, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_read(struct bce_softc *sc, u32 offset, u8 *ret_buf,
int buf_size)
{
int rc = 0;
u32 cmd_flags, offset32, len32, extra;
if (buf_size == 0)
return 0;
/* Request access to the flash interface. */
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
return rc;
/* Enable access to flash interface */
bce_enable_nvram_access(sc);
len32 = buf_size;
offset32 = offset;
extra = 0;
cmd_flags = 0;
if (offset32 & 3) {
u8 buf[4];
u32 pre_len;
offset32 &= ~3;
pre_len = 4 - (offset & 3);
if (pre_len >= len32) {
pre_len = len32;
cmd_flags = BCE_NVM_COMMAND_FIRST | BCE_NVM_COMMAND_LAST;
}
else {
cmd_flags = BCE_NVM_COMMAND_FIRST;
}
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
if (rc)
return rc;
memcpy(ret_buf, buf + (offset & 3), pre_len);
offset32 += 4;
ret_buf += pre_len;
len32 -= pre_len;
}
if (len32 & 3) {
extra = 4 - (len32 & 3);
len32 = (len32 + 4) & ~3;
}
if (len32 == 4) {
u8 buf[4];
if (cmd_flags)
cmd_flags = BCE_NVM_COMMAND_LAST;
else
cmd_flags = BCE_NVM_COMMAND_FIRST |
BCE_NVM_COMMAND_LAST;
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
else if (len32 > 0) {
u8 buf[4];
/* Read the first word. */
if (cmd_flags)
cmd_flags = 0;
else
cmd_flags = BCE_NVM_COMMAND_FIRST;
rc = bce_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
while (len32 > 4 && rc == 0) {
rc = bce_nvram_read_dword(sc, offset32, ret_buf, 0);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
}
if (rc)
return rc;
cmd_flags = BCE_NVM_COMMAND_LAST;
rc = bce_nvram_read_dword(sc, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
/* Disable access to flash interface and release the lock. */
bce_disable_nvram_access(sc);
bce_release_nvram_lock(sc);
return rc;
}
#ifdef BCE_NVRAM_WRITE_SUPPORT
/****************************************************************************/
/* Write an arbitrary range of data from NVRAM. */
/* */
/* Prepares the NVRAM interface for write access and writes the requested */
/* data from the supplied buffer. The caller is responsible for */
/* calculating any appropriate CRCs. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_write(struct bce_softc *sc, u32 offset, u8 *data_buf,
int buf_size)
{
u32 written, offset32, len32;
u8 *buf, start[4], end[4];
int rc = 0;
int align_start, align_end;
buf = data_buf;
offset32 = offset;
len32 = buf_size;
align_start = align_end = 0;
if ((align_start = (offset32 & 3))) {
offset32 &= ~3;
len32 += align_start;
if ((rc = bce_nvram_read(sc, offset32, start, 4)))
return rc;
}
if (len32 & 3) {
if ((len32 > 4) || !align_start) {
align_end = 4 - (len32 & 3);
len32 += align_end;
if ((rc = bce_nvram_read(sc, offset32 + len32 - 4,
end, 4))) {
return rc;
}
}
}
if (align_start || align_end) {
buf = malloc(len32, M_DEVBUF, M_NOWAIT);
if (buf == 0)
return ENOMEM;
if (align_start) {
memcpy(buf, start, 4);
}
if (align_end) {
memcpy(buf + len32 - 4, end, 4);
}
memcpy(buf + align_start, data_buf, buf_size);
}
written = 0;
while ((written < len32) && (rc == 0)) {
u32 page_start, page_end, data_start, data_end;
u32 addr, cmd_flags;
int i;
u8 flash_buffer[264];
/* Find the page_start addr */
page_start = offset32 + written;
page_start -= (page_start % sc->bce_flash_info->page_size);
/* Find the page_end addr */
page_end = page_start + sc->bce_flash_info->page_size;
/* Find the data_start addr */
data_start = (written == 0) ? offset32 : page_start;
/* Find the data_end addr */
data_end = (page_end > offset32 + len32) ?
(offset32 + len32) : page_end;
/* Request access to the flash interface. */
if ((rc = bce_acquire_nvram_lock(sc)) != 0)
goto nvram_write_end;
/* Enable access to flash interface */
bce_enable_nvram_access(sc);
cmd_flags = BCE_NVM_COMMAND_FIRST;
if (sc->bce_flash_info->buffered == 0) {
int j;
/* Read the whole page into the buffer
* (non-buffer flash only) */
for (j = 0; j < sc->bce_flash_info->page_size; j += 4) {
if (j == (sc->bce_flash_info->page_size - 4)) {
cmd_flags |= BCE_NVM_COMMAND_LAST;
}
rc = bce_nvram_read_dword(sc,
page_start + j,
&flash_buffer[j],
cmd_flags);
if (rc)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Enable writes to flash interface (unlock write-protect) */
if ((rc = bce_enable_nvram_write(sc)) != 0)
goto nvram_write_end;
/* Erase the page */
if ((rc = bce_nvram_erase_page(sc, page_start)) != 0)
goto nvram_write_end;
/* Re-enable the write again for the actual write */
bce_enable_nvram_write(sc);
/* Loop to write back the buffer data from page_start to
* data_start */
i = 0;
if (sc->bce_flash_info->buffered == 0) {
for (addr = page_start; addr < data_start;
addr += 4, i += 4) {
rc = bce_nvram_write_dword(sc, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Loop to write the new data from data_start to data_end */
for (addr = data_start; addr < data_end; addr += 4, i++) {
if ((addr == page_end - 4) ||
((sc->bce_flash_info->buffered) &&
(addr == data_end - 4))) {
cmd_flags |= BCE_NVM_COMMAND_LAST;
}
rc = bce_nvram_write_dword(sc, addr, buf,
cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
buf += 4;
}
/* Loop to write back the buffer data from data_end
* to page_end */
if (sc->bce_flash_info->buffered == 0) {
for (addr = data_end; addr < page_end;
addr += 4, i += 4) {
if (addr == page_end-4) {
cmd_flags = BCE_NVM_COMMAND_LAST;
}
rc = bce_nvram_write_dword(sc, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Disable writes to flash interface (lock write-protect) */
bce_disable_nvram_write(sc);
/* Disable access to flash interface */
bce_disable_nvram_access(sc);
bce_release_nvram_lock(sc);
/* Increment written */
written += data_end - data_start;
}
nvram_write_end:
if (align_start || align_end)
free(buf, M_DEVBUF);
return rc;
}
#endif /* BCE_NVRAM_WRITE_SUPPORT */
/****************************************************************************/
/* Verifies that NVRAM is accessible and contains valid data. */
/* */
/* Reads the configuration data from NVRAM and verifies that the CRC is */
/* correct. */
/* */
/* Returns: */
/* 0 on success, positive value on failure. */
/****************************************************************************/
static int
bce_nvram_test(struct bce_softc *sc)
{
u32 buf[BCE_NVRAM_SIZE / 4];
u8 *data = (u8 *) buf;
int rc = 0;
u32 magic, csum;
/*
* Check that the device NVRAM is valid by reading
* the magic value at offset 0.
*/
if ((rc = bce_nvram_read(sc, 0, data, 4)) != 0)
goto bce_nvram_test_done;
magic = bce_be32toh(buf[0]);
if (magic != BCE_NVRAM_MAGIC) {
rc = ENODEV;
BCE_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! Expected: 0x%08X, "
"Found: 0x%08X\n",
__FILE__, __LINE__, BCE_NVRAM_MAGIC, magic);
goto bce_nvram_test_done;
}
/*
* Verify that the device NVRAM includes valid
* configuration data.
*/
if ((rc = bce_nvram_read(sc, 0x100, data, BCE_NVRAM_SIZE)) != 0)
goto bce_nvram_test_done;
csum = ether_crc32_le(data, 0x100);
if (csum != BCE_CRC32_RESIDUAL) {
rc = ENODEV;
BCE_PRINTF(sc, "%s(%d): Invalid Manufacturing Information NVRAM CRC! "
"Expected: 0x%08X, Found: 0x%08X\n",
__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
goto bce_nvram_test_done;
}
csum = ether_crc32_le(data + 0x100, 0x100);
if (csum != BCE_CRC32_RESIDUAL) {
BCE_PRINTF(sc, "%s(%d): Invalid Feature Configuration Information "
"NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
__FILE__, __LINE__, BCE_CRC32_RESIDUAL, csum);
rc = ENODEV;
}
bce_nvram_test_done:
return rc;
}
/****************************************************************************/
/* Free any DMA memory owned by the driver. */
/* */
/* Scans through each data structre that requires DMA memory and frees */
/* the memory if allocated. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_dma_free(struct bce_softc *sc)
{
int i;
DBPRINT(sc,BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Destroy the status block. */
if (sc->status_block != NULL)
bus_dmamem_free(
sc->status_tag,
sc->status_block,
sc->status_map);
if (sc->status_map != NULL) {
bus_dmamap_unload(
sc->status_tag,
sc->status_map);
bus_dmamap_destroy(sc->status_tag,
sc->status_map);
}
if (sc->status_tag != NULL)
bus_dma_tag_destroy(sc->status_tag);
/* Destroy the statistics block. */
if (sc->stats_block != NULL)
bus_dmamem_free(
sc->stats_tag,
sc->stats_block,
sc->stats_map);
if (sc->stats_map != NULL) {
bus_dmamap_unload(
sc->stats_tag,
sc->stats_map);
bus_dmamap_destroy(sc->stats_tag,
sc->stats_map);
}
if (sc->stats_tag != NULL)
bus_dma_tag_destroy(sc->stats_tag);
/* Free, unmap and destroy all TX buffer descriptor chain pages. */
for (i = 0; i < TX_PAGES; i++ ) {
if (sc->tx_bd_chain[i] != NULL)
bus_dmamem_free(
sc->tx_bd_chain_tag,
sc->tx_bd_chain[i],
sc->tx_bd_chain_map[i]);
if (sc->tx_bd_chain_map[i] != NULL) {
bus_dmamap_unload(
sc->tx_bd_chain_tag,
sc->tx_bd_chain_map[i]);
bus_dmamap_destroy(
sc->tx_bd_chain_tag,
sc->tx_bd_chain_map[i]);
}
}
/* Destroy the TX buffer descriptor tag. */
if (sc->tx_bd_chain_tag != NULL)
bus_dma_tag_destroy(sc->tx_bd_chain_tag);
/* Free, unmap and destroy all RX buffer descriptor chain pages. */
for (i = 0; i < RX_PAGES; i++ ) {
if (sc->rx_bd_chain[i] != NULL)
bus_dmamem_free(
sc->rx_bd_chain_tag,
sc->rx_bd_chain[i],
sc->rx_bd_chain_map[i]);
if (sc->rx_bd_chain_map[i] != NULL) {
bus_dmamap_unload(
sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i]);
bus_dmamap_destroy(
sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i]);
}
}
/* Destroy the RX buffer descriptor tag. */
if (sc->rx_bd_chain_tag != NULL)
bus_dma_tag_destroy(sc->rx_bd_chain_tag);
/* Unload and destroy the TX mbuf maps. */
for (i = 0; i < TOTAL_TX_BD; i++) {
if (sc->tx_mbuf_map[i] != NULL) {
bus_dmamap_unload(sc->tx_mbuf_tag,
sc->tx_mbuf_map[i]);
bus_dmamap_destroy(sc->tx_mbuf_tag,
sc->tx_mbuf_map[i]);
}
}
/* Destroy the TX mbuf tag. */
if (sc->tx_mbuf_tag != NULL)
bus_dma_tag_destroy(sc->tx_mbuf_tag);
/* Unload and destroy the RX mbuf maps. */
for (i = 0; i < TOTAL_RX_BD; i++) {
if (sc->rx_mbuf_map[i] != NULL) {
bus_dmamap_unload(sc->rx_mbuf_tag,
sc->rx_mbuf_map[i]);
bus_dmamap_destroy(sc->rx_mbuf_tag,
sc->rx_mbuf_map[i]);
}
}
/* Destroy the RX mbuf tag. */
if (sc->rx_mbuf_tag != NULL)
bus_dma_tag_destroy(sc->rx_mbuf_tag);
/* Destroy the parent tag */
if (sc->parent_tag != NULL)
bus_dma_tag_destroy(sc->parent_tag);
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
}
/****************************************************************************/
/* Get DMA memory from the OS. */
/* */
/* Validates that the OS has provided DMA buffers in response to a */
/* bus_dmamap_load() call and saves the physical address of those buffers. */
/* When the callback is used the OS will return 0 for the mapping function */
/* (bus_dmamap_load()) so we use the value of map_arg->maxsegs to pass any */
/* failures back to the caller. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
struct bce_dmamap_arg *map_arg = arg;
struct bce_softc *sc = map_arg->sc;
/* Simulate a mapping failure. */
DBRUNIF(DB_RANDOMTRUE(bce_debug_dma_map_addr_failure),
BCE_PRINTF(sc, "%s(%d): Simulating DMA mapping error.\n",
__FILE__, __LINE__);
error = ENOMEM);
/* Check for an error and signal the caller that an error occurred. */
if (error || (nseg > map_arg->maxsegs)) {
BCE_PRINTF(sc, "%s(%d): DMA mapping error! error = %d, "
"nseg = %d, maxsegs = %d\n",
__FILE__, __LINE__, error, nseg, map_arg->maxsegs);
map_arg->maxsegs = 0;
goto bce_dma_map_addr_exit;
}
map_arg->busaddr = segs->ds_addr;
bce_dma_map_addr_exit:
return;
}
/****************************************************************************/
/* Map TX buffers into TX buffer descriptors. */
/* */
/* Given a series of DMA memory containting an outgoing frame, map the */
/* segments into the tx_bd structure used by the hardware. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs,
int nseg, bus_size_t mapsize, int error)
{
struct bce_dmamap_arg *map_arg;
struct bce_softc *sc;
struct tx_bd *txbd = NULL;
int i = 0;
u16 prod, chain_prod;
u32 prod_bseq;
#ifdef BCE_DEBUG
u16 debug_prod;
#endif
map_arg = arg;
sc = map_arg->sc;
if (error) {
DBPRINT(sc, BCE_WARN, "%s(): Called with error = %d\n",
__FUNCTION__, error);
return;
}
/* Signal error to caller if there's too many segments */
if (nseg > map_arg->maxsegs) {
DBPRINT(sc, BCE_WARN,
"%s(): Mapped TX descriptors: max segs = %d, "
"actual segs = %d\n",
__FUNCTION__, map_arg->maxsegs, nseg);
map_arg->maxsegs = 0;
return;
}
/* prod points to an empty tx_bd at this point. */
prod = map_arg->prod;
chain_prod = map_arg->chain_prod;
prod_bseq = map_arg->prod_bseq;
#ifdef BCE_DEBUG
debug_prod = chain_prod;
#endif
DBPRINT(sc, BCE_INFO_SEND,
"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
"prod_bseq = 0x%08X\n",
__FUNCTION__, prod, chain_prod, prod_bseq);
/*
* Cycle through each mbuf segment that makes up
* the outgoing frame, gathering the mapping info
* for that segment and creating a tx_bd to for
* the mbuf.
*/
txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
/* Setup the first tx_bd for the first segment. */
txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
txbd->tx_bd_mss_nbytes = htole16(segs[i].ds_len);
txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags |
TX_BD_FLAGS_START);
prod_bseq += segs[i].ds_len;
/* Setup any remaing segments. */
for (i = 1; i < nseg; i++) {
prod = NEXT_TX_BD(prod);
chain_prod = TX_CHAIN_IDX(prod);
txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
txbd->tx_bd_mss_nbytes = htole16(segs[i].ds_len);
txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags);
prod_bseq += segs[i].ds_len;
}
/* Set the END flag on the last TX buffer descriptor. */
txbd->tx_bd_vlan_tag_flags |= htole16(TX_BD_FLAGS_END);
DBRUN(BCE_INFO_SEND, bce_dump_tx_chain(sc, debug_prod, nseg));
DBPRINT(sc, BCE_INFO_SEND,
"%s(): End: prod = 0x%04X, chain_prod = %04X, "
"prod_bseq = 0x%08X\n",
__FUNCTION__, prod, chain_prod, prod_bseq);
/* prod points to the last tx_bd at this point. */
map_arg->maxsegs = nseg;
map_arg->prod = prod;
map_arg->chain_prod = chain_prod;
map_arg->prod_bseq = prod_bseq;
}
/****************************************************************************/
/* Allocate any DMA memory needed by the driver. */
/* */
/* Allocates DMA memory needed for the various global structures needed by */
/* hardware. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_dma_alloc(device_t dev)
{
struct bce_softc *sc;
int i, error, rc = 0;
struct bce_dmamap_arg map_arg;
sc = device_get_softc(dev);
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/*
* Allocate the parent bus DMA tag appropriate for PCI.
*/
if (bus_dma_tag_create(NULL, /* parent */
BCE_DMA_ALIGN, /* alignment */
BCE_DMA_BOUNDARY, /* boundary */
sc->max_bus_addr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filterfunc */
NULL, /* filterarg */
MAXBSIZE, /* maxsize */
BUS_SPACE_UNRESTRICTED, /* nsegments */
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
0, /* flags */
NULL, /* locfunc */
NULL, /* lockarg */
&sc->parent_tag)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate parent DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
/*
* Create a DMA tag for the status block, allocate and clear the
* memory, map the memory into DMA space, and fetch the physical
* address of the block.
*/
if (bus_dma_tag_create(
sc->parent_tag, /* parent */
BCE_DMA_ALIGN, /* alignment */
BCE_DMA_BOUNDARY, /* boundary */
sc->max_bus_addr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filterfunc */
NULL, /* filterarg */
BCE_STATUS_BLK_SZ, /* maxsize */
1, /* nsegments */
BCE_STATUS_BLK_SZ, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->status_tag)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate status block DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
if(bus_dmamem_alloc(
sc->status_tag, /* dmat */
(void **)&sc->status_block, /* vaddr */
BUS_DMA_NOWAIT, /* flags */
&sc->status_map)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate status block DMA memory!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
bzero((char *)sc->status_block, BCE_STATUS_BLK_SZ);
map_arg.sc = sc;
map_arg.maxsegs = 1;
error = bus_dmamap_load(
sc->status_tag, /* dmat */
sc->status_map, /* map */
sc->status_block, /* buf */
BCE_STATUS_BLK_SZ, /* buflen */
bce_dma_map_addr, /* callback */
&map_arg, /* callbackarg */
BUS_DMA_NOWAIT); /* flags */
if(error || (map_arg.maxsegs == 0)) {
BCE_PRINTF(sc, "%s(%d): Could not map status block DMA memory!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
sc->status_block_paddr = map_arg.busaddr;
/* DRC - Fix for 64 bit addresses. */
DBPRINT(sc, BCE_INFO, "status_block_paddr = 0x%08X\n",
(u32) sc->status_block_paddr);
/*
* Create a DMA tag for the statistics block, allocate and clear the
* memory, map the memory into DMA space, and fetch the physical
* address of the block.
*/
if (bus_dma_tag_create(
sc->parent_tag, /* parent */
BCE_DMA_ALIGN, /* alignment */
BCE_DMA_BOUNDARY, /* boundary */
sc->max_bus_addr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filterfunc */
NULL, /* filterarg */
BCE_STATS_BLK_SZ, /* maxsize */
1, /* nsegments */
BCE_STATS_BLK_SZ, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->stats_tag)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate statistics block DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
if (bus_dmamem_alloc(
sc->stats_tag, /* dmat */
(void **)&sc->stats_block, /* vaddr */
BUS_DMA_NOWAIT, /* flags */
&sc->stats_map)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate statistics block DMA memory!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
bzero((char *)sc->stats_block, BCE_STATS_BLK_SZ);
map_arg.sc = sc;
map_arg.maxsegs = 1;
error = bus_dmamap_load(
sc->stats_tag, /* dmat */
sc->stats_map, /* map */
sc->stats_block, /* buf */
BCE_STATS_BLK_SZ, /* buflen */
bce_dma_map_addr, /* callback */
&map_arg, /* callbackarg */
BUS_DMA_NOWAIT); /* flags */
if(error || (map_arg.maxsegs == 0)) {
BCE_PRINTF(sc, "%s(%d): Could not map statistics block DMA memory!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
sc->stats_block_paddr = map_arg.busaddr;
/* DRC - Fix for 64 bit address. */
DBPRINT(sc,BCE_INFO, "stats_block_paddr = 0x%08X\n",
(u32) sc->stats_block_paddr);
/*
* Create a DMA tag for the TX buffer descriptor chain,
* allocate and clear the memory, and fetch the
* physical address of the block.
*/
if(bus_dma_tag_create(
sc->parent_tag, /* parent */
BCM_PAGE_SIZE, /* alignment */
BCE_DMA_BOUNDARY, /* boundary */
sc->max_bus_addr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filterfunc */
NULL, /* filterarg */
BCE_TX_CHAIN_PAGE_SZ, /* maxsize */
1, /* nsegments */
BCE_TX_CHAIN_PAGE_SZ, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->tx_bd_chain_tag)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate TX descriptor chain DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
for (i = 0; i < TX_PAGES; i++) {
if(bus_dmamem_alloc(
sc->tx_bd_chain_tag, /* tag */
(void **)&sc->tx_bd_chain[i], /* vaddr */
BUS_DMA_NOWAIT, /* flags */
&sc->tx_bd_chain_map[i])) {
BCE_PRINTF(sc, "%s(%d): Could not allocate TX descriptor "
"chain DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
map_arg.maxsegs = 1;
map_arg.sc = sc;
error = bus_dmamap_load(
sc->tx_bd_chain_tag, /* dmat */
sc->tx_bd_chain_map[i], /* map */
sc->tx_bd_chain[i], /* buf */
BCE_TX_CHAIN_PAGE_SZ, /* buflen */
bce_dma_map_addr, /* callback */
&map_arg, /* callbackarg */
BUS_DMA_NOWAIT); /* flags */
if(error || (map_arg.maxsegs == 0)) {
BCE_PRINTF(sc, "%s(%d): Could not map TX descriptor chain DMA memory!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
sc->tx_bd_chain_paddr[i] = map_arg.busaddr;
/* DRC - Fix for 64 bit systems. */
DBPRINT(sc, BCE_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
i, (u32) sc->tx_bd_chain_paddr[i]);
}
/* Create a DMA tag for TX mbufs. */
if (bus_dma_tag_create(
sc->parent_tag, /* parent */
BCE_DMA_ALIGN, /* alignment */
BCE_DMA_BOUNDARY, /* boundary */
sc->max_bus_addr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filterfunc */
NULL, /* filterarg */
MCLBYTES * BCE_MAX_SEGMENTS, /* maxsize */
BCE_MAX_SEGMENTS, /* nsegments */
MCLBYTES, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->tx_mbuf_tag)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate TX mbuf DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
/* Create DMA maps for the TX mbufs clusters. */
for (i = 0; i < TOTAL_TX_BD; i++) {
if (bus_dmamap_create(sc->tx_mbuf_tag, BUS_DMA_NOWAIT,
&sc->tx_mbuf_map[i])) {
BCE_PRINTF(sc, "%s(%d): Unable to create TX mbuf DMA map!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
}
/*
* Create a DMA tag for the RX buffer descriptor chain,
* allocate and clear the memory, and fetch the physical
* address of the blocks.
*/
if (bus_dma_tag_create(
sc->parent_tag, /* parent */
BCM_PAGE_SIZE, /* alignment */
BCE_DMA_BOUNDARY, /* boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
sc->max_bus_addr, /* lowaddr */
NULL, /* filter */
NULL, /* filterarg */
BCE_RX_CHAIN_PAGE_SZ, /* maxsize */
1, /* nsegments */
BCE_RX_CHAIN_PAGE_SZ, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->rx_bd_chain_tag)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate RX descriptor chain DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
for (i = 0; i < RX_PAGES; i++) {
if (bus_dmamem_alloc(
sc->rx_bd_chain_tag, /* tag */
(void **)&sc->rx_bd_chain[i], /* vaddr */
BUS_DMA_NOWAIT, /* flags */
&sc->rx_bd_chain_map[i])) {
BCE_PRINTF(sc, "%s(%d): Could not allocate RX descriptor chain "
"DMA memory!\n", __FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
map_arg.maxsegs = 1;
map_arg.sc = sc;
error = bus_dmamap_load(
sc->rx_bd_chain_tag, /* dmat */
sc->rx_bd_chain_map[i], /* map */
sc->rx_bd_chain[i], /* buf */
BCE_RX_CHAIN_PAGE_SZ, /* buflen */
bce_dma_map_addr, /* callback */
&map_arg, /* callbackarg */
BUS_DMA_NOWAIT); /* flags */
if(error || (map_arg.maxsegs == 0)) {
BCE_PRINTF(sc, "%s(%d): Could not map RX descriptor chain DMA memory!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
sc->rx_bd_chain_paddr[i] = map_arg.busaddr;
/* DRC - Fix for 64 bit systems. */
DBPRINT(sc, BCE_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
i, (u32) sc->rx_bd_chain_paddr[i]);
}
/*
* Create a DMA tag for RX mbufs.
*/
if (bus_dma_tag_create(
sc->parent_tag, /* parent */
BCE_DMA_ALIGN, /* alignment */
BCE_DMA_BOUNDARY, /* boundary */
sc->max_bus_addr, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, /* filterfunc */
NULL, /* filterarg */
MJUM9BYTES, /* maxsize */
BCE_MAX_SEGMENTS, /* nsegments */
MJUM9BYTES, /* maxsegsize */
0, /* flags */
NULL, /* lockfunc */
NULL, /* lockarg */
&sc->rx_mbuf_tag)) {
BCE_PRINTF(sc, "%s(%d): Could not allocate RX mbuf DMA tag!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
/* Create DMA maps for the RX mbuf clusters. */
for (i = 0; i < TOTAL_RX_BD; i++) {
if (bus_dmamap_create(sc->rx_mbuf_tag, BUS_DMA_NOWAIT,
&sc->rx_mbuf_map[i])) {
BCE_PRINTF(sc, "%s(%d): Unable to create RX mbuf DMA map!\n",
__FILE__, __LINE__);
rc = ENOMEM;
goto bce_dma_alloc_exit;
}
}
bce_dma_alloc_exit:
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return(rc);
}
/****************************************************************************/
/* Release all resources used by the driver. */
/* */
/* Releases all resources acquired by the driver including interrupts, */
/* interrupt handler, interfaces, mutexes, and DMA memory. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_release_resources(struct bce_softc *sc)
{
device_t dev;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
dev = sc->bce_dev;
bce_dma_free(sc);
if (sc->bce_intrhand != NULL)
bus_teardown_intr(dev, sc->bce_irq, sc->bce_intrhand);
if (sc->bce_irq != NULL)
bus_release_resource(dev,
SYS_RES_IRQ,
0,
sc->bce_irq);
if (sc->bce_res != NULL)
bus_release_resource(dev,
SYS_RES_MEMORY,
PCIR_BAR(0),
sc->bce_res);
if (sc->bce_ifp != NULL)
if_free(sc->bce_ifp);
if (mtx_initialized(&sc->bce_mtx))
BCE_LOCK_DESTROY(sc);
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
}
/****************************************************************************/
/* Firmware synchronization. */
/* */
/* Before performing certain events such as a chip reset, synchronize with */
/* the firmware first. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_fw_sync(struct bce_softc *sc, u32 msg_data)
{
int i, rc = 0;
u32 val;
/* Don't waste any time if we've timed out before. */
if (sc->bce_fw_timed_out) {
rc = EBUSY;
goto bce_fw_sync_exit;
}
/* Increment the message sequence number. */
sc->bce_fw_wr_seq++;
msg_data |= sc->bce_fw_wr_seq;
DBPRINT(sc, BCE_VERBOSE, "bce_fw_sync(): msg_data = 0x%08X\n", msg_data);
/* Send the message to the bootcode driver mailbox. */
REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data);
/* Wait for the bootcode to acknowledge the message. */
for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
/* Check for a response in the bootcode firmware mailbox. */
val = REG_RD_IND(sc, sc->bce_shmem_base + BCE_FW_MB);
if ((val & BCE_FW_MSG_ACK) == (msg_data & BCE_DRV_MSG_SEQ))
break;
DELAY(1000);
}
/* If we've timed out, tell the bootcode that we've stopped waiting. */
if (((val & BCE_FW_MSG_ACK) != (msg_data & BCE_DRV_MSG_SEQ)) &&
((msg_data & BCE_DRV_MSG_DATA) != BCE_DRV_MSG_DATA_WAIT0)) {
BCE_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
"msg_data = 0x%08X\n",
__FILE__, __LINE__, msg_data);
msg_data &= ~BCE_DRV_MSG_CODE;
msg_data |= BCE_DRV_MSG_CODE_FW_TIMEOUT;
REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_MB, msg_data);
sc->bce_fw_timed_out = 1;
rc = EBUSY;
}
bce_fw_sync_exit:
return (rc);
}
/****************************************************************************/
/* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_load_rv2p_fw(struct bce_softc *sc, u32 *rv2p_code,
u32 rv2p_code_len, u32 rv2p_proc)
{
int i;
u32 val;
for (i = 0; i < rv2p_code_len; i += 8) {
REG_WR(sc, BCE_RV2P_INSTR_HIGH, *rv2p_code);
rv2p_code++;
REG_WR(sc, BCE_RV2P_INSTR_LOW, *rv2p_code);
rv2p_code++;
if (rv2p_proc == RV2P_PROC1) {
val = (i / 8) | BCE_RV2P_PROC1_ADDR_CMD_RDWR;
REG_WR(sc, BCE_RV2P_PROC1_ADDR_CMD, val);
}
else {
val = (i / 8) | BCE_RV2P_PROC2_ADDR_CMD_RDWR;
REG_WR(sc, BCE_RV2P_PROC2_ADDR_CMD, val);
}
}
/* Reset the processor, un-stall is done later. */
if (rv2p_proc == RV2P_PROC1) {
REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC1_RESET);
}
else {
REG_WR(sc, BCE_RV2P_COMMAND, BCE_RV2P_COMMAND_PROC2_RESET);
}
}
/****************************************************************************/
/* Load RISC processor firmware. */
/* */
/* Loads firmware from the file if_bcefw.h into the scratchpad memory */
/* associated with a particular processor. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_load_cpu_fw(struct bce_softc *sc, struct cpu_reg *cpu_reg,
struct fw_info *fw)
{
u32 offset;
u32 val;
/* Halt the CPU. */
val = REG_RD_IND(sc, cpu_reg->mode);
val |= cpu_reg->mode_value_halt;
REG_WR_IND(sc, cpu_reg->mode, val);
REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
/* Load the Text area. */
offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
if (fw->text) {
int j;
for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->text[j]);
}
}
/* Load the Data area. */
offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
if (fw->data) {
int j;
for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->data[j]);
}
}
/* Load the SBSS area. */
offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
if (fw->sbss) {
int j;
for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->sbss[j]);
}
}
/* Load the BSS area. */
offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
if (fw->bss) {
int j;
for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->bss[j]);
}
}
/* Load the Read-Only area. */
offset = cpu_reg->spad_base +
(fw->rodata_addr - cpu_reg->mips_view_base);
if (fw->rodata) {
int j;
for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
REG_WR_IND(sc, offset, fw->rodata[j]);
}
}
/* Clear the pre-fetch instruction. */
REG_WR_IND(sc, cpu_reg->inst, 0);
REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
/* Start the CPU. */
val = REG_RD_IND(sc, cpu_reg->mode);
val &= ~cpu_reg->mode_value_halt;
REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
REG_WR_IND(sc, cpu_reg->mode, val);
}
/****************************************************************************/
/* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
/* */
/* Loads the firmware for each CPU and starts the CPU. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_cpus(struct bce_softc *sc)
{
struct cpu_reg cpu_reg;
struct fw_info fw;
/* Initialize the RV2P processor. */
bce_load_rv2p_fw(sc, bce_rv2p_proc1, sizeof(bce_rv2p_proc1), RV2P_PROC1);
bce_load_rv2p_fw(sc, bce_rv2p_proc2, sizeof(bce_rv2p_proc2), RV2P_PROC2);
/* Initialize the RX Processor. */
cpu_reg.mode = BCE_RXP_CPU_MODE;
cpu_reg.mode_value_halt = BCE_RXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_RXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_RXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_RXP_CPU_REG_FILE;
cpu_reg.evmask = BCE_RXP_CPU_EVENT_MASK;
cpu_reg.pc = BCE_RXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_RXP_CPU_INSTRUCTION;
cpu_reg.bp = BCE_RXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_RXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bce_RXP_b06FwReleaseMajor;
fw.ver_minor = bce_RXP_b06FwReleaseMinor;
fw.ver_fix = bce_RXP_b06FwReleaseFix;
fw.start_addr = bce_RXP_b06FwStartAddr;
fw.text_addr = bce_RXP_b06FwTextAddr;
fw.text_len = bce_RXP_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_RXP_b06FwText;
fw.data_addr = bce_RXP_b06FwDataAddr;
fw.data_len = bce_RXP_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_RXP_b06FwData;
fw.sbss_addr = bce_RXP_b06FwSbssAddr;
fw.sbss_len = bce_RXP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_RXP_b06FwSbss;
fw.bss_addr = bce_RXP_b06FwBssAddr;
fw.bss_len = bce_RXP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_RXP_b06FwBss;
fw.rodata_addr = bce_RXP_b06FwRodataAddr;
fw.rodata_len = bce_RXP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_RXP_b06FwRodata;
DBPRINT(sc, BCE_INFO_RESET, "Loading RX firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the TX Processor. */
cpu_reg.mode = BCE_TXP_CPU_MODE;
cpu_reg.mode_value_halt = BCE_TXP_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_TXP_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_TXP_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_TXP_CPU_REG_FILE;
cpu_reg.evmask = BCE_TXP_CPU_EVENT_MASK;
cpu_reg.pc = BCE_TXP_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_TXP_CPU_INSTRUCTION;
cpu_reg.bp = BCE_TXP_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_TXP_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bce_TXP_b06FwReleaseMajor;
fw.ver_minor = bce_TXP_b06FwReleaseMinor;
fw.ver_fix = bce_TXP_b06FwReleaseFix;
fw.start_addr = bce_TXP_b06FwStartAddr;
fw.text_addr = bce_TXP_b06FwTextAddr;
fw.text_len = bce_TXP_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_TXP_b06FwText;
fw.data_addr = bce_TXP_b06FwDataAddr;
fw.data_len = bce_TXP_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_TXP_b06FwData;
fw.sbss_addr = bce_TXP_b06FwSbssAddr;
fw.sbss_len = bce_TXP_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_TXP_b06FwSbss;
fw.bss_addr = bce_TXP_b06FwBssAddr;
fw.bss_len = bce_TXP_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_TXP_b06FwBss;
fw.rodata_addr = bce_TXP_b06FwRodataAddr;
fw.rodata_len = bce_TXP_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_TXP_b06FwRodata;
DBPRINT(sc, BCE_INFO_RESET, "Loading TX firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the TX Patch-up Processor. */
cpu_reg.mode = BCE_TPAT_CPU_MODE;
cpu_reg.mode_value_halt = BCE_TPAT_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_TPAT_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_TPAT_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_TPAT_CPU_REG_FILE;
cpu_reg.evmask = BCE_TPAT_CPU_EVENT_MASK;
cpu_reg.pc = BCE_TPAT_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_TPAT_CPU_INSTRUCTION;
cpu_reg.bp = BCE_TPAT_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_TPAT_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bce_TPAT_b06FwReleaseMajor;
fw.ver_minor = bce_TPAT_b06FwReleaseMinor;
fw.ver_fix = bce_TPAT_b06FwReleaseFix;
fw.start_addr = bce_TPAT_b06FwStartAddr;
fw.text_addr = bce_TPAT_b06FwTextAddr;
fw.text_len = bce_TPAT_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_TPAT_b06FwText;
fw.data_addr = bce_TPAT_b06FwDataAddr;
fw.data_len = bce_TPAT_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_TPAT_b06FwData;
fw.sbss_addr = bce_TPAT_b06FwSbssAddr;
fw.sbss_len = bce_TPAT_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_TPAT_b06FwSbss;
fw.bss_addr = bce_TPAT_b06FwBssAddr;
fw.bss_len = bce_TPAT_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_TPAT_b06FwBss;
fw.rodata_addr = bce_TPAT_b06FwRodataAddr;
fw.rodata_len = bce_TPAT_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_TPAT_b06FwRodata;
DBPRINT(sc, BCE_INFO_RESET, "Loading TPAT firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
/* Initialize the Completion Processor. */
cpu_reg.mode = BCE_COM_CPU_MODE;
cpu_reg.mode_value_halt = BCE_COM_CPU_MODE_SOFT_HALT;
cpu_reg.mode_value_sstep = BCE_COM_CPU_MODE_STEP_ENA;
cpu_reg.state = BCE_COM_CPU_STATE;
cpu_reg.state_value_clear = 0xffffff;
cpu_reg.gpr0 = BCE_COM_CPU_REG_FILE;
cpu_reg.evmask = BCE_COM_CPU_EVENT_MASK;
cpu_reg.pc = BCE_COM_CPU_PROGRAM_COUNTER;
cpu_reg.inst = BCE_COM_CPU_INSTRUCTION;
cpu_reg.bp = BCE_COM_CPU_HW_BREAKPOINT;
cpu_reg.spad_base = BCE_COM_SCRATCH;
cpu_reg.mips_view_base = 0x8000000;
fw.ver_major = bce_COM_b06FwReleaseMajor;
fw.ver_minor = bce_COM_b06FwReleaseMinor;
fw.ver_fix = bce_COM_b06FwReleaseFix;
fw.start_addr = bce_COM_b06FwStartAddr;
fw.text_addr = bce_COM_b06FwTextAddr;
fw.text_len = bce_COM_b06FwTextLen;
fw.text_index = 0;
fw.text = bce_COM_b06FwText;
fw.data_addr = bce_COM_b06FwDataAddr;
fw.data_len = bce_COM_b06FwDataLen;
fw.data_index = 0;
fw.data = bce_COM_b06FwData;
fw.sbss_addr = bce_COM_b06FwSbssAddr;
fw.sbss_len = bce_COM_b06FwSbssLen;
fw.sbss_index = 0;
fw.sbss = bce_COM_b06FwSbss;
fw.bss_addr = bce_COM_b06FwBssAddr;
fw.bss_len = bce_COM_b06FwBssLen;
fw.bss_index = 0;
fw.bss = bce_COM_b06FwBss;
fw.rodata_addr = bce_COM_b06FwRodataAddr;
fw.rodata_len = bce_COM_b06FwRodataLen;
fw.rodata_index = 0;
fw.rodata = bce_COM_b06FwRodata;
DBPRINT(sc, BCE_INFO_RESET, "Loading COM firmware.\n");
bce_load_cpu_fw(sc, &cpu_reg, &fw);
}
/****************************************************************************/
/* Initialize context memory. */
/* */
/* Clears the memory associated with each Context ID (CID). */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_context(struct bce_softc *sc)
{
u32 vcid;
vcid = 96;
while (vcid) {
u32 vcid_addr, pcid_addr, offset;
vcid--;
vcid_addr = GET_CID_ADDR(vcid);
pcid_addr = vcid_addr;
REG_WR(sc, BCE_CTX_VIRT_ADDR, 0x00);
REG_WR(sc, BCE_CTX_PAGE_TBL, pcid_addr);
/* Zero out the context. */
for (offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
CTX_WR(sc, 0x00, offset, 0);
}
REG_WR(sc, BCE_CTX_VIRT_ADDR, vcid_addr);
REG_WR(sc, BCE_CTX_PAGE_TBL, pcid_addr);
}
}
/****************************************************************************/
/* Fetch the permanent MAC address of the controller. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_get_mac_addr(struct bce_softc *sc)
{
u32 mac_lo = 0, mac_hi = 0;
/*
* The NetXtreme II bootcode populates various NIC
* power-on and runtime configuration items in a
* shared memory area. The factory configured MAC
* address is available from both NVRAM and the
* shared memory area so we'll read the value from
* shared memory for speed.
*/
mac_hi = REG_RD_IND(sc, sc->bce_shmem_base +
BCE_PORT_HW_CFG_MAC_UPPER);
mac_lo = REG_RD_IND(sc, sc->bce_shmem_base +
BCE_PORT_HW_CFG_MAC_LOWER);
if ((mac_lo == 0) && (mac_hi == 0)) {
BCE_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
__FILE__, __LINE__);
} else {
sc->eaddr[0] = (u_char)(mac_hi >> 8);
sc->eaddr[1] = (u_char)(mac_hi >> 0);
sc->eaddr[2] = (u_char)(mac_lo >> 24);
sc->eaddr[3] = (u_char)(mac_lo >> 16);
sc->eaddr[4] = (u_char)(mac_lo >> 8);
sc->eaddr[5] = (u_char)(mac_lo >> 0);
}
DBPRINT(sc, BCE_INFO, "Permanent Ethernet address = %6D\n", sc->eaddr, ":");
}
/****************************************************************************/
/* Program the MAC address. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_set_mac_addr(struct bce_softc *sc)
{
u32 val;
u8 *mac_addr = sc->eaddr;
DBPRINT(sc, BCE_INFO, "Setting Ethernet address = %6D\n", sc->eaddr, ":");
val = (mac_addr[0] << 8) | mac_addr[1];
REG_WR(sc, BCE_EMAC_MAC_MATCH0, val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
REG_WR(sc, BCE_EMAC_MAC_MATCH1, val);
}
/****************************************************************************/
/* Stop the controller. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_stop(struct bce_softc *sc)
{
struct ifnet *ifp;
struct ifmedia_entry *ifm;
struct mii_data *mii = NULL;
int mtmp, itmp;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
BCE_LOCK_ASSERT(sc);
ifp = sc->bce_ifp;
mii = device_get_softc(sc->bce_miibus);
callout_stop(&sc->bce_stat_ch);
/* Disable the transmit/receive blocks. */
REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS, 0x5ffffff);
REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
DELAY(20);
bce_disable_intr(sc);
/* Tell firmware that the driver is going away. */
bce_reset(sc, BCE_DRV_MSG_CODE_SUSPEND_NO_WOL);
/* Free the RX lists. */
bce_free_rx_chain(sc);
/* Free TX buffers. */
bce_free_tx_chain(sc);
/*
* Isolate/power down the PHY, but leave the media selection
* unchanged so that things will be put back to normal when
* we bring the interface back up.
*/
itmp = ifp->if_flags;
ifp->if_flags |= IFF_UP;
/*
* If we are called from bce_detach(), mii is already NULL.
*/
if (mii != NULL) {
ifm = mii->mii_media.ifm_cur;
mtmp = ifm->ifm_media;
ifm->ifm_media = IFM_ETHER | IFM_NONE;
mii_mediachg(mii);
ifm->ifm_media = mtmp;
}
ifp->if_flags = itmp;
ifp->if_timer = 0;
sc->bce_link = 0;
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
bce_mgmt_init_locked(sc);
}
static int
bce_reset(struct bce_softc *sc, u32 reset_code)
{
u32 val;
int i, rc = 0;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Wait for pending PCI transactions to complete. */
REG_WR(sc, BCE_MISC_ENABLE_CLR_BITS,
BCE_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
BCE_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
BCE_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
BCE_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
val = REG_RD(sc, BCE_MISC_ENABLE_CLR_BITS);
DELAY(5);
/* Assume bootcode is running. */
sc->bce_fw_timed_out = 0;
/* Give the firmware a chance to prepare for the reset. */
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT0 | reset_code);
if (rc)
goto bce_reset_exit;
/* Set a firmware reminder that this is a soft reset. */
REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_RESET_SIGNATURE,
BCE_DRV_RESET_SIGNATURE_MAGIC);
/* Dummy read to force the chip to complete all current transactions. */
val = REG_RD(sc, BCE_MISC_ID);
/* Chip reset. */
val = BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BCE_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BCE_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
REG_WR(sc, BCE_PCICFG_MISC_CONFIG, val);
/* Allow up to 30us for reset to complete. */
for (i = 0; i < 10; i++) {
val = REG_RD(sc, BCE_PCICFG_MISC_CONFIG);
if ((val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
break;
}
DELAY(10);
}
/* Check that reset completed successfully. */
if (val & (BCE_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BCE_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
BCE_PRINTF(sc, "%s(%d): Reset failed!\n",
__FILE__, __LINE__);
rc = EBUSY;
goto bce_reset_exit;
}
/* Make sure byte swapping is properly configured. */
val = REG_RD(sc, BCE_PCI_SWAP_DIAG0);
if (val != 0x01020304) {
BCE_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
__FILE__, __LINE__);
rc = ENODEV;
goto bce_reset_exit;
}
/* Just completed a reset, assume that firmware is running again. */
sc->bce_fw_timed_out = 0;
/* Wait for the firmware to finish its initialization. */
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT1 | reset_code);
if (rc)
BCE_PRINTF(sc, "%s(%d): Firmware did not complete initialization!\n",
__FILE__, __LINE__);
bce_reset_exit:
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return (rc);
}
static int
bce_chipinit(struct bce_softc *sc)
{
u32 val;
int rc = 0;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Make sure the interrupt is not active. */
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD, BCE_PCICFG_INT_ACK_CMD_MASK_INT);
/* Initialize DMA byte/word swapping, configure the number of DMA */
/* channels and PCI clock compensation delay. */
val = BCE_DMA_CONFIG_DATA_BYTE_SWAP |
BCE_DMA_CONFIG_DATA_WORD_SWAP |
#if BYTE_ORDER == BIG_ENDIAN
BCE_DMA_CONFIG_CNTL_BYTE_SWAP |
#endif
BCE_DMA_CONFIG_CNTL_WORD_SWAP |
DMA_READ_CHANS << 12 |
DMA_WRITE_CHANS << 16;
val |= (0x2 << 20) | BCE_DMA_CONFIG_CNTL_PCI_COMP_DLY;
if ((sc->bce_flags & BCE_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
val |= BCE_DMA_CONFIG_PCI_FAST_CLK_CMP;
/*
* This setting resolves a problem observed on certain Intel PCI
* chipsets that cannot handle multiple outstanding DMA operations.
* See errata E9_5706A1_65.
*/
if ((BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
(BCE_CHIP_ID(sc) != BCE_CHIP_ID_5706_A0) &&
!(sc->bce_flags & BCE_PCIX_FLAG))
val |= BCE_DMA_CONFIG_CNTL_PING_PONG_DMA;
REG_WR(sc, BCE_DMA_CONFIG, val);
/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
if (sc->bce_flags & BCE_PCIX_FLAG) {
u16 val;
val = pci_read_config(sc->bce_dev, BCE_PCI_PCIX_CMD, 2);
pci_write_config(sc->bce_dev, BCE_PCI_PCIX_CMD, val & ~0x2, 2);
}
/* Enable the RX_V2P and Context state machines before access. */
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
BCE_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
BCE_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
BCE_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
/* Initialize context mapping and zero out the quick contexts. */
bce_init_context(sc);
/* Initialize the on-boards CPUs */
bce_init_cpus(sc);
/* Prepare NVRAM for access. */
if (bce_init_nvram(sc)) {
rc = ENODEV;
goto bce_chipinit_exit;
}
/* Set the kernel bypass block size */
val = REG_RD(sc, BCE_MQ_CONFIG);
val &= ~BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE;
val |= BCE_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
REG_WR(sc, BCE_MQ_CONFIG, val);
val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
REG_WR(sc, BCE_MQ_KNL_BYP_WIND_START, val);
REG_WR(sc, BCE_MQ_KNL_WIND_END, val);
val = (BCM_PAGE_BITS - 8) << 24;
REG_WR(sc, BCE_RV2P_CONFIG, val);
/* Configure page size. */
val = REG_RD(sc, BCE_TBDR_CONFIG);
val &= ~BCE_TBDR_CONFIG_PAGE_SIZE;
val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
REG_WR(sc, BCE_TBDR_CONFIG, val);
bce_chipinit_exit:
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return(rc);
}
/****************************************************************************/
/* Initialize the controller in preparation to send/receive traffic. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_blockinit(struct bce_softc *sc)
{
u32 reg, val;
int rc = 0;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Load the hardware default MAC address. */
bce_set_mac_addr(sc);
/* Set the Ethernet backoff seed value */
val = sc->eaddr[0] + (sc->eaddr[1] << 8) +
(sc->eaddr[2] << 16) + (sc->eaddr[3] ) +
(sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
REG_WR(sc, BCE_EMAC_BACKOFF_SEED, val);
sc->last_status_idx = 0;
sc->rx_mode = BCE_EMAC_RX_MODE_SORT_MODE;
/* Set up link change interrupt generation. */
REG_WR(sc, BCE_EMAC_ATTENTION_ENA, BCE_EMAC_ATTENTION_ENA_LINK);
/* Program the physical address of the status block. */
REG_WR(sc, BCE_HC_STATUS_ADDR_L,
BCE_ADDR_LO(sc->status_block_paddr));
REG_WR(sc, BCE_HC_STATUS_ADDR_H,
BCE_ADDR_HI(sc->status_block_paddr));
/* Program the physical address of the statistics block. */
REG_WR(sc, BCE_HC_STATISTICS_ADDR_L,
BCE_ADDR_LO(sc->stats_block_paddr));
REG_WR(sc, BCE_HC_STATISTICS_ADDR_H,
BCE_ADDR_HI(sc->stats_block_paddr));
/* Program various host coalescing parameters. */
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
(sc->bce_tx_quick_cons_trip_int << 16) | sc->bce_tx_quick_cons_trip);
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
(sc->bce_rx_quick_cons_trip_int << 16) | sc->bce_rx_quick_cons_trip);
REG_WR(sc, BCE_HC_COMP_PROD_TRIP,
(sc->bce_comp_prod_trip_int << 16) | sc->bce_comp_prod_trip);
REG_WR(sc, BCE_HC_TX_TICKS,
(sc->bce_tx_ticks_int << 16) | sc->bce_tx_ticks);
REG_WR(sc, BCE_HC_RX_TICKS,
(sc->bce_rx_ticks_int << 16) | sc->bce_rx_ticks);
REG_WR(sc, BCE_HC_COM_TICKS,
(sc->bce_com_ticks_int << 16) | sc->bce_com_ticks);
REG_WR(sc, BCE_HC_CMD_TICKS,
(sc->bce_cmd_ticks_int << 16) | sc->bce_cmd_ticks);
REG_WR(sc, BCE_HC_STATS_TICKS,
(sc->bce_stats_ticks & 0xffff00));
REG_WR(sc, BCE_HC_STAT_COLLECT_TICKS,
0xbb8); /* 3ms */
REG_WR(sc, BCE_HC_CONFIG,
(BCE_HC_CONFIG_RX_TMR_MODE | BCE_HC_CONFIG_TX_TMR_MODE |
BCE_HC_CONFIG_COLLECT_STATS));
/* Clear the internal statistics counters. */
REG_WR(sc, BCE_HC_COMMAND, BCE_HC_COMMAND_CLR_STAT_NOW);
/* Verify that bootcode is running. */
reg = REG_RD_IND(sc, sc->bce_shmem_base + BCE_DEV_INFO_SIGNATURE);
DBRUNIF(DB_RANDOMTRUE(bce_debug_bootcode_running_failure),
BCE_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
__FILE__, __LINE__);
reg = 0);
if ((reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
BCE_DEV_INFO_SIGNATURE_MAGIC) {
BCE_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
"Expected: 08%08X\n", __FILE__, __LINE__,
(reg & BCE_DEV_INFO_SIGNATURE_MAGIC_MASK),
BCE_DEV_INFO_SIGNATURE_MAGIC);
rc = ENODEV;
goto bce_blockinit_exit;
}
/* Check if any management firmware is running. */
reg = REG_RD_IND(sc, sc->bce_shmem_base + BCE_PORT_FEATURE);
if (reg & (BCE_PORT_FEATURE_ASF_ENABLED | BCE_PORT_FEATURE_IMD_ENABLED)) {
DBPRINT(sc, BCE_INFO, "Management F/W Enabled.\n");
sc->bce_flags |= BCE_MFW_ENABLE_FLAG;
}
sc->bce_fw_ver = REG_RD_IND(sc, sc->bce_shmem_base + BCE_DEV_INFO_BC_REV);
DBPRINT(sc, BCE_INFO, "bootcode rev = 0x%08X\n", sc->bce_fw_ver);
/* Allow bootcode to apply any additional fixes before enabling MAC. */
rc = bce_fw_sync(sc, BCE_DRV_MSG_DATA_WAIT2 | BCE_DRV_MSG_CODE_RESET);
/* Enable link state change interrupt generation. */
REG_WR(sc, BCE_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
/* Enable all remaining blocks in the MAC. */
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS, 0x5ffffff);
REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
DELAY(20);
bce_blockinit_exit:
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return (rc);
}
/****************************************************************************/
/* Encapsulate an mbuf cluster into the rx_bd chain. */
/* */
/* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
/* This routine will map an mbuf cluster into 1 or more rx_bd's as */
/* necessary. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_get_buf(struct bce_softc *sc, struct mbuf *m, u16 *prod, u16 *chain_prod,
u32 *prod_bseq)
{
bus_dmamap_t map;
bus_dma_segment_t segs[4];
struct mbuf *m_new = NULL;
struct rx_bd *rxbd;
int i, nsegs, error, rc = 0;
#ifdef BCE_DEBUG
u16 debug_chain_prod = *chain_prod;
#endif
DBPRINT(sc, (BCE_VERBOSE_RESET | BCE_VERBOSE_RECV), "Entering %s()\n",
__FUNCTION__);
/* Make sure the inputs are valid. */
DBRUNIF((*chain_prod > MAX_RX_BD),
BCE_PRINTF(sc, "%s(%d): RX producer out of range: 0x%04X > 0x%04X\n",
__FILE__, __LINE__, *chain_prod, (u16) MAX_RX_BD));
DBPRINT(sc, BCE_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = 0x%04X, "
"prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq);
if (m == NULL) {
DBRUNIF(DB_RANDOMTRUE(bce_debug_mbuf_allocation_failure),
BCE_PRINTF(sc, "%s(%d): Simulating mbuf allocation failure.\n",
__FILE__, __LINE__);
sc->mbuf_alloc_failed++;
rc = ENOBUFS;
goto bce_get_buf_exit);
/* This is a new mbuf allocation. */
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
DBPRINT(sc, BCE_WARN, "%s(%d): RX mbuf header allocation failed!\n",
__FILE__, __LINE__);
DBRUNIF(1, sc->mbuf_alloc_failed++);
rc = ENOBUFS;
goto bce_get_buf_exit;
}
DBRUNIF(1, sc->rx_mbuf_alloc++);
m_cljget(m_new, M_DONTWAIT, sc->mbuf_alloc_size);
if (!(m_new->m_flags & M_EXT)) {
DBPRINT(sc, BCE_WARN, "%s(%d): RX mbuf chain allocation failed!\n",
__FILE__, __LINE__);
m_freem(m_new);
DBRUNIF(1, sc->rx_mbuf_alloc--);
DBRUNIF(1, sc->mbuf_alloc_failed++);
rc = ENOBUFS;
goto bce_get_buf_exit;
}
m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
} else {
m_new = m;
m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
m_new->m_data = m_new->m_ext.ext_buf;
}
/* Map the mbuf cluster into device memory. */
map = sc->rx_mbuf_map[*chain_prod];
error = bus_dmamap_load_mbuf_sg(sc->rx_mbuf_tag, map, m_new,
segs, &nsegs, BUS_DMA_NOWAIT);
if (error) {
BCE_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
__FILE__, __LINE__);
m_freem(m_new);
DBRUNIF(1, sc->rx_mbuf_alloc--);
rc = ENOBUFS;
goto bce_get_buf_exit;
}
/* Watch for overflow. */
DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
BCE_PRINTF(sc, "%s(%d): Too many free rx_bd (0x%04X > 0x%04X)!\n",
__FILE__, __LINE__, sc->free_rx_bd, (u16) USABLE_RX_BD));
DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
sc->rx_low_watermark = sc->free_rx_bd);
/* Setup the rx_bd for the first segment. */
rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[0].ds_addr));
rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[0].ds_addr));
rxbd->rx_bd_len = htole32(segs[0].ds_len);
rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
*prod_bseq += segs[0].ds_len;
for (i = 1; i < nsegs; i++) {
*prod = NEXT_RX_BD(*prod);
*chain_prod = RX_CHAIN_IDX(*prod);
rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(segs[i].ds_addr));
rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(segs[i].ds_addr));
rxbd->rx_bd_len = htole32(segs[i].ds_len);
rxbd->rx_bd_flags = 0;
*prod_bseq += segs[i].ds_len;
}
rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
/* Save the mbuf and update our counter. */
sc->rx_mbuf_ptr[*chain_prod] = m_new;
sc->free_rx_bd -= nsegs;
DBRUN(BCE_VERBOSE_RECV, bce_dump_rx_mbuf_chain(sc, debug_chain_prod,
nsegs));
DBPRINT(sc, BCE_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod = 0x%04X, "
"prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod, *prod_bseq);
bce_get_buf_exit:
DBPRINT(sc, (BCE_VERBOSE_RESET | BCE_VERBOSE_RECV), "Exiting %s()\n",
__FUNCTION__);
return(rc);
}
/****************************************************************************/
/* Allocate memory and initialize the TX data structures. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_init_tx_chain(struct bce_softc *sc)
{
struct tx_bd *txbd;
u32 val;
int i, rc = 0;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Set the initial TX producer/consumer indices. */
sc->tx_prod = 0;
sc->tx_cons = 0;
sc->tx_prod_bseq = 0;
sc->used_tx_bd = 0;
DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
/*
* The NetXtreme II supports a linked-list structre called
* a Buffer Descriptor Chain (or BD chain). A BD chain
* consists of a series of 1 or more chain pages, each of which
* consists of a fixed number of BD entries.
* The last BD entry on each page is a pointer to the next page
* in the chain, and the last pointer in the BD chain
* points back to the beginning of the chain.
*/
/* Set the TX next pointer chain entries. */
for (i = 0; i < TX_PAGES; i++) {
int j;
txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
/* Check if we've reached the last page. */
if (i == (TX_PAGES - 1))
j = 0;
else
j = i + 1;
txbd->tx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->tx_bd_chain_paddr[j]));
txbd->tx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->tx_bd_chain_paddr[j]));
}
/*
* Initialize the context ID for an L2 TX chain.
*/
val = BCE_L2CTX_TYPE_TYPE_L2;
val |= BCE_L2CTX_TYPE_SIZE_L2;
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TYPE, val);
val = BCE_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_CMD_TYPE, val);
/* Point the hardware to the first page in the chain. */
val = BCE_ADDR_HI(sc->tx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TBDR_BHADDR_HI, val);
val = BCE_ADDR_LO(sc->tx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(TX_CID), BCE_L2CTX_TBDR_BHADDR_LO, val);
DBRUN(BCE_VERBOSE_SEND, bce_dump_tx_chain(sc, 0, TOTAL_TX_BD));
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return(rc);
}
/****************************************************************************/
/* Free memory and clear the TX data structures. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_free_tx_chain(struct bce_softc *sc)
{
int i;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
for (i = 0; i < TOTAL_TX_BD; i++) {
if (sc->tx_mbuf_ptr[i] != NULL) {
if (sc->tx_mbuf_map != NULL)
bus_dmamap_sync(sc->tx_mbuf_tag, sc->tx_mbuf_map[i],
BUS_DMASYNC_POSTWRITE);
m_freem(sc->tx_mbuf_ptr[i]);
sc->tx_mbuf_ptr[i] = NULL;
DBRUNIF(1, sc->tx_mbuf_alloc--);
}
}
/* Clear each TX chain page. */
for (i = 0; i < TX_PAGES; i++)
bzero((char *)sc->tx_bd_chain[i], BCE_TX_CHAIN_PAGE_SZ);
/* Check if we lost any mbufs in the process. */
DBRUNIF((sc->tx_mbuf_alloc),
BCE_PRINTF(sc, "%s(%d): Memory leak! Lost %d mbufs "
"from tx chain!\n",
__FILE__, __LINE__, sc->tx_mbuf_alloc));
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
}
/****************************************************************************/
/* Allocate memory and initialize the RX data structures. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_init_rx_chain(struct bce_softc *sc)
{
struct rx_bd *rxbd;
int i, rc = 0;
u16 prod, chain_prod;
u32 prod_bseq, val;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Initialize the RX producer and consumer indices. */
sc->rx_prod = 0;
sc->rx_cons = 0;
sc->rx_prod_bseq = 0;
sc->free_rx_bd = BCE_RX_SLACK_SPACE;
DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
/* Initialize the RX next pointer chain entries. */
for (i = 0; i < RX_PAGES; i++) {
int j;
rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
/* Check if we've reached the last page. */
if (i == (RX_PAGES - 1))
j = 0;
else
j = i + 1;
/* Setup the chain page pointers. */
rxbd->rx_bd_haddr_hi = htole32(BCE_ADDR_HI(sc->rx_bd_chain_paddr[j]));
rxbd->rx_bd_haddr_lo = htole32(BCE_ADDR_LO(sc->rx_bd_chain_paddr[j]));
}
/* Initialize the context ID for an L2 RX chain. */
val = BCE_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
val |= BCE_L2CTX_CTX_TYPE_SIZE_L2;
val |= 0x02 << 8;
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_CTX_TYPE, val);
/* Point the hardware to the first page in the chain. */
val = BCE_ADDR_HI(sc->rx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_NX_BDHADDR_HI, val);
val = BCE_ADDR_LO(sc->rx_bd_chain_paddr[0]);
CTX_WR(sc, GET_CID_ADDR(RX_CID), BCE_L2CTX_NX_BDHADDR_LO, val);
/* Allocate mbuf clusters for the rx_bd chain. */
prod = prod_bseq = 0;
while (prod < BCE_RX_SLACK_SPACE) {
chain_prod = RX_CHAIN_IDX(prod);
if (bce_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
BCE_PRINTF(sc, "%s(%d): Error filling RX chain: rx_bd[0x%04X]!\n",
__FILE__, __LINE__, chain_prod);
rc = ENOBUFS;
break;
}
prod = NEXT_RX_BD(prod);
}
/* Save the RX chain producer index. */
sc->rx_prod = prod;
sc->rx_prod_bseq = prod_bseq;
for (i = 0; i < RX_PAGES; i++) {
bus_dmamap_sync(
sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i],
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/* Tell the chip about the waiting rx_bd's. */
REG_WR16(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BDIDX, sc->rx_prod);
REG_WR(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
DBRUN(BCE_VERBOSE_RECV, bce_dump_rx_chain(sc, 0, TOTAL_RX_BD));
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return(rc);
}
/****************************************************************************/
/* Free memory and clear the RX data structures. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_free_rx_chain(struct bce_softc *sc)
{
int i;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
/* Free any mbufs still in the RX mbuf chain. */
for (i = 0; i < TOTAL_RX_BD; i++) {
if (sc->rx_mbuf_ptr[i] != NULL) {
if (sc->rx_mbuf_map[i] != NULL)
bus_dmamap_sync(sc->rx_mbuf_tag, sc->rx_mbuf_map[i],
BUS_DMASYNC_POSTREAD);
m_freem(sc->rx_mbuf_ptr[i]);
sc->rx_mbuf_ptr[i] = NULL;
DBRUNIF(1, sc->rx_mbuf_alloc--);
}
}
/* Clear each RX chain page. */
for (i = 0; i < RX_PAGES; i++)
bzero((char *)sc->rx_bd_chain[i], BCE_RX_CHAIN_PAGE_SZ);
/* Check if we lost any mbufs in the process. */
DBRUNIF((sc->rx_mbuf_alloc),
BCE_PRINTF(sc, "%s(%d): Memory leak! Lost %d mbufs from rx chain!\n",
__FILE__, __LINE__, sc->rx_mbuf_alloc));
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
}
/****************************************************************************/
/* Set media options. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_ifmedia_upd(struct ifnet *ifp)
{
struct bce_softc *sc;
struct mii_data *mii;
struct ifmedia *ifm;
int rc = 0;
sc = ifp->if_softc;
ifm = &sc->bce_ifmedia;
/* DRC - ToDo: Add SerDes support. */
mii = device_get_softc(sc->bce_miibus);
sc->bce_link = 0;
if (mii->mii_instance) {
struct mii_softc *miisc;
for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
miisc = LIST_NEXT(miisc, mii_list))
mii_phy_reset(miisc);
}
mii_mediachg(mii);
return(rc);
}
/****************************************************************************/
/* Reports current media status. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct bce_softc *sc;
struct mii_data *mii;
sc = ifp->if_softc;
BCE_LOCK(sc);
mii = device_get_softc(sc->bce_miibus);
/* DRC - ToDo: Add SerDes support. */
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
BCE_UNLOCK(sc);
}
/****************************************************************************/
/* Handles PHY generated interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_phy_intr(struct bce_softc *sc)
{
u32 new_link_state, old_link_state;
new_link_state = sc->status_block->status_attn_bits &
STATUS_ATTN_BITS_LINK_STATE;
old_link_state = sc->status_block->status_attn_bits_ack &
STATUS_ATTN_BITS_LINK_STATE;
/* Handle any changes if the link state has changed. */
if (new_link_state != old_link_state) {
DBRUN(BCE_VERBOSE_INTR, bce_dump_status_block(sc));
sc->bce_link = 0;
callout_stop(&sc->bce_stat_ch);
bce_tick_locked(sc);
/* Update the status_attn_bits_ack field in the status block. */
if (new_link_state) {
REG_WR(sc, BCE_PCICFG_STATUS_BIT_SET_CMD,
STATUS_ATTN_BITS_LINK_STATE);
DBPRINT(sc, BCE_INFO, "Link is now UP.\n");
}
else {
REG_WR(sc, BCE_PCICFG_STATUS_BIT_CLEAR_CMD,
STATUS_ATTN_BITS_LINK_STATE);
DBPRINT(sc, BCE_INFO, "Link is now DOWN.\n");
}
}
/* Acknowledge the link change interrupt. */
REG_WR(sc, BCE_EMAC_STATUS, BCE_EMAC_STATUS_LINK_CHANGE);
}
/****************************************************************************/
/* Handles received frame interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_rx_intr(struct bce_softc *sc)
{
struct status_block *sblk = sc->status_block;
struct ifnet *ifp = sc->bce_ifp;
u16 hw_cons, sw_cons, sw_chain_cons, sw_prod, sw_chain_prod;
u32 sw_prod_bseq;
struct l2_fhdr *l2fhdr;
DBRUNIF(1, sc->rx_interrupts++);
/* Prepare the RX chain pages to be accessed by the host CPU. */
for (int i = 0; i < RX_PAGES; i++)
bus_dmamap_sync(sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i], BUS_DMASYNC_POSTWRITE);
/* Get the hardware's view of the RX consumer index. */
hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
hw_cons++;
/* Get working copies of the driver's view of the RX indices. */
sw_cons = sc->rx_cons;
sw_prod = sc->rx_prod;
sw_prod_bseq = sc->rx_prod_bseq;
DBPRINT(sc, BCE_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
"sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
__FUNCTION__, sw_prod, sw_cons,
sw_prod_bseq);
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
sc->rx_low_watermark = sc->free_rx_bd);
/*
* Scan through the receive chain as long
* as there is work to do.
*/
while (sw_cons != hw_cons) {
struct mbuf *m;
struct rx_bd *rxbd;
unsigned int len;
u32 status;
/* Convert the producer/consumer indices to an actual rx_bd index. */
sw_chain_cons = RX_CHAIN_IDX(sw_cons);
sw_chain_prod = RX_CHAIN_IDX(sw_prod);
/* Get the used rx_bd. */
rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
sc->free_rx_bd++;
DBRUN(BCE_VERBOSE_RECV,
BCE_PRINTF(sc, "%s(): ", __FUNCTION__);
bce_dump_rxbd(sc, sw_chain_cons, rxbd));
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
if (sc->bce_rxcycles <= 0)
break;
sc->bce_rxcycles--;
}
#endif
/* The mbuf is stored with the last rx_bd entry of a packet. */
if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
/* Validate that this is the last rx_bd. */
DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)),
BCE_PRINTF(sc, "%s(%d): Unexpected mbuf found in rx_bd[0x%04X]!\n",
__FILE__, __LINE__, sw_chain_cons);
bce_breakpoint(sc));
/* DRC - ToDo: If the received packet is small, say less */
/* than 128 bytes, allocate a new mbuf here, */
/* copy the data to that mbuf, and recycle */
/* the mapped jumbo frame. */
/* Unmap the mbuf from DMA space. */
bus_dmamap_sync(sc->rx_mbuf_tag,
sc->rx_mbuf_map[sw_chain_cons],
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->rx_mbuf_tag,
sc->rx_mbuf_map[sw_chain_cons]);
/* Remove the mbuf from the driver's chain. */
m = sc->rx_mbuf_ptr[sw_chain_cons];
sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
/*
* Frames received on the NetXteme II are prepended
* with the l2_fhdr structure which provides status
* information about the received frame (including
* VLAN tags and checksum info) and are also
* automatically adjusted to align the IP header
* (i.e. two null bytes are inserted before the
* Ethernet header).
*/
l2fhdr = mtod(m, struct l2_fhdr *);
len = l2fhdr->l2_fhdr_pkt_len;
status = l2fhdr->l2_fhdr_status;
DBRUNIF(DB_RANDOMTRUE(bce_debug_l2fhdr_status_check),
BCE_PRINTF(sc, "Simulating l2_fhdr status error.\n");
status = status | L2_FHDR_ERRORS_PHY_DECODE);
/* Watch for unusual sized frames. */
DBRUNIF(((len < BCE_MIN_MTU) || (len > BCE_MAX_JUMBO_ETHER_MTU_VLAN)),
BCE_PRINTF(sc, "%s(%d): Unusual frame size found. "
"Min(%d), Actual(%d), Max(%d)\n",
__FILE__, __LINE__, (int) BCE_MIN_MTU,
len, (int) BCE_MAX_JUMBO_ETHER_MTU_VLAN);
bce_dump_mbuf(sc, m);
bce_breakpoint(sc));
len -= ETHER_CRC_LEN;
/* Check the received frame for errors. */
if (status & (L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE | L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT | L2_FHDR_ERRORS_GIANT_FRAME)) {
ifp->if_ierrors++;
DBRUNIF(1, sc->l2fhdr_status_errors++);
/* Reuse the mbuf for a new frame. */
if (bce_get_buf(sc, m, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) {
DBRUNIF(1, bce_breakpoint(sc));
panic("bce%d: Can't reuse RX mbuf!\n", sc->bce_unit);
}
goto bce_rx_int_next_rx;
}
/*
* Get a new mbuf for the rx_bd. If no new
* mbufs are available then reuse the current mbuf,
* log an ierror on the interface, and generate
* an error in the system log.
*/
if (bce_get_buf(sc, NULL, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) {
DBRUN(BCE_WARN,
BCE_PRINTF(sc, "%s(%d): Failed to allocate "
"new mbuf, incoming frame dropped!\n",
__FILE__, __LINE__));
ifp->if_ierrors++;
/* Try and reuse the exisitng mbuf. */
if (bce_get_buf(sc, m, &sw_prod, &sw_chain_prod, &sw_prod_bseq)) {
DBRUNIF(1, bce_breakpoint(sc));
panic("bce%d: Double mbuf allocation failure!", sc->bce_unit);
}
goto bce_rx_int_next_rx;
}
/* Skip over the l2_fhdr when passing the data up the stack. */
m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
/* Adjust the packet length to match the received data. */
m->m_pkthdr.len = m->m_len = len;
/* Send the packet to the appropriate interface. */
m->m_pkthdr.rcvif = ifp;
DBRUN(BCE_VERBOSE_RECV,
struct ether_header *eh;
eh = mtod(m, struct ether_header *);
BCE_PRINTF(sc, "%s(): to: %6D, from: %6D, type: 0x%04X\n",
__FUNCTION__, eh->ether_dhost, ":",
eh->ether_shost, ":", htons(eh->ether_type)));
/* Validate the checksum if offload enabled. */
if (ifp->if_capenable & IFCAP_RXCSUM) {
/* Check for an IP datagram. */
if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
/* Check if the IP checksum is valid. */
if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
else
DBPRINT(sc, BCE_WARN_SEND,
"%s(): Invalid IP checksum = 0x%04X!\n",
__FUNCTION__, l2fhdr->l2_fhdr_ip_xsum);
}
/* Check for a valid TCP/UDP frame. */
if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
L2_FHDR_STATUS_UDP_DATAGRAM)) {
/* Check for a good TCP/UDP checksum. */
if ((status & (L2_FHDR_ERRORS_TCP_XSUM |
L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
m->m_pkthdr.csum_data =
l2fhdr->l2_fhdr_tcp_udp_xsum;
m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID
| CSUM_PSEUDO_HDR);
} else
DBPRINT(sc, BCE_WARN_SEND,
"%s(): Invalid TCP/UDP checksum = 0x%04X!\n",
__FUNCTION__, l2fhdr->l2_fhdr_tcp_udp_xsum);
}
}
/*
* If we received a packet with a vlan tag,
* attach that information to the packet.
*/
if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): VLAN tag = 0x%04X\n",
__FUNCTION__, l2fhdr->l2_fhdr_vlan_tag);
#if __FreeBSD_version < 700000
VLAN_INPUT_TAG(ifp, m, l2fhdr->l2_fhdr_vlan_tag, continue);
#else
m->m_pkthdr.ether_vtag = l2fhdr->l2_fhdr_vlan_tag;
m->m_flags |= M_VLANTAG;
#endif
}
/* Pass the mbuf off to the upper layers. */
ifp->if_ipackets++;
DBPRINT(sc, BCE_VERBOSE_RECV, "%s(): Passing received frame up.\n",
__FUNCTION__);
BCE_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
DBRUNIF(1, sc->rx_mbuf_alloc--);
BCE_LOCK(sc);
bce_rx_int_next_rx:
sw_prod = NEXT_RX_BD(sw_prod);
}
sw_cons = NEXT_RX_BD(sw_cons);
/* Refresh hw_cons to see if there's new work */
if (sw_cons == hw_cons) {
hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
hw_cons++;
}
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
}
for (int i = 0; i < RX_PAGES; i++)
bus_dmamap_sync(sc->rx_bd_chain_tag,
sc->rx_bd_chain_map[i], BUS_DMASYNC_PREWRITE);
sc->rx_cons = sw_cons;
sc->rx_prod = sw_prod;
sc->rx_prod_bseq = sw_prod_bseq;
REG_WR16(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BDIDX, sc->rx_prod);
REG_WR(sc, MB_RX_CID_ADDR + BCE_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
DBPRINT(sc, BCE_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
"rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
__FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
}
/****************************************************************************/
/* Handles transmit completion interrupt events. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_tx_intr(struct bce_softc *sc)
{
struct status_block *sblk = sc->status_block;
struct ifnet *ifp = sc->bce_ifp;
u16 hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
BCE_LOCK_ASSERT(sc);
DBRUNIF(1, sc->tx_interrupts++);
/* Get the hardware's view of the TX consumer index. */
hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
/* Skip to the next entry if this is a chain page pointer. */
if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
hw_tx_cons++;
sw_tx_cons = sc->tx_cons;
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
/* Cycle through any completed TX chain page entries. */
while (sw_tx_cons != hw_tx_cons) {
#ifdef BCE_DEBUG
struct tx_bd *txbd = NULL;
#endif
sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
DBPRINT(sc, BCE_INFO_SEND,
"%s(): hw_tx_cons = 0x%04X, sw_tx_cons = 0x%04X, "
"sw_tx_chain_cons = 0x%04X\n",
__FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
BCE_PRINTF(sc, "%s(%d): TX chain consumer out of range! "
" 0x%04X > 0x%04X\n",
__FILE__, __LINE__, sw_tx_chain_cons,
(int) MAX_TX_BD);
bce_breakpoint(sc));
DBRUNIF(1,
txbd = &sc->tx_bd_chain[TX_PAGE(sw_tx_chain_cons)]
[TX_IDX(sw_tx_chain_cons)]);
DBRUNIF((txbd == NULL),
BCE_PRINTF(sc, "%s(%d): Unexpected NULL tx_bd[0x%04X]!\n",
__FILE__, __LINE__, sw_tx_chain_cons);
bce_breakpoint(sc));
DBRUN(BCE_INFO_SEND,
BCE_PRINTF(sc, "%s(): ", __FUNCTION__);
bce_dump_txbd(sc, sw_tx_chain_cons, txbd));
/*
* Free the associated mbuf. Remember
* that only the last tx_bd of a packet
* has an mbuf pointer and DMA map.
*/
if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
/* Validate that this is the last tx_bd. */
DBRUNIF((!(txbd->tx_bd_vlan_tag_flags & TX_BD_FLAGS_END)),
BCE_PRINTF(sc, "%s(%d): tx_bd END flag not set but "
"txmbuf == NULL!\n", __FILE__, __LINE__);
bce_breakpoint(sc));
DBRUN(BCE_INFO_SEND,
BCE_PRINTF(sc, "%s(): Unloading map/freeing mbuf "
"from tx_bd[0x%04X]\n", __FUNCTION__, sw_tx_chain_cons));
/* Unmap the mbuf. */
bus_dmamap_unload(sc->tx_mbuf_tag,
sc->tx_mbuf_map[sw_tx_chain_cons]);
/* Free the mbuf. */
m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
DBRUNIF(1, sc->tx_mbuf_alloc--);
ifp->if_opackets++;
}
sc->used_tx_bd--;
sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
/* Refresh hw_cons to see if there's new work. */
hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
hw_tx_cons++;
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
}
/* Clear the TX timeout timer. */
ifp->if_timer = 0;
/* Clear the tx hardware queue full flag. */
if ((sc->used_tx_bd + BCE_TX_SLACK_SPACE) < USABLE_TX_BD) {
DBRUNIF((ifp->if_drv_flags & IFF_DRV_OACTIVE),
BCE_PRINTF(sc, "%s(): TX chain is open for business! Used tx_bd = %d\n",
__FUNCTION__, sc->used_tx_bd));
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
}
sc->tx_cons = sw_tx_cons;
}
/****************************************************************************/
/* Disables interrupt generation. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_disable_intr(struct bce_softc *sc)
{
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_MASK_INT);
REG_RD(sc, BCE_PCICFG_INT_ACK_CMD);
}
/****************************************************************************/
/* Enables interrupt generation. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_enable_intr(struct bce_softc *sc)
{
u32 val;
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID |
BCE_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
val = REG_RD(sc, BCE_HC_COMMAND);
REG_WR(sc, BCE_HC_COMMAND, val | BCE_HC_COMMAND_COAL_NOW);
}
/****************************************************************************/
/* Handles controller initialization. */
/* */
/* Must be called from a locked routine. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init_locked(struct bce_softc *sc)
{
struct ifnet *ifp;
u32 ether_mtu;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
BCE_LOCK_ASSERT(sc);
ifp = sc->bce_ifp;
/* Check if the driver is still running and bail out if it is. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
goto bce_init_locked_exit;
bce_stop(sc);
if (bce_reset(sc, BCE_DRV_MSG_CODE_RESET)) {
BCE_PRINTF(sc, "%s(%d): Controller reset failed!\n",
__FILE__, __LINE__);
goto bce_init_locked_exit;
}
if (bce_chipinit(sc)) {
BCE_PRINTF(sc, "%s(%d): Controller initialization failed!\n",
__FILE__, __LINE__);
goto bce_init_locked_exit;
}
if (bce_blockinit(sc)) {
BCE_PRINTF(sc, "%s(%d): Block initialization failed!\n",
__FILE__, __LINE__);
goto bce_init_locked_exit;
}
/* Load our MAC address. */
bcopy(IF_LLADDR(sc->bce_ifp), sc->eaddr, ETHER_ADDR_LEN);
bce_set_mac_addr(sc);
/* Calculate and program the Ethernet MTU size. */
ether_mtu = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ifp->if_mtu +
ETHER_CRC_LEN;
DBPRINT(sc, BCE_INFO, "%s(): setting mtu = %d\n",__FUNCTION__, ether_mtu);
/*
* Program the mtu, enabling jumbo frame
* support if necessary. Also set the mbuf
* allocation count for RX frames.
*/
if (ether_mtu > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu |
BCE_EMAC_RX_MTU_SIZE_JUMBO_ENA);
sc->mbuf_alloc_size = MJUM9BYTES;
} else {
REG_WR(sc, BCE_EMAC_RX_MTU_SIZE, ether_mtu);
sc->mbuf_alloc_size = MCLBYTES;
}
/* Calculate the RX Ethernet frame size for rx_bd's. */
sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
DBPRINT(sc, BCE_INFO,
"%s(): mclbytes = %d, mbuf_alloc_size = %d, "
"max_frame_size = %d\n",
__FUNCTION__, (int) MCLBYTES, sc->mbuf_alloc_size, sc->max_frame_size);
/* Program appropriate promiscuous/multicast filtering. */
bce_set_rx_mode(sc);
/* Init RX buffer descriptor chain. */
bce_init_rx_chain(sc);
/* Init TX buffer descriptor chain. */
bce_init_tx_chain(sc);
#ifdef DEVICE_POLLING
/* Disable interrupts if we are polling. */
if (ifp->if_capenable & IFCAP_POLLING) {
bce_disable_intr(sc);
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
(1 << 16) | sc->bce_rx_quick_cons_trip);
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
(1 << 16) | sc->bce_tx_quick_cons_trip);
} else
#endif
/* Enable host interrupts. */
bce_enable_intr(sc);
bce_ifmedia_upd(ifp);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
callout_reset(&sc->bce_stat_ch, hz, bce_tick, sc);
bce_init_locked_exit:
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return;
}
static void
bce_mgmt_init_locked(struct bce_softc *sc)
{
u32 val;
struct ifnet *ifp;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
BCE_LOCK_ASSERT(sc);
ifp = sc->bce_ifp;
/* Check if the driver is still running and bail out if it is. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
goto bce_mgmt_init_locked_exit;
/* Initialize the on-boards CPUs */
bce_init_cpus(sc);
val = (BCM_PAGE_BITS - 8) << 24;
REG_WR(sc, BCE_RV2P_CONFIG, val);
/* Enable all critical blocks in the MAC. */
REG_WR(sc, BCE_MISC_ENABLE_SET_BITS,
BCE_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
BCE_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
BCE_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
REG_RD(sc, BCE_MISC_ENABLE_SET_BITS);
DELAY(20);
bce_ifmedia_upd(ifp);
bce_mgmt_init_locked_exit:
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return;
}
/****************************************************************************/
/* Handles controller initialization when called from an unlocked routine. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_init(void *xsc)
{
struct bce_softc *sc = xsc;
BCE_LOCK(sc);
bce_init_locked(sc);
BCE_UNLOCK(sc);
}
/****************************************************************************/
/* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
/* memory visible to the controller. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_tx_encap(struct bce_softc *sc, struct mbuf *m_head, u16 *prod,
u16 *chain_prod, u32 *prod_bseq)
{
u32 vlan_tag_flags = 0;
struct bce_dmamap_arg map_arg;
bus_dmamap_t map;
int error, rc = 0;
/* Transfer any checksum offload flags to the bd. */
if (m_head->m_pkthdr.csum_flags) {
if (m_head->m_pkthdr.csum_flags & CSUM_IP)
vlan_tag_flags |= TX_BD_FLAGS_IP_CKSUM;
if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
}
/* Transfer any VLAN tags to the bd. */
if (m_head->m_flags & M_VLANTAG)
vlan_tag_flags |= (TX_BD_FLAGS_VLAN_TAG |
(m_head->m_pkthdr.ether_vtag << 16));
/* Map the mbuf into DMAable memory. */
map = sc->tx_mbuf_map[*chain_prod];
map_arg.sc = sc;
map_arg.prod = *prod;
map_arg.chain_prod = *chain_prod;
map_arg.prod_bseq = *prod_bseq;
map_arg.tx_flags = vlan_tag_flags;
map_arg.maxsegs = USABLE_TX_BD - sc->used_tx_bd -
BCE_TX_SLACK_SPACE;
KASSERT(map_arg.maxsegs > 0, ("Invalid TX maxsegs value!"));
/* Map the mbuf into our DMA address space. */
error = bus_dmamap_load_mbuf(sc->tx_mbuf_tag, map, m_head,
bce_dma_map_tx_desc, &map_arg, BUS_DMA_NOWAIT);
if (error || map_arg.maxsegs == 0) {
/* Try to defrag the mbuf if there are too many segments. */
if (error == EFBIG && map_arg.maxsegs != 0) {
struct mbuf *m0;
DBPRINT(sc, BCE_WARN, "%s(): fragmented mbuf (%d pieces)\n",
__FUNCTION__, map_arg.maxsegs);
m0 = m_defrag(m_head, M_DONTWAIT);
if (m0 != NULL) {
m_head = m0;
error = bus_dmamap_load_mbuf(sc->tx_mbuf_tag,
map, m_head, bce_dma_map_tx_desc, &map_arg,
BUS_DMA_NOWAIT);
}
}
/* Still getting an error after a defrag. */
if (error) {
BCE_PRINTF(sc,
"%s(%d): Error mapping mbuf into TX chain!\n",
__FILE__, __LINE__);
rc = ENOBUFS;
goto bce_tx_encap_exit;
}
}
/*
* Ensure that the map for this transmission
* is placed at the array index of the last
* descriptor in this chain. This is done
* because a single map is used for all
* segments of the mbuf and we don't want to
* delete the map before all of the segments
* have been freed.
*/
sc->tx_mbuf_map[*chain_prod] =
sc->tx_mbuf_map[map_arg.chain_prod];
sc->tx_mbuf_map[map_arg.chain_prod] = map;
sc->tx_mbuf_ptr[map_arg.chain_prod] = m_head;
sc->used_tx_bd += map_arg.maxsegs;
DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
sc->tx_hi_watermark = sc->used_tx_bd);
DBRUNIF(1, sc->tx_mbuf_alloc++);
DBRUN(BCE_VERBOSE_SEND, bce_dump_tx_mbuf_chain(sc, *chain_prod,
map_arg.maxsegs));
/* prod still points the last used tx_bd at this point. */
*prod = map_arg.prod;
*chain_prod = map_arg.chain_prod;
*prod_bseq = map_arg.prod_bseq;
bce_tx_encap_exit:
return(rc);
}
/****************************************************************************/
/* Main transmit routine when called from another routine with a lock. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_start_locked(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
struct mbuf *m_head = NULL;
int count = 0;
u16 tx_prod, tx_chain_prod;
u32 tx_prod_bseq;
/* If there's no link or the transmit queue is empty then just exit. */
if (!sc->bce_link || IFQ_DRV_IS_EMPTY(&ifp->if_snd)) {
DBPRINT(sc, BCE_INFO_SEND, "%s(): No link or transmit queue empty.\n",
__FUNCTION__);
goto bce_start_locked_exit;
}
/* prod points to the next free tx_bd. */
tx_prod = sc->tx_prod;
tx_chain_prod = TX_CHAIN_IDX(tx_prod);
tx_prod_bseq = sc->tx_prod_bseq;
DBPRINT(sc, BCE_INFO_SEND,
"%s(): Start: tx_prod = 0x%04X, tx_chain_prod = %04X, "
"tx_prod_bseq = 0x%08X\n",
__FUNCTION__, tx_prod, tx_chain_prod, tx_prod_bseq);
/* Keep adding entries while there is space in the ring. */
while(sc->tx_mbuf_ptr[tx_chain_prod] == NULL) {
/* Check for any frames to send. */
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
/*
* Pack the data into the transmit ring. If we
* don't have room, place the mbuf back at the
* head of the queue and set the OACTIVE flag
* to wait for the NIC to drain the chain.
*/
if (bce_tx_encap(sc, m_head, &tx_prod, &tx_chain_prod, &tx_prod_bseq)) {
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
DBPRINT(sc, BCE_INFO_SEND,
"TX chain is closed for business! Total tx_bd used = %d\n",
sc->used_tx_bd);
break;
}
count++;
/* Send a copy of the frame to any BPF listeners. */
BPF_MTAP(ifp, m_head);
tx_prod = NEXT_TX_BD(tx_prod);
tx_chain_prod = TX_CHAIN_IDX(tx_prod);
}
if (count == 0) {
/* no packets were dequeued */
DBPRINT(sc, BCE_VERBOSE_SEND, "%s(): No packets were dequeued\n",
__FUNCTION__);
goto bce_start_locked_exit;
}
/* Update the driver's counters. */
sc->tx_prod = tx_prod;
sc->tx_prod_bseq = tx_prod_bseq;
DBPRINT(sc, BCE_INFO_SEND,
"%s(): End: tx_prod = 0x%04X, tx_chain_prod = 0x%04X, "
"tx_prod_bseq = 0x%08X\n",
__FUNCTION__, tx_prod, tx_chain_prod, tx_prod_bseq);
/* Start the transmit. */
REG_WR16(sc, MB_TX_CID_ADDR + BCE_L2CTX_TX_HOST_BIDX, sc->tx_prod);
REG_WR(sc, MB_TX_CID_ADDR + BCE_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
/* Set the tx timeout. */
ifp->if_timer = BCE_TX_TIMEOUT;
bce_start_locked_exit:
return;
}
/****************************************************************************/
/* Main transmit routine when called from another routine without a lock. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_start(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
BCE_LOCK(sc);
bce_start_locked(ifp);
BCE_UNLOCK(sc);
}
/****************************************************************************/
/* Handles any IOCTL calls from the operating system. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
struct bce_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
struct mii_data *mii;
int mask, error = 0;
DBPRINT(sc, BCE_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
switch(command) {
/* Set the MTU. */
case SIOCSIFMTU:
/* Check that the MTU setting is supported. */
if ((ifr->ifr_mtu < BCE_MIN_MTU) ||
(ifr->ifr_mtu > BCE_MAX_JUMBO_MTU)) {
error = EINVAL;
break;
}
DBPRINT(sc, BCE_INFO, "Setting new MTU of %d\n", ifr->ifr_mtu);
BCE_LOCK(sc);
ifp->if_mtu = ifr->ifr_mtu;
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bce_init_locked(sc);
BCE_UNLOCK(sc);
break;
/* Set interface. */
case SIOCSIFFLAGS:
DBPRINT(sc, BCE_VERBOSE, "Received SIOCSIFFLAGS\n");
BCE_LOCK(sc);
/* Check if the interface is up. */
if (ifp->if_flags & IFF_UP) {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
/* Change the promiscuous/multicast flags as necessary. */
bce_set_rx_mode(sc);
} else {
/* Start the HW */
bce_init_locked(sc);
}
} else {
/* The interface is down. Check if the driver is running. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
bce_stop(sc);
}
}
BCE_UNLOCK(sc);
error = 0;
break;
/* Add/Delete multicast address */
case SIOCADDMULTI:
case SIOCDELMULTI:
DBPRINT(sc, BCE_VERBOSE, "Received SIOCADDMULTI/SIOCDELMULTI\n");
BCE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
bce_set_rx_mode(sc);
error = 0;
}
BCE_UNLOCK(sc);
break;
/* Set/Get Interface media */
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
DBPRINT(sc, BCE_VERBOSE, "Received SIOCSIFMEDIA/SIOCGIFMEDIA\n");
DBPRINT(sc, BCE_VERBOSE, "bce_phy_flags = 0x%08X\n",
sc->bce_phy_flags);
if (sc->bce_phy_flags & BCE_PHY_SERDES_FLAG) {
DBPRINT(sc, BCE_VERBOSE, "SerDes media set/get\n");
error = ifmedia_ioctl(ifp, ifr,
&sc->bce_ifmedia, command);
} else {
DBPRINT(sc, BCE_VERBOSE, "Copper media set/get\n");
mii = device_get_softc(sc->bce_miibus);
error = ifmedia_ioctl(ifp, ifr,
&mii->mii_media, command);
}
break;
/* Set interface capability */
case SIOCSIFCAP:
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
DBPRINT(sc, BCE_INFO, "Received SIOCSIFCAP = 0x%08X\n", (u32) mask);
#ifdef DEVICE_POLLING
if (mask & IFCAP_POLLING) {
if (ifr->ifr_reqcap & IFCAP_POLLING) {
/* Setup the poll routine to call. */
error = ether_poll_register(bce_poll, ifp);
if (error) {
BCE_PRINTF(sc, "%s(%d): Error registering poll function!\n",
__FILE__, __LINE__);
goto bce_ioctl_exit;
}
/* Clear the interrupt. */
BCE_LOCK(sc);
bce_disable_intr(sc);
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
(1 << 16) | sc->bce_rx_quick_cons_trip);
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
(1 << 16) | sc->bce_tx_quick_cons_trip);
ifp->if_capenable |= IFCAP_POLLING;
BCE_UNLOCK(sc);
} else {
/* Clear the poll routine. */
error = ether_poll_deregister(ifp);
/* Enable interrupt even in error case */
BCE_LOCK(sc);
bce_enable_intr(sc);
REG_WR(sc, BCE_HC_TX_QUICK_CONS_TRIP,
(sc->bce_tx_quick_cons_trip_int << 16) |
sc->bce_tx_quick_cons_trip);
REG_WR(sc, BCE_HC_RX_QUICK_CONS_TRIP,
(sc->bce_rx_quick_cons_trip_int << 16) |
sc->bce_rx_quick_cons_trip);
ifp->if_capenable &= ~IFCAP_POLLING;
BCE_UNLOCK(sc);
}
}
#endif /*DEVICE_POLLING */
/* Toggle the TX checksum capabilites enable flag. */
if (mask & IFCAP_TXCSUM) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if (IFCAP_TXCSUM & ifp->if_capenable)
ifp->if_hwassist = BCE_IF_HWASSIST;
else
ifp->if_hwassist = 0;
}
/* Toggle the RX checksum capabilities enable flag. */
if (mask & IFCAP_RXCSUM) {
ifp->if_capenable ^= IFCAP_RXCSUM;
if (IFCAP_RXCSUM & ifp->if_capenable)
ifp->if_hwassist = BCE_IF_HWASSIST;
else
ifp->if_hwassist = 0;
}
/* Toggle VLAN_MTU capabilities enable flag. */
if (mask & IFCAP_VLAN_MTU) {
BCE_PRINTF(sc, "%s(%d): Changing VLAN_MTU not supported.\n",
__FILE__, __LINE__);
}
/* Toggle VLANHWTAG capabilities enabled flag. */
if (mask & IFCAP_VLAN_HWTAGGING) {
if (sc->bce_flags & BCE_MFW_ENABLE_FLAG)
BCE_PRINTF(sc, "%s(%d): Cannot change VLAN_HWTAGGING while "
"management firmware (ASF/IPMI/UMP) is running!\n",
__FILE__, __LINE__);
else
BCE_PRINTF(sc, "%s(%d): Changing VLAN_HWTAGGING not supported!\n",
__FILE__, __LINE__);
}
break;
default:
DBPRINT(sc, BCE_INFO, "Received unsupported IOCTL: 0x%08X\n",
(u32) command);
/* We don't know how to handle the IOCTL, pass it on. */
error = ether_ioctl(ifp, command, data);
break;
}
#ifdef DEVICE_POLLING
bce_ioctl_exit:
#endif
DBPRINT(sc, BCE_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
return(error);
}
/****************************************************************************/
/* Transmit timeout handler. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_watchdog(struct ifnet *ifp)
{
struct bce_softc *sc = ifp->if_softc;
DBRUN(BCE_WARN_SEND,
bce_dump_driver_state(sc);
bce_dump_status_block(sc));
BCE_PRINTF(sc, "%s(%d): Watchdog timeout occurred, resetting!\n",
__FILE__, __LINE__);
/* DBRUN(BCE_FATAL, bce_breakpoint(sc)); */
BCE_LOCK(sc);
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
bce_init_locked(sc);
ifp->if_oerrors++;
BCE_UNLOCK(sc);
}
#ifdef DEVICE_POLLING
static void
bce_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct bce_softc *sc = ifp->if_softc;
BCE_LOCK_ASSERT(sc);
sc->bce_rxcycles = count;
bus_dmamap_sync(sc->status_tag, sc->status_map,
BUS_DMASYNC_POSTWRITE);
/* Check for any completed RX frames. */
if (sc->status_block->status_rx_quick_consumer_index0 !=
sc->hw_rx_cons)
bce_rx_intr(sc);
/* Check for any completed TX frames. */
if (sc->status_block->status_tx_quick_consumer_index0 !=
sc->hw_tx_cons)
bce_tx_intr(sc);
/* Check for new frames to transmit. */
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bce_start_locked(ifp);
}
static void
bce_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
{
struct bce_softc *sc = ifp->if_softc;
BCE_LOCK(sc);
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
bce_poll_locked(ifp, cmd, count);
BCE_UNLOCK(sc);
}
#endif /* DEVICE_POLLING */
#if 0
static inline int
bce_has_work(struct bce_softc *sc)
{
struct status_block *stat = sc->status_block;
if ((stat->status_rx_quick_consumer_index0 != sc->hw_rx_cons) ||
(stat->status_tx_quick_consumer_index0 != sc->hw_tx_cons))
return 1;
if (((stat->status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) != 0) !=
bp->link_up)
return 1;
return 0;
}
#endif
/*
* Interrupt handler.
*/
/****************************************************************************/
/* Main interrupt entry point. Verifies that the controller generated the */
/* interrupt and then calls a separate routine for handle the various */
/* interrupt causes (PHY, TX, RX). */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static void
bce_intr(void *xsc)
{
struct bce_softc *sc;
struct ifnet *ifp;
u32 status_attn_bits;
sc = xsc;
ifp = sc->bce_ifp;
BCE_LOCK(sc);
DBRUNIF(1, sc->interrupts_generated++);
#ifdef DEVICE_POLLING
if (ifp->if_capenable & IFCAP_POLLING) {
DBPRINT(sc, BCE_INFO, "Polling enabled!\n");
goto bce_intr_exit;
}
#endif
bus_dmamap_sync(sc->status_tag, sc->status_map,
BUS_DMASYNC_POSTWRITE);
/*
* If the hardware status block index
* matches the last value read by the
* driver and we haven't asserted our
* interrupt then there's nothing to do.
*/
if ((sc->status_block->status_idx == sc->last_status_idx) &&
(REG_RD(sc, BCE_PCICFG_MISC_STATUS) & BCE_PCICFG_MISC_STATUS_INTA_VALUE))
goto bce_intr_exit;
/* Ack the interrupt and stop others from occuring. */
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
BCE_PCICFG_INT_ACK_CMD_MASK_INT);
/* Keep processing data as long as there is work to do. */
for (;;) {
status_attn_bits = sc->status_block->status_attn_bits;
DBRUNIF(DB_RANDOMTRUE(bce_debug_unexpected_attention),
BCE_PRINTF(sc, "Simulating unexpected status attention bit set.");
status_attn_bits = status_attn_bits | STATUS_ATTN_BITS_PARITY_ERROR);
/* Was it a link change interrupt? */
if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
(sc->status_block->status_attn_bits_ack & STATUS_ATTN_BITS_LINK_STATE))
bce_phy_intr(sc);
/* If any other attention is asserted then the chip is toast. */
if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
(sc->status_block->status_attn_bits_ack &
~STATUS_ATTN_BITS_LINK_STATE))) {
DBRUN(1, sc->unexpected_attentions++);
BCE_PRINTF(sc, "%s(%d): Fatal attention detected: 0x%08X\n",
__FILE__, __LINE__, sc->status_block->status_attn_bits);
DBRUN(BCE_FATAL,
if (bce_debug_unexpected_attention == 0)
bce_breakpoint(sc));
bce_init_locked(sc);
goto bce_intr_exit;
}
/* Check for any completed RX frames. */
if (sc->status_block->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
bce_rx_intr(sc);
/* Check for any completed TX frames. */
if (sc->status_block->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
bce_tx_intr(sc);
/* Save the status block index value for use during the next interrupt. */
sc->last_status_idx = sc->status_block->status_idx;
/* Prevent speculative reads from getting ahead of the status block. */
bus_space_barrier(sc->bce_btag, sc->bce_bhandle, 0, 0,
BUS_SPACE_BARRIER_READ);
/* If there's no work left then exit the interrupt service routine. */
if ((sc->status_block->status_rx_quick_consumer_index0 == sc->hw_rx_cons) &&
(sc->status_block->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
break;
}
bus_dmamap_sync(sc->status_tag, sc->status_map,
BUS_DMASYNC_PREWRITE);
/* Re-enable interrupts. */
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
BCE_PCICFG_INT_ACK_CMD_MASK_INT);
REG_WR(sc, BCE_PCICFG_INT_ACK_CMD,
BCE_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
/* Handle any frames that arrived while handling the interrupt. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING && !IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bce_start_locked(ifp);
bce_intr_exit:
BCE_UNLOCK(sc);
}
/****************************************************************************/
/* Programs the various packet receive modes (broadcast and multicast). */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_set_rx_mode(struct bce_softc *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u32 hashes[4] = { 0, 0, 0, 0 };
u32 rx_mode, sort_mode;
int h, i;
BCE_LOCK_ASSERT(sc);
ifp = sc->bce_ifp;
/* Initialize receive mode default settings. */
rx_mode = sc->rx_mode & ~(BCE_EMAC_RX_MODE_PROMISCUOUS |
BCE_EMAC_RX_MODE_KEEP_VLAN_TAG);
sort_mode = 1 | BCE_RPM_SORT_USER0_BC_EN;
/*
* ASF/IPMI/UMP firmware requires that VLAN tag stripping
* be enbled.
*/
if (!(BCE_IF_CAPABILITIES & IFCAP_VLAN_HWTAGGING) &&
(!(sc->bce_flags & BCE_MFW_ENABLE_FLAG)))
rx_mode |= BCE_EMAC_RX_MODE_KEEP_VLAN_TAG;
/*
* Check for promiscuous, all multicast, or selected
* multicast address filtering.
*/
if (ifp->if_flags & IFF_PROMISC) {
DBPRINT(sc, BCE_INFO, "Enabling promiscuous mode.\n");
/* Enable promiscuous mode. */
rx_mode |= BCE_EMAC_RX_MODE_PROMISCUOUS;
sort_mode |= BCE_RPM_SORT_USER0_PROM_EN;
} else if (ifp->if_flags & IFF_ALLMULTI) {
DBPRINT(sc, BCE_INFO, "Enabling all multicast mode.\n");
/* Enable all multicast addresses. */
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), 0xffffffff);
}
sort_mode |= BCE_RPM_SORT_USER0_MC_EN;
} else {
/* Accept one or more multicast(s). */
DBPRINT(sc, BCE_INFO, "Enabling selective multicast mode.\n");
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_le(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) & 0x7F;
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
}
IF_ADDR_UNLOCK(ifp);
for (i = 0; i < 4; i++)
REG_WR(sc, BCE_EMAC_MULTICAST_HASH0 + (i * 4), hashes[i]);
sort_mode |= BCE_RPM_SORT_USER0_MC_HSH_EN;
}
/* Only make changes if the recive mode has actually changed. */
if (rx_mode != sc->rx_mode) {
DBPRINT(sc, BCE_VERBOSE, "Enabling new receive mode: 0x%08X\n",
rx_mode);
sc->rx_mode = rx_mode;
REG_WR(sc, BCE_EMAC_RX_MODE, rx_mode);
}
/* Disable and clear the exisitng sort before enabling a new sort. */
REG_WR(sc, BCE_RPM_SORT_USER0, 0x0);
REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode);
REG_WR(sc, BCE_RPM_SORT_USER0, sort_mode | BCE_RPM_SORT_USER0_ENA);
}
/****************************************************************************/
/* Called periodically to updates statistics from the controllers */
/* statistics block. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_stats_update(struct bce_softc *sc)
{
struct ifnet *ifp;
struct statistics_block *stats;
DBPRINT(sc, BCE_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
ifp = sc->bce_ifp;
stats = (struct statistics_block *) sc->stats_block;
/*
* Update the interface statistics from the
* hardware statistics.
*/
ifp->if_collisions = (u_long) stats->stat_EtherStatsCollisions;
ifp->if_ierrors = (u_long) stats->stat_EtherStatsUndersizePkts +
(u_long) stats->stat_EtherStatsOverrsizePkts +
(u_long) stats->stat_IfInMBUFDiscards +
(u_long) stats->stat_Dot3StatsAlignmentErrors +
(u_long) stats->stat_Dot3StatsFCSErrors;
ifp->if_oerrors = (u_long) stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
(u_long) stats->stat_Dot3StatsExcessiveCollisions +
(u_long) stats->stat_Dot3StatsLateCollisions;
/*
* Certain controllers don't report
* carrier sense errors correctly.
* See errata E11_5708CA0_1165.
*/
if (!(BCE_CHIP_NUM(sc) == BCE_CHIP_NUM_5706) &&
!(BCE_CHIP_ID(sc) == BCE_CHIP_ID_5708_A0))
ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
/*
* Update the sysctl statistics from the
* hardware statistics.
*/
sc->stat_IfHCInOctets =
((u64) stats->stat_IfHCInOctets_hi << 32) +
(u64) stats->stat_IfHCInOctets_lo;
sc->stat_IfHCInBadOctets =
((u64) stats->stat_IfHCInBadOctets_hi << 32) +
(u64) stats->stat_IfHCInBadOctets_lo;
sc->stat_IfHCOutOctets =
((u64) stats->stat_IfHCOutOctets_hi << 32) +
(u64) stats->stat_IfHCOutOctets_lo;
sc->stat_IfHCOutBadOctets =
((u64) stats->stat_IfHCOutBadOctets_hi << 32) +
(u64) stats->stat_IfHCOutBadOctets_lo;
sc->stat_IfHCInUcastPkts =
((u64) stats->stat_IfHCInUcastPkts_hi << 32) +
(u64) stats->stat_IfHCInUcastPkts_lo;
sc->stat_IfHCInMulticastPkts =
((u64) stats->stat_IfHCInMulticastPkts_hi << 32) +
(u64) stats->stat_IfHCInMulticastPkts_lo;
sc->stat_IfHCInBroadcastPkts =
((u64) stats->stat_IfHCInBroadcastPkts_hi << 32) +
(u64) stats->stat_IfHCInBroadcastPkts_lo;
sc->stat_IfHCOutUcastPkts =
((u64) stats->stat_IfHCOutUcastPkts_hi << 32) +
(u64) stats->stat_IfHCOutUcastPkts_lo;
sc->stat_IfHCOutMulticastPkts =
((u64) stats->stat_IfHCOutMulticastPkts_hi << 32) +
(u64) stats->stat_IfHCOutMulticastPkts_lo;
sc->stat_IfHCOutBroadcastPkts =
((u64) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
(u64) stats->stat_IfHCOutBroadcastPkts_lo;
sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
sc->stat_Dot3StatsCarrierSenseErrors =
stats->stat_Dot3StatsCarrierSenseErrors;
sc->stat_Dot3StatsFCSErrors =
stats->stat_Dot3StatsFCSErrors;
sc->stat_Dot3StatsAlignmentErrors =
stats->stat_Dot3StatsAlignmentErrors;
sc->stat_Dot3StatsSingleCollisionFrames =
stats->stat_Dot3StatsSingleCollisionFrames;
sc->stat_Dot3StatsMultipleCollisionFrames =
stats->stat_Dot3StatsMultipleCollisionFrames;
sc->stat_Dot3StatsDeferredTransmissions =
stats->stat_Dot3StatsDeferredTransmissions;
sc->stat_Dot3StatsExcessiveCollisions =
stats->stat_Dot3StatsExcessiveCollisions;
sc->stat_Dot3StatsLateCollisions =
stats->stat_Dot3StatsLateCollisions;
sc->stat_EtherStatsCollisions =
stats->stat_EtherStatsCollisions;
sc->stat_EtherStatsFragments =
stats->stat_EtherStatsFragments;
sc->stat_EtherStatsJabbers =
stats->stat_EtherStatsJabbers;
sc->stat_EtherStatsUndersizePkts =
stats->stat_EtherStatsUndersizePkts;
sc->stat_EtherStatsOverrsizePkts =
stats->stat_EtherStatsOverrsizePkts;
sc->stat_EtherStatsPktsRx64Octets =
stats->stat_EtherStatsPktsRx64Octets;
sc->stat_EtherStatsPktsRx65Octetsto127Octets =
stats->stat_EtherStatsPktsRx65Octetsto127Octets;
sc->stat_EtherStatsPktsRx128Octetsto255Octets =
stats->stat_EtherStatsPktsRx128Octetsto255Octets;
sc->stat_EtherStatsPktsRx256Octetsto511Octets =
stats->stat_EtherStatsPktsRx256Octetsto511Octets;
sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
sc->stat_EtherStatsPktsTx64Octets =
stats->stat_EtherStatsPktsTx64Octets;
sc->stat_EtherStatsPktsTx65Octetsto127Octets =
stats->stat_EtherStatsPktsTx65Octetsto127Octets;
sc->stat_EtherStatsPktsTx128Octetsto255Octets =
stats->stat_EtherStatsPktsTx128Octetsto255Octets;
sc->stat_EtherStatsPktsTx256Octetsto511Octets =
stats->stat_EtherStatsPktsTx256Octetsto511Octets;
sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
sc->stat_XonPauseFramesReceived =
stats->stat_XonPauseFramesReceived;
sc->stat_XoffPauseFramesReceived =
stats->stat_XoffPauseFramesReceived;
sc->stat_OutXonSent =
stats->stat_OutXonSent;
sc->stat_OutXoffSent =
stats->stat_OutXoffSent;
sc->stat_FlowControlDone =
stats->stat_FlowControlDone;
sc->stat_MacControlFramesReceived =
stats->stat_MacControlFramesReceived;
sc->stat_XoffStateEntered =
stats->stat_XoffStateEntered;
sc->stat_IfInFramesL2FilterDiscards =
stats->stat_IfInFramesL2FilterDiscards;
sc->stat_IfInRuleCheckerDiscards =
stats->stat_IfInRuleCheckerDiscards;
sc->stat_IfInFTQDiscards =
stats->stat_IfInFTQDiscards;
sc->stat_IfInMBUFDiscards =
stats->stat_IfInMBUFDiscards;
sc->stat_IfInRuleCheckerP4Hit =
stats->stat_IfInRuleCheckerP4Hit;
sc->stat_CatchupInRuleCheckerDiscards =
stats->stat_CatchupInRuleCheckerDiscards;
sc->stat_CatchupInFTQDiscards =
stats->stat_CatchupInFTQDiscards;
sc->stat_CatchupInMBUFDiscards =
stats->stat_CatchupInMBUFDiscards;
sc->stat_CatchupInRuleCheckerP4Hit =
stats->stat_CatchupInRuleCheckerP4Hit;
DBPRINT(sc, BCE_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
}
static void
bce_tick_locked(struct bce_softc *sc)
{
struct mii_data *mii = NULL;
struct ifnet *ifp;
u32 msg;
ifp = sc->bce_ifp;
BCE_LOCK_ASSERT(sc);
/* Tell the firmware that the driver is still running. */
#ifdef BCE_DEBUG
msg = (u32) BCE_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
#else
msg = (u32) ++sc->bce_fw_drv_pulse_wr_seq;
#endif
REG_WR_IND(sc, sc->bce_shmem_base + BCE_DRV_PULSE_MB, msg);
/* Update the statistics from the hardware statistics block. */
bce_stats_update(sc);
/* Schedule the next tick. */
callout_reset(
&sc->bce_stat_ch, /* callout */
hz, /* ticks */
bce_tick, /* function */
sc); /* function argument */
/* If link is up already up then we're done. */
if (sc->bce_link)
goto bce_tick_locked_exit;
/* DRC - ToDo: Add SerDes support and check SerDes link here. */
mii = device_get_softc(sc->bce_miibus);
mii_tick(mii);
/* Check if the link has come up. */
if (!sc->bce_link && mii->mii_media_status & IFM_ACTIVE &&
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
sc->bce_link++;
if ((IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX) &&
bootverbose)
BCE_PRINTF(sc, "Gigabit link up\n");
/* Now that link is up, handle any outstanding TX traffic. */
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
bce_start_locked(ifp);
}
bce_tick_locked_exit:
return;
}
static void
bce_tick(void *xsc)
{
struct bce_softc *sc;
sc = xsc;
BCE_LOCK(sc);
bce_tick_locked(sc);
BCE_UNLOCK(sc);
}
#ifdef BCE_DEBUG
/****************************************************************************/
/* Allows the driver state to be dumped through the sysctl interface. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_driver_state(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_driver_state(sc);
}
return error;
}
/****************************************************************************/
/* Allows the hardware state to be dumped through the sysctl interface. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_hw_state(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_hw_state(sc);
}
return error;
}
/****************************************************************************/
/* */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_dump_rx_chain(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_dump_rx_chain(sc, 0, USABLE_RX_BD);
}
return error;
}
/****************************************************************************/
/* */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static int
bce_sysctl_breakpoint(SYSCTL_HANDLER_ARGS)
{
int error;
int result;
struct bce_softc *sc;
result = -1;
error = sysctl_handle_int(oidp, &result, 0, req);
if (error || !req->newptr)
return (error);
if (result == 1) {
sc = (struct bce_softc *)arg1;
bce_breakpoint(sc);
}
return error;
}
#endif
/****************************************************************************/
/* Adds any sysctl parameters for tuning or debugging purposes. */
/* */
/* Returns: */
/* 0 for success, positive value for failure. */
/****************************************************************************/
static void
bce_add_sysctls(struct bce_softc *sc)
{
struct sysctl_ctx_list *ctx;
struct sysctl_oid_list *children;
ctx = device_get_sysctl_ctx(sc->bce_dev);
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bce_dev));
SYSCTL_ADD_STRING(ctx, children, OID_AUTO,
"driver_version",
CTLFLAG_RD, &bce_driver_version,
0, "bce driver version");
#ifdef BCE_DEBUG
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"rx_low_watermark",
CTLFLAG_RD, &sc->rx_low_watermark,
0, "Lowest level of free rx_bd's");
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"tx_hi_watermark",
CTLFLAG_RD, &sc->tx_hi_watermark,
0, "Highest level of used tx_bd's");
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"l2fhdr_status_errors",
CTLFLAG_RD, &sc->l2fhdr_status_errors,
0, "l2_fhdr status errors");
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"unexpected_attentions",
CTLFLAG_RD, &sc->unexpected_attentions,
0, "unexpected attentions");
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"lost_status_block_updates",
CTLFLAG_RD, &sc->lost_status_block_updates,
0, "lost status block updates");
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
"mbuf_alloc_failed",
CTLFLAG_RD, &sc->mbuf_alloc_failed,
0, "mbuf cluster allocation failures");
#endif
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHcInOctets",
CTLFLAG_RD, &sc->stat_IfHCInOctets,
"Bytes received");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCInBadOctets",
CTLFLAG_RD, &sc->stat_IfHCInBadOctets,
"Bad bytes received");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCOutOctets",
CTLFLAG_RD, &sc->stat_IfHCOutOctets,
"Bytes sent");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCOutBadOctets",
CTLFLAG_RD, &sc->stat_IfHCOutBadOctets,
"Bad bytes sent");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCInUcastPkts",
CTLFLAG_RD, &sc->stat_IfHCInUcastPkts,
"Unicast packets received");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCInMulticastPkts",
CTLFLAG_RD, &sc->stat_IfHCInMulticastPkts,
"Multicast packets received");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCInBroadcastPkts",
CTLFLAG_RD, &sc->stat_IfHCInBroadcastPkts,
"Broadcast packets received");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCOutUcastPkts",
CTLFLAG_RD, &sc->stat_IfHCOutUcastPkts,
"Unicast packets sent");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCOutMulticastPkts",
CTLFLAG_RD, &sc->stat_IfHCOutMulticastPkts,
"Multicast packets sent");
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO,
"stat_IfHCOutBroadcastPkts",
CTLFLAG_RD, &sc->stat_IfHCOutBroadcastPkts,
"Broadcast packets sent");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_emac_tx_stat_dot3statsinternalmactransmiterrors",
CTLFLAG_RD, &sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors,
0, "Internal MAC transmit errors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsCarrierSenseErrors",
CTLFLAG_RD, &sc->stat_Dot3StatsCarrierSenseErrors,
0, "Carrier sense errors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsFCSErrors",
CTLFLAG_RD, &sc->stat_Dot3StatsFCSErrors,
0, "Frame check sequence errors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsAlignmentErrors",
CTLFLAG_RD, &sc->stat_Dot3StatsAlignmentErrors,
0, "Alignment errors");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsSingleCollisionFrames",
CTLFLAG_RD, &sc->stat_Dot3StatsSingleCollisionFrames,
0, "Single Collision Frames");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsMultipleCollisionFrames",
CTLFLAG_RD, &sc->stat_Dot3StatsMultipleCollisionFrames,
0, "Multiple Collision Frames");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsDeferredTransmissions",
CTLFLAG_RD, &sc->stat_Dot3StatsDeferredTransmissions,
0, "Deferred Transmissions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsExcessiveCollisions",
CTLFLAG_RD, &sc->stat_Dot3StatsExcessiveCollisions,
0, "Excessive Collisions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_Dot3StatsLateCollisions",
CTLFLAG_RD, &sc->stat_Dot3StatsLateCollisions,
0, "Late Collisions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsCollisions",
CTLFLAG_RD, &sc->stat_EtherStatsCollisions,
0, "Collisions");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsFragments",
CTLFLAG_RD, &sc->stat_EtherStatsFragments,
0, "Fragments");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsJabbers",
CTLFLAG_RD, &sc->stat_EtherStatsJabbers,
0, "Jabbers");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsUndersizePkts",
CTLFLAG_RD, &sc->stat_EtherStatsUndersizePkts,
0, "Undersize packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsOverrsizePkts",
CTLFLAG_RD, &sc->stat_EtherStatsOverrsizePkts,
0, "stat_EtherStatsOverrsizePkts");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx64Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx64Octets,
0, "Bytes received in 64 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx65Octetsto127Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx65Octetsto127Octets,
0, "Bytes received in 65 to 127 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx128Octetsto255Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx128Octetsto255Octets,
0, "Bytes received in 128 to 255 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx256Octetsto511Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx256Octetsto511Octets,
0, "Bytes received in 256 to 511 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx512Octetsto1023Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx512Octetsto1023Octets,
0, "Bytes received in 512 to 1023 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx1024Octetsto1522Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1024Octetsto1522Octets,
0, "Bytes received in 1024 t0 1522 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsRx1523Octetsto9022Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsRx1523Octetsto9022Octets,
0, "Bytes received in 1523 to 9022 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx64Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx64Octets,
0, "Bytes sent in 64 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx65Octetsto127Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx65Octetsto127Octets,
0, "Bytes sent in 65 to 127 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx128Octetsto255Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx128Octetsto255Octets,
0, "Bytes sent in 128 to 255 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx256Octetsto511Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx256Octetsto511Octets,
0, "Bytes sent in 256 to 511 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx512Octetsto1023Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx512Octetsto1023Octets,
0, "Bytes sent in 512 to 1023 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx1024Octetsto1522Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1024Octetsto1522Octets,
0, "Bytes sent in 1024 to 1522 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_EtherStatsPktsTx1523Octetsto9022Octets",
CTLFLAG_RD, &sc->stat_EtherStatsPktsTx1523Octetsto9022Octets,
0, "Bytes sent in 1523 to 9022 byte packets");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_XonPauseFramesReceived",
CTLFLAG_RD, &sc->stat_XonPauseFramesReceived,
0, "XON pause frames receved");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_XoffPauseFramesReceived",
CTLFLAG_RD, &sc->stat_XoffPauseFramesReceived,
0, "XOFF pause frames received");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_OutXonSent",
CTLFLAG_RD, &sc->stat_OutXonSent,
0, "XON pause frames sent");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_OutXoffSent",
CTLFLAG_RD, &sc->stat_OutXoffSent,
0, "XOFF pause frames sent");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_FlowControlDone",
CTLFLAG_RD, &sc->stat_FlowControlDone,
0, "Flow control done");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_MacControlFramesReceived",
CTLFLAG_RD, &sc->stat_MacControlFramesReceived,
0, "MAC control frames received");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_XoffStateEntered",
CTLFLAG_RD, &sc->stat_XoffStateEntered,
0, "XOFF state entered");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInFramesL2FilterDiscards",
CTLFLAG_RD, &sc->stat_IfInFramesL2FilterDiscards,
0, "Received L2 packets discarded");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInRuleCheckerDiscards",
CTLFLAG_RD, &sc->stat_IfInRuleCheckerDiscards,
0, "Received packets discarded by rule");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInFTQDiscards",
CTLFLAG_RD, &sc->stat_IfInFTQDiscards,
0, "Received packet FTQ discards");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInMBUFDiscards",
CTLFLAG_RD, &sc->stat_IfInMBUFDiscards,
0, "Received packets discarded due to lack of controller buffer memory");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_IfInRuleCheckerP4Hit",
CTLFLAG_RD, &sc->stat_IfInRuleCheckerP4Hit,
0, "Received packets rule checker hits");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_CatchupInRuleCheckerDiscards",
CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerDiscards,
0, "Received packets discarded in Catchup path");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_CatchupInFTQDiscards",
CTLFLAG_RD, &sc->stat_CatchupInFTQDiscards,
0, "Received packets discarded in FTQ in Catchup path");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_CatchupInMBUFDiscards",
CTLFLAG_RD, &sc->stat_CatchupInMBUFDiscards,
0, "Received packets discarded in controller buffer memory in Catchup path");
SYSCTL_ADD_UINT(ctx, children, OID_AUTO,
"stat_CatchupInRuleCheckerP4Hit",
CTLFLAG_RD, &sc->stat_CatchupInRuleCheckerP4Hit,
0, "Received packets rule checker hits in Catchup path");
#ifdef BCE_DEBUG
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"driver_state", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_driver_state, "I", "Drive state information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"hw_state", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_hw_state, "I", "Hardware state information");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"dump_rx_chain", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_dump_rx_chain, "I", "Dump rx_bd chain");
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
"breakpoint", CTLTYPE_INT | CTLFLAG_RW,
(void *)sc, 0,
bce_sysctl_breakpoint, "I", "Driver breakpoint");
#endif
}
/****************************************************************************/
/* BCE Debug Routines */
/****************************************************************************/
#ifdef BCE_DEBUG
/****************************************************************************/
/* Prints out information about an mbuf. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_dump_mbuf(struct bce_softc *sc, struct mbuf *m)
{
u32 val_hi, val_lo;
struct mbuf *mp = m;
if (m == NULL) {
/* Index out of range. */
printf("mbuf ptr is null!\n");
return;
}
while (mp) {
val_hi = BCE_ADDR_HI(mp);
val_lo = BCE_ADDR_LO(mp);
BCE_PRINTF(sc, "mbuf: vaddr = 0x%08X:%08X, m_len = %d, m_flags = ",
val_hi, val_lo, mp->m_len);
if (mp->m_flags & M_EXT)
printf("M_EXT ");
if (mp->m_flags & M_PKTHDR)
printf("M_PKTHDR ");
printf("\n");
if (mp->m_flags & M_EXT) {
val_hi = BCE_ADDR_HI(mp->m_ext.ext_buf);
val_lo = BCE_ADDR_LO(mp->m_ext.ext_buf);
BCE_PRINTF(sc, "- m_ext: vaddr = 0x%08X:%08X, ext_size = 0x%04X\n",
val_hi, val_lo, mp->m_ext.ext_size);
}
mp = mp->m_next;
}
}
/****************************************************************************/
/* Prints out the mbufs in the TX mbuf chain. */
/* */
/* Returns: */
/* Nothing. */
/****************************************************************************/
static void
bce_dump_tx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
{
struct mbuf *m;
BCE_PRINTF(sc,
"----------------------------"
" tx mbuf data "
"----------------------------\n");
for (int i = 0; i < count; i++) {
m = sc->tx_mbuf_ptr[chain_prod];
BCE_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
bce_dump_mbuf(sc, m);
chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
}
BCE_PRINTF(sc,
"----------------------------"
"----------------"
"----------------------------\n");
}
/*
* This routine prints the RX mbuf chain.
*/
static void
bce_dump_rx_mbuf_chain(struct bce_softc *sc, int chain_prod, int count)
{
struct mbuf *m;
BCE_PRINTF(sc,
"----------------------------"
" rx mbuf data "
"----------------------------\n");
for (int i = 0; i < count; i++) {
m = sc->rx_mbuf_ptr[chain_prod];
BCE_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
bce_dump_mbuf(sc, m);
chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
}
BCE_PRINTF(sc,
"----------------------------"
"----------------"
"----------------------------\n");
}
static void
bce_dump_txbd(struct bce_softc *sc, int idx, struct tx_bd *txbd)
{
if (idx > MAX_TX_BD)
/* Index out of range. */
BCE_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
/* TX Chain page pointer. */
BCE_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
idx, txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo);
else
/* Normal tx_bd entry. */
BCE_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
"flags = 0x%08X\n", idx,
txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag_flags);
}
static void
bce_dump_rxbd(struct bce_softc *sc, int idx, struct rx_bd *rxbd)
{
if (idx > MAX_RX_BD)
/* Index out of range. */
BCE_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
/* TX Chain page pointer. */
BCE_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page pointer\n",
idx, rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo);
else
/* Normal tx_bd entry. */
BCE_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = 0x%08X, "
"flags = 0x%08X\n", idx,
rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
rxbd->rx_bd_len, rxbd->rx_bd_flags);
}
static void
bce_dump_l2fhdr(struct bce_softc *sc, int idx, struct l2_fhdr *l2fhdr)
{
BCE_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
"pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
"tcp_udp_xsum = 0x%04X\n", idx,
l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
l2fhdr->l2_fhdr_tcp_udp_xsum);
}
/*
* This routine prints the TX chain.
*/
static void
bce_dump_tx_chain(struct bce_softc *sc, int tx_prod, int count)
{
struct tx_bd *txbd;
/* First some info about the tx_bd chain structure. */
BCE_PRINTF(sc,
"----------------------------"
" tx_bd chain "
"----------------------------\n");
BCE_PRINTF(sc, "page size = 0x%08X, tx chain pages = 0x%08X\n",
(u32) BCM_PAGE_SIZE, (u32) TX_PAGES);
BCE_PRINTF(sc, "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
(u32) TOTAL_TX_BD_PER_PAGE, (u32) USABLE_TX_BD_PER_PAGE);
BCE_PRINTF(sc, "total tx_bd = 0x%08X\n", (u32) TOTAL_TX_BD);
BCE_PRINTF(sc, ""
"-----------------------------"
" tx_bd data "
"-----------------------------\n");
/* Now print out the tx_bd's themselves. */
for (int i = 0; i < count; i++) {
txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
bce_dump_txbd(sc, tx_prod, txbd);
tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
}
BCE_PRINTF(sc,
"-----------------------------"
"--------------"
"-----------------------------\n");
}
/*
* This routine prints the RX chain.
*/
static void
bce_dump_rx_chain(struct bce_softc *sc, int rx_prod, int count)
{
struct rx_bd *rxbd;
/* First some info about the tx_bd chain structure. */
BCE_PRINTF(sc,
"----------------------------"
" rx_bd chain "
"----------------------------\n");
BCE_PRINTF(sc, "----- RX_BD Chain -----\n");
BCE_PRINTF(sc, "page size = 0x%08X, rx chain pages = 0x%08X\n",
(u32) BCM_PAGE_SIZE, (u32) RX_PAGES);
BCE_PRINTF(sc, "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
(u32) TOTAL_RX_BD_PER_PAGE, (u32) USABLE_RX_BD_PER_PAGE);
BCE_PRINTF(sc, "total rx_bd = 0x%08X\n", (u32) TOTAL_RX_BD);
BCE_PRINTF(sc,
"----------------------------"
" rx_bd data "
"----------------------------\n");
/* Now print out the rx_bd's themselves. */
for (int i = 0; i < count; i++) {
rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
bce_dump_rxbd(sc, rx_prod, rxbd);
rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
}
BCE_PRINTF(sc,
"----------------------------"
"--------------"
"----------------------------\n");
}
/*
* This routine prints the status block.
*/
static void
bce_dump_status_block(struct bce_softc *sc)
{
struct status_block *sblk;
sblk = sc->status_block;
BCE_PRINTF(sc, "----------------------------- Status Block "
"-----------------------------\n");
BCE_PRINTF(sc, "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
sblk->status_attn_bits, sblk->status_attn_bits_ack,
sblk->status_idx);
BCE_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
sblk->status_rx_quick_consumer_index0,
sblk->status_tx_quick_consumer_index0);
BCE_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
/* Theses indices are not used for normal L2 drivers. */
if (sblk->status_rx_quick_consumer_index1 ||
sblk->status_tx_quick_consumer_index1)
BCE_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
sblk->status_rx_quick_consumer_index1,
sblk->status_tx_quick_consumer_index1);
if (sblk->status_rx_quick_consumer_index2 ||
sblk->status_tx_quick_consumer_index2)
BCE_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
sblk->status_rx_quick_consumer_index2,
sblk->status_tx_quick_consumer_index2);
if (sblk->status_rx_quick_consumer_index3 ||
sblk->status_tx_quick_consumer_index3)
BCE_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
sblk->status_rx_quick_consumer_index3,
sblk->status_tx_quick_consumer_index3);
if (sblk->status_rx_quick_consumer_index4 ||
sblk->status_rx_quick_consumer_index5)
BCE_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
sblk->status_rx_quick_consumer_index4,
sblk->status_rx_quick_consumer_index5);
if (sblk->status_rx_quick_consumer_index6 ||
sblk->status_rx_quick_consumer_index7)
BCE_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
sblk->status_rx_quick_consumer_index6,
sblk->status_rx_quick_consumer_index7);
if (sblk->status_rx_quick_consumer_index8 ||
sblk->status_rx_quick_consumer_index9)
BCE_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
sblk->status_rx_quick_consumer_index8,
sblk->status_rx_quick_consumer_index9);
if (sblk->status_rx_quick_consumer_index10 ||
sblk->status_rx_quick_consumer_index11)
BCE_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
sblk->status_rx_quick_consumer_index10,
sblk->status_rx_quick_consumer_index11);
if (sblk->status_rx_quick_consumer_index12 ||
sblk->status_rx_quick_consumer_index13)
BCE_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
sblk->status_rx_quick_consumer_index12,
sblk->status_rx_quick_consumer_index13);
if (sblk->status_rx_quick_consumer_index14 ||
sblk->status_rx_quick_consumer_index15)
BCE_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
sblk->status_rx_quick_consumer_index14,
sblk->status_rx_quick_consumer_index15);
if (sblk->status_completion_producer_index ||
sblk->status_cmd_consumer_index)
BCE_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
sblk->status_completion_producer_index,
sblk->status_cmd_consumer_index);
BCE_PRINTF(sc, "-------------------------------------------"
"-----------------------------\n");
}
/*
* This routine prints the statistics block.
*/
static void
bce_dump_stats_block(struct bce_softc *sc)
{
struct statistics_block *sblk;
sblk = sc->stats_block;
BCE_PRINTF(sc, ""
"-----------------------------"
" Stats Block "
"-----------------------------\n");
BCE_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
"IfHcInBadOctets = 0x%08X:%08X\n",
sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
BCE_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
"IfHcOutBadOctets = 0x%08X:%08X\n",
sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
BCE_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
"IfHcInMulticastPkts = 0x%08X:%08X\n",
sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
sblk->stat_IfHCInMulticastPkts_hi, sblk->stat_IfHCInMulticastPkts_lo);
BCE_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
"IfHcOutUcastPkts = 0x%08X:%08X\n",
sblk->stat_IfHCInBroadcastPkts_hi, sblk->stat_IfHCInBroadcastPkts_lo,
sblk->stat_IfHCOutUcastPkts_hi, sblk->stat_IfHCOutUcastPkts_lo);
BCE_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, IfHcOutBroadcastPkts = 0x%08X:%08X\n",
sblk->stat_IfHCOutMulticastPkts_hi, sblk->stat_IfHCOutMulticastPkts_lo,
sblk->stat_IfHCOutBroadcastPkts_hi, sblk->stat_IfHCOutBroadcastPkts_lo);
if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
BCE_PRINTF(sc, "0x%08X : "
"emac_tx_stat_dot3statsinternalmactransmiterrors\n",
sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
if (sblk->stat_Dot3StatsCarrierSenseErrors)
BCE_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
sblk->stat_Dot3StatsCarrierSenseErrors);
if (sblk->stat_Dot3StatsFCSErrors)
BCE_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
sblk->stat_Dot3StatsFCSErrors);
if (sblk->stat_Dot3StatsAlignmentErrors)
BCE_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
sblk->stat_Dot3StatsAlignmentErrors);
if (sblk->stat_Dot3StatsSingleCollisionFrames)
BCE_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
sblk->stat_Dot3StatsSingleCollisionFrames);
if (sblk->stat_Dot3StatsMultipleCollisionFrames)
BCE_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
sblk->stat_Dot3StatsMultipleCollisionFrames);
if (sblk->stat_Dot3StatsDeferredTransmissions)
BCE_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
sblk->stat_Dot3StatsDeferredTransmissions);
if (sblk->stat_Dot3StatsExcessiveCollisions)
BCE_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
sblk->stat_Dot3StatsExcessiveCollisions);
if (sblk->stat_Dot3StatsLateCollisions)
BCE_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
sblk->stat_Dot3StatsLateCollisions);
if (sblk->stat_EtherStatsCollisions)
BCE_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
sblk->stat_EtherStatsCollisions);
if (sblk->stat_EtherStatsFragments)
BCE_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
sblk->stat_EtherStatsFragments);
if (sblk->stat_EtherStatsJabbers)
BCE_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
sblk->stat_EtherStatsJabbers);
if (sblk->stat_EtherStatsUndersizePkts)
BCE_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
sblk->stat_EtherStatsUndersizePkts);
if (sblk->stat_EtherStatsOverrsizePkts)
BCE_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
sblk->stat_EtherStatsOverrsizePkts);
if (sblk->stat_EtherStatsPktsRx64Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
sblk->stat_EtherStatsPktsRx64Octets);
if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx128Octetsto255Octets\n",
sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx256Octetsto511Octets\n",
sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx512Octetsto1023Octets\n",
sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx1024Octetsto1522Octets\n",
sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsRx1523Octetsto9022Octets\n",
sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
if (sblk->stat_EtherStatsPktsTx64Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
sblk->stat_EtherStatsPktsTx64Octets);
if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx128Octetsto255Octets\n",
sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx256Octetsto511Octets\n",
sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx512Octetsto1023Octets\n",
sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx1024Octetsto1522Octets\n",
sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
BCE_PRINTF(sc, "0x%08X : EtherStatsPktsTx1523Octetsto9022Octets\n",
sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
if (sblk->stat_XonPauseFramesReceived)
BCE_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
sblk->stat_XonPauseFramesReceived);
if (sblk->stat_XoffPauseFramesReceived)
BCE_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
sblk->stat_XoffPauseFramesReceived);
if (sblk->stat_OutXonSent)
BCE_PRINTF(sc, "0x%08X : OutXonSent\n",
sblk->stat_OutXonSent);
if (sblk->stat_OutXoffSent)
BCE_PRINTF(sc, "0x%08X : OutXoffSent\n",
sblk->stat_OutXoffSent);
if (sblk->stat_FlowControlDone)
BCE_PRINTF(sc, "0x%08X : FlowControlDone\n",
sblk->stat_FlowControlDone);
if (sblk->stat_MacControlFramesReceived)
BCE_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
sblk->stat_MacControlFramesReceived);
if (sblk->stat_XoffStateEntered)
BCE_PRINTF(sc, "0x%08X : XoffStateEntered\n",
sblk->stat_XoffStateEntered);
if (sblk->stat_IfInFramesL2FilterDiscards)
BCE_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
sblk->stat_IfInFramesL2FilterDiscards);
if (sblk->stat_IfInRuleCheckerDiscards)
BCE_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
sblk->stat_IfInRuleCheckerDiscards);
if (sblk->stat_IfInFTQDiscards)
BCE_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
sblk->stat_IfInFTQDiscards);
if (sblk->stat_IfInMBUFDiscards)
BCE_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
sblk->stat_IfInMBUFDiscards);
if (sblk->stat_IfInRuleCheckerP4Hit)
BCE_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
sblk->stat_IfInRuleCheckerP4Hit);
if (sblk->stat_CatchupInRuleCheckerDiscards)
BCE_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
sblk->stat_CatchupInRuleCheckerDiscards);
if (sblk->stat_CatchupInFTQDiscards)
BCE_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
sblk->stat_CatchupInFTQDiscards);
if (sblk->stat_CatchupInMBUFDiscards)
BCE_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
sblk->stat_CatchupInMBUFDiscards);
if (sblk->stat_CatchupInRuleCheckerP4Hit)
BCE_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
sblk->stat_CatchupInRuleCheckerP4Hit);
BCE_PRINTF(sc,
"-----------------------------"
"--------------"
"-----------------------------\n");
}
static void
bce_dump_driver_state(struct bce_softc *sc)
{
u32 val_hi, val_lo;
BCE_PRINTF(sc,
"-----------------------------"
" Driver State "
"-----------------------------\n");
val_hi = BCE_ADDR_HI(sc);
val_lo = BCE_ADDR_LO(sc);
BCE_PRINTF(sc, "0x%08X:%08X - (sc) driver softc structure virtual address\n",
val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->bce_vhandle);
val_lo = BCE_ADDR_LO(sc->bce_vhandle);
BCE_PRINTF(sc, "0x%08X:%08X - (sc->bce_vhandle) PCI BAR virtual address\n",
val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->status_block);
val_lo = BCE_ADDR_LO(sc->status_block);
BCE_PRINTF(sc, "0x%08X:%08X - (sc->status_block) status block virtual address\n",
val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->stats_block);
val_lo = BCE_ADDR_LO(sc->stats_block);
BCE_PRINTF(sc, "0x%08X:%08X - (sc->stats_block) statistics block virtual address\n",
val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->tx_bd_chain);
val_lo = BCE_ADDR_LO(sc->tx_bd_chain);
BCE_PRINTF(sc,
"0x%08X:%08X - (sc->tx_bd_chain) tx_bd chain virtual adddress\n",
val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->rx_bd_chain);
val_lo = BCE_ADDR_LO(sc->rx_bd_chain);
BCE_PRINTF(sc,
"0x%08X:%08X - (sc->rx_bd_chain) rx_bd chain virtual address\n",
val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->tx_mbuf_ptr);
val_lo = BCE_ADDR_LO(sc->tx_mbuf_ptr);
BCE_PRINTF(sc,
"0x%08X:%08X - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
val_hi, val_lo);
val_hi = BCE_ADDR_HI(sc->rx_mbuf_ptr);
val_lo = BCE_ADDR_LO(sc->rx_mbuf_ptr);
BCE_PRINTF(sc,
"0x%08X:%08X - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
val_hi, val_lo);
BCE_PRINTF(sc, " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
sc->interrupts_generated);
BCE_PRINTF(sc, " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
sc->rx_interrupts);
BCE_PRINTF(sc, " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
sc->tx_interrupts);
BCE_PRINTF(sc, " 0x%08X - (sc->last_status_idx) status block index\n",
sc->last_status_idx);
BCE_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
sc->tx_prod);
BCE_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
sc->tx_cons);
BCE_PRINTF(sc, " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
sc->tx_prod_bseq);
BCE_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
sc->rx_prod);
BCE_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
sc->rx_cons);
BCE_PRINTF(sc, " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
sc->rx_prod_bseq);
BCE_PRINTF(sc, " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
sc->rx_mbuf_alloc);
BCE_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
sc->free_rx_bd);
BCE_PRINTF(sc, "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
sc->rx_low_watermark, (u32) USABLE_RX_BD);
BCE_PRINTF(sc, " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
sc->tx_mbuf_alloc);
BCE_PRINTF(sc, " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
sc->rx_mbuf_alloc);
BCE_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
sc->used_tx_bd);
BCE_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
sc->tx_hi_watermark, (u32) USABLE_TX_BD);
BCE_PRINTF(sc, " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
sc->mbuf_alloc_failed);
BCE_PRINTF(sc,
"-----------------------------"
"--------------"
"-----------------------------\n");
}
static void
bce_dump_hw_state(struct bce_softc *sc)
{
u32 val1;
BCE_PRINTF(sc,
"----------------------------"
" Hardware State "
"----------------------------\n");
BCE_PRINTF(sc, "0x%08X : bootcode version\n", sc->bce_fw_ver);
val1 = REG_RD(sc, BCE_MISC_ENABLE_STATUS_BITS);
BCE_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
val1, BCE_MISC_ENABLE_STATUS_BITS);
val1 = REG_RD(sc, BCE_DMA_STATUS);
BCE_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BCE_DMA_STATUS);
val1 = REG_RD(sc, BCE_CTX_STATUS);
BCE_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BCE_CTX_STATUS);
val1 = REG_RD(sc, BCE_EMAC_STATUS);
BCE_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1, BCE_EMAC_STATUS);
val1 = REG_RD(sc, BCE_RPM_STATUS);
BCE_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BCE_RPM_STATUS);
val1 = REG_RD(sc, BCE_TBDR_STATUS);
BCE_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1, BCE_TBDR_STATUS);
val1 = REG_RD(sc, BCE_TDMA_STATUS);
BCE_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1, BCE_TDMA_STATUS);
val1 = REG_RD(sc, BCE_HC_STATUS);
BCE_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BCE_HC_STATUS);
BCE_PRINTF(sc,
"----------------------------"
"----------------"
"----------------------------\n");
BCE_PRINTF(sc,
"----------------------------"
" Register Dump "
"----------------------------\n");
for (int i = 0x400; i < 0x8000; i += 0x10)
BCE_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
BCE_PRINTF(sc,
"----------------------------"
"----------------"
"----------------------------\n");
}
static void
bce_breakpoint(struct bce_softc *sc)
{
/* Unreachable code to shut the compiler up about unused functions. */
if (0) {
bce_dump_txbd(sc, 0, NULL);
bce_dump_rxbd(sc, 0, NULL);
bce_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
bce_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
bce_dump_l2fhdr(sc, 0, NULL);
bce_dump_tx_chain(sc, 0, USABLE_TX_BD);
bce_dump_rx_chain(sc, 0, USABLE_RX_BD);
bce_dump_status_block(sc);
bce_dump_stats_block(sc);
bce_dump_driver_state(sc);
bce_dump_hw_state(sc);
}
bce_dump_driver_state(sc);
/* Print the important status block fields. */
bce_dump_status_block(sc);
/* Call the debugger. */
breakpoint();
return;
}
#endif