freebsd-skq/sys/dev/drm2/i915/intel_dp.c
pfg 6ce01c2d90 etc: minor spelling fixes.
Mostly comments but also some user-visible strings.

MFC after:	2 weeks
2016-05-02 16:47:28 +00:00

2925 lines
81 KiB
C

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/drm2/drmP.h>
#include <dev/drm2/drm_crtc.h>
#include <dev/drm2/drm_crtc_helper.h>
#include <dev/drm2/drm_edid.h>
#include <dev/drm2/i915/intel_drv.h>
#include <dev/drm2/i915/i915_drm.h>
#include <dev/drm2/i915/i915_drv.h>
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
/**
* is_edp - is the given port attached to an eDP panel (either CPU or PCH)
* @intel_dp: DP struct
*
* If a CPU or PCH DP output is attached to an eDP panel, this function
* will return true, and false otherwise.
*/
static bool is_edp(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
}
/**
* is_pch_edp - is the port on the PCH and attached to an eDP panel?
* @intel_dp: DP struct
*
* Returns true if the given DP struct corresponds to a PCH DP port attached
* to an eDP panel, false otherwise. Helpful for determining whether we
* may need FDI resources for a given DP output or not.
*/
static bool is_pch_edp(struct intel_dp *intel_dp)
{
return intel_dp->is_pch_edp;
}
/**
* is_cpu_edp - is the port on the CPU and attached to an eDP panel?
* @intel_dp: DP struct
*
* Returns true if the given DP struct corresponds to a CPU eDP port.
*/
static bool is_cpu_edp(struct intel_dp *intel_dp)
{
return is_edp(intel_dp) && !is_pch_edp(intel_dp);
}
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
return intel_dig_port->base.base.dev;
}
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
}
/**
* intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
* @encoder: DRM encoder
*
* Return true if @encoder corresponds to a PCH attached eDP panel. Needed
* by intel_display.c.
*/
bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
{
struct intel_dp *intel_dp;
if (!encoder)
return false;
intel_dp = enc_to_intel_dp(encoder);
return is_pch_edp(intel_dp);
}
static void intel_dp_link_down(struct intel_dp *intel_dp);
void
intel_edp_link_config(struct intel_encoder *intel_encoder,
int *lane_num, int *link_bw)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
*lane_num = intel_dp->lane_count;
*link_bw = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
}
int
intel_edp_target_clock(struct intel_encoder *intel_encoder,
struct drm_display_mode *mode)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
struct intel_connector *intel_connector = intel_dp->attached_connector;
if (intel_connector->panel.fixed_mode)
return intel_connector->panel.fixed_mode->clock;
else
return mode->clock;
}
static int
intel_dp_max_link_bw(struct intel_dp *intel_dp)
{
int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
default:
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
static int
intel_dp_link_clock(uint8_t link_bw)
{
if (link_bw == DP_LINK_BW_2_7)
return 270000;
else
return 162000;
}
/*
* The units on the numbers in the next two are... bizarre. Examples will
* make it clearer; this one parallels an example in the eDP spec.
*
* intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
*
* 270000 * 1 * 8 / 10 == 216000
*
* The actual data capacity of that configuration is 2.16Gbit/s, so the
* units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
* or equivalently, kilopixels per second - so for 1680x1050R it'd be
* 119000. At 18bpp that's 2142000 kilobits per second.
*
* Thus the strange-looking division by 10 in intel_dp_link_required, to
* get the result in decakilobits instead of kilobits.
*/
static int
intel_dp_link_required(int pixel_clock, int bpp)
{
return (pixel_clock * bpp + 9) / 10;
}
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
return (max_link_clock * max_lanes * 8) / 10;
}
static bool
intel_dp_adjust_dithering(struct intel_dp *intel_dp,
struct drm_display_mode *mode,
bool adjust_mode)
{
int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
int max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
int max_rate, mode_rate;
mode_rate = intel_dp_link_required(mode->clock, 24);
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
if (mode_rate > max_rate) {
mode_rate = intel_dp_link_required(mode->clock, 18);
if (mode_rate > max_rate)
return false;
if (adjust_mode)
mode->private_flags
|= INTEL_MODE_DP_FORCE_6BPC;
return true;
}
return true;
}
static int
intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
if (is_edp(intel_dp) && fixed_mode) {
if (mode->hdisplay > fixed_mode->hdisplay)
return MODE_PANEL;
if (mode->vdisplay > fixed_mode->vdisplay)
return MODE_PANEL;
}
if (!intel_dp_adjust_dithering(intel_dp, mode, false))
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
return MODE_H_ILLEGAL;
return MODE_OK;
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t clkcfg;
/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
if (IS_VALLEYVIEW(dev))
return 200;
clkcfg = I915_READ(CLKCFG);
switch (clkcfg & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_400:
return 100;
case CLKCFG_FSB_533:
return 133;
case CLKCFG_FSB_667:
return 166;
case CLKCFG_FSB_800:
return 200;
case CLKCFG_FSB_1067:
return 266;
case CLKCFG_FSB_1333:
return 333;
/* these two are just a guess; one of them might be right */
case CLKCFG_FSB_1600:
case CLKCFG_FSB_1600_ALT:
return 400;
default:
return 133;
}
}
static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
}
static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
}
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
if (!is_edp(intel_dp))
return;
if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
WARN(1, "eDP powered off while attempting aux channel communication.\n");
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
I915_READ(PCH_PP_STATUS),
I915_READ(PCH_PP_CONTROL));
}
}
static int
intel_dp_aux_ch(struct intel_dp *intel_dp,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
uint32_t output_reg = intel_dp->output_reg;
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ch_ctl = output_reg + 0x10;
uint32_t ch_data = ch_ctl + 4;
int i;
int recv_bytes;
uint32_t status;
uint32_t aux_clock_divider;
int try, precharge;
if (IS_HASWELL(dev)) {
switch (intel_dig_port->port) {
case PORT_A:
ch_ctl = DPA_AUX_CH_CTL;
ch_data = DPA_AUX_CH_DATA1;
break;
case PORT_B:
ch_ctl = PCH_DPB_AUX_CH_CTL;
ch_data = PCH_DPB_AUX_CH_DATA1;
break;
case PORT_C:
ch_ctl = PCH_DPC_AUX_CH_CTL;
ch_data = PCH_DPC_AUX_CH_DATA1;
break;
case PORT_D:
ch_ctl = PCH_DPD_AUX_CH_CTL;
ch_data = PCH_DPD_AUX_CH_DATA1;
break;
default:
BUG();
}
}
intel_dp_check_edp(intel_dp);
/* The clock divider is based off the hrawclk,
* and would like to run at 2MHz. So, take the
* hrawclk value and divide by 2 and use that
*
* Note that PCH attached eDP panels should use a 125MHz input
* clock divider.
*/
if (is_cpu_edp(intel_dp)) {
if (IS_HASWELL(dev))
aux_clock_divider = intel_ddi_get_cdclk_freq(dev_priv) >> 1;
else if (IS_VALLEYVIEW(dev))
aux_clock_divider = 100;
else if (IS_GEN6(dev) || IS_GEN7(dev))
aux_clock_divider = 200; /* SNB & IVB eDP input clock at 400Mhz */
else
aux_clock_divider = 225; /* eDP input clock at 450Mhz */
} else if (HAS_PCH_SPLIT(dev))
aux_clock_divider = DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
else
aux_clock_divider = intel_hrawclk(dev) / 2;
if (IS_GEN6(dev))
precharge = 3;
else
precharge = 5;
/* Try to wait for any previous AUX channel activity */
for (try = 0; try < 3; try++) {
status = I915_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
DRM_MSLEEP(1);
}
if (try == 3) {
WARN(1, "dp_aux_ch not started status 0x%08x\n",
I915_READ(ch_ctl));
return -EBUSY;
}
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4)
I915_WRITE(ch_data + i,
pack_aux(send + i, send_bytes - i));
/* Send the command and wait for it to complete */
I915_WRITE(ch_ctl,
DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_TIME_OUT_400us |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
for (;;) {
status = I915_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
udelay(100);
}
/* Clear done status and any errors */
I915_WRITE(ch_ctl,
status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR))
continue;
if (status & DP_AUX_CH_CTL_DONE)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
return -EBUSY;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
return -EIO;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
return -ETIMEDOUT;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4)
unpack_aux(I915_READ(ch_data + i),
recv + i, recv_bytes - i);
return recv_bytes;
}
/* Write data to the aux channel in native mode */
static int
intel_dp_aux_native_write(struct intel_dp *intel_dp,
uint16_t address, uint8_t *send, int send_bytes)
{
int ret;
uint8_t msg[20];
int msg_bytes;
uint8_t ack;
intel_dp_check_edp(intel_dp);
if (send_bytes > 16)
return -1;
msg[0] = AUX_NATIVE_WRITE << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = send_bytes - 1;
memcpy(&msg[4], send, send_bytes);
msg_bytes = send_bytes + 4;
for (;;) {
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
break;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
return send_bytes;
}
/* Write a single byte to the aux channel in native mode */
static int
intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
uint16_t address, uint8_t byte)
{
return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
}
/* read bytes from a native aux channel */
static int
intel_dp_aux_native_read(struct intel_dp *intel_dp,
uint16_t address, uint8_t *recv, int recv_bytes)
{
uint8_t msg[4];
int msg_bytes;
uint8_t reply[20];
int reply_bytes;
uint8_t ack;
int ret;
intel_dp_check_edp(intel_dp);
msg[0] = AUX_NATIVE_READ << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = recv_bytes - 1;
msg_bytes = 4;
reply_bytes = recv_bytes + 1;
for (;;) {
ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
reply, reply_bytes);
if (ret == 0)
return -EPROTO;
if (ret < 0)
return ret;
ack = reply[0];
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
memcpy(recv, reply + 1, ret - 1);
return ret - 1;
}
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
}
static int
intel_dp_i2c_aux_ch(device_t adapter, int mode,
uint8_t write_byte, uint8_t *read_byte)
{
struct iic_dp_aux_data *algo_data = device_get_softc(adapter);
struct intel_dp *intel_dp = algo_data->priv;
uint16_t address = algo_data->address;
uint8_t msg[5];
uint8_t reply[2];
unsigned retry;
int msg_bytes;
int reply_bytes;
int ret;
intel_dp_check_edp(intel_dp);
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[0] = AUX_I2C_READ << 4;
else
msg[0] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[0] |= AUX_I2C_MOT << 4;
msg[1] = address >> 8;
msg[2] = address;
switch (mode) {
case MODE_I2C_WRITE:
msg[3] = 0;
msg[4] = write_byte;
msg_bytes = 5;
reply_bytes = 1;
break;
case MODE_I2C_READ:
msg[3] = 0;
msg_bytes = 4;
reply_bytes = 2;
break;
default:
msg_bytes = 3;
reply_bytes = 1;
break;
}
for (retry = 0; retry < 5; retry++) {
ret = intel_dp_aux_ch(intel_dp,
msg, msg_bytes,
reply, reply_bytes);
if (ret < 0) {
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
return ret;
}
switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
case AUX_NATIVE_REPLY_ACK:
/* I2C-over-AUX Reply field is only valid
* when paired with AUX ACK.
*/
break;
case AUX_NATIVE_REPLY_NACK:
DRM_DEBUG_KMS("aux_ch native nack\n");
return -EREMOTEIO;
case AUX_NATIVE_REPLY_DEFER:
udelay(100);
continue;
default:
DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
reply[0]);
return -EREMOTEIO;
}
switch (reply[0] & AUX_I2C_REPLY_MASK) {
case AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ) {
*read_byte = reply[1];
}
return reply_bytes - 1;
case AUX_I2C_REPLY_NACK:
DRM_DEBUG_KMS("aux_i2c nack\n");
return -EREMOTEIO;
case AUX_I2C_REPLY_DEFER:
DRM_DEBUG_KMS("aux_i2c defer\n");
udelay(100);
break;
default:
DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
return -EREMOTEIO;
}
}
DRM_ERROR("too many retries, giving up\n");
return -EREMOTEIO;
}
static int
intel_dp_i2c_init(struct intel_dp *intel_dp,
struct intel_connector *intel_connector, const char *name)
{
int ret;
DRM_DEBUG_KMS("i2c_init %s\n", name);
ironlake_edp_panel_vdd_on(intel_dp);
ret = iic_dp_aux_add_bus(intel_connector->base.dev->dev, name,
intel_dp_i2c_aux_ch, intel_dp, &intel_dp->dp_iic_bus,
&intel_dp->adapter);
ironlake_edp_panel_vdd_off(intel_dp, false);
return ret;
}
bool
intel_dp_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct intel_connector *intel_connector = intel_dp->attached_connector;
int lane_count, clock;
int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
int bpp, mode_rate;
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
adjusted_mode);
intel_pch_panel_fitting(dev,
intel_connector->panel.fitting_mode,
mode, adjusted_mode);
}
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
return false;
DRM_DEBUG_KMS("DP link computation with max lane count %i "
"max bw %02x pixel clock %iKHz\n",
max_lane_count, bws[max_clock], adjusted_mode->clock);
if (!intel_dp_adjust_dithering(intel_dp, adjusted_mode, true))
return false;
bpp = adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC ? 18 : 24;
mode_rate = intel_dp_link_required(adjusted_mode->clock, bpp);
for (clock = 0; clock <= max_clock; clock++) {
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
if (mode_rate <= link_avail) {
intel_dp->link_bw = bws[clock];
intel_dp->lane_count = lane_count;
adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
DRM_DEBUG_KMS("DP link bw %02x lane "
"count %d clock %d bpp %d\n",
intel_dp->link_bw, intel_dp->lane_count,
adjusted_mode->clock, bpp);
DRM_DEBUG_KMS("DP link bw required %i available %i\n",
mode_rate, link_avail);
return true;
}
}
}
return false;
}
struct intel_dp_m_n {
uint32_t tu;
uint32_t gmch_m;
uint32_t gmch_n;
uint32_t link_m;
uint32_t link_n;
};
static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
static void
intel_dp_compute_m_n(int bpp,
int nlanes,
int pixel_clock,
int link_clock,
struct intel_dp_m_n *m_n)
{
m_n->tu = 64;
m_n->gmch_m = (pixel_clock * bpp) >> 3;
m_n->gmch_n = link_clock * nlanes;
intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
struct intel_dp *intel_dp;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int lane_count = 4;
struct intel_dp_m_n m_n;
int pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
int target_clock;
/*
* Find the lane count in the intel_encoder private
*/
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
intel_dp = enc_to_intel_dp(&intel_encoder->base);
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
intel_encoder->type == INTEL_OUTPUT_EDP)
{
lane_count = intel_dp->lane_count;
break;
}
}
target_clock = mode->clock;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
if (intel_encoder->type == INTEL_OUTPUT_EDP) {
target_clock = intel_edp_target_clock(intel_encoder,
mode);
break;
}
}
/*
* Compute the GMCH and Link ratios. The '3' here is
* the number of bytes_per_pixel post-LUT, which we always
* set up for 8-bits of R/G/B, or 3 bytes total.
*/
intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
target_clock, adjusted_mode->clock, &m_n);
if (IS_HASWELL(dev)) {
I915_WRITE(PIPE_DATA_M1(cpu_transcoder),
TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
} else if (HAS_PCH_SPLIT(dev)) {
I915_WRITE(TRANSDATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
} else if (IS_VALLEYVIEW(dev)) {
I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
} else {
I915_WRITE(PIPE_GMCH_DATA_M(pipe),
TU_SIZE(m_n.tu) | m_n.gmch_m);
I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
}
}
void intel_dp_init_link_config(struct intel_dp *intel_dp)
{
memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
intel_dp->link_configuration[0] = intel_dp->link_bw;
intel_dp->link_configuration[1] = intel_dp->lane_count;
intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
/*
* Check for DPCD version > 1.1 and enhanced framing support
*/
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
(intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
}
}
static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
/*
* There are four kinds of DP registers:
*
* IBX PCH
* SNB CPU
* IVB CPU
* CPT PCH
*
* IBX PCH and CPU are the same for almost everything,
* except that the CPU DP PLL is configured in this
* register
*
* CPT PCH is quite different, having many bits moved
* to the TRANS_DP_CTL register instead. That
* configuration happens (oddly) in ironlake_pch_enable
*/
/* Preserve the BIOS-computed detected bit. This is
* supposed to be read-only.
*/
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
/* Handle DP bits in common between all three register formats */
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
switch (intel_dp->lane_count) {
case 1:
intel_dp->DP |= DP_PORT_WIDTH_1;
break;
case 2:
intel_dp->DP |= DP_PORT_WIDTH_2;
break;
case 4:
intel_dp->DP |= DP_PORT_WIDTH_4;
break;
}
if (intel_dp->has_audio) {
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
pipe_name(intel_crtc->pipe));
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
intel_write_eld(encoder, adjusted_mode);
}
intel_dp_init_link_config(intel_dp);
/* Split out the IBX/CPU vs CPT settings */
if (is_cpu_edp(intel_dp) && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
intel_dp->DP |= DP_ENHANCED_FRAMING;
intel_dp->DP |= intel_crtc->pipe << 29;
/* don't miss out required setting for eDP */
if (adjusted_mode->clock < 200000)
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
else
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
intel_dp->DP |= intel_dp->color_range;
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
intel_dp->DP |= DP_SYNC_HS_HIGH;
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
intel_dp->DP |= DP_SYNC_VS_HIGH;
intel_dp->DP |= DP_LINK_TRAIN_OFF;
if (intel_dp->link_configuration[1] & DP_LANE_COUNT_ENHANCED_FRAME_EN)
intel_dp->DP |= DP_ENHANCED_FRAMING;
if (intel_crtc->pipe == 1)
intel_dp->DP |= DP_PIPEB_SELECT;
if (is_cpu_edp(intel_dp)) {
/* don't miss out required setting for eDP */
if (adjusted_mode->clock < 200000)
intel_dp->DP |= DP_PLL_FREQ_160MHZ;
else
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
}
} else {
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
}
}
#define IDLE_ON_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE (PP_ON | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
#define IDLE_OFF_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
#define IDLE_OFF_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
#define IDLE_CYCLE_MASK (PP_ON | 0 | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE (0 | 0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
static void ironlake_wait_panel_status(struct intel_dp *intel_dp,
u32 mask,
u32 value)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
mask, value,
I915_READ(PCH_PP_STATUS),
I915_READ(PCH_PP_CONTROL));
if (_intel_wait_for(dev, (I915_READ(PCH_PP_STATUS) & mask) == value, 5000, 10, "915iwp")) {
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
I915_READ(PCH_PP_STATUS),
I915_READ(PCH_PP_CONTROL));
}
}
static void ironlake_wait_panel_on(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power on\n");
ironlake_wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
}
static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power off time\n");
ironlake_wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
}
static void ironlake_wait_panel_power_cycle(struct intel_dp *intel_dp)
{
DRM_DEBUG_KMS("Wait for panel power cycle\n");
ironlake_wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
}
/* Read the current pp_control value, unlocking the register if it
* is locked
*/
static u32 ironlake_get_pp_control(struct drm_i915_private *dev_priv)
{
u32 control = I915_READ(PCH_PP_CONTROL);
control &= ~PANEL_UNLOCK_MASK;
control |= PANEL_UNLOCK_REGS;
return control;
}
void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP VDD on\n");
WARN(intel_dp->want_panel_vdd,
"eDP VDD already requested on\n");
intel_dp->want_panel_vdd = true;
if (ironlake_edp_have_panel_vdd(intel_dp)) {
DRM_DEBUG_KMS("eDP VDD already on\n");
return;
}
if (!ironlake_edp_have_panel_power(intel_dp))
ironlake_wait_panel_power_cycle(intel_dp);
pp = ironlake_get_pp_control(dev_priv);
pp |= EDP_FORCE_VDD;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
/*
* If the panel wasn't on, delay before accessing aux channel
*/
if (!ironlake_edp_have_panel_power(intel_dp)) {
DRM_DEBUG_KMS("eDP was not running\n");
DRM_MSLEEP(intel_dp->panel_power_up_delay);
}
}
static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
pp = ironlake_get_pp_control(dev_priv);
pp &= ~EDP_FORCE_VDD;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
/* Make sure sequencer is idle before allowing subsequent activity */
DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
DRM_MSLEEP(intel_dp->panel_power_down_delay);
}
}
static void ironlake_panel_vdd_work(void *arg, int pending __unused)
{
struct intel_dp *intel_dp = arg;
struct drm_device *dev = intel_dp_to_dev(intel_dp);
sx_xlock(&dev->mode_config.mutex);
ironlake_panel_vdd_off_sync(intel_dp);
sx_xunlock(&dev->mode_config.mutex);
}
void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
{
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
intel_dp->want_panel_vdd = false;
if (sync) {
ironlake_panel_vdd_off_sync(intel_dp);
} else {
/*
* Queue the timer to fire a long
* time from now (relative to the power down delay)
* to keep the panel power up across a sequence of operations
*/
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
taskqueue_enqueue_timeout(dev_priv->wq,
&intel_dp->panel_vdd_work,
msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
}
}
void ironlake_edp_panel_on(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP power on\n");
if (ironlake_edp_have_panel_power(intel_dp)) {
DRM_DEBUG_KMS("eDP power already on\n");
return;
}
ironlake_wait_panel_power_cycle(intel_dp);
pp = ironlake_get_pp_control(dev_priv);
if (IS_GEN5(dev)) {
/* ILK workaround: disable reset around power sequence */
pp &= ~PANEL_POWER_RESET;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
}
pp |= POWER_TARGET_ON;
if (!IS_GEN5(dev))
pp |= PANEL_POWER_RESET;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
ironlake_wait_panel_on(intel_dp);
if (IS_GEN5(dev)) {
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
}
}
void ironlake_edp_panel_off(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("Turn eDP power off\n");
WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
pp = ironlake_get_pp_control(dev_priv);
/* We need to switch off panel power _and_ force vdd, for otherwise some
* panels get very unhappy and cease to work. */
pp &= ~(POWER_TARGET_ON | EDP_FORCE_VDD | PANEL_POWER_RESET | EDP_BLC_ENABLE);
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
intel_dp->want_panel_vdd = false;
ironlake_wait_panel_off(intel_dp);
}
void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int pipe = to_intel_crtc(intel_dig_port->base.base.crtc)->pipe;
u32 pp;
if (!is_edp(intel_dp))
return;
DRM_DEBUG_KMS("\n");
/*
* If we enable the backlight right away following a panel power
* on, we may see slight flicker as the panel syncs with the eDP
* link. So delay a bit to make sure the image is solid before
* allowing it to appear.
*/
DRM_MSLEEP(intel_dp->backlight_on_delay);
pp = ironlake_get_pp_control(dev_priv);
pp |= EDP_BLC_ENABLE;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
intel_panel_enable_backlight(dev, pipe);
}
void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
if (!is_edp(intel_dp))
return;
intel_panel_disable_backlight(dev);
DRM_DEBUG_KMS("\n");
pp = ironlake_get_pp_control(dev_priv);
pp &= ~EDP_BLC_ENABLE;
I915_WRITE(PCH_PP_CONTROL, pp);
POSTING_READ(PCH_PP_CONTROL);
DRM_MSLEEP(intel_dp->backlight_off_delay);
}
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
assert_pipe_disabled(dev_priv,
to_intel_crtc(crtc)->pipe);
DRM_DEBUG_KMS("\n");
dpa_ctl = I915_READ(DP_A);
WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
/* We don't adjust intel_dp->DP while tearing down the link, to
* facilitate link retraining (e.g. after hotplug). Hence clear all
* enable bits here to ensure that we don't enable too much. */
intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
intel_dp->DP |= DP_PLL_ENABLE;
I915_WRITE(DP_A, intel_dp->DP);
POSTING_READ(DP_A);
udelay(200);
}
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 dpa_ctl;
assert_pipe_disabled(dev_priv,
to_intel_crtc(crtc)->pipe);
dpa_ctl = I915_READ(DP_A);
WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
"dp pll off, should be on\n");
WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
/* We can't rely on the value tracked for the DP register in
* intel_dp->DP because link_down must not change that (otherwise link
* re-training will fail. */
dpa_ctl &= ~DP_PLL_ENABLE;
I915_WRITE(DP_A, dpa_ctl);
POSTING_READ(DP_A);
udelay(200);
}
/* If the sink supports it, try to set the power state appropriately */
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
{
int ret, i;
/* Should have a valid DPCD by this point */
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
return;
if (mode != DRM_MODE_DPMS_ON) {
ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
DP_SET_POWER_D3);
if (ret != 1)
DRM_DEBUG_DRIVER("failed to write sink power state\n");
} else {
/*
* When turning on, we need to retry for 1ms to give the sink
* time to wake up.
*/
for (i = 0; i < 3; i++) {
ret = intel_dp_aux_native_write_1(intel_dp,
DP_SET_POWER,
DP_SET_POWER_D0);
if (ret == 1)
break;
DRM_MSLEEP(1);
}
}
}
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
u32 tmp = I915_READ(intel_dp->output_reg);
if (!(tmp & DP_PORT_EN))
return false;
if (is_cpu_edp(intel_dp) && IS_GEN7(dev)) {
*pipe = PORT_TO_PIPE_CPT(tmp);
} else if (!HAS_PCH_CPT(dev) || is_cpu_edp(intel_dp)) {
*pipe = PORT_TO_PIPE(tmp);
} else {
u32 trans_sel;
u32 trans_dp;
int i;
switch (intel_dp->output_reg) {
case PCH_DP_B:
trans_sel = TRANS_DP_PORT_SEL_B;
break;
case PCH_DP_C:
trans_sel = TRANS_DP_PORT_SEL_C;
break;
case PCH_DP_D:
trans_sel = TRANS_DP_PORT_SEL_D;
break;
default:
return true;
}
for_each_pipe(i) {
trans_dp = I915_READ(TRANS_DP_CTL(i));
if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
*pipe = i;
return true;
}
}
DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
intel_dp->output_reg);
}
return true;
}
static void intel_disable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
/* Make sure the panel is off before trying to change the mode. But also
* ensure that we have vdd while we switch off the panel. */
ironlake_edp_panel_vdd_on(intel_dp);
ironlake_edp_backlight_off(intel_dp);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
ironlake_edp_panel_off(intel_dp);
/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
if (!is_cpu_edp(intel_dp))
intel_dp_link_down(intel_dp);
}
static void intel_post_disable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
if (is_cpu_edp(intel_dp)) {
intel_dp_link_down(intel_dp);
ironlake_edp_pll_off(intel_dp);
}
}
static void intel_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dp_reg = I915_READ(intel_dp->output_reg);
if (WARN_ON(dp_reg & DP_PORT_EN))
return;
ironlake_edp_panel_vdd_on(intel_dp);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
ironlake_edp_panel_on(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp, true);
intel_dp_complete_link_train(intel_dp);
ironlake_edp_backlight_on(intel_dp);
}
static void intel_pre_enable_dp(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
if (is_cpu_edp(intel_dp))
ironlake_edp_pll_on(intel_dp);
}
/*
* Native read with retry for link status and receiver capability reads for
* cases where the sink may still be asleep.
*/
static bool
intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
uint8_t *recv, int recv_bytes)
{
int ret, i;
/*
* Sinks are *supposed* to come up within 1ms from an off state,
* but we're also supposed to retry 3 times per the spec.
*/
for (i = 0; i < 3; i++) {
ret = intel_dp_aux_native_read(intel_dp, address, recv,
recv_bytes);
if (ret == recv_bytes)
return true;
DRM_MSLEEP(1);
}
return false;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
{
return intel_dp_aux_native_read_retry(intel_dp,
DP_LANE0_1_STATUS,
link_status,
DP_LINK_STATUS_SIZE);
}
#if 0
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
static char *link_train_names[] = {
"pattern 1", "pattern 2", "idle", "off"
};
#endif
/*
* These are source-specific values; current Intel hardware supports
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
*/
static uint8_t
intel_dp_voltage_max(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
if (IS_GEN7(dev) && is_cpu_edp(intel_dp))
return DP_TRAIN_VOLTAGE_SWING_800;
else if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
return DP_TRAIN_VOLTAGE_SWING_1200;
else
return DP_TRAIN_VOLTAGE_SWING_800;
}
static uint8_t
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
if (IS_HASWELL(dev)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_9_5;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
} else {
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
}
static void
intel_get_adjust_train(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
{
uint8_t v = 0;
uint8_t p = 0;
int lane;
uint8_t voltage_max;
uint8_t preemph_max;
for (lane = 0; lane < intel_dp->lane_count; lane++) {
uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
voltage_max = intel_dp_voltage_max(intel_dp);
if (v >= voltage_max)
v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
if (p >= preemph_max)
p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
intel_dp->train_set[lane] = v | p;
}
static uint32_t
intel_dp_signal_levels(uint8_t train_set)
{
uint32_t signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_800:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_1200:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPHASIS_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPHASIS_3_5:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPHASIS_6:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPHASIS_9_5:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
}
}
/* Gen7's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen7_edp_signal_levels(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_400MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
return EDP_LINK_TRAIN_400MV_6DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_600MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_800MV_0DB_IVB;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return EDP_LINK_TRAIN_500MV_0DB_IVB;
}
}
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
static uint32_t
intel_dp_signal_levels_hsw(uint8_t train_set)
{
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
switch (signal_levels) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_400MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_400MV_3_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
return DDI_BUF_EMP_400MV_6DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
return DDI_BUF_EMP_400MV_9_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_600MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_600MV_3_5DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
return DDI_BUF_EMP_600MV_6DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
return DDI_BUF_EMP_800MV_0DB_HSW;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
return DDI_BUF_EMP_800MV_3_5DB_HSW;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
"0x%x\n", signal_levels);
return DDI_BUF_EMP_400MV_0DB_HSW;
}
}
static bool
intel_dp_set_link_train(struct intel_dp *intel_dp,
uint32_t dp_reg_value,
uint8_t dp_train_pat)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
enum port port = intel_dig_port->port;
int ret;
uint32_t temp;
if (IS_HASWELL(dev)) {
temp = I915_READ(DP_TP_CTL(port));
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
else
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
if (port != PORT_A) {
temp |= DP_TP_CTL_LINK_TRAIN_IDLE;
I915_WRITE(DP_TP_CTL(port), temp);
if (wait_for((I915_READ(DP_TP_STATUS(port)) &
DP_TP_STATUS_IDLE_DONE), 1))
DRM_ERROR("Timed out waiting for DP idle patterns\n");
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
}
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
break;
case DP_TRAINING_PATTERN_1:
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
break;
case DP_TRAINING_PATTERN_2:
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
break;
case DP_TRAINING_PATTERN_3:
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
break;
}
I915_WRITE(DP_TP_CTL(port), temp);
} else if (HAS_PCH_CPT(dev) &&
(IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
dp_reg_value &= ~DP_LINK_TRAIN_MASK_CPT;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
dp_reg_value |= DP_LINK_TRAIN_OFF_CPT;
break;
case DP_TRAINING_PATTERN_1:
dp_reg_value |= DP_LINK_TRAIN_PAT_1_CPT;
break;
case DP_TRAINING_PATTERN_2:
dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
break;
case DP_TRAINING_PATTERN_3:
DRM_ERROR("DP training pattern 3 not supported\n");
dp_reg_value |= DP_LINK_TRAIN_PAT_2_CPT;
break;
}
} else {
dp_reg_value &= ~DP_LINK_TRAIN_MASK;
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
case DP_TRAINING_PATTERN_DISABLE:
dp_reg_value |= DP_LINK_TRAIN_OFF;
break;
case DP_TRAINING_PATTERN_1:
dp_reg_value |= DP_LINK_TRAIN_PAT_1;
break;
case DP_TRAINING_PATTERN_2:
dp_reg_value |= DP_LINK_TRAIN_PAT_2;
break;
case DP_TRAINING_PATTERN_3:
DRM_ERROR("DP training pattern 3 not supported\n");
dp_reg_value |= DP_LINK_TRAIN_PAT_2;
break;
}
}
I915_WRITE(intel_dp->output_reg, dp_reg_value);
POSTING_READ(intel_dp->output_reg);
intel_dp_aux_native_write_1(intel_dp,
DP_TRAINING_PATTERN_SET,
dp_train_pat);
if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) !=
DP_TRAINING_PATTERN_DISABLE) {
ret = intel_dp_aux_native_write(intel_dp,
DP_TRAINING_LANE0_SET,
intel_dp->train_set,
intel_dp->lane_count);
if (ret != intel_dp->lane_count)
return false;
}
return true;
}
/* Enable corresponding port and start training pattern 1 */
void
intel_dp_start_link_train(struct intel_dp *intel_dp)
{
struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
struct drm_device *dev = encoder->dev;
int i;
uint8_t voltage;
bool clock_recovery = false;
int voltage_tries, loop_tries;
uint32_t DP = intel_dp->DP;
if (IS_HASWELL(dev))
intel_ddi_prepare_link_retrain(encoder);
/* Write the link configuration data */
intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
intel_dp->link_configuration,
DP_LINK_CONFIGURATION_SIZE);
DP |= DP_PORT_EN;
memset(intel_dp->train_set, 0, 4);
voltage = 0xff;
voltage_tries = 0;
loop_tries = 0;
clock_recovery = false;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
uint8_t link_status[DP_LINK_STATUS_SIZE];
uint32_t signal_levels;
if (IS_HASWELL(dev)) {
signal_levels = intel_dp_signal_levels_hsw(
intel_dp->train_set[0]);
DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
} else {
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
}
DRM_DEBUG_KMS("training pattern 1 signal levels %08x\n",
signal_levels);
/* Set training pattern 1 */
if (!intel_dp_set_link_train(intel_dp, DP,
DP_TRAINING_PATTERN_1 |
DP_LINK_SCRAMBLING_DISABLE))
break;
drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
if (!intel_dp_get_link_status(intel_dp, link_status)) {
DRM_ERROR("failed to get link status\n");
break;
}
if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("clock recovery OK\n");
clock_recovery = true;
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < intel_dp->lane_count; i++)
if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == intel_dp->lane_count) {
++loop_tries;
if (loop_tries == 5) {
DRM_DEBUG_KMS("too many full retries, give up\n");
break;
}
memset(intel_dp->train_set, 0, 4);
voltage_tries = 0;
continue;
}
/* Check to see if we've tried the same voltage 5 times */
if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++voltage_tries;
if (voltage_tries == 5) {
DRM_DEBUG_KMS("too many voltage retries, give up\n");
break;
}
} else
voltage_tries = 0;
voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new intel_dp->train_set as requested by target */
intel_get_adjust_train(intel_dp, link_status);
}
intel_dp->DP = DP;
}
void
intel_dp_complete_link_train(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
bool channel_eq = false;
int tries, cr_tries;
uint32_t DP = intel_dp->DP;
/* channel equalization */
tries = 0;
cr_tries = 0;
channel_eq = false;
for (;;) {
/* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
uint32_t signal_levels;
uint8_t link_status[DP_LINK_STATUS_SIZE];
if (cr_tries > 5) {
DRM_ERROR("failed to train DP, aborting\n");
intel_dp_link_down(intel_dp);
break;
}
if (IS_HASWELL(dev)) {
signal_levels = intel_dp_signal_levels_hsw(intel_dp->train_set[0]);
DP = (DP & ~DDI_BUF_EMP_MASK) | signal_levels;
} else if (IS_GEN7(dev) && is_cpu_edp(intel_dp) && !IS_VALLEYVIEW(dev)) {
signal_levels = intel_gen7_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB) | signal_levels;
} else if (IS_GEN6(dev) && is_cpu_edp(intel_dp)) {
signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
} else {
signal_levels = intel_dp_signal_levels(intel_dp->train_set[0]);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
}
/* channel eq pattern */
if (!intel_dp_set_link_train(intel_dp, DP,
DP_TRAINING_PATTERN_2 |
DP_LINK_SCRAMBLING_DISABLE))
break;
drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
if (!intel_dp_get_link_status(intel_dp, link_status))
break;
/* Make sure clock is still ok */
if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
intel_dp_start_link_train(intel_dp);
cr_tries++;
continue;
}
if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
channel_eq = true;
break;
}
/* Try 5 times, then try clock recovery if that fails */
if (tries > 5) {
intel_dp_link_down(intel_dp);
intel_dp_start_link_train(intel_dp);
tries = 0;
cr_tries++;
continue;
}
/* Compute new intel_dp->train_set as requested by target */
intel_get_adjust_train(intel_dp, link_status);
++tries;
}
if (channel_eq)
DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
intel_dp_set_link_train(intel_dp, DP, DP_TRAINING_PATTERN_DISABLE);
}
static void
intel_dp_link_down(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_device *dev = intel_dig_port->base.base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t DP = intel_dp->DP;
/*
* DDI code has a strict mode set sequence and we should try to respect
* it, otherwise we might hang the machine in many different ways. So we
* really should be disabling the port only on a complete crtc_disable
* sequence. This function is just called under two conditions on DDI
* code:
* - Link train failed while doing crtc_enable, and on this case we
* really should respect the mode set sequence and wait for a
* crtc_disable.
* - Someone turned the monitor off and intel_dp_check_link_status
* called us. We don't need to disable the whole port on this case, so
* when someone turns the monitor on again,
* intel_ddi_prepare_link_retrain will take care of redoing the link
* train.
*/
if (IS_HASWELL(dev))
return;
if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
return;
DRM_DEBUG_KMS("\n");
if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || !is_cpu_edp(intel_dp))) {
DP &= ~DP_LINK_TRAIN_MASK_CPT;
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
} else {
DP &= ~DP_LINK_TRAIN_MASK;
I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
}
POSTING_READ(intel_dp->output_reg);
DRM_MSLEEP(17);
if (HAS_PCH_IBX(dev) &&
I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
/* Hardware workaround: leaving our transcoder select
* set to transcoder B while it's off will prevent the
* corresponding HDMI output on transcoder A.
*
* Combine this with another hardware workaround:
* transcoder select bit can only be cleared while the
* port is enabled.
*/
DP &= ~DP_PIPEB_SELECT;
I915_WRITE(intel_dp->output_reg, DP);
/* Changes to enable or select take place the vblank
* after being written.
*/
if (crtc == NULL) {
/* We can arrive here never having been attached
* to a CRTC, for instance, due to inheriting
* random state from the BIOS.
*
* If the pipe is not running, play safe and
* wait for the clocks to stabilise before
* continuing.
*/
POSTING_READ(intel_dp->output_reg);
DRM_MSLEEP(50);
} else
intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
}
DP &= ~DP_AUDIO_OUTPUT_ENABLE;
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
POSTING_READ(intel_dp->output_reg);
DRM_MSLEEP(intel_dp->panel_power_down_delay);
}
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
sizeof(intel_dp->dpcd)) == 0)
return false; /* aux transfer failed */
if (intel_dp->dpcd[DP_DPCD_REV] == 0)
return false; /* DPCD not present */
if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
DP_DWN_STRM_PORT_PRESENT))
return true; /* native DP sink */
if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
return true; /* no per-port downstream info */
if (intel_dp_aux_native_read_retry(intel_dp, DP_DOWNSTREAM_PORT_0,
intel_dp->downstream_ports,
DP_MAX_DOWNSTREAM_PORTS) == 0)
return false; /* downstream port status fetch failed */
return true;
}
static void
intel_dp_probe_oui(struct intel_dp *intel_dp)
{
u8 buf[3];
if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
return;
ironlake_edp_panel_vdd_on(intel_dp);
if (intel_dp_aux_native_read_retry(intel_dp, DP_SINK_OUI, buf, 3))
DRM_DEBUG_KMS("Sink OUI: %02x%02x%02x\n",
buf[0], buf[1], buf[2]);
if (intel_dp_aux_native_read_retry(intel_dp, DP_BRANCH_OUI, buf, 3))
DRM_DEBUG_KMS("Branch OUI: %02x%02x%02x\n",
buf[0], buf[1], buf[2]);
ironlake_edp_panel_vdd_off(intel_dp, false);
}
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
int ret;
ret = intel_dp_aux_native_read_retry(intel_dp,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector, 1);
if (!ret)
return false;
return true;
}
static void
intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
/* NAK by default */
intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_NAK);
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*/
void
intel_dp_check_link_status(struct intel_dp *intel_dp)
{
struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
u8 sink_irq_vector;
u8 link_status[DP_LINK_STATUS_SIZE];
if (!intel_encoder->connectors_active)
return;
if (WARN_ON(!intel_encoder->base.crtc))
return;
/* Try to read receiver status if the link appears to be up */
if (!intel_dp_get_link_status(intel_dp, link_status)) {
intel_dp_link_down(intel_dp);
return;
}
/* Now read the DPCD to see if it's actually running */
if (!intel_dp_get_dpcd(intel_dp)) {
intel_dp_link_down(intel_dp);
return;
}
/* Try to read the source of the interrupt */
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
/* Clear interrupt source */
intel_dp_aux_native_write_1(intel_dp,
DP_DEVICE_SERVICE_IRQ_VECTOR,
sink_irq_vector);
if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
intel_dp_handle_test_request(intel_dp);
if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
}
if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
drm_get_encoder_name(&intel_encoder->base));
intel_dp_start_link_train(intel_dp);
intel_dp_complete_link_train(intel_dp);
}
}
/* XXX this is probably wrong for multiple downstream ports */
static enum drm_connector_status
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
{
uint8_t *dpcd = intel_dp->dpcd;
bool hpd;
uint8_t type;
if (!intel_dp_get_dpcd(intel_dp))
return connector_status_disconnected;
/* if there's no downstream port, we're done */
if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
return connector_status_connected;
/* If we're HPD-aware, SINK_COUNT changes dynamically */
hpd = !!(intel_dp->downstream_ports[0] & DP_DS_PORT_HPD);
if (hpd) {
uint8_t reg;
if (!intel_dp_aux_native_read_retry(intel_dp, DP_SINK_COUNT,
&reg, 1))
return connector_status_unknown;
return DP_GET_SINK_COUNT(reg) ? connector_status_connected
: connector_status_disconnected;
}
/* If no HPD, poke DDC gently */
if (drm_probe_ddc(intel_dp->adapter))
return connector_status_connected;
/* Well we tried, say unknown for unreliable port types */
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
if (type == DP_DS_PORT_TYPE_VGA || type == DP_DS_PORT_TYPE_NON_EDID)
return connector_status_unknown;
/* Anything else is out of spec, warn and ignore */
DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
return connector_status_disconnected;
}
static enum drm_connector_status
ironlake_dp_detect(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
enum drm_connector_status status;
/* Can't disconnect eDP, but you can close the lid... */
if (is_edp(intel_dp)) {
status = intel_panel_detect(dev);
if (status == connector_status_unknown)
status = connector_status_connected;
return status;
}
return intel_dp_detect_dpcd(intel_dp);
}
static enum drm_connector_status
g4x_dp_detect(struct intel_dp *intel_dp)
{
struct drm_device *dev = intel_dp_to_dev(intel_dp);
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t bit;
switch (intel_dp->output_reg) {
case DP_B:
bit = DPB_HOTPLUG_LIVE_STATUS;
break;
case DP_C:
bit = DPC_HOTPLUG_LIVE_STATUS;
break;
case DP_D:
bit = DPD_HOTPLUG_LIVE_STATUS;
break;
default:
return connector_status_unknown;
}
if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
return connector_status_disconnected;
return intel_dp_detect_dpcd(intel_dp);
}
static struct edid *
intel_dp_get_edid(struct drm_connector *connector, device_t adapter)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
/* use cached edid if we have one */
if (intel_connector->edid) {
struct edid *edid;
int size;
/* invalid edid */
if (intel_connector->edid_err)
return NULL;
size = (intel_connector->edid->extensions + 1) * EDID_LENGTH;
edid = malloc(size, DRM_MEM_KMS, M_WAITOK);
if (!edid)
return NULL;
memcpy(edid, intel_connector->edid, size);
return edid;
}
return drm_get_edid(connector, adapter);
}
static int
intel_dp_get_edid_modes(struct drm_connector *connector, device_t adapter)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
/* use cached edid if we have one */
if (intel_connector->edid) {
/* invalid edid */
if (intel_connector->edid_err)
return 0;
return intel_connector_update_modes(connector,
intel_connector->edid);
}
return intel_ddc_get_modes(connector, adapter);
}
/**
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
*
* \return true if DP port is connected.
* \return false if DP port is disconnected.
*/
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector, bool force)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = connector->dev;
enum drm_connector_status status;
struct edid *edid = NULL;
char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
intel_dp->has_audio = false;
if (HAS_PCH_SPLIT(dev))
status = ironlake_dp_detect(intel_dp);
else
status = g4x_dp_detect(intel_dp);
hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
if (status != connector_status_connected)
return status;
intel_dp_probe_oui(intel_dp);
if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
} else {
edid = intel_dp_get_edid(connector, intel_dp->adapter);
if (edid) {
intel_dp->has_audio = drm_detect_monitor_audio(edid);
free(edid, DRM_MEM_KMS);
}
}
if (intel_encoder->type != INTEL_OUTPUT_EDP)
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
return connector_status_connected;
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_connector *intel_connector = to_intel_connector(connector);
struct drm_device *dev = connector->dev;
int ret;
/* We should parse the EDID data and find out if it has an audio sink
*/
ret = intel_dp_get_edid_modes(connector, intel_dp->adapter);
if (ret)
return ret;
/* if eDP has no EDID, fall back to fixed mode */
if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(dev,
intel_connector->panel.fixed_mode);
if (mode) {
drm_mode_probed_add(connector, mode);
return 1;
}
}
return 0;
}
static bool
intel_dp_detect_audio(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct edid *edid;
bool has_audio = false;
edid = intel_dp_get_edid(connector, intel_dp->adapter);
if (edid) {
has_audio = drm_detect_monitor_audio(edid);
free(edid, DRM_MEM_KMS);
}
return has_audio;
}
static int
intel_dp_set_property(struct drm_connector *connector,
struct drm_property *property,
uint64_t val)
{
struct drm_i915_private *dev_priv = connector->dev->dev_private;
struct intel_connector *intel_connector = to_intel_connector(connector);
struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
int ret;
ret = drm_object_property_set_value(&connector->base, property, val);
if (ret)
return ret;
if (property == dev_priv->force_audio_property) {
int i = val;
bool has_audio;
if (i == intel_dp->force_audio)
return 0;
intel_dp->force_audio = i;
if (i == HDMI_AUDIO_AUTO)
has_audio = intel_dp_detect_audio(connector);
else
has_audio = (i == HDMI_AUDIO_ON);
if (has_audio == intel_dp->has_audio)
return 0;
intel_dp->has_audio = has_audio;
goto done;
}
if (property == dev_priv->broadcast_rgb_property) {
if (val == !!intel_dp->color_range)
return 0;
intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
goto done;
}
if (is_edp(intel_dp) &&
property == connector->dev->mode_config.scaling_mode_property) {
if (val == DRM_MODE_SCALE_NONE) {
DRM_DEBUG_KMS("no scaling not supported\n");
return -EINVAL;
}
if (intel_connector->panel.fitting_mode == val) {
/* the eDP scaling property is not changed */
return 0;
}
intel_connector->panel.fitting_mode = val;
goto done;
}
return -EINVAL;
done:
if (intel_encoder->base.crtc) {
struct drm_crtc *crtc = intel_encoder->base.crtc;
intel_set_mode(crtc, &crtc->mode,
crtc->x, crtc->y, crtc->fb);
}
return 0;
}
static void
intel_dp_destroy(struct drm_connector *connector)
{
struct intel_dp *intel_dp = intel_attached_dp(connector);
struct intel_connector *intel_connector = to_intel_connector(connector);
free(intel_connector->edid, DRM_MEM_KMS);
if (is_edp(intel_dp))
intel_panel_fini(&intel_connector->panel);
drm_connector_cleanup(connector);
free(connector, DRM_MEM_KMS);
}
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct drm_device *dev = intel_dig_port->base.base.dev;
if (intel_dp->dp_iic_bus != NULL) {
if (intel_dp->adapter != NULL) {
device_delete_child(intel_dp->dp_iic_bus,
intel_dp->adapter);
}
device_delete_child(dev->dev, intel_dp->dp_iic_bus);
}
drm_encoder_cleanup(encoder);
if (is_edp(intel_dp)) {
struct drm_i915_private *dev_priv = dev->dev_private;
taskqueue_cancel_timeout(dev_priv->wq,
&intel_dp->panel_vdd_work, NULL);
taskqueue_drain_timeout(dev_priv->wq,
&intel_dp->panel_vdd_work);
ironlake_panel_vdd_off_sync(intel_dp);
}
free(intel_dig_port, DRM_MEM_KMS);
}
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
.mode_fixup = intel_dp_mode_fixup,
.mode_set = intel_dp_mode_set,
.disable = intel_encoder_noop,
};
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.dpms = intel_connector_dpms,
.detect = intel_dp_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.set_property = intel_dp_set_property,
.destroy = intel_dp_destroy,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.best_encoder = intel_best_encoder,
};
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.destroy = intel_dp_encoder_destroy,
};
static void
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
intel_dp_check_link_status(intel_dp);
}
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_encoder *intel_encoder;
struct intel_dp *intel_dp;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
intel_dp = enc_to_intel_dp(&intel_encoder->base);
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
intel_encoder->type == INTEL_OUTPUT_EDP)
return intel_dp->output_reg;
}
return -1;
}
/* check the VBT to see whether the eDP is on DP-D port */
bool intel_dpd_is_edp(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct child_device_config *p_child;
int i;
if (!dev_priv->child_dev_num)
return false;
for (i = 0; i < dev_priv->child_dev_num; i++) {
p_child = dev_priv->child_dev + i;
if (p_child->dvo_port == PORT_IDPD &&
p_child->device_type == DEVICE_TYPE_eDP)
return true;
}
return false;
}
static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
struct intel_connector *intel_connector = to_intel_connector(connector);
intel_attach_force_audio_property(connector);
intel_attach_broadcast_rgb_property(connector);
if (is_edp(intel_dp)) {
drm_mode_create_scaling_mode_property(connector->dev);
drm_object_attach_property(
&connector->base,
connector->dev->mode_config.scaling_mode_property,
DRM_MODE_SCALE_ASPECT);
intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
}
}
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
struct intel_dp *intel_dp,
struct edp_power_seq *out)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct edp_power_seq cur, vbt, spec, final;
u32 pp_on, pp_off, pp_div, pp;
/* Workaround: Need to write PP_CONTROL with the unlock key as
* the very first thing. */
pp = ironlake_get_pp_control(dev_priv);
I915_WRITE(PCH_PP_CONTROL, pp);
pp_on = I915_READ(PCH_PP_ON_DELAYS);
pp_off = I915_READ(PCH_PP_OFF_DELAYS);
pp_div = I915_READ(PCH_PP_DIVISOR);
/* Pull timing values out of registers */
cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
PANEL_POWER_UP_DELAY_SHIFT;
cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
PANEL_LIGHT_ON_DELAY_SHIFT;
cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
PANEL_LIGHT_OFF_DELAY_SHIFT;
cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
PANEL_POWER_DOWN_DELAY_SHIFT;
cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
vbt = dev_priv->edp.pps;
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
* our hw here, which are all in 100usec. */
spec.t1_t3 = 210 * 10;
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
spec.t10 = 500 * 10;
/* This one is special and actually in units of 100ms, but zero
* based in the hw (so we need to add 100 ms). But the sw vbt
* table multiplies it with 1000 to make it in units of 100usec,
* too. */
spec.t11_t12 = (510 + 100) * 10;
DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
/* Use the max of the register settings and vbt. If both are
* unset, fall back to the spec limits. */
#define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
spec.field : \
max(cur.field, vbt.field))
assign_final(t1_t3);
assign_final(t8);
assign_final(t9);
assign_final(t10);
assign_final(t11_t12);
#undef assign_final
#define get_delay(field) (DIV_ROUND_UP(final.field, 10))
intel_dp->panel_power_up_delay = get_delay(t1_t3);
intel_dp->backlight_on_delay = get_delay(t8);
intel_dp->backlight_off_delay = get_delay(t9);
intel_dp->panel_power_down_delay = get_delay(t10);
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
intel_dp->panel_power_cycle_delay);
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
if (out)
*out = final;
}
static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
struct intel_dp *intel_dp,
struct edp_power_seq *seq)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp_on, pp_off, pp_div;
/* And finally store the new values in the power sequencer. */
pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
(seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
/* Compute the divisor for the pp clock, simply match the Bspec
* formula. */
pp_div = ((100 * intel_pch_rawclk(dev))/2 - 1)
<< PP_REFERENCE_DIVIDER_SHIFT;
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
/* Haswell doesn't have any port selection bits for the panel
* power sequencer any more. */
if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
if (is_cpu_edp(intel_dp))
pp_on |= PANEL_POWER_PORT_DP_A;
else
pp_on |= PANEL_POWER_PORT_DP_D;
}
I915_WRITE(PCH_PP_ON_DELAYS, pp_on);
I915_WRITE(PCH_PP_OFF_DELAYS, pp_off);
I915_WRITE(PCH_PP_DIVISOR, pp_div);
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
I915_READ(PCH_PP_ON_DELAYS),
I915_READ(PCH_PP_OFF_DELAYS),
I915_READ(PCH_PP_DIVISOR));
}
void
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
struct intel_connector *intel_connector)
{
struct drm_connector *connector = &intel_connector->base;
struct intel_dp *intel_dp = &intel_dig_port->dp;
struct intel_encoder *intel_encoder = &intel_dig_port->base;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_display_mode *fixed_mode = NULL;
struct edp_power_seq power_seq = { 0 };
enum port port = intel_dig_port->port;
const char *name = NULL;
int type;
/* Preserve the current hw state. */
intel_dp->DP = I915_READ(intel_dp->output_reg);
intel_dp->attached_connector = intel_connector;
if (HAS_PCH_SPLIT(dev) && port == PORT_D)
if (intel_dpd_is_edp(dev))
intel_dp->is_pch_edp = true;
/*
* FIXME : We need to initialize built-in panels before external panels.
* For X0, DP_C is fixed as eDP. Revisit this as part of VLV eDP cleanup
*/
if (IS_VALLEYVIEW(dev) && port == PORT_C) {
type = DRM_MODE_CONNECTOR_eDP;
intel_encoder->type = INTEL_OUTPUT_EDP;
} else if (port == PORT_A || is_pch_edp(intel_dp)) {
type = DRM_MODE_CONNECTOR_eDP;
intel_encoder->type = INTEL_OUTPUT_EDP;
} else {
/* The intel_encoder->type value may be INTEL_OUTPUT_UNKNOWN for
* DDI or INTEL_OUTPUT_DISPLAYPORT for the older gens, so don't
* rewrite it.
*/
type = DRM_MODE_CONNECTOR_DisplayPort;
}
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
connector->polled = DRM_CONNECTOR_POLL_HPD;
connector->interlace_allowed = true;
connector->doublescan_allowed = 0;
TIMEOUT_TASK_INIT(dev_priv->wq, &intel_dp->panel_vdd_work, 0,
ironlake_panel_vdd_work, intel_dp);
intel_connector_attach_encoder(intel_connector, intel_encoder);
if (IS_HASWELL(dev))
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
else
intel_connector->get_hw_state = intel_connector_get_hw_state;
/* Set up the DDC bus. */
switch (port) {
case PORT_A:
name = "DPDDC-A";
break;
case PORT_B:
dev_priv->hotplug_supported_mask |= DPB_HOTPLUG_INT_STATUS;
name = "DPDDC-B";
break;
case PORT_C:
dev_priv->hotplug_supported_mask |= DPC_HOTPLUG_INT_STATUS;
name = "DPDDC-C";
break;
case PORT_D:
dev_priv->hotplug_supported_mask |= DPD_HOTPLUG_INT_STATUS;
name = "DPDDC-D";
break;
default:
WARN(1, "Invalid port %c\n", port_name(port));
break;
}
if (is_edp(intel_dp))
intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
intel_dp_i2c_init(intel_dp, intel_connector, name);
/* Cache DPCD and EDID for edp. */
if (is_edp(intel_dp)) {
bool ret;
struct drm_display_mode *scan;
struct edid *edid;
int edid_err = 0;
ironlake_edp_panel_vdd_on(intel_dp);
ret = intel_dp_get_dpcd(intel_dp);
ironlake_edp_panel_vdd_off(intel_dp, false);
if (ret) {
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
dev_priv->no_aux_handshake =
intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
} else {
/* if this fails, presume the device is a ghost */
DRM_INFO("failed to retrieve link info, disabling eDP\n");
intel_dp_encoder_destroy(&intel_encoder->base);
intel_dp_destroy(connector);
return;
}
/* We now know it's not a ghost, init power sequence regs. */
intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
&power_seq);
ironlake_edp_panel_vdd_on(intel_dp);
edid = drm_get_edid(connector, intel_dp->adapter);
if (edid) {
if (drm_add_edid_modes(connector, edid)) {
drm_mode_connector_update_edid_property(connector, edid);
drm_edid_to_eld(connector, edid);
} else {
free(edid, DRM_MEM_KMS);
edid = NULL;
edid_err = -EINVAL;
}
} else {
edid = NULL;
edid_err = -ENOENT;
}
intel_connector->edid = edid;
intel_connector->edid_err = edid_err;
/* prefer fixed mode from EDID if available */
list_for_each_entry(scan, &connector->probed_modes, head) {
if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
fixed_mode = drm_mode_duplicate(dev, scan);
break;
}
}
/* fallback to VBT if available for eDP */
if (!fixed_mode && dev_priv->lfp_lvds_vbt_mode) {
fixed_mode = drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
if (fixed_mode)
fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
}
ironlake_edp_panel_vdd_off(intel_dp, false);
}
if (is_edp(intel_dp)) {
intel_panel_init(&intel_connector->panel, fixed_mode);
intel_panel_setup_backlight(connector);
}
intel_dp_add_properties(intel_dp, connector);
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G4X(dev) && !IS_GM45(dev)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
}
void
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
{
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
struct intel_connector *intel_connector;
intel_dig_port = malloc(sizeof(struct intel_digital_port), DRM_MEM_KMS, M_WAITOK | M_ZERO);
if (!intel_dig_port)
return;
intel_connector = malloc(sizeof(struct intel_connector), DRM_MEM_KMS, M_WAITOK | M_ZERO);
if (!intel_connector) {
free(intel_dig_port, DRM_MEM_KMS);
return;
}
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
intel_encoder->enable = intel_enable_dp;
intel_encoder->pre_enable = intel_pre_enable_dp;
intel_encoder->disable = intel_disable_dp;
intel_encoder->post_disable = intel_post_disable_dp;
intel_encoder->get_hw_state = intel_dp_get_hw_state;
intel_dig_port->port = port;
intel_dig_port->dp.output_reg = output_reg;
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
intel_encoder->cloneable = false;
intel_encoder->hot_plug = intel_dp_hot_plug;
intel_dp_init_connector(intel_dig_port, intel_connector);
}