9ea9bafe68
front-end and the LSI64854 and NCR53C9x code in case one of these functions fails. Add detach functions to these parts and make esp(4) detachable. - Revert rev. 1.7 of esp_sbus.c, since rev. 1.34 of sbus.c the clockfreq IVAR defaults to the per-child values. - Merge ncr53c9x.c rev. 1.111 from NetBSD (partial): On reset, clear state flags and the msgout queue. In NetBSD code to notify the upper layer (i.e. CAM in FreeBSD) on reset was also added with this revision. This is believed to be not necessary in FreeBSD and was not merged. This makes ncr53c9x.c to be in sync with NetBSD up to rev. 1.114. - Conditionalize the LSI64854 support on sbus(4) only instead of sbus(4) and esp(4) as it's also required for the 'dma', 'espdma' and 'ledma' busses/devices as well as the 'SUNW,bpp' device (printer port) which all hang off of sbus(4). - Add a driver for the 'dma', 'espdma' and 'ledma' (pseudo-)busses/ devices. These busses and devices actually represent the LSI64854 DMA engines for the ESP SCSI and LANCE Ethernet controllers found on the SBus of Ultra 1 and SBus add-on cards. With 'espdma' and 'ledma' the 'esp' and 'le' devices hang off of the respective DMA bus instead of directly from the SBus. The 'dma' devices are either also used in this manner or on some add-on cards also as a companion device to an 'esp' device which also hangs off directly from the SBus. With the latter variant it's a bit tricky to glue the DMA engine to the core logic of the respective 'esp' device. With rev. 1.35 of sbus.c we are however guaranteed that such a 'dma' device is probed before the respective 'esp' device which simplifies things a lot. [1] - In the esp(4) SBus front-end read the part-unique ID code of Fast-SCSI capable chips the right way. This fixes erroneously detecting some chips as FAS366 when in fact they are not. Add explicit checks for the FAS100A, FAS216 and FAS236 variants instead treating all of these as ESP200. That way we can correctly set the respective Fast-SCSI config bits instead of driving them out of specs. This includes adding the FAS100A and FAS236 variants to the NCR53C9x core code. We probably still subsume some chip variants as ESP200 while in fact they are another variant which however shouldn't really matter as this will only happen when these chips are driven at 25MHz or less which implies not being able to run Fast-SCSI. [3] - Add a workaround to the NCR53C9x interrupt handler which ignores the stray interrupt generated by FAS100A when doing path inquiry during boot and which otherwiese would trigger a panic. - Add support for the 'esp' devices hanging off of a 'dma' or 'espdma' busses or which are companions of 'dma' devices to esp(4). In case of the variants that hang off of a DMA device this is a bit hackish as esp(4) then directly uses the softc of the respective parent to talk to the DMA engine. It might make sense to add an interface for this in order to implement this in a cleaner way however it's not yet clear how the requirements for the LANCE Ethernet controllers are and the hack works for now. [2] This effectively adds support for the onboard SCSI controller in Ultra 1 as well as most of the ESP-based SBus add-on cards to esp(4). With this the code for supporting the Performance Technologies SBS430 SBus SCSI add-on cards is also largely in place the remaining bits were however omitted as it's unclear from the NetBSD how to couple the DMA engine and the core logic together for these cards. Obtained from: OpenBSD [1] Obtained from: NetBSD [2] Clue from: BSD/OS [3] Reviewed by: scottl (earlier version) Tested with: FSBE/S add-on card (FAS236), SSHA add-on card (ESP100A), Ultra 1 (onboard FAS100A), Ultra 2 (onboard FAS366)
724 lines
19 KiB
C
724 lines
19 KiB
C
/*-
|
|
* Copyright (c) 2004 Scott Long
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
/* $NetBSD: lsi64854.c,v 1.25 2005/02/27 00:27:02 perry Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Paul Kranenburg.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/mutex.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <cam/cam.h>
|
|
#include <cam/cam_ccb.h>
|
|
#include <cam/scsi/scsi_all.h>
|
|
|
|
#include <sparc64/sbus/lsi64854reg.h>
|
|
#include <sparc64/sbus/lsi64854var.h>
|
|
|
|
#include <dev/esp/ncr53c9xreg.h>
|
|
#include <dev/esp/ncr53c9xvar.h>
|
|
|
|
void lsi64854_reset(struct lsi64854_softc *);
|
|
int lsi64854_setup(struct lsi64854_softc *, caddr_t *, size_t *, int,
|
|
size_t *);
|
|
int lsi64854_setup_pp(struct lsi64854_softc *, caddr_t *, size_t *, int,
|
|
size_t *);
|
|
|
|
#ifdef DEBUG
|
|
#define LDB_SCSI 1
|
|
#define LDB_ENET 2
|
|
#define LDB_PP 4
|
|
#define LDB_ANY 0xff
|
|
int lsi64854debug = 0;
|
|
#define DPRINTF(a,x) do { if (lsi64854debug & (a)) printf x ; } while (0)
|
|
#else
|
|
#define DPRINTF(a,x)
|
|
#endif
|
|
|
|
#define MAX_DMA_SZ (16*1024*1024)
|
|
|
|
/*
|
|
* Finish attaching this DMA device.
|
|
* Front-end must fill in these fields:
|
|
* sc_regs
|
|
* sc_burst
|
|
* sc_channel (one of SCSI, ENET, PP)
|
|
* sc_client (one of SCSI, ENET, PP `soft_c' pointers)
|
|
*/
|
|
int
|
|
lsi64854_attach(struct lsi64854_softc *sc)
|
|
{
|
|
uint32_t csr;
|
|
int error;
|
|
|
|
/* Indirect functions */
|
|
switch (sc->sc_channel) {
|
|
case L64854_CHANNEL_SCSI:
|
|
sc->intr = lsi64854_scsi_intr;
|
|
sc->setup = lsi64854_setup;
|
|
break;
|
|
case L64854_CHANNEL_ENET:
|
|
sc->intr = lsi64854_enet_intr;
|
|
break;
|
|
case L64854_CHANNEL_PP:
|
|
sc->setup = lsi64854_setup_pp;
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev, "unknown channel\n");
|
|
}
|
|
sc->reset = lsi64854_reset;
|
|
|
|
/* Allocate a dmamap */
|
|
error = bus_dma_tag_create(
|
|
sc->sc_parent_dmat, /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MAX_DMA_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
MAX_DMA_SZ, /* maxsegsize */
|
|
BUS_DMA_ALLOCNOW, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->sc_buffer_dmat);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "cannot allocate buffer DMA tag\n");
|
|
return (error);
|
|
}
|
|
|
|
error = bus_dmamap_create(sc->sc_buffer_dmat, 0, &sc->sc_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "DMA map create failed\n");
|
|
bus_dma_tag_destroy(sc->sc_buffer_dmat);
|
|
return (error);
|
|
}
|
|
|
|
csr = L64854_GCSR(sc);
|
|
sc->sc_rev = csr & L64854_DEVID;
|
|
if (sc->sc_rev == DMAREV_HME)
|
|
return (0);
|
|
device_printf(sc->sc_dev, "DMA rev. ");
|
|
switch (sc->sc_rev) {
|
|
case DMAREV_0:
|
|
printf("0");
|
|
break;
|
|
case DMAREV_ESC:
|
|
printf("ESC");
|
|
break;
|
|
case DMAREV_1:
|
|
printf("1");
|
|
break;
|
|
case DMAREV_PLUS:
|
|
printf("1+");
|
|
break;
|
|
case DMAREV_2:
|
|
printf("2");
|
|
break;
|
|
default:
|
|
printf("unknown (0x%x)", sc->sc_rev);
|
|
}
|
|
|
|
DPRINTF(LDB_ANY, (", burst 0x%x, csr 0x%x", sc->sc_burst, csr));
|
|
printf("\n");
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
lsi64854_detach(struct lsi64854_softc *sc)
|
|
{
|
|
|
|
if (sc->setup)
|
|
bus_dmamap_unload(sc->sc_buffer_dmat, sc->sc_dmamap);
|
|
bus_dmamap_destroy(sc->sc_buffer_dmat, sc->sc_dmamap);
|
|
bus_dma_tag_destroy(sc->sc_buffer_dmat);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* DMAWAIT waits while condition is true
|
|
*/
|
|
#define DMAWAIT(SC, COND, MSG, DONTPANIC) do if (COND) { \
|
|
int count = 500000; \
|
|
while ((COND) && --count > 0) DELAY(1); \
|
|
if (count == 0) { \
|
|
printf("%s: line %d: CSR = 0x%lx\n", __FILE__, __LINE__, \
|
|
(u_long)L64854_GCSR(SC)); \
|
|
if (DONTPANIC) \
|
|
printf(MSG); \
|
|
else \
|
|
panic(MSG); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define DMA_DRAIN(sc, dontpanic) do { \
|
|
uint32_t csr; \
|
|
/* \
|
|
* DMA rev0 & rev1: we are not allowed to touch the DMA "flush" \
|
|
* and "drain" bits while it is still thinking about a \
|
|
* request. \
|
|
* other revs: D_ESC_R_PEND bit reads as 0 \
|
|
*/ \
|
|
DMAWAIT(sc, L64854_GCSR(sc) & D_ESC_R_PEND, "R_PEND", dontpanic);\
|
|
if (sc->sc_rev != DMAREV_HME) { \
|
|
/* \
|
|
* Select drain bit based on revision \
|
|
* also clears errors and D_TC flag \
|
|
*/ \
|
|
csr = L64854_GCSR(sc); \
|
|
if (sc->sc_rev == DMAREV_1 || sc->sc_rev == DMAREV_0) \
|
|
csr |= D_ESC_DRAIN; \
|
|
else \
|
|
csr |= L64854_INVALIDATE; \
|
|
\
|
|
L64854_SCSR(sc,csr); \
|
|
} \
|
|
/* \
|
|
* Wait for draining to finish \
|
|
* rev0 & rev1 call this PACKCNT \
|
|
*/ \
|
|
DMAWAIT(sc, L64854_GCSR(sc) & L64854_DRAINING, "DRAINING", dontpanic);\
|
|
} while(0)
|
|
|
|
#define DMA_FLUSH(sc, dontpanic) do { \
|
|
uint32_t csr; \
|
|
/* \
|
|
* DMA rev0 & rev1: we are not allowed to touch the DMA "flush" \
|
|
* and "drain" bits while it is still thinking about a \
|
|
* request. \
|
|
* other revs: D_ESC_R_PEND bit reads as 0 \
|
|
*/ \
|
|
DMAWAIT(sc, L64854_GCSR(sc) & D_ESC_R_PEND, "R_PEND", dontpanic);\
|
|
csr = L64854_GCSR(sc); \
|
|
csr &= ~(L64854_WRITE|L64854_EN_DMA); /* no-ops on ENET */ \
|
|
csr |= L64854_INVALIDATE; /* XXX FAS ? */ \
|
|
L64854_SCSR(sc,csr); \
|
|
} while(0)
|
|
|
|
void
|
|
lsi64854_reset(struct lsi64854_softc *sc)
|
|
{
|
|
uint32_t csr;
|
|
|
|
DMA_FLUSH(sc, 1);
|
|
csr = L64854_GCSR(sc);
|
|
|
|
DPRINTF(LDB_ANY, ("%s: csr 0x%x\n", __func__, csr));
|
|
|
|
/*
|
|
* XXX is sync needed?
|
|
if (sc->sc_dmamap->dm_nsegs > 0)
|
|
bus_dmamap_unload(sc->sc_buffer_dmat, sc->sc_dmamap);
|
|
*/
|
|
|
|
if (sc->sc_rev == DMAREV_HME)
|
|
L64854_SCSR(sc, csr | D_HW_RESET_FAS366);
|
|
|
|
csr |= L64854_RESET; /* reset DMA */
|
|
L64854_SCSR(sc, csr);
|
|
DELAY(200); /* > 10 Sbus clocks(?) */
|
|
|
|
/*DMAWAIT1(sc); why was this here? */
|
|
csr = L64854_GCSR(sc);
|
|
csr &= ~L64854_RESET; /* de-assert reset line */
|
|
L64854_SCSR(sc, csr);
|
|
DELAY(5); /* allow a few ticks to settle */
|
|
|
|
csr = L64854_GCSR(sc);
|
|
csr |= L64854_INT_EN; /* enable interrupts */
|
|
if (sc->sc_rev > DMAREV_1 && sc->sc_channel == L64854_CHANNEL_SCSI) {
|
|
if (sc->sc_rev == DMAREV_HME)
|
|
csr |= D_TWO_CYCLE;
|
|
else
|
|
csr |= D_FASTER;
|
|
}
|
|
|
|
/* Set burst */
|
|
switch (sc->sc_rev) {
|
|
case DMAREV_HME:
|
|
case DMAREV_2:
|
|
csr &= ~L64854_BURST_SIZE;
|
|
if (sc->sc_burst == 32)
|
|
csr |= L64854_BURST_32;
|
|
else if (sc->sc_burst == 16)
|
|
csr |= L64854_BURST_16;
|
|
else
|
|
csr |= L64854_BURST_0;
|
|
break;
|
|
case DMAREV_ESC:
|
|
csr |= D_ESC_AUTODRAIN; /* Auto-drain */
|
|
if (sc->sc_burst == 32)
|
|
csr &= ~D_ESC_BURST;
|
|
else
|
|
csr |= D_ESC_BURST;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
L64854_SCSR(sc, csr);
|
|
|
|
if (sc->sc_rev == DMAREV_HME) {
|
|
bus_space_write_4(sc->sc_regt, sc->sc_regh, L64854_REG_ADDR, 0);
|
|
sc->sc_dmactl = csr;
|
|
}
|
|
sc->sc_active = 0;
|
|
|
|
DPRINTF(LDB_ANY, ("%s: done, csr 0x%x\n", __func__, csr));
|
|
}
|
|
|
|
static void
|
|
lsi64854_map_scsi(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct lsi64854_softc *sc;
|
|
|
|
sc = (struct lsi64854_softc *)arg;
|
|
|
|
if (nseg != 1)
|
|
panic("%s: cannot map %d segments\n", __func__, nseg);
|
|
|
|
bus_dmamap_sync(sc->sc_buffer_dmat, sc->sc_dmamap,
|
|
sc->sc_datain ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
|
|
bus_space_write_4(sc->sc_regt, sc->sc_regh, L64854_REG_ADDR,
|
|
segs[0].ds_addr);
|
|
}
|
|
|
|
#define DMAMAX(a) (MAX_DMA_SZ - ((a) & (MAX_DMA_SZ-1)))
|
|
/*
|
|
* setup a DMA transfer
|
|
*/
|
|
int
|
|
lsi64854_setup(struct lsi64854_softc *sc, caddr_t *addr, size_t *len,
|
|
int datain, size_t *dmasize)
|
|
{
|
|
uint32_t csr;
|
|
|
|
DMA_FLUSH(sc, 0);
|
|
|
|
#if 0
|
|
DMACSR(sc) &= ~D_INT_EN;
|
|
#endif
|
|
sc->sc_dmaaddr = addr;
|
|
sc->sc_dmalen = len;
|
|
sc->sc_datain = datain;
|
|
|
|
/*
|
|
* The rules say we cannot transfer more than the limit
|
|
* of this DMA chip (64k for old and 16Mb for new),
|
|
* and we cannot cross a 16Mb boundary.
|
|
*/
|
|
*dmasize = sc->sc_dmasize =
|
|
ulmin(*dmasize, DMAMAX((size_t) *sc->sc_dmaaddr));
|
|
|
|
DPRINTF(LDB_ANY, ("%s: dmasize=%ld\n", __func__, (long)sc->sc_dmasize));
|
|
|
|
/*
|
|
* XXX what length?
|
|
*/
|
|
if (sc->sc_rev == DMAREV_HME) {
|
|
L64854_SCSR(sc, sc->sc_dmactl | L64854_RESET);
|
|
L64854_SCSR(sc, sc->sc_dmactl);
|
|
|
|
bus_space_write_4(sc->sc_regt, sc->sc_regh, L64854_REG_CNT,
|
|
*dmasize);
|
|
}
|
|
|
|
/* Program the DMA address */
|
|
if (sc->sc_dmasize)
|
|
if (bus_dmamap_load(sc->sc_buffer_dmat, sc->sc_dmamap,
|
|
*sc->sc_dmaaddr, sc->sc_dmasize, lsi64854_map_scsi, sc, 0))
|
|
panic("%s: cannot allocate DVMA address", __func__);
|
|
|
|
if (sc->sc_rev == DMAREV_ESC) {
|
|
/* DMA ESC chip bug work-around */
|
|
long bcnt = sc->sc_dmasize;
|
|
long eaddr = bcnt + (long)*sc->sc_dmaaddr;
|
|
if ((eaddr & PAGE_MASK_8K) != 0)
|
|
bcnt = roundup(bcnt, PAGE_SIZE_8K);
|
|
bus_space_write_4(sc->sc_regt, sc->sc_regh, L64854_REG_CNT,
|
|
bcnt);
|
|
}
|
|
|
|
/* Setup DMA control register */
|
|
csr = L64854_GCSR(sc);
|
|
|
|
if (datain)
|
|
csr |= L64854_WRITE;
|
|
else
|
|
csr &= ~L64854_WRITE;
|
|
csr |= L64854_INT_EN;
|
|
|
|
if (sc->sc_rev == DMAREV_HME)
|
|
csr |= (D_DSBL_SCSI_DRN | D_EN_DMA);
|
|
|
|
L64854_SCSR(sc, csr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Pseudo (chained) interrupt from the esp driver to kick the
|
|
* current running DMA transfer. Called from ncr53c9x_intr()
|
|
* for now.
|
|
*
|
|
* return 1 if it was a DMA continue.
|
|
*/
|
|
int
|
|
lsi64854_scsi_intr(void *arg)
|
|
{
|
|
struct lsi64854_softc *sc = arg;
|
|
struct ncr53c9x_softc *nsc = sc->sc_client;
|
|
int trans, resid;
|
|
uint32_t csr;
|
|
|
|
csr = L64854_GCSR(sc);
|
|
|
|
DPRINTF(LDB_SCSI, ("%s: addr 0x%x, csr %b\n", __func__,
|
|
bus_space_read_4(sc->sc_regt, sc->sc_regh, L64854_REG_ADDR), csr,
|
|
DDMACSR_BITS));
|
|
|
|
if (csr & (D_ERR_PEND|D_SLAVE_ERR)) {
|
|
device_printf(sc->sc_dev, "error: csr=%b\n", csr, DDMACSR_BITS);
|
|
csr &= ~D_EN_DMA; /* Stop DMA */
|
|
/* Invalidate the queue; SLAVE_ERR bit is write-to-clear */
|
|
csr |= D_INVALIDATE|D_SLAVE_ERR;
|
|
L64854_SCSR(sc, csr);
|
|
return (-1);
|
|
}
|
|
|
|
/* This is an "assertion" :) */
|
|
if (sc->sc_active == 0)
|
|
panic("%s: DMA wasn't active", __func__);
|
|
|
|
DMA_DRAIN(sc, 0);
|
|
|
|
/* DMA has stopped */
|
|
csr &= ~D_EN_DMA;
|
|
L64854_SCSR(sc, csr);
|
|
sc->sc_active = 0;
|
|
|
|
if (sc->sc_dmasize == 0) {
|
|
/* A "Transfer Pad" operation completed */
|
|
DPRINTF(LDB_SCSI, ("%s: discarded %d bytes (tcl=%d, tcm=%d)\n",
|
|
__func__, NCR_READ_REG(nsc, NCR_TCL) |
|
|
(NCR_READ_REG(nsc, NCR_TCM) << 8),
|
|
NCR_READ_REG(nsc, NCR_TCL), NCR_READ_REG(nsc, NCR_TCM)));
|
|
return (0);
|
|
}
|
|
|
|
resid = 0;
|
|
/*
|
|
* If a transfer onto the SCSI bus gets interrupted by the device
|
|
* (e.g. for a SAVEPOINTER message), the data in the FIFO counts
|
|
* as residual since the NCR53C9X counter registers get decremented
|
|
* as bytes are clocked into the FIFO.
|
|
*/
|
|
if (!(csr & D_WRITE) &&
|
|
(resid = (NCR_READ_REG(nsc, NCR_FFLAG) & NCRFIFO_FF)) != 0) {
|
|
DPRINTF(LDB_SCSI, ("%s: empty esp FIFO of %d ", __func__,
|
|
resid));
|
|
if (nsc->sc_rev == NCR_VARIANT_FAS366 &&
|
|
(NCR_READ_REG(nsc, NCR_CFG3) & NCRFASCFG3_EWIDE))
|
|
resid <<= 1;
|
|
}
|
|
|
|
if ((nsc->sc_espstat & NCRSTAT_TC) == 0) {
|
|
/*
|
|
* `Terminal count' is off, so read the residue
|
|
* out of the NCR53C9X counter registers.
|
|
*/
|
|
resid += (NCR_READ_REG(nsc, NCR_TCL) |
|
|
(NCR_READ_REG(nsc, NCR_TCM) << 8) |
|
|
((nsc->sc_cfg2 & NCRCFG2_FE) ?
|
|
(NCR_READ_REG(nsc, NCR_TCH) << 16) : 0));
|
|
|
|
if (resid == 0 && sc->sc_dmasize == 65536 &&
|
|
(nsc->sc_cfg2 & NCRCFG2_FE) == 0)
|
|
/* A transfer of 64K is encoded as `TCL=TCM=0' */
|
|
resid = 65536;
|
|
}
|
|
|
|
trans = sc->sc_dmasize - resid;
|
|
if (trans < 0) { /* transfered < 0? */
|
|
#if 0
|
|
/*
|
|
* This situation can happen in perfectly normal operation
|
|
* if the ESP is reselected while using DMA to select
|
|
* another target. As such, don't print the warning.
|
|
*/
|
|
device_printf(sc->sc_dev, "xfer (%d) > req (%d)\n", trans,
|
|
sc->sc_dmasize);
|
|
#endif
|
|
trans = sc->sc_dmasize;
|
|
}
|
|
|
|
DPRINTF(LDB_SCSI, ("%s: tcl=%d, tcm=%d, tch=%d; trans=%d, resid=%d\n",
|
|
__func__, NCR_READ_REG(nsc, NCR_TCL), NCR_READ_REG(nsc, NCR_TCM),
|
|
(nsc->sc_cfg2 & NCRCFG2_FE) ? NCR_READ_REG(nsc, NCR_TCH) : 0,
|
|
trans, resid));
|
|
|
|
#if 0 /* XXX */
|
|
if (sc->sc_dmamap->dm_nsegs > 0) {
|
|
bus_dmamap_sync(sc->sc_buffer_dmat, sc->sc_dmamap,
|
|
(csr & D_WRITE) != 0 ? BUS_DMASYNC_POSTREAD :
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_buffer_dmat, sc->sc_dmamap);
|
|
}
|
|
#endif
|
|
|
|
*sc->sc_dmalen -= trans;
|
|
*sc->sc_dmaaddr += trans;
|
|
|
|
#if 0 /* this is not normal operation just yet */
|
|
if (*sc->sc_dmalen == 0 || nsc->sc_phase != nsc->sc_prevphase)
|
|
return (0);
|
|
|
|
/* and again */
|
|
dma_start(sc, sc->sc_dmaaddr, sc->sc_dmalen, DMACSR(sc) & D_WRITE);
|
|
return (1);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Pseudo (chained) interrupt to le driver to handle DMA errors.
|
|
*/
|
|
int
|
|
lsi64854_enet_intr(void *arg)
|
|
{
|
|
struct lsi64854_softc *sc = arg;
|
|
uint32_t csr;
|
|
static int dodrain = 0;
|
|
int rv;
|
|
|
|
csr = L64854_GCSR(sc);
|
|
|
|
/* If the DMA logic shows an interrupt, claim it */
|
|
rv = ((csr & E_INT_PEND) != 0) ? 1 : 0;
|
|
|
|
if (csr & (E_ERR_PEND|E_SLAVE_ERR)) {
|
|
device_printf(sc->sc_dev, "error: csr=%b\n", csr, EDMACSR_BITS);
|
|
csr &= ~L64854_EN_DMA; /* Stop DMA */
|
|
/* Invalidate the queue; SLAVE_ERR bit is write-to-clear */
|
|
csr |= E_INVALIDATE|E_SLAVE_ERR;
|
|
L64854_SCSR(sc, csr);
|
|
DMA_RESET(sc);
|
|
dodrain = 1;
|
|
return (1);
|
|
}
|
|
|
|
if (dodrain) { /* XXX - is this necessary with D_DSBL_WRINVAL on? */
|
|
int i = 10;
|
|
csr |= E_DRAIN;
|
|
L64854_SCSR(sc, csr);
|
|
while (i-- > 0 && (L64854_GCSR(sc) & D_DRAINING))
|
|
DELAY(1);
|
|
}
|
|
|
|
(*sc->sc_intrchain)(sc->sc_intrchainarg);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
static void
|
|
lsi64854_map_pp(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
struct lsi64854_softc *sc;
|
|
|
|
sc = (struct lsi64854_softc *)arg;
|
|
|
|
if (nsegs != 1)
|
|
panic("%s: cannot map %d segments\n", __func__, nsegs);
|
|
|
|
bus_dmamap_sync(sc->sc_buffer_dmat, sc->sc_dmamap, sc->sc_datain ?
|
|
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
|
|
bus_space_write_4(sc->sc_regt, sc->sc_regh, L64854_REG_ADDR,
|
|
segs[0].ds_addr);
|
|
|
|
bus_space_write_4(sc->sc_regt, sc->sc_regh, L64854_REG_CNT,
|
|
sc->sc_dmasize);
|
|
}
|
|
|
|
/*
|
|
* setup a DMA transfer
|
|
*/
|
|
int
|
|
lsi64854_setup_pp(struct lsi64854_softc *sc, caddr_t *addr, size_t *len,
|
|
int datain, size_t *dmasize)
|
|
{
|
|
uint32_t csr;
|
|
|
|
DMA_FLUSH(sc, 0);
|
|
|
|
sc->sc_dmaaddr = addr;
|
|
sc->sc_dmalen = len;
|
|
sc->sc_datain = datain;
|
|
|
|
DPRINTF(LDB_PP, ("%s: pp start %ld@%p,%d\n", __func__,
|
|
(long)*sc->sc_dmalen, *sc->sc_dmaaddr, datain ? 1 : 0));
|
|
|
|
/*
|
|
* the rules say we cannot transfer more than the limit
|
|
* of this DMA chip (64k for old and 16Mb for new),
|
|
* and we cannot cross a 16Mb boundary.
|
|
*/
|
|
*dmasize = sc->sc_dmasize =
|
|
ulmin(*dmasize, DMAMAX((size_t) *sc->sc_dmaaddr));
|
|
|
|
DPRINTF(LDB_PP, ("%s: dmasize=%ld\n", __func__, (long)sc->sc_dmasize));
|
|
|
|
/* Program the DMA address */
|
|
if (sc->sc_dmasize)
|
|
if (bus_dmamap_load(sc->sc_buffer_dmat, sc->sc_dmamap,
|
|
*sc->sc_dmaaddr, sc->sc_dmasize, lsi64854_map_pp, sc, 0))
|
|
panic("%s: pp cannot allocate DVMA address", __func__);
|
|
|
|
/* Setup DMA control register */
|
|
csr = L64854_GCSR(sc);
|
|
csr &= ~L64854_BURST_SIZE;
|
|
if (sc->sc_burst == 32)
|
|
csr |= L64854_BURST_32;
|
|
else if (sc->sc_burst == 16)
|
|
csr |= L64854_BURST_16;
|
|
else
|
|
csr |= L64854_BURST_0;
|
|
csr |= P_EN_DMA|P_INT_EN|P_EN_CNT;
|
|
#if 0
|
|
/* This bit is read-only in PP csr register */
|
|
if (datain)
|
|
csr |= P_WRITE;
|
|
else
|
|
csr &= ~P_WRITE;
|
|
#endif
|
|
L64854_SCSR(sc, csr);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Parallel port DMA interrupt.
|
|
*/
|
|
int
|
|
lsi64854_pp_intr(void *arg)
|
|
{
|
|
struct lsi64854_softc *sc = arg;
|
|
int ret, trans, resid = 0;
|
|
uint32_t csr;
|
|
|
|
csr = L64854_GCSR(sc);
|
|
|
|
DPRINTF(LDB_PP, ("%s: addr 0x%x, csr %b\n", __func__,
|
|
bus_space_read_4(sc->sc_regt, sc->sc_regh, L64854_REG_ADDR), csr,
|
|
PDMACSR_BITS));
|
|
|
|
if (csr & (P_ERR_PEND|P_SLAVE_ERR)) {
|
|
resid = bus_space_read_4(sc->sc_regt, sc->sc_regh,
|
|
L64854_REG_CNT);
|
|
device_printf(sc->sc_dev, "error: resid %d csr=%b\n", resid,
|
|
csr, PDMACSR_BITS);
|
|
csr &= ~P_EN_DMA; /* Stop DMA */
|
|
/* Invalidate the queue; SLAVE_ERR bit is write-to-clear */
|
|
csr |= P_INVALIDATE|P_SLAVE_ERR;
|
|
L64854_SCSR(sc, csr);
|
|
return (1);
|
|
}
|
|
|
|
ret = (csr & P_INT_PEND) != 0;
|
|
|
|
if (sc->sc_active != 0) {
|
|
DMA_DRAIN(sc, 0);
|
|
resid = bus_space_read_4(sc->sc_regt, sc->sc_regh,
|
|
L64854_REG_CNT);
|
|
}
|
|
|
|
/* DMA has stopped */
|
|
csr &= ~D_EN_DMA;
|
|
L64854_SCSR(sc, csr);
|
|
sc->sc_active = 0;
|
|
|
|
trans = sc->sc_dmasize - resid;
|
|
if (trans < 0) /* transfered < 0? */
|
|
trans = sc->sc_dmasize;
|
|
*sc->sc_dmalen -= trans;
|
|
*sc->sc_dmaaddr += trans;
|
|
|
|
#if 0 /* XXX */
|
|
if (sc->sc_dmamap->dm_nsegs > 0) {
|
|
bus_dmamap_sync(sc->sc_buffer_dmat, sc->sc_dmamap,
|
|
(csr & D_WRITE) != 0 ? BUS_DMASYNC_POSTREAD :
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_buffer_dmat, sc->sc_dmamap);
|
|
}
|
|
#endif
|
|
|
|
return (ret != 0);
|
|
}
|