13dd0106c7
PR: 230872 Approved by: re (marius) MFC after: 1 week
1553 lines
41 KiB
C
1553 lines
41 KiB
C
/*
|
|
* top - a top users display for Unix
|
|
*
|
|
* DESCRIPTION:
|
|
* Originally written for BSD4.4 system by Christos Zoulas.
|
|
* Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
|
|
* Order support hacked in from top-3.5beta6/machine/m_aix41.c
|
|
* by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
|
|
*
|
|
* AUTHOR: Christos Zoulas <christos@ee.cornell.edu>
|
|
* Steven Wallace <swallace@FreeBSD.org>
|
|
* Wolfram Schneider <wosch@FreeBSD.org>
|
|
* Thomas Moestl <tmoestl@gmx.net>
|
|
* Eitan Adler <eadler@FreeBSD.org>
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
#include <sys/errno.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/param.h>
|
|
#include <sys/priority.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/user.h>
|
|
|
|
#include <assert.h>
|
|
#include <err.h>
|
|
#include <libgen.h>
|
|
#include <kvm.h>
|
|
#include <math.h>
|
|
#include <paths.h>
|
|
#include <stdio.h>
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <vis.h>
|
|
|
|
#include "top.h"
|
|
#include "display.h"
|
|
#include "machine.h"
|
|
#include "loadavg.h"
|
|
#include "screen.h"
|
|
#include "utils.h"
|
|
#include "layout.h"
|
|
|
|
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
|
|
|
|
extern struct timeval timeout;
|
|
static int smpmode;
|
|
enum displaymodes displaymode;
|
|
static const int namelength = 10;
|
|
/* TOP_JID_LEN based on max of 999999 */
|
|
#define TOP_JID_LEN 6
|
|
#define TOP_SWAP_LEN 5
|
|
|
|
/* get_process_info passes back a handle. This is what it looks like: */
|
|
|
|
struct handle {
|
|
struct kinfo_proc **next_proc; /* points to next valid proc pointer */
|
|
int remaining; /* number of pointers remaining */
|
|
};
|
|
|
|
|
|
/* define what weighted cpu is. */
|
|
#define weighted_cpu(pct, pp) ((pp)->ki_swtime == 0 ? 0.0 : \
|
|
((pct) / (1.0 - exp((pp)->ki_swtime * logcpu))))
|
|
|
|
/* what we consider to be process size: */
|
|
#define PROCSIZE(pp) ((pp)->ki_size / 1024)
|
|
|
|
#define RU(pp) (&(pp)->ki_rusage)
|
|
|
|
#define PCTCPU(pp) (pcpu[pp - pbase])
|
|
|
|
/* process state names for the "STATE" column of the display */
|
|
/* the extra nulls in the string "run" are for adding a slash and
|
|
the processor number when needed */
|
|
|
|
static const char *state_abbrev[] = {
|
|
"", "START", "RUN\0\0\0", "SLEEP", "STOP", "ZOMB", "WAIT", "LOCK"
|
|
};
|
|
|
|
|
|
static kvm_t *kd;
|
|
|
|
/* values that we stash away in _init and use in later routines */
|
|
|
|
static double logcpu;
|
|
|
|
/* these are retrieved from the kernel in _init */
|
|
|
|
static load_avg ccpu;
|
|
|
|
/* these are used in the get_ functions */
|
|
|
|
static int lastpid;
|
|
|
|
/* these are for calculating cpu state percentages */
|
|
|
|
static long cp_time[CPUSTATES];
|
|
static long cp_old[CPUSTATES];
|
|
static long cp_diff[CPUSTATES];
|
|
|
|
/* these are for detailing the process states */
|
|
|
|
static const char *procstatenames[] = {
|
|
"", " starting, ", " running, ", " sleeping, ", " stopped, ",
|
|
" zombie, ", " waiting, ", " lock, ",
|
|
NULL
|
|
};
|
|
static int process_states[nitems(procstatenames)];
|
|
|
|
/* these are for detailing the cpu states */
|
|
|
|
static int cpu_states[CPUSTATES];
|
|
static const char *cpustatenames[] = {
|
|
"user", "nice", "system", "interrupt", "idle", NULL
|
|
};
|
|
|
|
/* these are for detailing the memory statistics */
|
|
|
|
static const char *memorynames[] = {
|
|
"K Active, ", "K Inact, ", "K Laundry, ", "K Wired, ", "K Buf, ",
|
|
"K Free", NULL
|
|
};
|
|
static int memory_stats[nitems(memorynames)];
|
|
|
|
static const char *arcnames[] = {
|
|
"K Total, ", "K MFU, ", "K MRU, ", "K Anon, ", "K Header, ", "K Other",
|
|
NULL
|
|
};
|
|
static int arc_stats[nitems(arcnames)];
|
|
|
|
static const char *carcnames[] = {
|
|
"K Compressed, ", "K Uncompressed, ", ":1 Ratio, ",
|
|
NULL
|
|
};
|
|
static int carc_stats[nitems(carcnames)];
|
|
|
|
static const char *swapnames[] = {
|
|
"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
|
|
NULL
|
|
};
|
|
static int swap_stats[nitems(swapnames)];
|
|
|
|
|
|
/* these are for keeping track of the proc array */
|
|
|
|
static int nproc;
|
|
static int onproc = -1;
|
|
static int pref_len;
|
|
static struct kinfo_proc *pbase;
|
|
static struct kinfo_proc **pref;
|
|
static struct kinfo_proc *previous_procs;
|
|
static struct kinfo_proc **previous_pref;
|
|
static int previous_proc_count = 0;
|
|
static int previous_proc_count_max = 0;
|
|
static int previous_thread;
|
|
|
|
/* data used for recalculating pctcpu */
|
|
static double *pcpu;
|
|
static struct timespec proc_uptime;
|
|
static struct timeval proc_wall_time;
|
|
static struct timeval previous_wall_time;
|
|
static uint64_t previous_interval = 0;
|
|
|
|
/* total number of io operations */
|
|
static long total_inblock;
|
|
static long total_oublock;
|
|
static long total_majflt;
|
|
|
|
/* these are for getting the memory statistics */
|
|
|
|
static int arc_enabled;
|
|
static int carc_enabled;
|
|
static int pageshift; /* log base 2 of the pagesize */
|
|
|
|
/* define pagetok in terms of pageshift */
|
|
|
|
#define pagetok(size) ((size) << pageshift)
|
|
|
|
/* swap usage */
|
|
#define ki_swap(kip) \
|
|
((kip)->ki_swrss > (kip)->ki_rssize ? (kip)->ki_swrss - (kip)->ki_rssize : 0)
|
|
|
|
/*
|
|
* Sorting orders. The first element is the default.
|
|
*/
|
|
static const char *ordernames[] = {
|
|
"cpu", "size", "res", "time", "pri", "threads",
|
|
"total", "read", "write", "fault", "vcsw", "ivcsw",
|
|
"jid", "swap", "pid", NULL
|
|
};
|
|
|
|
/* Per-cpu time states */
|
|
static int maxcpu;
|
|
static int maxid;
|
|
static int ncpus;
|
|
static unsigned long cpumask;
|
|
static long *times;
|
|
static long *pcpu_cp_time;
|
|
static long *pcpu_cp_old;
|
|
static long *pcpu_cp_diff;
|
|
static int *pcpu_cpu_states;
|
|
|
|
static int compare_swap(const void *a, const void *b);
|
|
static int compare_jid(const void *a, const void *b);
|
|
static int compare_pid(const void *a, const void *b);
|
|
static int compare_tid(const void *a, const void *b);
|
|
static const char *format_nice(const struct kinfo_proc *pp);
|
|
static void getsysctl(const char *name, void *ptr, size_t len);
|
|
static int swapmode(int *retavail, int *retfree);
|
|
static void update_layout(void);
|
|
static int find_uid(uid_t needle, int *haystack);
|
|
|
|
static int
|
|
find_uid(uid_t needle, int *haystack)
|
|
{
|
|
size_t i = 0;
|
|
|
|
for (; i < TOP_MAX_UIDS; ++i)
|
|
if ((uid_t)haystack[i] == needle)
|
|
return 1;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
toggle_pcpustats(void)
|
|
{
|
|
|
|
if (ncpus == 1)
|
|
return;
|
|
update_layout();
|
|
}
|
|
|
|
/* Adjust display based on ncpus and the ARC state. */
|
|
static void
|
|
update_layout(void)
|
|
{
|
|
|
|
y_mem = 3;
|
|
y_arc = 4;
|
|
y_carc = 5;
|
|
y_swap = 4 + arc_enabled + carc_enabled;
|
|
y_idlecursor = 5 + arc_enabled + carc_enabled;
|
|
y_message = 5 + arc_enabled + carc_enabled;
|
|
y_header = 6 + arc_enabled + carc_enabled;
|
|
y_procs = 7 + arc_enabled + carc_enabled;
|
|
Header_lines = 7 + arc_enabled + carc_enabled;
|
|
|
|
if (pcpu_stats) {
|
|
y_mem += ncpus - 1;
|
|
y_arc += ncpus - 1;
|
|
y_carc += ncpus - 1;
|
|
y_swap += ncpus - 1;
|
|
y_idlecursor += ncpus - 1;
|
|
y_message += ncpus - 1;
|
|
y_header += ncpus - 1;
|
|
y_procs += ncpus - 1;
|
|
Header_lines += ncpus - 1;
|
|
}
|
|
}
|
|
|
|
int
|
|
machine_init(struct statics *statics)
|
|
{
|
|
int i, j, empty, pagesize;
|
|
uint64_t arc_size;
|
|
int carc_en;
|
|
size_t size;
|
|
|
|
size = sizeof(smpmode);
|
|
if ((sysctlbyname("machdep.smp_active", &smpmode, &size,
|
|
NULL, 0) != 0 &&
|
|
sysctlbyname("kern.smp.active", &smpmode, &size,
|
|
NULL, 0) != 0) ||
|
|
size != sizeof(smpmode))
|
|
smpmode = 0;
|
|
|
|
size = sizeof(arc_size);
|
|
if (sysctlbyname("kstat.zfs.misc.arcstats.size", &arc_size, &size,
|
|
NULL, 0) == 0 && arc_size != 0)
|
|
arc_enabled = 1;
|
|
size = sizeof(carc_en);
|
|
if (arc_enabled &&
|
|
sysctlbyname("vfs.zfs.compressed_arc_enabled", &carc_en, &size,
|
|
NULL, 0) == 0 && carc_en == 1)
|
|
carc_enabled = 1;
|
|
|
|
kd = kvm_open(NULL, _PATH_DEVNULL, NULL, O_RDONLY, "kvm_open");
|
|
if (kd == NULL)
|
|
return (-1);
|
|
|
|
GETSYSCTL("kern.ccpu", ccpu);
|
|
|
|
/* this is used in calculating WCPU -- calculate it ahead of time */
|
|
logcpu = log(loaddouble(ccpu));
|
|
|
|
pbase = NULL;
|
|
pref = NULL;
|
|
pcpu = NULL;
|
|
nproc = 0;
|
|
onproc = -1;
|
|
|
|
/* get the page size and calculate pageshift from it */
|
|
pagesize = getpagesize();
|
|
pageshift = 0;
|
|
while (pagesize > 1) {
|
|
pageshift++;
|
|
pagesize >>= 1;
|
|
}
|
|
|
|
/* we only need the amount of log(2)1024 for our conversion */
|
|
pageshift -= LOG1024;
|
|
|
|
/* fill in the statics information */
|
|
statics->procstate_names = procstatenames;
|
|
statics->cpustate_names = cpustatenames;
|
|
statics->memory_names = memorynames;
|
|
if (arc_enabled)
|
|
statics->arc_names = arcnames;
|
|
else
|
|
statics->arc_names = NULL;
|
|
if (carc_enabled)
|
|
statics->carc_names = carcnames;
|
|
else
|
|
statics->carc_names = NULL;
|
|
statics->swap_names = swapnames;
|
|
statics->order_names = ordernames;
|
|
|
|
/* Allocate state for per-CPU stats. */
|
|
cpumask = 0;
|
|
ncpus = 0;
|
|
GETSYSCTL("kern.smp.maxcpus", maxcpu);
|
|
times = calloc(maxcpu * CPUSTATES, sizeof(long));
|
|
if (times == NULL)
|
|
err(1, "calloc for kern.smp.maxcpus");
|
|
size = sizeof(long) * maxcpu * CPUSTATES;
|
|
if (sysctlbyname("kern.cp_times", times, &size, NULL, 0) == -1)
|
|
err(1, "sysctlbyname kern.cp_times");
|
|
pcpu_cp_time = calloc(1, size);
|
|
maxid = (size / CPUSTATES / sizeof(long)) - 1;
|
|
for (i = 0; i <= maxid; i++) {
|
|
empty = 1;
|
|
for (j = 0; empty && j < CPUSTATES; j++) {
|
|
if (times[i * CPUSTATES + j] != 0)
|
|
empty = 0;
|
|
}
|
|
if (!empty) {
|
|
cpumask |= (1ul << i);
|
|
ncpus++;
|
|
}
|
|
}
|
|
assert(ncpus > 0);
|
|
pcpu_cp_old = calloc(ncpus * CPUSTATES, sizeof(long));
|
|
pcpu_cp_diff = calloc(ncpus * CPUSTATES, sizeof(long));
|
|
pcpu_cpu_states = calloc(ncpus * CPUSTATES, sizeof(int));
|
|
statics->ncpus = ncpus;
|
|
|
|
update_layout();
|
|
|
|
/* all done! */
|
|
return (0);
|
|
}
|
|
|
|
char *
|
|
format_header(const char *uname_field)
|
|
{
|
|
static struct sbuf* header = NULL;
|
|
|
|
/* clean up from last time. */
|
|
if (header != NULL) {
|
|
sbuf_clear(header);
|
|
} else {
|
|
header = sbuf_new_auto();
|
|
}
|
|
|
|
switch (displaymode) {
|
|
case DISP_CPU: {
|
|
sbuf_printf(header, " %s", ps.thread_id ? " THR" : "PID");
|
|
sbuf_printf(header, "%*s", ps.jail ? TOP_JID_LEN : 0,
|
|
ps.jail ? " JID" : "");
|
|
sbuf_printf(header, " %-*.*s ", namelength, namelength, uname_field);
|
|
if (!ps.thread) {
|
|
sbuf_cat(header, "THR ");
|
|
}
|
|
sbuf_cat(header, "PRI NICE SIZE RES ");
|
|
if (ps.swap) {
|
|
sbuf_printf(header, "%*s ", TOP_SWAP_LEN - 1, "SWAP");
|
|
}
|
|
sbuf_cat(header, "STATE ");
|
|
if (smpmode) {
|
|
sbuf_cat(header, "C ");
|
|
}
|
|
sbuf_cat(header, "TIME ");
|
|
sbuf_printf(header, " %6s ", ps.wcpu ? "WCPU" : "CPU");
|
|
sbuf_cat(header, "COMMAND");
|
|
sbuf_finish(header);
|
|
break;
|
|
}
|
|
case DISP_IO: {
|
|
sbuf_printf(header, " %s%*s %-*.*s",
|
|
ps.thread_id ? " THR" : "PID",
|
|
ps.jail ? TOP_JID_LEN : 0, ps.jail ? " JID" : "",
|
|
namelength, namelength, uname_field);
|
|
sbuf_cat(header, " VCSW IVCSW READ WRITE FAULT TOTAL PERCENT COMMAND");
|
|
sbuf_finish(header);
|
|
break;
|
|
}
|
|
case DISP_MAX:
|
|
assert("displaymode must not be set to DISP_MAX");
|
|
}
|
|
|
|
return sbuf_data(header);
|
|
}
|
|
|
|
static int swappgsin = -1;
|
|
static int swappgsout = -1;
|
|
|
|
|
|
void
|
|
get_system_info(struct system_info *si)
|
|
{
|
|
struct loadavg sysload;
|
|
int mib[2];
|
|
struct timeval boottime;
|
|
uint64_t arc_stat, arc_stat2;
|
|
int i, j;
|
|
size_t size;
|
|
|
|
/* get the CPU stats */
|
|
size = (maxid + 1) * CPUSTATES * sizeof(long);
|
|
if (sysctlbyname("kern.cp_times", pcpu_cp_time, &size, NULL, 0) == -1)
|
|
err(1, "sysctlbyname kern.cp_times");
|
|
GETSYSCTL("kern.cp_time", cp_time);
|
|
GETSYSCTL("vm.loadavg", sysload);
|
|
GETSYSCTL("kern.lastpid", lastpid);
|
|
|
|
/* convert load averages to doubles */
|
|
for (i = 0; i < 3; i++)
|
|
si->load_avg[i] = (double)sysload.ldavg[i] / sysload.fscale;
|
|
|
|
/* convert cp_time counts to percentages */
|
|
for (i = j = 0; i <= maxid; i++) {
|
|
if ((cpumask & (1ul << i)) == 0)
|
|
continue;
|
|
percentages(CPUSTATES, &pcpu_cpu_states[j * CPUSTATES],
|
|
&pcpu_cp_time[j * CPUSTATES],
|
|
&pcpu_cp_old[j * CPUSTATES],
|
|
&pcpu_cp_diff[j * CPUSTATES]);
|
|
j++;
|
|
}
|
|
percentages(CPUSTATES, cpu_states, cp_time, cp_old, cp_diff);
|
|
|
|
/* sum memory & swap statistics */
|
|
{
|
|
static unsigned int swap_delay = 0;
|
|
static int swapavail = 0;
|
|
static int swapfree = 0;
|
|
static long bufspace = 0;
|
|
static uint64_t nspgsin, nspgsout;
|
|
|
|
GETSYSCTL("vfs.bufspace", bufspace);
|
|
GETSYSCTL("vm.stats.vm.v_active_count", memory_stats[0]);
|
|
GETSYSCTL("vm.stats.vm.v_inactive_count", memory_stats[1]);
|
|
GETSYSCTL("vm.stats.vm.v_laundry_count", memory_stats[2]);
|
|
GETSYSCTL("vm.stats.vm.v_wire_count", memory_stats[3]);
|
|
GETSYSCTL("vm.stats.vm.v_free_count", memory_stats[5]);
|
|
GETSYSCTL("vm.stats.vm.v_swappgsin", nspgsin);
|
|
GETSYSCTL("vm.stats.vm.v_swappgsout", nspgsout);
|
|
/* convert memory stats to Kbytes */
|
|
memory_stats[0] = pagetok(memory_stats[0]);
|
|
memory_stats[1] = pagetok(memory_stats[1]);
|
|
memory_stats[2] = pagetok(memory_stats[2]);
|
|
memory_stats[3] = pagetok(memory_stats[3]);
|
|
memory_stats[4] = bufspace / 1024;
|
|
memory_stats[5] = pagetok(memory_stats[5]);
|
|
memory_stats[6] = -1;
|
|
|
|
/* first interval */
|
|
if (swappgsin < 0) {
|
|
swap_stats[4] = 0;
|
|
swap_stats[5] = 0;
|
|
}
|
|
|
|
/* compute differences between old and new swap statistic */
|
|
else {
|
|
swap_stats[4] = pagetok(((nspgsin - swappgsin)));
|
|
swap_stats[5] = pagetok(((nspgsout - swappgsout)));
|
|
}
|
|
|
|
swappgsin = nspgsin;
|
|
swappgsout = nspgsout;
|
|
|
|
/* call CPU heavy swapmode() only for changes */
|
|
if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
|
|
swap_stats[3] = swapmode(&swapavail, &swapfree);
|
|
swap_stats[0] = swapavail;
|
|
swap_stats[1] = swapavail - swapfree;
|
|
swap_stats[2] = swapfree;
|
|
}
|
|
swap_delay = 1;
|
|
swap_stats[6] = -1;
|
|
}
|
|
|
|
if (arc_enabled) {
|
|
GETSYSCTL("kstat.zfs.misc.arcstats.size", arc_stat);
|
|
arc_stats[0] = arc_stat >> 10;
|
|
GETSYSCTL("vfs.zfs.mfu_size", arc_stat);
|
|
arc_stats[1] = arc_stat >> 10;
|
|
GETSYSCTL("vfs.zfs.mru_size", arc_stat);
|
|
arc_stats[2] = arc_stat >> 10;
|
|
GETSYSCTL("vfs.zfs.anon_size", arc_stat);
|
|
arc_stats[3] = arc_stat >> 10;
|
|
GETSYSCTL("kstat.zfs.misc.arcstats.hdr_size", arc_stat);
|
|
GETSYSCTL("kstat.zfs.misc.arcstats.l2_hdr_size", arc_stat2);
|
|
arc_stats[4] = (arc_stat + arc_stat2) >> 10;
|
|
GETSYSCTL("kstat.zfs.misc.arcstats.bonus_size", arc_stat);
|
|
arc_stats[5] = arc_stat >> 10;
|
|
GETSYSCTL("kstat.zfs.misc.arcstats.dnode_size", arc_stat);
|
|
arc_stats[5] += arc_stat >> 10;
|
|
GETSYSCTL("kstat.zfs.misc.arcstats.dbuf_size", arc_stat);
|
|
arc_stats[5] += arc_stat >> 10;
|
|
si->arc = arc_stats;
|
|
}
|
|
if (carc_enabled) {
|
|
GETSYSCTL("kstat.zfs.misc.arcstats.compressed_size", arc_stat);
|
|
carc_stats[0] = arc_stat >> 10;
|
|
carc_stats[2] = arc_stat >> 10; /* For ratio */
|
|
GETSYSCTL("kstat.zfs.misc.arcstats.uncompressed_size", arc_stat);
|
|
carc_stats[1] = arc_stat >> 10;
|
|
si->carc = carc_stats;
|
|
}
|
|
|
|
/* set arrays and strings */
|
|
if (pcpu_stats) {
|
|
si->cpustates = pcpu_cpu_states;
|
|
si->ncpus = ncpus;
|
|
} else {
|
|
si->cpustates = cpu_states;
|
|
si->ncpus = 1;
|
|
}
|
|
si->memory = memory_stats;
|
|
si->swap = swap_stats;
|
|
|
|
|
|
if (lastpid > 0) {
|
|
si->last_pid = lastpid;
|
|
} else {
|
|
si->last_pid = -1;
|
|
}
|
|
|
|
/*
|
|
* Print how long system has been up.
|
|
* (Found by looking getting "boottime" from the kernel)
|
|
*/
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_BOOTTIME;
|
|
size = sizeof(boottime);
|
|
if (sysctl(mib, nitems(mib), &boottime, &size, NULL, 0) != -1 &&
|
|
boottime.tv_sec != 0) {
|
|
si->boottime = boottime;
|
|
} else {
|
|
si->boottime.tv_sec = -1;
|
|
}
|
|
}
|
|
|
|
#define NOPROC ((void *)-1)
|
|
|
|
/*
|
|
* We need to compare data from the old process entry with the new
|
|
* process entry.
|
|
* To facilitate doing this quickly we stash a pointer in the kinfo_proc
|
|
* structure to cache the mapping. We also use a negative cache pointer
|
|
* of NOPROC to avoid duplicate lookups.
|
|
* XXX: this could be done when the actual processes are fetched, we do
|
|
* it here out of laziness.
|
|
*/
|
|
static const struct kinfo_proc *
|
|
get_old_proc(struct kinfo_proc *pp)
|
|
{
|
|
const struct kinfo_proc * const *oldpp, *oldp;
|
|
|
|
/*
|
|
* If this is the first fetch of the kinfo_procs then we don't have
|
|
* any previous entries.
|
|
*/
|
|
if (previous_proc_count == 0)
|
|
return (NULL);
|
|
/* negative cache? */
|
|
if (pp->ki_udata == NOPROC)
|
|
return (NULL);
|
|
/* cached? */
|
|
if (pp->ki_udata != NULL)
|
|
return (pp->ki_udata);
|
|
/*
|
|
* Not cached,
|
|
* 1) look up based on pid.
|
|
* 2) compare process start.
|
|
* If we fail here, then setup a negative cache entry, otherwise
|
|
* cache it.
|
|
*/
|
|
oldpp = bsearch(&pp, previous_pref, previous_proc_count,
|
|
sizeof(*previous_pref), ps.thread ? compare_tid : compare_pid);
|
|
if (oldpp == NULL) {
|
|
pp->ki_udata = NOPROC;
|
|
return (NULL);
|
|
}
|
|
oldp = *oldpp;
|
|
if (memcmp(&oldp->ki_start, &pp->ki_start, sizeof(pp->ki_start)) != 0) {
|
|
pp->ki_udata = NOPROC;
|
|
return (NULL);
|
|
}
|
|
pp->ki_udata = oldp;
|
|
return (oldp);
|
|
}
|
|
|
|
/*
|
|
* Return the total amount of IO done in blocks in/out and faults.
|
|
* store the values individually in the pointers passed in.
|
|
*/
|
|
static long
|
|
get_io_stats(const struct kinfo_proc *pp, long *inp, long *oup, long *flp,
|
|
long *vcsw, long *ivcsw)
|
|
{
|
|
const struct kinfo_proc *oldp;
|
|
static struct kinfo_proc dummy;
|
|
long ret;
|
|
|
|
oldp = get_old_proc(pp);
|
|
if (oldp == NULL) {
|
|
memset(&dummy, 0, sizeof(dummy));
|
|
oldp = &dummy;
|
|
}
|
|
*inp = RU(pp)->ru_inblock - RU(oldp)->ru_inblock;
|
|
*oup = RU(pp)->ru_oublock - RU(oldp)->ru_oublock;
|
|
*flp = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
|
|
*vcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
|
|
*ivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
|
|
ret =
|
|
(RU(pp)->ru_inblock - RU(oldp)->ru_inblock) +
|
|
(RU(pp)->ru_oublock - RU(oldp)->ru_oublock) +
|
|
(RU(pp)->ru_majflt - RU(oldp)->ru_majflt);
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* If there was a previous update, use the delta in ki_runtime over
|
|
* the previous interval to calculate pctcpu. Otherwise, fall back
|
|
* to using the kernel's ki_pctcpu.
|
|
*/
|
|
static double
|
|
proc_calc_pctcpu(struct kinfo_proc *pp)
|
|
{
|
|
const struct kinfo_proc *oldp;
|
|
|
|
if (previous_interval != 0) {
|
|
oldp = get_old_proc(pp);
|
|
if (oldp != NULL)
|
|
return ((double)(pp->ki_runtime - oldp->ki_runtime)
|
|
/ previous_interval);
|
|
|
|
/*
|
|
* If this process/thread was created during the previous
|
|
* interval, charge it's total runtime to the previous
|
|
* interval.
|
|
*/
|
|
else if (pp->ki_start.tv_sec > previous_wall_time.tv_sec ||
|
|
(pp->ki_start.tv_sec == previous_wall_time.tv_sec &&
|
|
pp->ki_start.tv_usec >= previous_wall_time.tv_usec))
|
|
return ((double)pp->ki_runtime / previous_interval);
|
|
}
|
|
return (pctdouble(pp->ki_pctcpu));
|
|
}
|
|
|
|
/*
|
|
* Return true if this process has used any CPU time since the
|
|
* previous update.
|
|
*/
|
|
static int
|
|
proc_used_cpu(struct kinfo_proc *pp)
|
|
{
|
|
const struct kinfo_proc *oldp;
|
|
|
|
oldp = get_old_proc(pp);
|
|
if (oldp == NULL)
|
|
return (PCTCPU(pp) != 0);
|
|
return (pp->ki_runtime != oldp->ki_runtime ||
|
|
RU(pp)->ru_nvcsw != RU(oldp)->ru_nvcsw ||
|
|
RU(pp)->ru_nivcsw != RU(oldp)->ru_nivcsw);
|
|
}
|
|
|
|
/*
|
|
* Return the total number of block in/out and faults by a process.
|
|
*/
|
|
static long
|
|
get_io_total(const struct kinfo_proc *pp)
|
|
{
|
|
long dummy;
|
|
|
|
return (get_io_stats(pp, &dummy, &dummy, &dummy, &dummy, &dummy));
|
|
}
|
|
|
|
static struct handle handle;
|
|
|
|
void *
|
|
get_process_info(struct system_info *si, struct process_select *sel,
|
|
int (*compare)(const void *, const void *))
|
|
{
|
|
int i;
|
|
int total_procs;
|
|
long p_io;
|
|
long p_inblock, p_oublock, p_majflt, p_vcsw, p_ivcsw;
|
|
long nsec;
|
|
int active_procs;
|
|
struct kinfo_proc **prefp;
|
|
struct kinfo_proc *pp;
|
|
struct timespec previous_proc_uptime;
|
|
|
|
/*
|
|
* If thread state was toggled, don't cache the previous processes.
|
|
*/
|
|
if (previous_thread != sel->thread)
|
|
nproc = 0;
|
|
previous_thread = sel->thread;
|
|
|
|
/*
|
|
* Save the previous process info.
|
|
*/
|
|
if (previous_proc_count_max < nproc) {
|
|
free(previous_procs);
|
|
previous_procs = calloc(nproc, sizeof(*previous_procs));
|
|
free(previous_pref);
|
|
previous_pref = calloc(nproc, sizeof(*previous_pref));
|
|
if (previous_procs == NULL || previous_pref == NULL) {
|
|
fprintf(stderr, "top: Out of memory.\n");
|
|
quit(TOP_EX_SYS_ERROR);
|
|
}
|
|
previous_proc_count_max = nproc;
|
|
}
|
|
if (nproc) {
|
|
for (i = 0; i < nproc; i++)
|
|
previous_pref[i] = &previous_procs[i];
|
|
memcpy(previous_procs, pbase, nproc * sizeof(*previous_procs));
|
|
qsort(previous_pref, nproc, sizeof(*previous_pref),
|
|
ps.thread ? compare_tid : compare_pid);
|
|
}
|
|
previous_proc_count = nproc;
|
|
previous_proc_uptime = proc_uptime;
|
|
previous_wall_time = proc_wall_time;
|
|
previous_interval = 0;
|
|
|
|
pbase = kvm_getprocs(kd, sel->thread ? KERN_PROC_ALL : KERN_PROC_PROC,
|
|
0, &nproc);
|
|
gettimeofday(&proc_wall_time, NULL);
|
|
if (clock_gettime(CLOCK_UPTIME, &proc_uptime) != 0)
|
|
memset(&proc_uptime, 0, sizeof(proc_uptime));
|
|
else if (previous_proc_uptime.tv_sec != 0 &&
|
|
previous_proc_uptime.tv_nsec != 0) {
|
|
previous_interval = (proc_uptime.tv_sec -
|
|
previous_proc_uptime.tv_sec) * 1000000;
|
|
nsec = proc_uptime.tv_nsec - previous_proc_uptime.tv_nsec;
|
|
if (nsec < 0) {
|
|
previous_interval -= 1000000;
|
|
nsec += 1000000000;
|
|
}
|
|
previous_interval += nsec / 1000;
|
|
}
|
|
if (nproc > onproc) {
|
|
pref = realloc(pref, sizeof(*pref) * nproc);
|
|
pcpu = realloc(pcpu, sizeof(*pcpu) * nproc);
|
|
onproc = nproc;
|
|
}
|
|
if (pref == NULL || pbase == NULL || pcpu == NULL) {
|
|
fprintf(stderr, "top: Out of memory.\n");
|
|
quit(TOP_EX_SYS_ERROR);
|
|
}
|
|
/* get a pointer to the states summary array */
|
|
si->procstates = process_states;
|
|
|
|
/* count up process states and get pointers to interesting procs */
|
|
total_procs = 0;
|
|
active_procs = 0;
|
|
total_inblock = 0;
|
|
total_oublock = 0;
|
|
total_majflt = 0;
|
|
memset(process_states, 0, sizeof(process_states));
|
|
prefp = pref;
|
|
for (pp = pbase, i = 0; i < nproc; pp++, i++) {
|
|
|
|
if (pp->ki_stat == 0)
|
|
/* not in use */
|
|
continue;
|
|
|
|
if (!sel->self && pp->ki_pid == mypid && sel->pid == -1)
|
|
/* skip self */
|
|
continue;
|
|
|
|
if (!sel->system && (pp->ki_flag & P_SYSTEM) && sel->pid == -1)
|
|
/* skip system process */
|
|
continue;
|
|
|
|
p_io = get_io_stats(pp, &p_inblock, &p_oublock, &p_majflt,
|
|
&p_vcsw, &p_ivcsw);
|
|
total_inblock += p_inblock;
|
|
total_oublock += p_oublock;
|
|
total_majflt += p_majflt;
|
|
total_procs++;
|
|
process_states[(unsigned char)pp->ki_stat]++;
|
|
|
|
if (pp->ki_stat == SZOMB)
|
|
/* skip zombies */
|
|
continue;
|
|
|
|
if (!sel->kidle && pp->ki_tdflags & TDF_IDLETD && sel->pid == -1)
|
|
/* skip kernel idle process */
|
|
continue;
|
|
|
|
PCTCPU(pp) = proc_calc_pctcpu(pp);
|
|
if (sel->thread && PCTCPU(pp) > 1.0)
|
|
PCTCPU(pp) = 1.0;
|
|
if (displaymode == DISP_CPU && !sel->idle &&
|
|
(!proc_used_cpu(pp) ||
|
|
pp->ki_stat == SSTOP || pp->ki_stat == SIDL))
|
|
/* skip idle or non-running processes */
|
|
continue;
|
|
|
|
if (displaymode == DISP_IO && !sel->idle && p_io == 0)
|
|
/* skip processes that aren't doing I/O */
|
|
continue;
|
|
|
|
if (sel->jid != -1 && pp->ki_jid != sel->jid)
|
|
/* skip proc. that don't belong to the selected JID */
|
|
continue;
|
|
|
|
if (sel->uid[0] != -1 && !find_uid(pp->ki_ruid, sel->uid))
|
|
/* skip proc. that don't belong to the selected UID */
|
|
continue;
|
|
|
|
if (sel->pid != -1 && pp->ki_pid != sel->pid)
|
|
continue;
|
|
|
|
*prefp++ = pp;
|
|
active_procs++;
|
|
}
|
|
|
|
/* if requested, sort the "interesting" processes */
|
|
if (compare != NULL)
|
|
qsort(pref, active_procs, sizeof(*pref), compare);
|
|
|
|
/* remember active and total counts */
|
|
si->p_total = total_procs;
|
|
si->p_pactive = pref_len = active_procs;
|
|
|
|
/* pass back a handle */
|
|
handle.next_proc = pref;
|
|
handle.remaining = active_procs;
|
|
return (&handle);
|
|
}
|
|
|
|
char *
|
|
format_next_process(struct handle * xhandle, char *(*get_userid)(int), int flags)
|
|
{
|
|
struct kinfo_proc *pp;
|
|
const struct kinfo_proc *oldp;
|
|
long cputime;
|
|
char status[22];
|
|
size_t state;
|
|
struct rusage ru, *rup;
|
|
long p_tot, s_tot;
|
|
char *cmdbuf = NULL;
|
|
char **args;
|
|
static struct sbuf* procbuf = NULL;
|
|
|
|
/* clean up from last time. */
|
|
if (procbuf != NULL) {
|
|
sbuf_clear(procbuf);
|
|
} else {
|
|
procbuf = sbuf_new_auto();
|
|
}
|
|
|
|
|
|
/* find and remember the next proc structure */
|
|
pp = *(xhandle->next_proc++);
|
|
xhandle->remaining--;
|
|
|
|
/* get the process's command name */
|
|
if ((pp->ki_flag & P_INMEM) == 0) {
|
|
/*
|
|
* Print swapped processes as <pname>
|
|
*/
|
|
size_t len;
|
|
|
|
len = strlen(pp->ki_comm);
|
|
if (len > sizeof(pp->ki_comm) - 3)
|
|
len = sizeof(pp->ki_comm) - 3;
|
|
memmove(pp->ki_comm + 1, pp->ki_comm, len);
|
|
pp->ki_comm[0] = '<';
|
|
pp->ki_comm[len + 1] = '>';
|
|
pp->ki_comm[len + 2] = '\0';
|
|
}
|
|
|
|
/*
|
|
* Convert the process's runtime from microseconds to seconds. This
|
|
* time includes the interrupt time although that is not wanted here.
|
|
* ps(1) is similarly sloppy.
|
|
*/
|
|
cputime = (pp->ki_runtime + 500000) / 1000000;
|
|
|
|
/* generate "STATE" field */
|
|
switch (state = pp->ki_stat) {
|
|
case SRUN:
|
|
if (smpmode && pp->ki_oncpu != NOCPU)
|
|
sprintf(status, "CPU%d", pp->ki_oncpu);
|
|
else
|
|
strcpy(status, "RUN");
|
|
break;
|
|
case SLOCK:
|
|
if (pp->ki_kiflag & KI_LOCKBLOCK) {
|
|
sprintf(status, "*%.6s", pp->ki_lockname);
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case SSLEEP:
|
|
sprintf(status, "%.6s", pp->ki_wmesg);
|
|
break;
|
|
default:
|
|
|
|
if (state < nitems(state_abbrev)) {
|
|
sprintf(status, "%.6s", state_abbrev[state]);
|
|
} else {
|
|
sprintf(status, "?%5zu", state);
|
|
}
|
|
break;
|
|
}
|
|
|
|
cmdbuf = calloc(screen_width + 1, 1);
|
|
if (cmdbuf == NULL) {
|
|
warn("calloc(%d)", screen_width + 1);
|
|
return NULL;
|
|
}
|
|
|
|
if (!(flags & FMT_SHOWARGS)) {
|
|
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
|
|
pp->ki_tdname[0]) {
|
|
snprintf(cmdbuf, screen_width, "%s{%s%s}", pp->ki_comm,
|
|
pp->ki_tdname, pp->ki_moretdname);
|
|
} else {
|
|
snprintf(cmdbuf, screen_width, "%s", pp->ki_comm);
|
|
}
|
|
} else {
|
|
if (pp->ki_flag & P_SYSTEM ||
|
|
(args = kvm_getargv(kd, pp, screen_width)) == NULL ||
|
|
!(*args)) {
|
|
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
|
|
pp->ki_tdname[0]) {
|
|
snprintf(cmdbuf, screen_width,
|
|
"[%s{%s%s}]", pp->ki_comm, pp->ki_tdname,
|
|
pp->ki_moretdname);
|
|
} else {
|
|
snprintf(cmdbuf, screen_width,
|
|
"[%s]", pp->ki_comm);
|
|
}
|
|
} else {
|
|
const char *src;
|
|
char *dst, *argbuf;
|
|
const char *cmd;
|
|
size_t argbuflen;
|
|
size_t len;
|
|
|
|
argbuflen = screen_width * 4;
|
|
argbuf = calloc(argbuflen + 1, 1);
|
|
if (argbuf == NULL) {
|
|
warn("calloc(%zu)", argbuflen + 1);
|
|
free(cmdbuf);
|
|
return NULL;
|
|
}
|
|
|
|
dst = argbuf;
|
|
|
|
/* Extract cmd name from argv */
|
|
cmd = basename(*args);
|
|
|
|
for (; (src = *args++) != NULL; ) {
|
|
if (*src == '\0')
|
|
continue;
|
|
len = (argbuflen - (dst - argbuf) - 1) / 4;
|
|
strvisx(dst, src,
|
|
MIN(strlen(src), len),
|
|
VIS_NL | VIS_CSTYLE);
|
|
while (*dst != '\0')
|
|
dst++;
|
|
if ((argbuflen - (dst - argbuf) - 1) / 4 > 0)
|
|
*dst++ = ' '; /* add delimiting space */
|
|
}
|
|
if (dst != argbuf && dst[-1] == ' ')
|
|
dst--;
|
|
*dst = '\0';
|
|
|
|
if (strcmp(cmd, pp->ki_comm) != 0) {
|
|
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
|
|
pp->ki_tdname[0])
|
|
snprintf(cmdbuf, screen_width,
|
|
"%s (%s){%s%s}", argbuf,
|
|
pp->ki_comm, pp->ki_tdname,
|
|
pp->ki_moretdname);
|
|
else
|
|
snprintf(cmdbuf, screen_width,
|
|
"%s (%s)", argbuf, pp->ki_comm);
|
|
} else {
|
|
if (ps.thread && pp->ki_flag & P_HADTHREADS &&
|
|
pp->ki_tdname[0])
|
|
snprintf(cmdbuf, screen_width,
|
|
"%s{%s%s}", argbuf, pp->ki_tdname,
|
|
pp->ki_moretdname);
|
|
else
|
|
strlcpy(cmdbuf, argbuf, screen_width);
|
|
}
|
|
free(argbuf);
|
|
}
|
|
}
|
|
|
|
if (displaymode == DISP_IO) {
|
|
oldp = get_old_proc(pp);
|
|
if (oldp != NULL) {
|
|
ru.ru_inblock = RU(pp)->ru_inblock -
|
|
RU(oldp)->ru_inblock;
|
|
ru.ru_oublock = RU(pp)->ru_oublock -
|
|
RU(oldp)->ru_oublock;
|
|
ru.ru_majflt = RU(pp)->ru_majflt - RU(oldp)->ru_majflt;
|
|
ru.ru_nvcsw = RU(pp)->ru_nvcsw - RU(oldp)->ru_nvcsw;
|
|
ru.ru_nivcsw = RU(pp)->ru_nivcsw - RU(oldp)->ru_nivcsw;
|
|
rup = &ru;
|
|
} else {
|
|
rup = RU(pp);
|
|
}
|
|
p_tot = rup->ru_inblock + rup->ru_oublock + rup->ru_majflt;
|
|
s_tot = total_inblock + total_oublock + total_majflt;
|
|
|
|
sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid);
|
|
|
|
if (ps.jail) {
|
|
sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid);
|
|
}
|
|
sbuf_printf(procbuf, "%-*.*s", namelength, namelength, (*get_userid)(pp->ki_ruid));
|
|
sbuf_printf(procbuf, "%6ld ", rup->ru_nvcsw);
|
|
sbuf_printf(procbuf, "%6ld ", rup->ru_nivcsw);
|
|
sbuf_printf(procbuf, "%6ld ", rup->ru_inblock);
|
|
sbuf_printf(procbuf, "%6ld ", rup->ru_oublock);
|
|
sbuf_printf(procbuf, "%6ld ", rup->ru_majflt);
|
|
sbuf_printf(procbuf, "%6ld ", p_tot);
|
|
sbuf_printf(procbuf, "%6.2f%% ", s_tot == 0 ? 0.0 : (p_tot * 100.0 / s_tot));
|
|
|
|
} else {
|
|
sbuf_printf(procbuf, "%5d ", (ps.thread_id) ? pp->ki_tid : pp->ki_pid);
|
|
if (ps.jail) {
|
|
sbuf_printf(procbuf, "%*d ", TOP_JID_LEN - 1, pp->ki_jid);
|
|
}
|
|
sbuf_printf(procbuf, "%-*.*s ", namelength, namelength, (*get_userid)(pp->ki_ruid));
|
|
|
|
if (!ps.thread) {
|
|
sbuf_printf(procbuf, "%4d ", pp->ki_numthreads);
|
|
} else {
|
|
sbuf_printf(procbuf, " ");
|
|
}
|
|
|
|
sbuf_printf(procbuf, "%3d ", pp->ki_pri.pri_level - PZERO);
|
|
sbuf_printf(procbuf, "%4s", format_nice(pp));
|
|
sbuf_printf(procbuf, "%7s ", format_k(PROCSIZE(pp)));
|
|
sbuf_printf(procbuf, "%6s ", format_k(pagetok(pp->ki_rssize)));
|
|
if (ps.swap) {
|
|
sbuf_printf(procbuf, "%*s ",
|
|
TOP_SWAP_LEN - 1,
|
|
format_k(pagetok(ki_swap(pp))));
|
|
}
|
|
sbuf_printf(procbuf, "%-6.6s ", status);
|
|
if (smpmode) {
|
|
int cpu;
|
|
if (state == SRUN && pp->ki_oncpu != NOCPU) {
|
|
cpu = pp->ki_oncpu;
|
|
} else {
|
|
cpu = pp->ki_lastcpu;
|
|
}
|
|
sbuf_printf(procbuf, "%3d ", cpu);
|
|
}
|
|
sbuf_printf(procbuf, "%6s ", format_time(cputime));
|
|
sbuf_printf(procbuf, "%6.2f%% ", ps.wcpu ? 100.0 * weighted_cpu(PCTCPU(pp), pp) : 100.0 * PCTCPU(pp));
|
|
}
|
|
sbuf_printf(procbuf, "%s", printable(cmdbuf));
|
|
free(cmdbuf);
|
|
return (sbuf_data(procbuf));
|
|
}
|
|
|
|
static void
|
|
getsysctl(const char *name, void *ptr, size_t len)
|
|
{
|
|
size_t nlen = len;
|
|
|
|
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
|
|
fprintf(stderr, "top: sysctl(%s...) failed: %s\n", name,
|
|
strerror(errno));
|
|
quit(TOP_EX_SYS_ERROR);
|
|
}
|
|
if (nlen != len) {
|
|
fprintf(stderr, "top: sysctl(%s...) expected %lu, got %lu\n",
|
|
name, (unsigned long)len, (unsigned long)nlen);
|
|
quit(TOP_EX_SYS_ERROR);
|
|
}
|
|
}
|
|
|
|
static const char *
|
|
format_nice(const struct kinfo_proc *pp)
|
|
{
|
|
const char *fifo, *kproc;
|
|
int rtpri;
|
|
static char nicebuf[4 + 1];
|
|
|
|
fifo = PRI_NEED_RR(pp->ki_pri.pri_class) ? "" : "F";
|
|
kproc = (pp->ki_flag & P_KPROC) ? "k" : "";
|
|
switch (PRI_BASE(pp->ki_pri.pri_class)) {
|
|
case PRI_ITHD:
|
|
return ("-");
|
|
case PRI_REALTIME:
|
|
/*
|
|
* XXX: the kernel doesn't tell us the original rtprio and
|
|
* doesn't really know what it was, so to recover it we
|
|
* must be more chummy with the implementation than the
|
|
* implementation is with itself. pri_user gives a
|
|
* constant "base" priority, but is only initialized
|
|
* properly for user threads. pri_native gives what the
|
|
* kernel calls the "base" priority, but it isn't constant
|
|
* since it is changed by priority propagation. pri_native
|
|
* also isn't properly initialized for all threads, but it
|
|
* is properly initialized for kernel realtime and idletime
|
|
* threads. Thus we use pri_user for the base priority of
|
|
* user threads (it is always correct) and pri_native for
|
|
* the base priority of kernel realtime and idletime threads
|
|
* (there is nothing better, and it is usually correct).
|
|
*
|
|
* The field width and thus the buffer are too small for
|
|
* values like "kr31F", but such values shouldn't occur,
|
|
* and if they do then the tailing "F" is not displayed.
|
|
*/
|
|
rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
|
|
pp->ki_pri.pri_user) - PRI_MIN_REALTIME;
|
|
snprintf(nicebuf, sizeof(nicebuf), "%sr%d%s",
|
|
kproc, rtpri, fifo);
|
|
break;
|
|
case PRI_TIMESHARE:
|
|
if (pp->ki_flag & P_KPROC)
|
|
return ("-");
|
|
snprintf(nicebuf, sizeof(nicebuf), "%d", pp->ki_nice - NZERO);
|
|
break;
|
|
case PRI_IDLE:
|
|
/* XXX: as above. */
|
|
rtpri = ((pp->ki_flag & P_KPROC) ? pp->ki_pri.pri_native :
|
|
pp->ki_pri.pri_user) - PRI_MIN_IDLE;
|
|
snprintf(nicebuf, sizeof(nicebuf), "%si%d%s",
|
|
kproc, rtpri, fifo);
|
|
break;
|
|
default:
|
|
return ("?");
|
|
}
|
|
return (nicebuf);
|
|
}
|
|
|
|
/* comparison routines for qsort */
|
|
|
|
static int
|
|
compare_pid(const void *p1, const void *p2)
|
|
{
|
|
const struct kinfo_proc * const *pp1 = p1;
|
|
const struct kinfo_proc * const *pp2 = p2;
|
|
|
|
assert((*pp2)->ki_pid >= 0 && (*pp1)->ki_pid >= 0);
|
|
|
|
return ((*pp1)->ki_pid - (*pp2)->ki_pid);
|
|
}
|
|
|
|
static int
|
|
compare_tid(const void *p1, const void *p2)
|
|
{
|
|
const struct kinfo_proc * const *pp1 = p1;
|
|
const struct kinfo_proc * const *pp2 = p2;
|
|
|
|
assert((*pp2)->ki_tid >= 0 && (*pp1)->ki_tid >= 0);
|
|
|
|
return ((*pp1)->ki_tid - (*pp2)->ki_tid);
|
|
}
|
|
|
|
/*
|
|
* proc_compare - comparison function for "qsort"
|
|
* Compares the resource consumption of two processes using five
|
|
* distinct keys. The keys (in descending order of importance) are:
|
|
* percent cpu, cpu ticks, state, resident set size, total virtual
|
|
* memory usage. The process states are ordered as follows (from least
|
|
* to most important): WAIT, zombie, sleep, stop, start, run. The
|
|
* array declaration below maps a process state index into a number
|
|
* that reflects this ordering.
|
|
*/
|
|
|
|
static int sorted_state[] = {
|
|
0, /* not used */
|
|
3, /* sleep */
|
|
1, /* ABANDONED (WAIT) */
|
|
6, /* run */
|
|
5, /* start */
|
|
2, /* zombie */
|
|
4 /* stop */
|
|
};
|
|
|
|
|
|
#define ORDERKEY_PCTCPU(a, b) do { \
|
|
double diff; \
|
|
if (ps.wcpu) \
|
|
diff = weighted_cpu(PCTCPU((b)), (b)) - \
|
|
weighted_cpu(PCTCPU((a)), (a)); \
|
|
else \
|
|
diff = PCTCPU((b)) - PCTCPU((a)); \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
#define ORDERKEY_CPTICKS(a, b) do { \
|
|
int64_t diff = (int64_t)(b)->ki_runtime - (int64_t)(a)->ki_runtime; \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
#define ORDERKEY_STATE(a, b) do { \
|
|
int diff = sorted_state[(unsigned char)(b)->ki_stat] - sorted_state[(unsigned char)(a)->ki_stat]; \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
#define ORDERKEY_PRIO(a, b) do { \
|
|
int diff = (int)(b)->ki_pri.pri_level - (int)(a)->ki_pri.pri_level; \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
#define ORDERKEY_THREADS(a, b) do { \
|
|
int diff = (int)(b)->ki_numthreads - (int)(a)->ki_numthreads; \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
#define ORDERKEY_RSSIZE(a, b) do { \
|
|
long diff = (long)(b)->ki_rssize - (long)(a)->ki_rssize; \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
#define ORDERKEY_MEM(a, b) do { \
|
|
long diff = (long)PROCSIZE((b)) - (long)PROCSIZE((a)); \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
#define ORDERKEY_JID(a, b) do { \
|
|
int diff = (int)(b)->ki_jid - (int)(a)->ki_jid; \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
#define ORDERKEY_SWAP(a, b) do { \
|
|
int diff = (int)ki_swap(b) - (int)ki_swap(a); \
|
|
if (diff != 0) \
|
|
return (diff > 0 ? 1 : -1); \
|
|
} while (0)
|
|
|
|
/* compare_cpu - the comparison function for sorting by cpu percentage */
|
|
|
|
static int
|
|
compare_cpu(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
|
|
ORDERKEY_PCTCPU(p1, p2);
|
|
ORDERKEY_CPTICKS(p1, p2);
|
|
ORDERKEY_STATE(p1, p2);
|
|
ORDERKEY_PRIO(p1, p2);
|
|
ORDERKEY_RSSIZE(p1, p2);
|
|
ORDERKEY_MEM(p1, p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* compare_size - the comparison function for sorting by total memory usage */
|
|
|
|
static int
|
|
compare_size(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
|
|
ORDERKEY_MEM(p1, p2);
|
|
ORDERKEY_RSSIZE(p1, p2);
|
|
ORDERKEY_PCTCPU(p1, p2);
|
|
ORDERKEY_CPTICKS(p1, p2);
|
|
ORDERKEY_STATE(p1, p2);
|
|
ORDERKEY_PRIO(p1, p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* compare_res - the comparison function for sorting by resident set size */
|
|
|
|
static int
|
|
compare_res(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
|
|
ORDERKEY_RSSIZE(p1, p2);
|
|
ORDERKEY_MEM(p1, p2);
|
|
ORDERKEY_PCTCPU(p1, p2);
|
|
ORDERKEY_CPTICKS(p1, p2);
|
|
ORDERKEY_STATE(p1, p2);
|
|
ORDERKEY_PRIO(p1, p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* compare_time - the comparison function for sorting by total cpu time */
|
|
|
|
static int
|
|
compare_time(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *) arg2;
|
|
|
|
ORDERKEY_CPTICKS(p1, p2);
|
|
ORDERKEY_PCTCPU(p1, p2);
|
|
ORDERKEY_STATE(p1, p2);
|
|
ORDERKEY_PRIO(p1, p2);
|
|
ORDERKEY_RSSIZE(p1, p2);
|
|
ORDERKEY_MEM(p1, p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* compare_prio - the comparison function for sorting by priority */
|
|
|
|
static int
|
|
compare_prio(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
|
|
ORDERKEY_PRIO(p1, p2);
|
|
ORDERKEY_CPTICKS(p1, p2);
|
|
ORDERKEY_PCTCPU(p1, p2);
|
|
ORDERKEY_STATE(p1, p2);
|
|
ORDERKEY_RSSIZE(p1, p2);
|
|
ORDERKEY_MEM(p1, p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* compare_threads - the comparison function for sorting by threads */
|
|
static int
|
|
compare_threads(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
|
|
ORDERKEY_THREADS(p1, p2);
|
|
ORDERKEY_PCTCPU(p1, p2);
|
|
ORDERKEY_CPTICKS(p1, p2);
|
|
ORDERKEY_STATE(p1, p2);
|
|
ORDERKEY_PRIO(p1, p2);
|
|
ORDERKEY_RSSIZE(p1, p2);
|
|
ORDERKEY_MEM(p1, p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* compare_jid - the comparison function for sorting by jid */
|
|
static int
|
|
compare_jid(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
|
|
ORDERKEY_JID(p1, p2);
|
|
ORDERKEY_PCTCPU(p1, p2);
|
|
ORDERKEY_CPTICKS(p1, p2);
|
|
ORDERKEY_STATE(p1, p2);
|
|
ORDERKEY_PRIO(p1, p2);
|
|
ORDERKEY_RSSIZE(p1, p2);
|
|
ORDERKEY_MEM(p1, p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* compare_swap - the comparison function for sorting by swap */
|
|
static int
|
|
compare_swap(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
|
|
ORDERKEY_SWAP(p1, p2);
|
|
ORDERKEY_PCTCPU(p1, p2);
|
|
ORDERKEY_CPTICKS(p1, p2);
|
|
ORDERKEY_STATE(p1, p2);
|
|
ORDERKEY_PRIO(p1, p2);
|
|
ORDERKEY_RSSIZE(p1, p2);
|
|
ORDERKEY_MEM(p1, p2);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* assorted comparison functions for sorting by i/o */
|
|
|
|
static int
|
|
compare_iototal(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc * const p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc * const p2 = *(const struct kinfo_proc * const *)arg2;
|
|
|
|
return (get_io_total(p2) - get_io_total(p1));
|
|
}
|
|
|
|
static int
|
|
compare_ioread(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
long dummy, inp1, inp2;
|
|
|
|
(void) get_io_stats(p1, &inp1, &dummy, &dummy, &dummy, &dummy);
|
|
(void) get_io_stats(p2, &inp2, &dummy, &dummy, &dummy, &dummy);
|
|
|
|
return (inp2 - inp1);
|
|
}
|
|
|
|
static int
|
|
compare_iowrite(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
long dummy, oup1, oup2;
|
|
|
|
(void) get_io_stats(p1, &dummy, &oup1, &dummy, &dummy, &dummy);
|
|
(void) get_io_stats(p2, &dummy, &oup2, &dummy, &dummy, &dummy);
|
|
|
|
return (oup2 - oup1);
|
|
}
|
|
|
|
static int
|
|
compare_iofault(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
long dummy, flp1, flp2;
|
|
|
|
(void) get_io_stats(p1, &dummy, &dummy, &flp1, &dummy, &dummy);
|
|
(void) get_io_stats(p2, &dummy, &dummy, &flp2, &dummy, &dummy);
|
|
|
|
return (flp2 - flp1);
|
|
}
|
|
|
|
static int
|
|
compare_vcsw(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
long dummy, flp1, flp2;
|
|
|
|
(void) get_io_stats(p1, &dummy, &dummy, &dummy, &flp1, &dummy);
|
|
(void) get_io_stats(p2, &dummy, &dummy, &dummy, &flp2, &dummy);
|
|
|
|
return (flp2 - flp1);
|
|
}
|
|
|
|
static int
|
|
compare_ivcsw(const void *arg1, const void *arg2)
|
|
{
|
|
const struct kinfo_proc *p1 = *(const struct kinfo_proc * const *)arg1;
|
|
const struct kinfo_proc *p2 = *(const struct kinfo_proc * const *)arg2;
|
|
long dummy, flp1, flp2;
|
|
|
|
(void) get_io_stats(p1, &dummy, &dummy, &dummy, &dummy, &flp1);
|
|
(void) get_io_stats(p2, &dummy, &dummy, &dummy, &dummy, &flp2);
|
|
|
|
return (flp2 - flp1);
|
|
}
|
|
|
|
int (*compares[])(const void *arg1, const void *arg2) = {
|
|
compare_cpu,
|
|
compare_size,
|
|
compare_res,
|
|
compare_time,
|
|
compare_prio,
|
|
compare_threads,
|
|
compare_iototal,
|
|
compare_ioread,
|
|
compare_iowrite,
|
|
compare_iofault,
|
|
compare_vcsw,
|
|
compare_ivcsw,
|
|
compare_jid,
|
|
compare_swap,
|
|
NULL
|
|
};
|
|
|
|
|
|
static int
|
|
swapmode(int *retavail, int *retfree)
|
|
{
|
|
int n;
|
|
struct kvm_swap swapary[1];
|
|
static int pagesize = 0;
|
|
static unsigned long swap_maxpages = 0;
|
|
|
|
*retavail = 0;
|
|
*retfree = 0;
|
|
|
|
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
|
|
|
|
n = kvm_getswapinfo(kd, swapary, 1, 0);
|
|
if (n < 0 || swapary[0].ksw_total == 0)
|
|
return (0);
|
|
|
|
if (pagesize == 0)
|
|
pagesize = getpagesize();
|
|
if (swap_maxpages == 0)
|
|
GETSYSCTL("vm.swap_maxpages", swap_maxpages);
|
|
|
|
/* ksw_total contains the total size of swap all devices which may
|
|
exceed the maximum swap size allocatable in the system */
|
|
if ( swapary[0].ksw_total > swap_maxpages )
|
|
swapary[0].ksw_total = swap_maxpages;
|
|
|
|
*retavail = CONVERT(swapary[0].ksw_total);
|
|
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
|
|
|
|
#undef CONVERT
|
|
|
|
n = (int)(swapary[0].ksw_used * 100.0 / swapary[0].ksw_total);
|
|
return (n);
|
|
}
|