a3db6f34d7
The T3 ASIC can provide an incoming packet's timestamp instead of its RSS hash. The timestamp is just a counter running off the card's clock. With a 175MHz clock an increment represents ~5.7ns and the 32 bit value wraps around in ~25s. # sysctl -d dev.cxgbc.0.pkt_timestamp dev.cxgbc.0.pkt_timestamp: provide packet timestamp instead of connection hash # sysctl -d dev.cxgbc.0.core_clock dev.cxgbc.0.core_clock: core clock frequency (in KHz) # sysctl dev.cxgbc.0.core_clock dev.cxgbc.0.core_clock: 175000
3853 lines
105 KiB
C
3853 lines
105 KiB
C
/**************************************************************************
|
|
|
|
Copyright (c) 2007-2009, Chelsio Inc.
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
2. Neither the name of the Chelsio Corporation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
***************************************************************************/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/conf.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/bus_dma.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <sys/proc.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
|
|
#include <cxgb_include.h>
|
|
#include <sys/mvec.h>
|
|
|
|
int txq_fills = 0;
|
|
int multiq_tx_enable = 1;
|
|
|
|
extern struct sysctl_oid_list sysctl__hw_cxgb_children;
|
|
int cxgb_txq_buf_ring_size = TX_ETH_Q_SIZE;
|
|
TUNABLE_INT("hw.cxgb.txq_mr_size", &cxgb_txq_buf_ring_size);
|
|
SYSCTL_UINT(_hw_cxgb, OID_AUTO, txq_mr_size, CTLFLAG_RDTUN, &cxgb_txq_buf_ring_size, 0,
|
|
"size of per-queue mbuf ring");
|
|
|
|
static int cxgb_tx_coalesce_force = 0;
|
|
TUNABLE_INT("hw.cxgb.tx_coalesce_force", &cxgb_tx_coalesce_force);
|
|
SYSCTL_UINT(_hw_cxgb, OID_AUTO, tx_coalesce_force, CTLFLAG_RW,
|
|
&cxgb_tx_coalesce_force, 0,
|
|
"coalesce small packets into a single work request regardless of ring state");
|
|
|
|
#define COALESCE_START_DEFAULT TX_ETH_Q_SIZE>>1
|
|
#define COALESCE_START_MAX (TX_ETH_Q_SIZE-(TX_ETH_Q_SIZE>>3))
|
|
#define COALESCE_STOP_DEFAULT TX_ETH_Q_SIZE>>2
|
|
#define COALESCE_STOP_MIN TX_ETH_Q_SIZE>>5
|
|
#define TX_RECLAIM_DEFAULT TX_ETH_Q_SIZE>>5
|
|
#define TX_RECLAIM_MAX TX_ETH_Q_SIZE>>2
|
|
#define TX_RECLAIM_MIN TX_ETH_Q_SIZE>>6
|
|
|
|
|
|
static int cxgb_tx_coalesce_enable_start = COALESCE_START_DEFAULT;
|
|
TUNABLE_INT("hw.cxgb.tx_coalesce_enable_start",
|
|
&cxgb_tx_coalesce_enable_start);
|
|
SYSCTL_UINT(_hw_cxgb, OID_AUTO, tx_coalesce_enable_start, CTLFLAG_RW,
|
|
&cxgb_tx_coalesce_enable_start, 0,
|
|
"coalesce enable threshold");
|
|
static int cxgb_tx_coalesce_enable_stop = COALESCE_STOP_DEFAULT;
|
|
TUNABLE_INT("hw.cxgb.tx_coalesce_enable_stop", &cxgb_tx_coalesce_enable_stop);
|
|
SYSCTL_UINT(_hw_cxgb, OID_AUTO, tx_coalesce_enable_stop, CTLFLAG_RW,
|
|
&cxgb_tx_coalesce_enable_stop, 0,
|
|
"coalesce disable threshold");
|
|
static int cxgb_tx_reclaim_threshold = TX_RECLAIM_DEFAULT;
|
|
TUNABLE_INT("hw.cxgb.tx_reclaim_threshold", &cxgb_tx_reclaim_threshold);
|
|
SYSCTL_UINT(_hw_cxgb, OID_AUTO, tx_reclaim_threshold, CTLFLAG_RW,
|
|
&cxgb_tx_reclaim_threshold, 0,
|
|
"tx cleaning minimum threshold");
|
|
|
|
/*
|
|
* XXX don't re-enable this until TOE stops assuming
|
|
* we have an m_ext
|
|
*/
|
|
static int recycle_enable = 0;
|
|
|
|
extern int cxgb_use_16k_clusters;
|
|
extern int nmbjumbop;
|
|
extern int nmbjumbo9;
|
|
extern int nmbjumbo16;
|
|
|
|
#define USE_GTS 0
|
|
|
|
#define SGE_RX_SM_BUF_SIZE 1536
|
|
#define SGE_RX_DROP_THRES 16
|
|
#define SGE_RX_COPY_THRES 128
|
|
|
|
/*
|
|
* Period of the Tx buffer reclaim timer. This timer does not need to run
|
|
* frequently as Tx buffers are usually reclaimed by new Tx packets.
|
|
*/
|
|
#define TX_RECLAIM_PERIOD (hz >> 1)
|
|
|
|
/*
|
|
* Values for sge_txq.flags
|
|
*/
|
|
enum {
|
|
TXQ_RUNNING = 1 << 0, /* fetch engine is running */
|
|
TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
|
|
};
|
|
|
|
struct tx_desc {
|
|
uint64_t flit[TX_DESC_FLITS];
|
|
} __packed;
|
|
|
|
struct rx_desc {
|
|
uint32_t addr_lo;
|
|
uint32_t len_gen;
|
|
uint32_t gen2;
|
|
uint32_t addr_hi;
|
|
} __packed;
|
|
|
|
struct rsp_desc { /* response queue descriptor */
|
|
struct rss_header rss_hdr;
|
|
uint32_t flags;
|
|
uint32_t len_cq;
|
|
uint8_t imm_data[47];
|
|
uint8_t intr_gen;
|
|
} __packed;
|
|
|
|
#define RX_SW_DESC_MAP_CREATED (1 << 0)
|
|
#define TX_SW_DESC_MAP_CREATED (1 << 1)
|
|
#define RX_SW_DESC_INUSE (1 << 3)
|
|
#define TX_SW_DESC_MAPPED (1 << 4)
|
|
|
|
#define RSPQ_NSOP_NEOP G_RSPD_SOP_EOP(0)
|
|
#define RSPQ_EOP G_RSPD_SOP_EOP(F_RSPD_EOP)
|
|
#define RSPQ_SOP G_RSPD_SOP_EOP(F_RSPD_SOP)
|
|
#define RSPQ_SOP_EOP G_RSPD_SOP_EOP(F_RSPD_SOP|F_RSPD_EOP)
|
|
|
|
struct tx_sw_desc { /* SW state per Tx descriptor */
|
|
struct mbuf *m;
|
|
bus_dmamap_t map;
|
|
int flags;
|
|
};
|
|
|
|
struct rx_sw_desc { /* SW state per Rx descriptor */
|
|
caddr_t rxsd_cl;
|
|
struct mbuf *m;
|
|
bus_dmamap_t map;
|
|
int flags;
|
|
};
|
|
|
|
struct txq_state {
|
|
unsigned int compl;
|
|
unsigned int gen;
|
|
unsigned int pidx;
|
|
};
|
|
|
|
struct refill_fl_cb_arg {
|
|
int error;
|
|
bus_dma_segment_t seg;
|
|
int nseg;
|
|
};
|
|
|
|
|
|
/*
|
|
* Maps a number of flits to the number of Tx descriptors that can hold them.
|
|
* The formula is
|
|
*
|
|
* desc = 1 + (flits - 2) / (WR_FLITS - 1).
|
|
*
|
|
* HW allows up to 4 descriptors to be combined into a WR.
|
|
*/
|
|
static uint8_t flit_desc_map[] = {
|
|
0,
|
|
#if SGE_NUM_GENBITS == 1
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
|
|
#elif SGE_NUM_GENBITS == 2
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
|
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
|
|
#else
|
|
# error "SGE_NUM_GENBITS must be 1 or 2"
|
|
#endif
|
|
};
|
|
|
|
#define TXQ_LOCK_ASSERT(qs) mtx_assert(&(qs)->lock, MA_OWNED)
|
|
#define TXQ_TRYLOCK(qs) mtx_trylock(&(qs)->lock)
|
|
#define TXQ_LOCK(qs) mtx_lock(&(qs)->lock)
|
|
#define TXQ_UNLOCK(qs) mtx_unlock(&(qs)->lock)
|
|
#define TXQ_RING_EMPTY(qs) drbr_empty((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
|
|
#define TXQ_RING_NEEDS_ENQUEUE(qs) \
|
|
drbr_needs_enqueue((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
|
|
#define TXQ_RING_FLUSH(qs) drbr_flush((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
|
|
#define TXQ_RING_DEQUEUE_COND(qs, func, arg) \
|
|
drbr_dequeue_cond((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr, func, arg)
|
|
#define TXQ_RING_DEQUEUE(qs) \
|
|
drbr_dequeue((qs)->port->ifp, (qs)->txq[TXQ_ETH].txq_mr)
|
|
|
|
int cxgb_debug = 0;
|
|
|
|
static void sge_timer_cb(void *arg);
|
|
static void sge_timer_reclaim(void *arg, int ncount);
|
|
static void sge_txq_reclaim_handler(void *arg, int ncount);
|
|
static void cxgb_start_locked(struct sge_qset *qs);
|
|
|
|
/*
|
|
* XXX need to cope with bursty scheduling by looking at a wider
|
|
* window than we are now for determining the need for coalescing
|
|
*
|
|
*/
|
|
static __inline uint64_t
|
|
check_pkt_coalesce(struct sge_qset *qs)
|
|
{
|
|
struct adapter *sc;
|
|
struct sge_txq *txq;
|
|
uint8_t *fill;
|
|
|
|
if (__predict_false(cxgb_tx_coalesce_force))
|
|
return (1);
|
|
txq = &qs->txq[TXQ_ETH];
|
|
sc = qs->port->adapter;
|
|
fill = &sc->tunq_fill[qs->idx];
|
|
|
|
if (cxgb_tx_coalesce_enable_start > COALESCE_START_MAX)
|
|
cxgb_tx_coalesce_enable_start = COALESCE_START_MAX;
|
|
if (cxgb_tx_coalesce_enable_stop < COALESCE_STOP_MIN)
|
|
cxgb_tx_coalesce_enable_start = COALESCE_STOP_MIN;
|
|
/*
|
|
* if the hardware transmit queue is more than 1/8 full
|
|
* we mark it as coalescing - we drop back from coalescing
|
|
* when we go below 1/32 full and there are no packets enqueued,
|
|
* this provides us with some degree of hysteresis
|
|
*/
|
|
if (*fill != 0 && (txq->in_use <= cxgb_tx_coalesce_enable_stop) &&
|
|
TXQ_RING_EMPTY(qs) && (qs->coalescing == 0))
|
|
*fill = 0;
|
|
else if (*fill == 0 && (txq->in_use >= cxgb_tx_coalesce_enable_start))
|
|
*fill = 1;
|
|
|
|
return (sc->tunq_coalesce);
|
|
}
|
|
|
|
#ifdef __LP64__
|
|
static void
|
|
set_wr_hdr(struct work_request_hdr *wrp, uint32_t wr_hi, uint32_t wr_lo)
|
|
{
|
|
uint64_t wr_hilo;
|
|
#if _BYTE_ORDER == _LITTLE_ENDIAN
|
|
wr_hilo = wr_hi;
|
|
wr_hilo |= (((uint64_t)wr_lo)<<32);
|
|
#else
|
|
wr_hilo = wr_lo;
|
|
wr_hilo |= (((uint64_t)wr_hi)<<32);
|
|
#endif
|
|
wrp->wrh_hilo = wr_hilo;
|
|
}
|
|
#else
|
|
static void
|
|
set_wr_hdr(struct work_request_hdr *wrp, uint32_t wr_hi, uint32_t wr_lo)
|
|
{
|
|
|
|
wrp->wrh_hi = wr_hi;
|
|
wmb();
|
|
wrp->wrh_lo = wr_lo;
|
|
}
|
|
#endif
|
|
|
|
struct coalesce_info {
|
|
int count;
|
|
int nbytes;
|
|
};
|
|
|
|
static int
|
|
coalesce_check(struct mbuf *m, void *arg)
|
|
{
|
|
struct coalesce_info *ci = arg;
|
|
int *count = &ci->count;
|
|
int *nbytes = &ci->nbytes;
|
|
|
|
if ((*nbytes == 0) || ((*nbytes + m->m_len <= 10500) &&
|
|
(*count < 7) && (m->m_next == NULL))) {
|
|
*count += 1;
|
|
*nbytes += m->m_len;
|
|
return (1);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static struct mbuf *
|
|
cxgb_dequeue(struct sge_qset *qs)
|
|
{
|
|
struct mbuf *m, *m_head, *m_tail;
|
|
struct coalesce_info ci;
|
|
|
|
|
|
if (check_pkt_coalesce(qs) == 0)
|
|
return TXQ_RING_DEQUEUE(qs);
|
|
|
|
m_head = m_tail = NULL;
|
|
ci.count = ci.nbytes = 0;
|
|
do {
|
|
m = TXQ_RING_DEQUEUE_COND(qs, coalesce_check, &ci);
|
|
if (m_head == NULL) {
|
|
m_tail = m_head = m;
|
|
} else if (m != NULL) {
|
|
m_tail->m_nextpkt = m;
|
|
m_tail = m;
|
|
}
|
|
} while (m != NULL);
|
|
if (ci.count > 7)
|
|
panic("trying to coalesce %d packets in to one WR", ci.count);
|
|
return (m_head);
|
|
}
|
|
|
|
/**
|
|
* reclaim_completed_tx - reclaims completed Tx descriptors
|
|
* @adapter: the adapter
|
|
* @q: the Tx queue to reclaim completed descriptors from
|
|
*
|
|
* Reclaims Tx descriptors that the SGE has indicated it has processed,
|
|
* and frees the associated buffers if possible. Called with the Tx
|
|
* queue's lock held.
|
|
*/
|
|
static __inline int
|
|
reclaim_completed_tx(struct sge_qset *qs, int reclaim_min, int queue)
|
|
{
|
|
struct sge_txq *q = &qs->txq[queue];
|
|
int reclaim = desc_reclaimable(q);
|
|
|
|
if ((cxgb_tx_reclaim_threshold > TX_RECLAIM_MAX) ||
|
|
(cxgb_tx_reclaim_threshold < TX_RECLAIM_MIN))
|
|
cxgb_tx_reclaim_threshold = TX_RECLAIM_DEFAULT;
|
|
|
|
if (reclaim < reclaim_min)
|
|
return (0);
|
|
|
|
mtx_assert(&qs->lock, MA_OWNED);
|
|
if (reclaim > 0) {
|
|
t3_free_tx_desc(qs, reclaim, queue);
|
|
q->cleaned += reclaim;
|
|
q->in_use -= reclaim;
|
|
}
|
|
if (isset(&qs->txq_stopped, TXQ_ETH))
|
|
clrbit(&qs->txq_stopped, TXQ_ETH);
|
|
|
|
return (reclaim);
|
|
}
|
|
|
|
/**
|
|
* should_restart_tx - are there enough resources to restart a Tx queue?
|
|
* @q: the Tx queue
|
|
*
|
|
* Checks if there are enough descriptors to restart a suspended Tx queue.
|
|
*/
|
|
static __inline int
|
|
should_restart_tx(const struct sge_txq *q)
|
|
{
|
|
unsigned int r = q->processed - q->cleaned;
|
|
|
|
return q->in_use - r < (q->size >> 1);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_init - initialize SGE
|
|
* @adap: the adapter
|
|
* @p: the SGE parameters
|
|
*
|
|
* Performs SGE initialization needed every time after a chip reset.
|
|
* We do not initialize any of the queue sets here, instead the driver
|
|
* top-level must request those individually. We also do not enable DMA
|
|
* here, that should be done after the queues have been set up.
|
|
*/
|
|
void
|
|
t3_sge_init(adapter_t *adap, struct sge_params *p)
|
|
{
|
|
u_int ctrl, ups;
|
|
|
|
ups = 0; /* = ffs(pci_resource_len(adap->pdev, 2) >> 12); */
|
|
|
|
ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
|
|
F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
|
|
V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
|
|
V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
|
|
#if SGE_NUM_GENBITS == 1
|
|
ctrl |= F_EGRGENCTRL;
|
|
#endif
|
|
if (adap->params.rev > 0) {
|
|
if (!(adap->flags & (USING_MSIX | USING_MSI)))
|
|
ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
|
|
}
|
|
t3_write_reg(adap, A_SG_CONTROL, ctrl);
|
|
t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
|
|
V_LORCQDRBTHRSH(512));
|
|
t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
|
|
t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
|
|
V_TIMEOUT(200 * core_ticks_per_usec(adap)));
|
|
t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
|
|
adap->params.rev < T3_REV_C ? 1000 : 500);
|
|
t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
|
|
t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
|
|
t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
|
|
t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
|
|
t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
|
|
}
|
|
|
|
|
|
/**
|
|
* sgl_len - calculates the size of an SGL of the given capacity
|
|
* @n: the number of SGL entries
|
|
*
|
|
* Calculates the number of flits needed for a scatter/gather list that
|
|
* can hold the given number of entries.
|
|
*/
|
|
static __inline unsigned int
|
|
sgl_len(unsigned int n)
|
|
{
|
|
return ((3 * n) / 2 + (n & 1));
|
|
}
|
|
|
|
/**
|
|
* get_imm_packet - return the next ingress packet buffer from a response
|
|
* @resp: the response descriptor containing the packet data
|
|
*
|
|
* Return a packet containing the immediate data of the given response.
|
|
*/
|
|
static int
|
|
get_imm_packet(adapter_t *sc, const struct rsp_desc *resp, struct mbuf *m)
|
|
{
|
|
|
|
m->m_len = m->m_pkthdr.len = IMMED_PKT_SIZE;
|
|
m->m_ext.ext_buf = NULL;
|
|
m->m_ext.ext_type = 0;
|
|
memcpy(mtod(m, uint8_t *), resp->imm_data, IMMED_PKT_SIZE);
|
|
return (0);
|
|
}
|
|
|
|
static __inline u_int
|
|
flits_to_desc(u_int n)
|
|
{
|
|
return (flit_desc_map[n]);
|
|
}
|
|
|
|
#define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
|
|
F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
|
|
V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
|
|
F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
|
|
F_HIRCQPARITYERROR)
|
|
#define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
|
|
#define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
|
|
F_RSPQDISABLED)
|
|
|
|
/**
|
|
* t3_sge_err_intr_handler - SGE async event interrupt handler
|
|
* @adapter: the adapter
|
|
*
|
|
* Interrupt handler for SGE asynchronous (non-data) events.
|
|
*/
|
|
void
|
|
t3_sge_err_intr_handler(adapter_t *adapter)
|
|
{
|
|
unsigned int v, status;
|
|
|
|
status = t3_read_reg(adapter, A_SG_INT_CAUSE);
|
|
if (status & SGE_PARERR)
|
|
CH_ALERT(adapter, "SGE parity error (0x%x)\n",
|
|
status & SGE_PARERR);
|
|
if (status & SGE_FRAMINGERR)
|
|
CH_ALERT(adapter, "SGE framing error (0x%x)\n",
|
|
status & SGE_FRAMINGERR);
|
|
if (status & F_RSPQCREDITOVERFOW)
|
|
CH_ALERT(adapter, "SGE response queue credit overflow\n");
|
|
|
|
if (status & F_RSPQDISABLED) {
|
|
v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
|
|
|
|
CH_ALERT(adapter,
|
|
"packet delivered to disabled response queue (0x%x)\n",
|
|
(v >> S_RSPQ0DISABLED) & 0xff);
|
|
}
|
|
|
|
t3_write_reg(adapter, A_SG_INT_CAUSE, status);
|
|
if (status & SGE_FATALERR)
|
|
t3_fatal_err(adapter);
|
|
}
|
|
|
|
void
|
|
t3_sge_prep(adapter_t *adap, struct sge_params *p)
|
|
{
|
|
int i, nqsets, fl_q_size, jumbo_q_size, use_16k, jumbo_buf_size;
|
|
|
|
nqsets = min(SGE_QSETS / adap->params.nports, mp_ncpus);
|
|
nqsets *= adap->params.nports;
|
|
|
|
fl_q_size = min(nmbclusters/(3*nqsets), FL_Q_SIZE);
|
|
|
|
while (!powerof2(fl_q_size))
|
|
fl_q_size--;
|
|
|
|
use_16k = cxgb_use_16k_clusters != -1 ? cxgb_use_16k_clusters :
|
|
is_offload(adap);
|
|
|
|
#if __FreeBSD_version >= 700111
|
|
if (use_16k) {
|
|
jumbo_q_size = min(nmbjumbo16/(3*nqsets), JUMBO_Q_SIZE);
|
|
jumbo_buf_size = MJUM16BYTES;
|
|
} else {
|
|
jumbo_q_size = min(nmbjumbo9/(3*nqsets), JUMBO_Q_SIZE);
|
|
jumbo_buf_size = MJUM9BYTES;
|
|
}
|
|
#else
|
|
jumbo_q_size = min(nmbjumbop/(3*nqsets), JUMBO_Q_SIZE);
|
|
jumbo_buf_size = MJUMPAGESIZE;
|
|
#endif
|
|
while (!powerof2(jumbo_q_size))
|
|
jumbo_q_size--;
|
|
|
|
if (fl_q_size < (FL_Q_SIZE / 4) || jumbo_q_size < (JUMBO_Q_SIZE / 2))
|
|
device_printf(adap->dev,
|
|
"Insufficient clusters and/or jumbo buffers.\n");
|
|
|
|
p->max_pkt_size = jumbo_buf_size - sizeof(struct cpl_rx_data);
|
|
|
|
for (i = 0; i < SGE_QSETS; ++i) {
|
|
struct qset_params *q = p->qset + i;
|
|
|
|
if (adap->params.nports > 2) {
|
|
q->coalesce_usecs = 50;
|
|
} else {
|
|
#ifdef INVARIANTS
|
|
q->coalesce_usecs = 10;
|
|
#else
|
|
q->coalesce_usecs = 5;
|
|
#endif
|
|
}
|
|
q->polling = 0;
|
|
q->rspq_size = RSPQ_Q_SIZE;
|
|
q->fl_size = fl_q_size;
|
|
q->jumbo_size = jumbo_q_size;
|
|
q->jumbo_buf_size = jumbo_buf_size;
|
|
q->txq_size[TXQ_ETH] = TX_ETH_Q_SIZE;
|
|
q->txq_size[TXQ_OFLD] = is_offload(adap) ? TX_OFLD_Q_SIZE : 16;
|
|
q->txq_size[TXQ_CTRL] = TX_CTRL_Q_SIZE;
|
|
q->cong_thres = 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
t3_sge_alloc(adapter_t *sc)
|
|
{
|
|
|
|
/* The parent tag. */
|
|
if (bus_dma_tag_create( NULL, /* parent */
|
|
1, 0, /* algnmnt, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
|
|
BUS_SPACE_UNRESTRICTED, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lock, lockarg */
|
|
&sc->parent_dmat)) {
|
|
device_printf(sc->dev, "Cannot allocate parent DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* DMA tag for normal sized RX frames
|
|
*/
|
|
if (bus_dma_tag_create(sc->parent_dmat, MCLBYTES, 0, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1,
|
|
MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rx_dmat)) {
|
|
device_printf(sc->dev, "Cannot allocate RX DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* DMA tag for jumbo sized RX frames.
|
|
*/
|
|
if (bus_dma_tag_create(sc->parent_dmat, MJUM16BYTES, 0, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, MJUM16BYTES, 1, MJUM16BYTES,
|
|
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rx_jumbo_dmat)) {
|
|
device_printf(sc->dev, "Cannot allocate RX jumbo DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
/*
|
|
* DMA tag for TX frames.
|
|
*/
|
|
if (bus_dma_tag_create(sc->parent_dmat, 1, 0, BUS_SPACE_MAXADDR,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, TX_MAX_SIZE, TX_MAX_SEGS,
|
|
TX_MAX_SIZE, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, &sc->tx_dmat)) {
|
|
device_printf(sc->dev, "Cannot allocate TX DMA tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
t3_sge_free(struct adapter * sc)
|
|
{
|
|
|
|
if (sc->tx_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->tx_dmat);
|
|
|
|
if (sc->rx_jumbo_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->rx_jumbo_dmat);
|
|
|
|
if (sc->rx_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->rx_dmat);
|
|
|
|
if (sc->parent_dmat != NULL)
|
|
bus_dma_tag_destroy(sc->parent_dmat);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
|
|
{
|
|
|
|
qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);
|
|
qs->rspq.polling = 0 /* p->polling */;
|
|
}
|
|
|
|
#if !defined(__i386__) && !defined(__amd64__)
|
|
static void
|
|
refill_fl_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct refill_fl_cb_arg *cb_arg = arg;
|
|
|
|
cb_arg->error = error;
|
|
cb_arg->seg = segs[0];
|
|
cb_arg->nseg = nseg;
|
|
|
|
}
|
|
#endif
|
|
/**
|
|
* refill_fl - refill an SGE free-buffer list
|
|
* @sc: the controller softc
|
|
* @q: the free-list to refill
|
|
* @n: the number of new buffers to allocate
|
|
*
|
|
* (Re)populate an SGE free-buffer list with up to @n new packet buffers.
|
|
* The caller must assure that @n does not exceed the queue's capacity.
|
|
*/
|
|
static void
|
|
refill_fl(adapter_t *sc, struct sge_fl *q, int n)
|
|
{
|
|
struct rx_sw_desc *sd = &q->sdesc[q->pidx];
|
|
struct rx_desc *d = &q->desc[q->pidx];
|
|
struct refill_fl_cb_arg cb_arg;
|
|
struct mbuf *m;
|
|
caddr_t cl;
|
|
int err;
|
|
|
|
cb_arg.error = 0;
|
|
while (n--) {
|
|
/*
|
|
* We only allocate a cluster, mbuf allocation happens after rx
|
|
*/
|
|
if (q->zone == zone_pack) {
|
|
if ((m = m_getcl(M_NOWAIT, MT_NOINIT, M_PKTHDR)) == NULL)
|
|
break;
|
|
cl = m->m_ext.ext_buf;
|
|
} else {
|
|
if ((cl = m_cljget(NULL, M_NOWAIT, q->buf_size)) == NULL)
|
|
break;
|
|
if ((m = m_gethdr(M_NOWAIT, MT_NOINIT)) == NULL) {
|
|
uma_zfree(q->zone, cl);
|
|
break;
|
|
}
|
|
}
|
|
if ((sd->flags & RX_SW_DESC_MAP_CREATED) == 0) {
|
|
if ((err = bus_dmamap_create(q->entry_tag, 0, &sd->map))) {
|
|
log(LOG_WARNING, "bus_dmamap_create failed %d\n", err);
|
|
uma_zfree(q->zone, cl);
|
|
goto done;
|
|
}
|
|
sd->flags |= RX_SW_DESC_MAP_CREATED;
|
|
}
|
|
#if !defined(__i386__) && !defined(__amd64__)
|
|
err = bus_dmamap_load(q->entry_tag, sd->map,
|
|
cl, q->buf_size, refill_fl_cb, &cb_arg, 0);
|
|
|
|
if (err != 0 || cb_arg.error) {
|
|
if (q->zone == zone_pack)
|
|
uma_zfree(q->zone, cl);
|
|
m_free(m);
|
|
goto done;
|
|
}
|
|
#else
|
|
cb_arg.seg.ds_addr = pmap_kextract((vm_offset_t)cl);
|
|
#endif
|
|
sd->flags |= RX_SW_DESC_INUSE;
|
|
sd->rxsd_cl = cl;
|
|
sd->m = m;
|
|
d->addr_lo = htobe32(cb_arg.seg.ds_addr & 0xffffffff);
|
|
d->addr_hi = htobe32(((uint64_t)cb_arg.seg.ds_addr >>32) & 0xffffffff);
|
|
d->len_gen = htobe32(V_FLD_GEN1(q->gen));
|
|
d->gen2 = htobe32(V_FLD_GEN2(q->gen));
|
|
|
|
d++;
|
|
sd++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
q->pidx = 0;
|
|
q->gen ^= 1;
|
|
sd = q->sdesc;
|
|
d = q->desc;
|
|
}
|
|
q->credits++;
|
|
q->db_pending++;
|
|
}
|
|
|
|
done:
|
|
if (q->db_pending >= 32) {
|
|
q->db_pending = 0;
|
|
t3_write_reg(sc, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
}
|
|
|
|
|
|
/**
|
|
* free_rx_bufs - free the Rx buffers on an SGE free list
|
|
* @sc: the controle softc
|
|
* @q: the SGE free list to clean up
|
|
*
|
|
* Release the buffers on an SGE free-buffer Rx queue. HW fetching from
|
|
* this queue should be stopped before calling this function.
|
|
*/
|
|
static void
|
|
free_rx_bufs(adapter_t *sc, struct sge_fl *q)
|
|
{
|
|
u_int cidx = q->cidx;
|
|
|
|
while (q->credits--) {
|
|
struct rx_sw_desc *d = &q->sdesc[cidx];
|
|
|
|
if (d->flags & RX_SW_DESC_INUSE) {
|
|
bus_dmamap_unload(q->entry_tag, d->map);
|
|
bus_dmamap_destroy(q->entry_tag, d->map);
|
|
if (q->zone == zone_pack) {
|
|
m_init(d->m, zone_pack, MCLBYTES,
|
|
M_NOWAIT, MT_DATA, M_EXT);
|
|
uma_zfree(zone_pack, d->m);
|
|
} else {
|
|
m_init(d->m, zone_mbuf, MLEN,
|
|
M_NOWAIT, MT_DATA, 0);
|
|
uma_zfree(zone_mbuf, d->m);
|
|
uma_zfree(q->zone, d->rxsd_cl);
|
|
}
|
|
}
|
|
|
|
d->rxsd_cl = NULL;
|
|
d->m = NULL;
|
|
if (++cidx == q->size)
|
|
cidx = 0;
|
|
}
|
|
}
|
|
|
|
static __inline void
|
|
__refill_fl(adapter_t *adap, struct sge_fl *fl)
|
|
{
|
|
refill_fl(adap, fl, min(16U, fl->size - fl->credits));
|
|
}
|
|
|
|
static __inline void
|
|
__refill_fl_lt(adapter_t *adap, struct sge_fl *fl, int max)
|
|
{
|
|
uint32_t reclaimable = fl->size - fl->credits;
|
|
|
|
if (reclaimable > 0)
|
|
refill_fl(adap, fl, min(max, reclaimable));
|
|
}
|
|
|
|
/**
|
|
* recycle_rx_buf - recycle a receive buffer
|
|
* @adapter: the adapter
|
|
* @q: the SGE free list
|
|
* @idx: index of buffer to recycle
|
|
*
|
|
* Recycles the specified buffer on the given free list by adding it at
|
|
* the next available slot on the list.
|
|
*/
|
|
static void
|
|
recycle_rx_buf(adapter_t *adap, struct sge_fl *q, unsigned int idx)
|
|
{
|
|
struct rx_desc *from = &q->desc[idx];
|
|
struct rx_desc *to = &q->desc[q->pidx];
|
|
|
|
q->sdesc[q->pidx] = q->sdesc[idx];
|
|
to->addr_lo = from->addr_lo; // already big endian
|
|
to->addr_hi = from->addr_hi; // likewise
|
|
wmb(); /* necessary ? */
|
|
to->len_gen = htobe32(V_FLD_GEN1(q->gen));
|
|
to->gen2 = htobe32(V_FLD_GEN2(q->gen));
|
|
q->credits++;
|
|
|
|
if (++q->pidx == q->size) {
|
|
q->pidx = 0;
|
|
q->gen ^= 1;
|
|
}
|
|
t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
|
|
static void
|
|
alloc_ring_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
uint32_t *addr;
|
|
|
|
addr = arg;
|
|
*addr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
alloc_ring(adapter_t *sc, size_t nelem, size_t elem_size, size_t sw_size,
|
|
bus_addr_t *phys, void *desc, void *sdesc, bus_dma_tag_t *tag,
|
|
bus_dmamap_t *map, bus_dma_tag_t parent_entry_tag, bus_dma_tag_t *entry_tag)
|
|
{
|
|
size_t len = nelem * elem_size;
|
|
void *s = NULL;
|
|
void *p = NULL;
|
|
int err;
|
|
|
|
if ((err = bus_dma_tag_create(sc->parent_dmat, PAGE_SIZE, 0,
|
|
BUS_SPACE_MAXADDR_32BIT,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, len, 1,
|
|
len, 0, NULL, NULL, tag)) != 0) {
|
|
device_printf(sc->dev, "Cannot allocate descriptor tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
if ((err = bus_dmamem_alloc(*tag, (void **)&p, BUS_DMA_NOWAIT,
|
|
map)) != 0) {
|
|
device_printf(sc->dev, "Cannot allocate descriptor memory\n");
|
|
return (ENOMEM);
|
|
}
|
|
|
|
bus_dmamap_load(*tag, *map, p, len, alloc_ring_cb, phys, 0);
|
|
bzero(p, len);
|
|
*(void **)desc = p;
|
|
|
|
if (sw_size) {
|
|
len = nelem * sw_size;
|
|
s = malloc(len, M_DEVBUF, M_WAITOK|M_ZERO);
|
|
*(void **)sdesc = s;
|
|
}
|
|
if (parent_entry_tag == NULL)
|
|
return (0);
|
|
|
|
if ((err = bus_dma_tag_create(parent_entry_tag, 1, 0,
|
|
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
|
|
NULL, NULL, TX_MAX_SIZE, TX_MAX_SEGS,
|
|
TX_MAX_SIZE, BUS_DMA_ALLOCNOW,
|
|
NULL, NULL, entry_tag)) != 0) {
|
|
device_printf(sc->dev, "Cannot allocate descriptor entry tag\n");
|
|
return (ENOMEM);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
sge_slow_intr_handler(void *arg, int ncount)
|
|
{
|
|
adapter_t *sc = arg;
|
|
|
|
t3_slow_intr_handler(sc);
|
|
}
|
|
|
|
/**
|
|
* sge_timer_cb - perform periodic maintenance of an SGE qset
|
|
* @data: the SGE queue set to maintain
|
|
*
|
|
* Runs periodically from a timer to perform maintenance of an SGE queue
|
|
* set. It performs two tasks:
|
|
*
|
|
* a) Cleans up any completed Tx descriptors that may still be pending.
|
|
* Normal descriptor cleanup happens when new packets are added to a Tx
|
|
* queue so this timer is relatively infrequent and does any cleanup only
|
|
* if the Tx queue has not seen any new packets in a while. We make a
|
|
* best effort attempt to reclaim descriptors, in that we don't wait
|
|
* around if we cannot get a queue's lock (which most likely is because
|
|
* someone else is queueing new packets and so will also handle the clean
|
|
* up). Since control queues use immediate data exclusively we don't
|
|
* bother cleaning them up here.
|
|
*
|
|
* b) Replenishes Rx queues that have run out due to memory shortage.
|
|
* Normally new Rx buffers are added when existing ones are consumed but
|
|
* when out of memory a queue can become empty. We try to add only a few
|
|
* buffers here, the queue will be replenished fully as these new buffers
|
|
* are used up if memory shortage has subsided.
|
|
*
|
|
* c) Return coalesced response queue credits in case a response queue is
|
|
* starved.
|
|
*
|
|
* d) Ring doorbells for T304 tunnel queues since we have seen doorbell
|
|
* fifo overflows and the FW doesn't implement any recovery scheme yet.
|
|
*/
|
|
static void
|
|
sge_timer_cb(void *arg)
|
|
{
|
|
adapter_t *sc = arg;
|
|
if ((sc->flags & USING_MSIX) == 0) {
|
|
|
|
struct port_info *pi;
|
|
struct sge_qset *qs;
|
|
struct sge_txq *txq;
|
|
int i, j;
|
|
int reclaim_ofl, refill_rx;
|
|
|
|
if (sc->open_device_map == 0)
|
|
return;
|
|
|
|
for (i = 0; i < sc->params.nports; i++) {
|
|
pi = &sc->port[i];
|
|
for (j = 0; j < pi->nqsets; j++) {
|
|
qs = &sc->sge.qs[pi->first_qset + j];
|
|
txq = &qs->txq[0];
|
|
reclaim_ofl = txq[TXQ_OFLD].processed - txq[TXQ_OFLD].cleaned;
|
|
refill_rx = ((qs->fl[0].credits < qs->fl[0].size) ||
|
|
(qs->fl[1].credits < qs->fl[1].size));
|
|
if (reclaim_ofl || refill_rx) {
|
|
taskqueue_enqueue(sc->tq, &pi->timer_reclaim_task);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sc->params.nports > 2) {
|
|
int i;
|
|
|
|
for_each_port(sc, i) {
|
|
struct port_info *pi = &sc->port[i];
|
|
|
|
t3_write_reg(sc, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX |
|
|
(FW_TUNNEL_SGEEC_START + pi->first_qset));
|
|
}
|
|
}
|
|
if (((sc->flags & USING_MSIX) == 0 || sc->params.nports > 2) &&
|
|
sc->open_device_map != 0)
|
|
callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
|
|
}
|
|
|
|
/*
|
|
* This is meant to be a catch-all function to keep sge state private
|
|
* to sge.c
|
|
*
|
|
*/
|
|
int
|
|
t3_sge_init_adapter(adapter_t *sc)
|
|
{
|
|
callout_init(&sc->sge_timer_ch, CALLOUT_MPSAFE);
|
|
callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
|
|
TASK_INIT(&sc->slow_intr_task, 0, sge_slow_intr_handler, sc);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
t3_sge_reset_adapter(adapter_t *sc)
|
|
{
|
|
callout_reset(&sc->sge_timer_ch, TX_RECLAIM_PERIOD, sge_timer_cb, sc);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
t3_sge_init_port(struct port_info *pi)
|
|
{
|
|
TASK_INIT(&pi->timer_reclaim_task, 0, sge_timer_reclaim, pi);
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* refill_rspq - replenish an SGE response queue
|
|
* @adapter: the adapter
|
|
* @q: the response queue to replenish
|
|
* @credits: how many new responses to make available
|
|
*
|
|
* Replenishes a response queue by making the supplied number of responses
|
|
* available to HW.
|
|
*/
|
|
static __inline void
|
|
refill_rspq(adapter_t *sc, const struct sge_rspq *q, u_int credits)
|
|
{
|
|
|
|
/* mbufs are allocated on demand when a rspq entry is processed. */
|
|
t3_write_reg(sc, A_SG_RSPQ_CREDIT_RETURN,
|
|
V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
|
|
}
|
|
|
|
static void
|
|
sge_txq_reclaim_handler(void *arg, int ncount)
|
|
{
|
|
struct sge_qset *qs = arg;
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
reclaim_completed_tx(qs, 16, i);
|
|
}
|
|
|
|
static void
|
|
sge_timer_reclaim(void *arg, int ncount)
|
|
{
|
|
struct port_info *pi = arg;
|
|
int i, nqsets = pi->nqsets;
|
|
adapter_t *sc = pi->adapter;
|
|
struct sge_qset *qs;
|
|
struct mtx *lock;
|
|
|
|
KASSERT((sc->flags & USING_MSIX) == 0,
|
|
("can't call timer reclaim for msi-x"));
|
|
|
|
for (i = 0; i < nqsets; i++) {
|
|
qs = &sc->sge.qs[pi->first_qset + i];
|
|
|
|
reclaim_completed_tx(qs, 16, TXQ_OFLD);
|
|
lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock :
|
|
&sc->sge.qs[0].rspq.lock;
|
|
|
|
if (mtx_trylock(lock)) {
|
|
/* XXX currently assume that we are *NOT* polling */
|
|
uint32_t status = t3_read_reg(sc, A_SG_RSPQ_FL_STATUS);
|
|
|
|
if (qs->fl[0].credits < qs->fl[0].size - 16)
|
|
__refill_fl(sc, &qs->fl[0]);
|
|
if (qs->fl[1].credits < qs->fl[1].size - 16)
|
|
__refill_fl(sc, &qs->fl[1]);
|
|
|
|
if (status & (1 << qs->rspq.cntxt_id)) {
|
|
if (qs->rspq.credits) {
|
|
refill_rspq(sc, &qs->rspq, 1);
|
|
qs->rspq.credits--;
|
|
t3_write_reg(sc, A_SG_RSPQ_FL_STATUS,
|
|
1 << qs->rspq.cntxt_id);
|
|
}
|
|
}
|
|
mtx_unlock(lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* init_qset_cntxt - initialize an SGE queue set context info
|
|
* @qs: the queue set
|
|
* @id: the queue set id
|
|
*
|
|
* Initializes the TIDs and context ids for the queues of a queue set.
|
|
*/
|
|
static void
|
|
init_qset_cntxt(struct sge_qset *qs, u_int id)
|
|
{
|
|
|
|
qs->rspq.cntxt_id = id;
|
|
qs->fl[0].cntxt_id = 2 * id;
|
|
qs->fl[1].cntxt_id = 2 * id + 1;
|
|
qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
|
|
qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
|
|
qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
|
|
qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
|
|
qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
|
|
|
|
mbufq_init(&qs->txq[TXQ_ETH].sendq);
|
|
mbufq_init(&qs->txq[TXQ_OFLD].sendq);
|
|
mbufq_init(&qs->txq[TXQ_CTRL].sendq);
|
|
}
|
|
|
|
|
|
static void
|
|
txq_prod(struct sge_txq *txq, unsigned int ndesc, struct txq_state *txqs)
|
|
{
|
|
txq->in_use += ndesc;
|
|
/*
|
|
* XXX we don't handle stopping of queue
|
|
* presumably start handles this when we bump against the end
|
|
*/
|
|
txqs->gen = txq->gen;
|
|
txq->unacked += ndesc;
|
|
txqs->compl = (txq->unacked & 32) << (S_WR_COMPL - 5);
|
|
txq->unacked &= 31;
|
|
txqs->pidx = txq->pidx;
|
|
txq->pidx += ndesc;
|
|
#ifdef INVARIANTS
|
|
if (((txqs->pidx > txq->cidx) &&
|
|
(txq->pidx < txqs->pidx) &&
|
|
(txq->pidx >= txq->cidx)) ||
|
|
((txqs->pidx < txq->cidx) &&
|
|
(txq->pidx >= txq-> cidx)) ||
|
|
((txqs->pidx < txq->cidx) &&
|
|
(txq->cidx < txqs->pidx)))
|
|
panic("txqs->pidx=%d txq->pidx=%d txq->cidx=%d",
|
|
txqs->pidx, txq->pidx, txq->cidx);
|
|
#endif
|
|
if (txq->pidx >= txq->size) {
|
|
txq->pidx -= txq->size;
|
|
txq->gen ^= 1;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* calc_tx_descs - calculate the number of Tx descriptors for a packet
|
|
* @m: the packet mbufs
|
|
* @nsegs: the number of segments
|
|
*
|
|
* Returns the number of Tx descriptors needed for the given Ethernet
|
|
* packet. Ethernet packets require addition of WR and CPL headers.
|
|
*/
|
|
static __inline unsigned int
|
|
calc_tx_descs(const struct mbuf *m, int nsegs)
|
|
{
|
|
unsigned int flits;
|
|
|
|
if (m->m_pkthdr.len <= PIO_LEN)
|
|
return 1;
|
|
|
|
flits = sgl_len(nsegs) + 2;
|
|
if (m->m_pkthdr.csum_flags & CSUM_TSO)
|
|
flits++;
|
|
|
|
return flits_to_desc(flits);
|
|
}
|
|
|
|
static unsigned int
|
|
busdma_map_mbufs(struct mbuf **m, struct sge_txq *txq,
|
|
struct tx_sw_desc *txsd, bus_dma_segment_t *segs, int *nsegs)
|
|
{
|
|
struct mbuf *m0;
|
|
int err, pktlen, pass = 0;
|
|
bus_dma_tag_t tag = txq->entry_tag;
|
|
|
|
retry:
|
|
err = 0;
|
|
m0 = *m;
|
|
pktlen = m0->m_pkthdr.len;
|
|
#if defined(__i386__) || defined(__amd64__)
|
|
if (busdma_map_sg_collapse(tag, txsd->map, m, segs, nsegs) == 0) {
|
|
goto done;
|
|
} else
|
|
#endif
|
|
err = bus_dmamap_load_mbuf_sg(tag, txsd->map, m0, segs, nsegs, 0);
|
|
|
|
if (err == 0) {
|
|
goto done;
|
|
}
|
|
if (err == EFBIG && pass == 0) {
|
|
pass = 1;
|
|
/* Too many segments, try to defrag */
|
|
m0 = m_defrag(m0, M_DONTWAIT);
|
|
if (m0 == NULL) {
|
|
m_freem(*m);
|
|
*m = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m = m0;
|
|
goto retry;
|
|
} else if (err == ENOMEM) {
|
|
return (err);
|
|
} if (err) {
|
|
if (cxgb_debug)
|
|
printf("map failure err=%d pktlen=%d\n", err, pktlen);
|
|
m_freem(m0);
|
|
*m = NULL;
|
|
return (err);
|
|
}
|
|
done:
|
|
#if !defined(__i386__) && !defined(__amd64__)
|
|
bus_dmamap_sync(tag, txsd->map, BUS_DMASYNC_PREWRITE);
|
|
#endif
|
|
txsd->flags |= TX_SW_DESC_MAPPED;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* make_sgl - populate a scatter/gather list for a packet
|
|
* @sgp: the SGL to populate
|
|
* @segs: the packet dma segments
|
|
* @nsegs: the number of segments
|
|
*
|
|
* Generates a scatter/gather list for the buffers that make up a packet
|
|
* and returns the SGL size in 8-byte words. The caller must size the SGL
|
|
* appropriately.
|
|
*/
|
|
static __inline void
|
|
make_sgl(struct sg_ent *sgp, bus_dma_segment_t *segs, int nsegs)
|
|
{
|
|
int i, idx;
|
|
|
|
for (idx = 0, i = 0; i < nsegs; i++) {
|
|
/*
|
|
* firmware doesn't like empty segments
|
|
*/
|
|
if (segs[i].ds_len == 0)
|
|
continue;
|
|
if (i && idx == 0)
|
|
++sgp;
|
|
|
|
sgp->len[idx] = htobe32(segs[i].ds_len);
|
|
sgp->addr[idx] = htobe64(segs[i].ds_addr);
|
|
idx ^= 1;
|
|
}
|
|
|
|
if (idx) {
|
|
sgp->len[idx] = 0;
|
|
sgp->addr[idx] = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* check_ring_tx_db - check and potentially ring a Tx queue's doorbell
|
|
* @adap: the adapter
|
|
* @q: the Tx queue
|
|
*
|
|
* Ring the doorbell if a Tx queue is asleep. There is a natural race,
|
|
* where the HW is going to sleep just after we checked, however,
|
|
* then the interrupt handler will detect the outstanding TX packet
|
|
* and ring the doorbell for us.
|
|
*
|
|
* When GTS is disabled we unconditionally ring the doorbell.
|
|
*/
|
|
static __inline void
|
|
check_ring_tx_db(adapter_t *adap, struct sge_txq *q, int mustring)
|
|
{
|
|
#if USE_GTS
|
|
clear_bit(TXQ_LAST_PKT_DB, &q->flags);
|
|
if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
|
|
set_bit(TXQ_LAST_PKT_DB, &q->flags);
|
|
#ifdef T3_TRACE
|
|
T3_TRACE1(adap->tb[q->cntxt_id & 7], "doorbell Tx, cntxt %d",
|
|
q->cntxt_id);
|
|
#endif
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
#else
|
|
if (mustring || ++q->db_pending >= 32) {
|
|
wmb(); /* write descriptors before telling HW */
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
q->db_pending = 0;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static __inline void
|
|
wr_gen2(struct tx_desc *d, unsigned int gen)
|
|
{
|
|
#if SGE_NUM_GENBITS == 2
|
|
d->flit[TX_DESC_FLITS - 1] = htobe64(gen);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* write_wr_hdr_sgl - write a WR header and, optionally, SGL
|
|
* @ndesc: number of Tx descriptors spanned by the SGL
|
|
* @txd: first Tx descriptor to be written
|
|
* @txqs: txq state (generation and producer index)
|
|
* @txq: the SGE Tx queue
|
|
* @sgl: the SGL
|
|
* @flits: number of flits to the start of the SGL in the first descriptor
|
|
* @sgl_flits: the SGL size in flits
|
|
* @wr_hi: top 32 bits of WR header based on WR type (big endian)
|
|
* @wr_lo: low 32 bits of WR header based on WR type (big endian)
|
|
*
|
|
* Write a work request header and an associated SGL. If the SGL is
|
|
* small enough to fit into one Tx descriptor it has already been written
|
|
* and we just need to write the WR header. Otherwise we distribute the
|
|
* SGL across the number of descriptors it spans.
|
|
*/
|
|
static void
|
|
write_wr_hdr_sgl(unsigned int ndesc, struct tx_desc *txd, struct txq_state *txqs,
|
|
const struct sge_txq *txq, const struct sg_ent *sgl, unsigned int flits,
|
|
unsigned int sgl_flits, unsigned int wr_hi, unsigned int wr_lo)
|
|
{
|
|
|
|
struct work_request_hdr *wrp = (struct work_request_hdr *)txd;
|
|
struct tx_sw_desc *txsd = &txq->sdesc[txqs->pidx];
|
|
|
|
if (__predict_true(ndesc == 1)) {
|
|
set_wr_hdr(wrp, htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
|
|
V_WR_SGLSFLT(flits)) | wr_hi,
|
|
htonl(V_WR_LEN(flits + sgl_flits) |
|
|
V_WR_GEN(txqs->gen)) | wr_lo);
|
|
/* XXX gen? */
|
|
wr_gen2(txd, txqs->gen);
|
|
|
|
} else {
|
|
unsigned int ogen = txqs->gen;
|
|
const uint64_t *fp = (const uint64_t *)sgl;
|
|
struct work_request_hdr *wp = wrp;
|
|
|
|
wrp->wrh_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
|
|
V_WR_SGLSFLT(flits)) | wr_hi;
|
|
|
|
while (sgl_flits) {
|
|
unsigned int avail = WR_FLITS - flits;
|
|
|
|
if (avail > sgl_flits)
|
|
avail = sgl_flits;
|
|
memcpy(&txd->flit[flits], fp, avail * sizeof(*fp));
|
|
sgl_flits -= avail;
|
|
ndesc--;
|
|
if (!sgl_flits)
|
|
break;
|
|
|
|
fp += avail;
|
|
txd++;
|
|
txsd++;
|
|
if (++txqs->pidx == txq->size) {
|
|
txqs->pidx = 0;
|
|
txqs->gen ^= 1;
|
|
txd = txq->desc;
|
|
txsd = txq->sdesc;
|
|
}
|
|
|
|
/*
|
|
* when the head of the mbuf chain
|
|
* is freed all clusters will be freed
|
|
* with it
|
|
*/
|
|
wrp = (struct work_request_hdr *)txd;
|
|
wrp->wrh_hi = htonl(V_WR_DATATYPE(1) |
|
|
V_WR_SGLSFLT(1)) | wr_hi;
|
|
wrp->wrh_lo = htonl(V_WR_LEN(min(WR_FLITS,
|
|
sgl_flits + 1)) |
|
|
V_WR_GEN(txqs->gen)) | wr_lo;
|
|
wr_gen2(txd, txqs->gen);
|
|
flits = 1;
|
|
}
|
|
wrp->wrh_hi |= htonl(F_WR_EOP);
|
|
wmb();
|
|
wp->wrh_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
|
|
wr_gen2((struct tx_desc *)wp, ogen);
|
|
}
|
|
}
|
|
|
|
/* sizeof(*eh) + sizeof(*ip) + sizeof(*tcp) */
|
|
#define TCPPKTHDRSIZE (ETHER_HDR_LEN + 20 + 20)
|
|
|
|
#define GET_VTAG(cntrl, m) \
|
|
do { \
|
|
if ((m)->m_flags & M_VLANTAG) \
|
|
cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN((m)->m_pkthdr.ether_vtag); \
|
|
} while (0)
|
|
|
|
static int
|
|
t3_encap(struct sge_qset *qs, struct mbuf **m)
|
|
{
|
|
adapter_t *sc;
|
|
struct mbuf *m0;
|
|
struct sge_txq *txq;
|
|
struct txq_state txqs;
|
|
struct port_info *pi;
|
|
unsigned int ndesc, flits, cntrl, mlen;
|
|
int err, nsegs, tso_info = 0;
|
|
|
|
struct work_request_hdr *wrp;
|
|
struct tx_sw_desc *txsd;
|
|
struct sg_ent *sgp, *sgl;
|
|
uint32_t wr_hi, wr_lo, sgl_flits;
|
|
bus_dma_segment_t segs[TX_MAX_SEGS];
|
|
|
|
struct tx_desc *txd;
|
|
|
|
pi = qs->port;
|
|
sc = pi->adapter;
|
|
txq = &qs->txq[TXQ_ETH];
|
|
txd = &txq->desc[txq->pidx];
|
|
txsd = &txq->sdesc[txq->pidx];
|
|
sgl = txq->txq_sgl;
|
|
|
|
prefetch(txd);
|
|
m0 = *m;
|
|
|
|
mtx_assert(&qs->lock, MA_OWNED);
|
|
cntrl = V_TXPKT_INTF(pi->txpkt_intf);
|
|
KASSERT(m0->m_flags & M_PKTHDR, ("not packet header\n"));
|
|
|
|
if (m0->m_nextpkt == NULL && m0->m_next != NULL &&
|
|
m0->m_pkthdr.csum_flags & (CSUM_TSO))
|
|
tso_info = V_LSO_MSS(m0->m_pkthdr.tso_segsz);
|
|
|
|
if (m0->m_nextpkt != NULL) {
|
|
busdma_map_sg_vec(txq->entry_tag, txsd->map, m0, segs, &nsegs);
|
|
ndesc = 1;
|
|
mlen = 0;
|
|
} else {
|
|
if ((err = busdma_map_sg_collapse(txq->entry_tag, txsd->map,
|
|
&m0, segs, &nsegs))) {
|
|
if (cxgb_debug)
|
|
printf("failed ... err=%d\n", err);
|
|
return (err);
|
|
}
|
|
mlen = m0->m_pkthdr.len;
|
|
ndesc = calc_tx_descs(m0, nsegs);
|
|
}
|
|
txq_prod(txq, ndesc, &txqs);
|
|
|
|
KASSERT(m0->m_pkthdr.len, ("empty packet nsegs=%d", nsegs));
|
|
txsd->m = m0;
|
|
|
|
if (m0->m_nextpkt != NULL) {
|
|
struct cpl_tx_pkt_batch *cpl_batch = (struct cpl_tx_pkt_batch *)txd;
|
|
int i, fidx;
|
|
|
|
if (nsegs > 7)
|
|
panic("trying to coalesce %d packets in to one WR", nsegs);
|
|
txq->txq_coalesced += nsegs;
|
|
wrp = (struct work_request_hdr *)txd;
|
|
flits = nsegs*2 + 1;
|
|
|
|
for (fidx = 1, i = 0; i < nsegs; i++, fidx += 2) {
|
|
struct cpl_tx_pkt_batch_entry *cbe;
|
|
uint64_t flit;
|
|
uint32_t *hflit = (uint32_t *)&flit;
|
|
int cflags = m0->m_pkthdr.csum_flags;
|
|
|
|
cntrl = V_TXPKT_INTF(pi->txpkt_intf);
|
|
GET_VTAG(cntrl, m0);
|
|
cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
|
|
if (__predict_false(!(cflags & CSUM_IP)))
|
|
cntrl |= F_TXPKT_IPCSUM_DIS;
|
|
if (__predict_false(!(cflags & (CSUM_TCP | CSUM_UDP))))
|
|
cntrl |= F_TXPKT_L4CSUM_DIS;
|
|
|
|
hflit[0] = htonl(cntrl);
|
|
hflit[1] = htonl(segs[i].ds_len | 0x80000000);
|
|
flit |= htobe64(1 << 24);
|
|
cbe = &cpl_batch->pkt_entry[i];
|
|
cbe->cntrl = hflit[0];
|
|
cbe->len = hflit[1];
|
|
cbe->addr = htobe64(segs[i].ds_addr);
|
|
}
|
|
|
|
wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
|
|
V_WR_SGLSFLT(flits)) |
|
|
htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl);
|
|
wr_lo = htonl(V_WR_LEN(flits) |
|
|
V_WR_GEN(txqs.gen)) | htonl(V_WR_TID(txq->token));
|
|
set_wr_hdr(wrp, wr_hi, wr_lo);
|
|
wmb();
|
|
ETHER_BPF_MTAP(pi->ifp, m0);
|
|
wr_gen2(txd, txqs.gen);
|
|
check_ring_tx_db(sc, txq, 0);
|
|
return (0);
|
|
} else if (tso_info) {
|
|
int eth_type;
|
|
struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)txd;
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
struct tcphdr *tcp;
|
|
|
|
txd->flit[2] = 0;
|
|
GET_VTAG(cntrl, m0);
|
|
cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
|
|
hdr->cntrl = htonl(cntrl);
|
|
hdr->len = htonl(mlen | 0x80000000);
|
|
|
|
if (__predict_false(mlen < TCPPKTHDRSIZE)) {
|
|
printf("mbuf=%p,len=%d,tso_segsz=%d,csum_flags=%#x,flags=%#x",
|
|
m0, mlen, m0->m_pkthdr.tso_segsz,
|
|
m0->m_pkthdr.csum_flags, m0->m_flags);
|
|
panic("tx tso packet too small");
|
|
}
|
|
|
|
/* Make sure that ether, ip, tcp headers are all in m0 */
|
|
if (__predict_false(m0->m_len < TCPPKTHDRSIZE)) {
|
|
m0 = m_pullup(m0, TCPPKTHDRSIZE);
|
|
if (__predict_false(m0 == NULL)) {
|
|
/* XXX panic probably an overreaction */
|
|
panic("couldn't fit header into mbuf");
|
|
}
|
|
}
|
|
|
|
eh = mtod(m0, struct ether_header *);
|
|
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
|
|
eth_type = CPL_ETH_II_VLAN;
|
|
ip = (struct ip *)((struct ether_vlan_header *)eh + 1);
|
|
} else {
|
|
eth_type = CPL_ETH_II;
|
|
ip = (struct ip *)(eh + 1);
|
|
}
|
|
tcp = (struct tcphdr *)(ip + 1);
|
|
|
|
tso_info |= V_LSO_ETH_TYPE(eth_type) |
|
|
V_LSO_IPHDR_WORDS(ip->ip_hl) |
|
|
V_LSO_TCPHDR_WORDS(tcp->th_off);
|
|
hdr->lso_info = htonl(tso_info);
|
|
|
|
if (__predict_false(mlen <= PIO_LEN)) {
|
|
/*
|
|
* pkt not undersized but fits in PIO_LEN
|
|
* Indicates a TSO bug at the higher levels.
|
|
*/
|
|
txsd->m = NULL;
|
|
m_copydata(m0, 0, mlen, (caddr_t)&txd->flit[3]);
|
|
flits = (mlen + 7) / 8 + 3;
|
|
wr_hi = htonl(V_WR_BCNTLFLT(mlen & 7) |
|
|
V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
|
|
F_WR_SOP | F_WR_EOP | txqs.compl);
|
|
wr_lo = htonl(V_WR_LEN(flits) |
|
|
V_WR_GEN(txqs.gen) | V_WR_TID(txq->token));
|
|
set_wr_hdr(&hdr->wr, wr_hi, wr_lo);
|
|
wmb();
|
|
ETHER_BPF_MTAP(pi->ifp, m0);
|
|
wr_gen2(txd, txqs.gen);
|
|
check_ring_tx_db(sc, txq, 0);
|
|
m_freem(m0);
|
|
return (0);
|
|
}
|
|
flits = 3;
|
|
} else {
|
|
struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)txd;
|
|
|
|
GET_VTAG(cntrl, m0);
|
|
cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
|
|
if (__predict_false(!(m0->m_pkthdr.csum_flags & CSUM_IP)))
|
|
cntrl |= F_TXPKT_IPCSUM_DIS;
|
|
if (__predict_false(!(m0->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))))
|
|
cntrl |= F_TXPKT_L4CSUM_DIS;
|
|
cpl->cntrl = htonl(cntrl);
|
|
cpl->len = htonl(mlen | 0x80000000);
|
|
|
|
if (mlen <= PIO_LEN) {
|
|
txsd->m = NULL;
|
|
m_copydata(m0, 0, mlen, (caddr_t)&txd->flit[2]);
|
|
flits = (mlen + 7) / 8 + 2;
|
|
|
|
wr_hi = htonl(V_WR_BCNTLFLT(mlen & 7) |
|
|
V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) |
|
|
F_WR_SOP | F_WR_EOP | txqs.compl);
|
|
wr_lo = htonl(V_WR_LEN(flits) |
|
|
V_WR_GEN(txqs.gen) | V_WR_TID(txq->token));
|
|
set_wr_hdr(&cpl->wr, wr_hi, wr_lo);
|
|
wmb();
|
|
ETHER_BPF_MTAP(pi->ifp, m0);
|
|
wr_gen2(txd, txqs.gen);
|
|
check_ring_tx_db(sc, txq, 0);
|
|
m_freem(m0);
|
|
return (0);
|
|
}
|
|
flits = 2;
|
|
}
|
|
wrp = (struct work_request_hdr *)txd;
|
|
sgp = (ndesc == 1) ? (struct sg_ent *)&txd->flit[flits] : sgl;
|
|
make_sgl(sgp, segs, nsegs);
|
|
|
|
sgl_flits = sgl_len(nsegs);
|
|
|
|
ETHER_BPF_MTAP(pi->ifp, m0);
|
|
|
|
KASSERT(ndesc <= 4, ("ndesc too large %d", ndesc));
|
|
wr_hi = htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | txqs.compl);
|
|
wr_lo = htonl(V_WR_TID(txq->token));
|
|
write_wr_hdr_sgl(ndesc, txd, &txqs, txq, sgl, flits,
|
|
sgl_flits, wr_hi, wr_lo);
|
|
check_ring_tx_db(sc, txq, 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
cxgb_tx_watchdog(void *arg)
|
|
{
|
|
struct sge_qset *qs = arg;
|
|
struct sge_txq *txq = &qs->txq[TXQ_ETH];
|
|
|
|
if (qs->coalescing != 0 &&
|
|
(txq->in_use <= cxgb_tx_coalesce_enable_stop) &&
|
|
TXQ_RING_EMPTY(qs))
|
|
qs->coalescing = 0;
|
|
else if (qs->coalescing == 0 &&
|
|
(txq->in_use >= cxgb_tx_coalesce_enable_start))
|
|
qs->coalescing = 1;
|
|
if (TXQ_TRYLOCK(qs)) {
|
|
qs->qs_flags |= QS_FLUSHING;
|
|
cxgb_start_locked(qs);
|
|
qs->qs_flags &= ~QS_FLUSHING;
|
|
TXQ_UNLOCK(qs);
|
|
}
|
|
if (qs->port->ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
callout_reset_on(&txq->txq_watchdog, hz/4, cxgb_tx_watchdog,
|
|
qs, txq->txq_watchdog.c_cpu);
|
|
}
|
|
|
|
static void
|
|
cxgb_tx_timeout(void *arg)
|
|
{
|
|
struct sge_qset *qs = arg;
|
|
struct sge_txq *txq = &qs->txq[TXQ_ETH];
|
|
|
|
if (qs->coalescing == 0 && (txq->in_use >= (txq->size>>3)))
|
|
qs->coalescing = 1;
|
|
if (TXQ_TRYLOCK(qs)) {
|
|
qs->qs_flags |= QS_TIMEOUT;
|
|
cxgb_start_locked(qs);
|
|
qs->qs_flags &= ~QS_TIMEOUT;
|
|
TXQ_UNLOCK(qs);
|
|
}
|
|
}
|
|
|
|
static void
|
|
cxgb_start_locked(struct sge_qset *qs)
|
|
{
|
|
struct mbuf *m_head = NULL;
|
|
struct sge_txq *txq = &qs->txq[TXQ_ETH];
|
|
struct port_info *pi = qs->port;
|
|
struct ifnet *ifp = pi->ifp;
|
|
|
|
if (qs->qs_flags & (QS_FLUSHING|QS_TIMEOUT))
|
|
reclaim_completed_tx(qs, 0, TXQ_ETH);
|
|
|
|
if (!pi->link_config.link_ok) {
|
|
TXQ_RING_FLUSH(qs);
|
|
return;
|
|
}
|
|
TXQ_LOCK_ASSERT(qs);
|
|
while (!TXQ_RING_EMPTY(qs) && (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
|
|
pi->link_config.link_ok) {
|
|
reclaim_completed_tx(qs, cxgb_tx_reclaim_threshold, TXQ_ETH);
|
|
|
|
if (txq->size - txq->in_use <= TX_MAX_DESC)
|
|
break;
|
|
|
|
if ((m_head = cxgb_dequeue(qs)) == NULL)
|
|
break;
|
|
/*
|
|
* Encapsulation can modify our pointer, and or make it
|
|
* NULL on failure. In that event, we can't requeue.
|
|
*/
|
|
if (t3_encap(qs, &m_head) || m_head == NULL)
|
|
break;
|
|
|
|
m_head = NULL;
|
|
}
|
|
|
|
if (txq->db_pending)
|
|
check_ring_tx_db(pi->adapter, txq, 1);
|
|
|
|
if (!TXQ_RING_EMPTY(qs) && callout_pending(&txq->txq_timer) == 0 &&
|
|
pi->link_config.link_ok)
|
|
callout_reset_on(&txq->txq_timer, 1, cxgb_tx_timeout,
|
|
qs, txq->txq_timer.c_cpu);
|
|
if (m_head != NULL)
|
|
m_freem(m_head);
|
|
}
|
|
|
|
static int
|
|
cxgb_transmit_locked(struct ifnet *ifp, struct sge_qset *qs, struct mbuf *m)
|
|
{
|
|
struct port_info *pi = qs->port;
|
|
struct sge_txq *txq = &qs->txq[TXQ_ETH];
|
|
struct buf_ring *br = txq->txq_mr;
|
|
int error, avail;
|
|
|
|
avail = txq->size - txq->in_use;
|
|
TXQ_LOCK_ASSERT(qs);
|
|
|
|
/*
|
|
* We can only do a direct transmit if the following are true:
|
|
* - we aren't coalescing (ring < 3/4 full)
|
|
* - the link is up -- checked in caller
|
|
* - there are no packets enqueued already
|
|
* - there is space in hardware transmit queue
|
|
*/
|
|
if (check_pkt_coalesce(qs) == 0 &&
|
|
!TXQ_RING_NEEDS_ENQUEUE(qs) && avail > TX_MAX_DESC) {
|
|
if (t3_encap(qs, &m)) {
|
|
if (m != NULL &&
|
|
(error = drbr_enqueue(ifp, br, m)) != 0)
|
|
return (error);
|
|
} else {
|
|
if (txq->db_pending)
|
|
check_ring_tx_db(pi->adapter, txq, 1);
|
|
|
|
/*
|
|
* We've bypassed the buf ring so we need to update
|
|
* the stats directly
|
|
*/
|
|
txq->txq_direct_packets++;
|
|
txq->txq_direct_bytes += m->m_pkthdr.len;
|
|
}
|
|
} else if ((error = drbr_enqueue(ifp, br, m)) != 0)
|
|
return (error);
|
|
|
|
reclaim_completed_tx(qs, cxgb_tx_reclaim_threshold, TXQ_ETH);
|
|
if (!TXQ_RING_EMPTY(qs) && pi->link_config.link_ok &&
|
|
(!check_pkt_coalesce(qs) || (drbr_inuse(ifp, br) >= 7)))
|
|
cxgb_start_locked(qs);
|
|
else if (!TXQ_RING_EMPTY(qs) && !callout_pending(&txq->txq_timer))
|
|
callout_reset_on(&txq->txq_timer, 1, cxgb_tx_timeout,
|
|
qs, txq->txq_timer.c_cpu);
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
cxgb_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct sge_qset *qs;
|
|
struct port_info *pi = ifp->if_softc;
|
|
int error, qidx = pi->first_qset;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0
|
|
||(!pi->link_config.link_ok)) {
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
|
|
if (m->m_flags & M_FLOWID)
|
|
qidx = (m->m_pkthdr.flowid % pi->nqsets) + pi->first_qset;
|
|
|
|
qs = &pi->adapter->sge.qs[qidx];
|
|
|
|
if (TXQ_TRYLOCK(qs)) {
|
|
/* XXX running */
|
|
error = cxgb_transmit_locked(ifp, qs, m);
|
|
TXQ_UNLOCK(qs);
|
|
} else
|
|
error = drbr_enqueue(ifp, qs->txq[TXQ_ETH].txq_mr, m);
|
|
return (error);
|
|
}
|
|
void
|
|
cxgb_start(struct ifnet *ifp)
|
|
{
|
|
struct port_info *pi = ifp->if_softc;
|
|
struct sge_qset *qs = &pi->adapter->sge.qs[pi->first_qset];
|
|
|
|
if (!pi->link_config.link_ok)
|
|
return;
|
|
|
|
TXQ_LOCK(qs);
|
|
cxgb_start_locked(qs);
|
|
TXQ_UNLOCK(qs);
|
|
}
|
|
|
|
void
|
|
cxgb_qflush(struct ifnet *ifp)
|
|
{
|
|
/*
|
|
* flush any enqueued mbufs in the buf_rings
|
|
* and in the transmit queues
|
|
* no-op for now
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* write_imm - write a packet into a Tx descriptor as immediate data
|
|
* @d: the Tx descriptor to write
|
|
* @m: the packet
|
|
* @len: the length of packet data to write as immediate data
|
|
* @gen: the generation bit value to write
|
|
*
|
|
* Writes a packet as immediate data into a Tx descriptor. The packet
|
|
* contains a work request at its beginning. We must write the packet
|
|
* carefully so the SGE doesn't read accidentally before it's written in
|
|
* its entirety.
|
|
*/
|
|
static __inline void
|
|
write_imm(struct tx_desc *d, struct mbuf *m,
|
|
unsigned int len, unsigned int gen)
|
|
{
|
|
struct work_request_hdr *from = mtod(m, struct work_request_hdr *);
|
|
struct work_request_hdr *to = (struct work_request_hdr *)d;
|
|
uint32_t wr_hi, wr_lo;
|
|
|
|
if (len > WR_LEN)
|
|
panic("len too big %d\n", len);
|
|
if (len < sizeof(*from))
|
|
panic("len too small %d", len);
|
|
|
|
memcpy(&to[1], &from[1], len - sizeof(*from));
|
|
wr_hi = from->wrh_hi | htonl(F_WR_SOP | F_WR_EOP |
|
|
V_WR_BCNTLFLT(len & 7));
|
|
wr_lo = from->wrh_lo | htonl(V_WR_GEN(gen) |
|
|
V_WR_LEN((len + 7) / 8));
|
|
set_wr_hdr(to, wr_hi, wr_lo);
|
|
wmb();
|
|
wr_gen2(d, gen);
|
|
|
|
/*
|
|
* This check is a hack we should really fix the logic so
|
|
* that this can't happen
|
|
*/
|
|
if (m->m_type != MT_DONTFREE)
|
|
m_freem(m);
|
|
|
|
}
|
|
|
|
/**
|
|
* check_desc_avail - check descriptor availability on a send queue
|
|
* @adap: the adapter
|
|
* @q: the TX queue
|
|
* @m: the packet needing the descriptors
|
|
* @ndesc: the number of Tx descriptors needed
|
|
* @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
|
|
*
|
|
* Checks if the requested number of Tx descriptors is available on an
|
|
* SGE send queue. If the queue is already suspended or not enough
|
|
* descriptors are available the packet is queued for later transmission.
|
|
* Must be called with the Tx queue locked.
|
|
*
|
|
* Returns 0 if enough descriptors are available, 1 if there aren't
|
|
* enough descriptors and the packet has been queued, and 2 if the caller
|
|
* needs to retry because there weren't enough descriptors at the
|
|
* beginning of the call but some freed up in the mean time.
|
|
*/
|
|
static __inline int
|
|
check_desc_avail(adapter_t *adap, struct sge_txq *q,
|
|
struct mbuf *m, unsigned int ndesc,
|
|
unsigned int qid)
|
|
{
|
|
/*
|
|
* XXX We currently only use this for checking the control queue
|
|
* the control queue is only used for binding qsets which happens
|
|
* at init time so we are guaranteed enough descriptors
|
|
*/
|
|
if (__predict_false(!mbufq_empty(&q->sendq))) {
|
|
addq_exit: mbufq_tail(&q->sendq, m);
|
|
return 1;
|
|
}
|
|
if (__predict_false(q->size - q->in_use < ndesc)) {
|
|
|
|
struct sge_qset *qs = txq_to_qset(q, qid);
|
|
|
|
setbit(&qs->txq_stopped, qid);
|
|
if (should_restart_tx(q) &&
|
|
test_and_clear_bit(qid, &qs->txq_stopped))
|
|
return 2;
|
|
|
|
q->stops++;
|
|
goto addq_exit;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/**
|
|
* reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
|
|
* @q: the SGE control Tx queue
|
|
*
|
|
* This is a variant of reclaim_completed_tx() that is used for Tx queues
|
|
* that send only immediate data (presently just the control queues) and
|
|
* thus do not have any mbufs
|
|
*/
|
|
static __inline void
|
|
reclaim_completed_tx_imm(struct sge_txq *q)
|
|
{
|
|
unsigned int reclaim = q->processed - q->cleaned;
|
|
|
|
q->in_use -= reclaim;
|
|
q->cleaned += reclaim;
|
|
}
|
|
|
|
static __inline int
|
|
immediate(const struct mbuf *m)
|
|
{
|
|
return m->m_len <= WR_LEN && m->m_pkthdr.len <= WR_LEN ;
|
|
}
|
|
|
|
/**
|
|
* ctrl_xmit - send a packet through an SGE control Tx queue
|
|
* @adap: the adapter
|
|
* @q: the control queue
|
|
* @m: the packet
|
|
*
|
|
* Send a packet through an SGE control Tx queue. Packets sent through
|
|
* a control queue must fit entirely as immediate data in a single Tx
|
|
* descriptor and have no page fragments.
|
|
*/
|
|
static int
|
|
ctrl_xmit(adapter_t *adap, struct sge_qset *qs, struct mbuf *m)
|
|
{
|
|
int ret;
|
|
struct work_request_hdr *wrp = mtod(m, struct work_request_hdr *);
|
|
struct sge_txq *q = &qs->txq[TXQ_CTRL];
|
|
|
|
if (__predict_false(!immediate(m))) {
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
|
|
wrp->wrh_hi |= htonl(F_WR_SOP | F_WR_EOP);
|
|
wrp->wrh_lo = htonl(V_WR_TID(q->token));
|
|
|
|
TXQ_LOCK(qs);
|
|
again: reclaim_completed_tx_imm(q);
|
|
|
|
ret = check_desc_avail(adap, q, m, 1, TXQ_CTRL);
|
|
if (__predict_false(ret)) {
|
|
if (ret == 1) {
|
|
TXQ_UNLOCK(qs);
|
|
return (ENOSPC);
|
|
}
|
|
goto again;
|
|
}
|
|
write_imm(&q->desc[q->pidx], m, m->m_len, q->gen);
|
|
|
|
q->in_use++;
|
|
if (++q->pidx >= q->size) {
|
|
q->pidx = 0;
|
|
q->gen ^= 1;
|
|
}
|
|
TXQ_UNLOCK(qs);
|
|
wmb();
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
return (0);
|
|
}
|
|
|
|
|
|
/**
|
|
* restart_ctrlq - restart a suspended control queue
|
|
* @qs: the queue set cotaining the control queue
|
|
*
|
|
* Resumes transmission on a suspended Tx control queue.
|
|
*/
|
|
static void
|
|
restart_ctrlq(void *data, int npending)
|
|
{
|
|
struct mbuf *m;
|
|
struct sge_qset *qs = (struct sge_qset *)data;
|
|
struct sge_txq *q = &qs->txq[TXQ_CTRL];
|
|
adapter_t *adap = qs->port->adapter;
|
|
|
|
TXQ_LOCK(qs);
|
|
again: reclaim_completed_tx_imm(q);
|
|
|
|
while (q->in_use < q->size &&
|
|
(m = mbufq_dequeue(&q->sendq)) != NULL) {
|
|
|
|
write_imm(&q->desc[q->pidx], m, m->m_len, q->gen);
|
|
|
|
if (++q->pidx >= q->size) {
|
|
q->pidx = 0;
|
|
q->gen ^= 1;
|
|
}
|
|
q->in_use++;
|
|
}
|
|
if (!mbufq_empty(&q->sendq)) {
|
|
setbit(&qs->txq_stopped, TXQ_CTRL);
|
|
|
|
if (should_restart_tx(q) &&
|
|
test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
|
|
goto again;
|
|
q->stops++;
|
|
}
|
|
TXQ_UNLOCK(qs);
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
|
|
|
|
/*
|
|
* Send a management message through control queue 0
|
|
*/
|
|
int
|
|
t3_mgmt_tx(struct adapter *adap, struct mbuf *m)
|
|
{
|
|
return ctrl_xmit(adap, &adap->sge.qs[0], m);
|
|
}
|
|
|
|
/**
|
|
* free_qset - free the resources of an SGE queue set
|
|
* @sc: the controller owning the queue set
|
|
* @q: the queue set
|
|
*
|
|
* Release the HW and SW resources associated with an SGE queue set, such
|
|
* as HW contexts, packet buffers, and descriptor rings. Traffic to the
|
|
* queue set must be quiesced prior to calling this.
|
|
*/
|
|
static void
|
|
t3_free_qset(adapter_t *sc, struct sge_qset *q)
|
|
{
|
|
int i;
|
|
|
|
reclaim_completed_tx(q, 0, TXQ_ETH);
|
|
if (q->txq[TXQ_ETH].txq_mr != NULL)
|
|
buf_ring_free(q->txq[TXQ_ETH].txq_mr, M_DEVBUF);
|
|
if (q->txq[TXQ_ETH].txq_ifq != NULL) {
|
|
ifq_delete(q->txq[TXQ_ETH].txq_ifq);
|
|
free(q->txq[TXQ_ETH].txq_ifq, M_DEVBUF);
|
|
}
|
|
|
|
for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
|
|
if (q->fl[i].desc) {
|
|
mtx_lock_spin(&sc->sge.reg_lock);
|
|
t3_sge_disable_fl(sc, q->fl[i].cntxt_id);
|
|
mtx_unlock_spin(&sc->sge.reg_lock);
|
|
bus_dmamap_unload(q->fl[i].desc_tag, q->fl[i].desc_map);
|
|
bus_dmamem_free(q->fl[i].desc_tag, q->fl[i].desc,
|
|
q->fl[i].desc_map);
|
|
bus_dma_tag_destroy(q->fl[i].desc_tag);
|
|
bus_dma_tag_destroy(q->fl[i].entry_tag);
|
|
}
|
|
if (q->fl[i].sdesc) {
|
|
free_rx_bufs(sc, &q->fl[i]);
|
|
free(q->fl[i].sdesc, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
mtx_unlock(&q->lock);
|
|
MTX_DESTROY(&q->lock);
|
|
for (i = 0; i < SGE_TXQ_PER_SET; i++) {
|
|
if (q->txq[i].desc) {
|
|
mtx_lock_spin(&sc->sge.reg_lock);
|
|
t3_sge_enable_ecntxt(sc, q->txq[i].cntxt_id, 0);
|
|
mtx_unlock_spin(&sc->sge.reg_lock);
|
|
bus_dmamap_unload(q->txq[i].desc_tag,
|
|
q->txq[i].desc_map);
|
|
bus_dmamem_free(q->txq[i].desc_tag, q->txq[i].desc,
|
|
q->txq[i].desc_map);
|
|
bus_dma_tag_destroy(q->txq[i].desc_tag);
|
|
bus_dma_tag_destroy(q->txq[i].entry_tag);
|
|
}
|
|
if (q->txq[i].sdesc) {
|
|
free(q->txq[i].sdesc, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
if (q->rspq.desc) {
|
|
mtx_lock_spin(&sc->sge.reg_lock);
|
|
t3_sge_disable_rspcntxt(sc, q->rspq.cntxt_id);
|
|
mtx_unlock_spin(&sc->sge.reg_lock);
|
|
|
|
bus_dmamap_unload(q->rspq.desc_tag, q->rspq.desc_map);
|
|
bus_dmamem_free(q->rspq.desc_tag, q->rspq.desc,
|
|
q->rspq.desc_map);
|
|
bus_dma_tag_destroy(q->rspq.desc_tag);
|
|
MTX_DESTROY(&q->rspq.lock);
|
|
}
|
|
|
|
#ifdef INET
|
|
tcp_lro_free(&q->lro.ctrl);
|
|
#endif
|
|
|
|
bzero(q, sizeof(*q));
|
|
}
|
|
|
|
/**
|
|
* t3_free_sge_resources - free SGE resources
|
|
* @sc: the adapter softc
|
|
*
|
|
* Frees resources used by the SGE queue sets.
|
|
*/
|
|
void
|
|
t3_free_sge_resources(adapter_t *sc)
|
|
{
|
|
int i, nqsets;
|
|
|
|
for (nqsets = i = 0; i < (sc)->params.nports; i++)
|
|
nqsets += sc->port[i].nqsets;
|
|
|
|
for (i = 0; i < nqsets; ++i) {
|
|
TXQ_LOCK(&sc->sge.qs[i]);
|
|
t3_free_qset(sc, &sc->sge.qs[i]);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* t3_sge_start - enable SGE
|
|
* @sc: the controller softc
|
|
*
|
|
* Enables the SGE for DMAs. This is the last step in starting packet
|
|
* transfers.
|
|
*/
|
|
void
|
|
t3_sge_start(adapter_t *sc)
|
|
{
|
|
t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
|
|
}
|
|
|
|
/**
|
|
* t3_sge_stop - disable SGE operation
|
|
* @sc: the adapter
|
|
*
|
|
* Disables the DMA engine. This can be called in emeregencies (e.g.,
|
|
* from error interrupts) or from normal process context. In the latter
|
|
* case it also disables any pending queue restart tasklets. Note that
|
|
* if it is called in interrupt context it cannot disable the restart
|
|
* tasklets as it cannot wait, however the tasklets will have no effect
|
|
* since the doorbells are disabled and the driver will call this again
|
|
* later from process context, at which time the tasklets will be stopped
|
|
* if they are still running.
|
|
*/
|
|
void
|
|
t3_sge_stop(adapter_t *sc)
|
|
{
|
|
int i, nqsets;
|
|
|
|
t3_set_reg_field(sc, A_SG_CONTROL, F_GLOBALENABLE, 0);
|
|
|
|
if (sc->tq == NULL)
|
|
return;
|
|
|
|
for (nqsets = i = 0; i < (sc)->params.nports; i++)
|
|
nqsets += sc->port[i].nqsets;
|
|
#ifdef notyet
|
|
/*
|
|
*
|
|
* XXX
|
|
*/
|
|
for (i = 0; i < nqsets; ++i) {
|
|
struct sge_qset *qs = &sc->sge.qs[i];
|
|
|
|
taskqueue_drain(sc->tq, &qs->txq[TXQ_OFLD].qresume_task);
|
|
taskqueue_drain(sc->tq, &qs->txq[TXQ_CTRL].qresume_task);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* t3_free_tx_desc - reclaims Tx descriptors and their buffers
|
|
* @adapter: the adapter
|
|
* @q: the Tx queue to reclaim descriptors from
|
|
* @reclaimable: the number of descriptors to reclaim
|
|
* @m_vec_size: maximum number of buffers to reclaim
|
|
* @desc_reclaimed: returns the number of descriptors reclaimed
|
|
*
|
|
* Reclaims Tx descriptors from an SGE Tx queue and frees the associated
|
|
* Tx buffers. Called with the Tx queue lock held.
|
|
*
|
|
* Returns number of buffers of reclaimed
|
|
*/
|
|
void
|
|
t3_free_tx_desc(struct sge_qset *qs, int reclaimable, int queue)
|
|
{
|
|
struct tx_sw_desc *txsd;
|
|
unsigned int cidx, mask;
|
|
struct sge_txq *q = &qs->txq[queue];
|
|
|
|
#ifdef T3_TRACE
|
|
T3_TRACE2(sc->tb[q->cntxt_id & 7],
|
|
"reclaiming %u Tx descriptors at cidx %u", reclaimable, cidx);
|
|
#endif
|
|
cidx = q->cidx;
|
|
mask = q->size - 1;
|
|
txsd = &q->sdesc[cidx];
|
|
|
|
mtx_assert(&qs->lock, MA_OWNED);
|
|
while (reclaimable--) {
|
|
prefetch(q->sdesc[(cidx + 1) & mask].m);
|
|
prefetch(q->sdesc[(cidx + 2) & mask].m);
|
|
|
|
if (txsd->m != NULL) {
|
|
if (txsd->flags & TX_SW_DESC_MAPPED) {
|
|
bus_dmamap_unload(q->entry_tag, txsd->map);
|
|
txsd->flags &= ~TX_SW_DESC_MAPPED;
|
|
}
|
|
m_freem_list(txsd->m);
|
|
txsd->m = NULL;
|
|
} else
|
|
q->txq_skipped++;
|
|
|
|
++txsd;
|
|
if (++cidx == q->size) {
|
|
cidx = 0;
|
|
txsd = q->sdesc;
|
|
}
|
|
}
|
|
q->cidx = cidx;
|
|
|
|
}
|
|
|
|
/**
|
|
* is_new_response - check if a response is newly written
|
|
* @r: the response descriptor
|
|
* @q: the response queue
|
|
*
|
|
* Returns true if a response descriptor contains a yet unprocessed
|
|
* response.
|
|
*/
|
|
static __inline int
|
|
is_new_response(const struct rsp_desc *r,
|
|
const struct sge_rspq *q)
|
|
{
|
|
return (r->intr_gen & F_RSPD_GEN2) == q->gen;
|
|
}
|
|
|
|
#define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
|
|
#define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
|
|
V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
|
|
V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
|
|
V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
|
|
|
|
/* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
|
|
#define NOMEM_INTR_DELAY 2500
|
|
|
|
/**
|
|
* write_ofld_wr - write an offload work request
|
|
* @adap: the adapter
|
|
* @m: the packet to send
|
|
* @q: the Tx queue
|
|
* @pidx: index of the first Tx descriptor to write
|
|
* @gen: the generation value to use
|
|
* @ndesc: number of descriptors the packet will occupy
|
|
*
|
|
* Write an offload work request to send the supplied packet. The packet
|
|
* data already carry the work request with most fields populated.
|
|
*/
|
|
static void
|
|
write_ofld_wr(adapter_t *adap, struct mbuf *m,
|
|
struct sge_txq *q, unsigned int pidx,
|
|
unsigned int gen, unsigned int ndesc,
|
|
bus_dma_segment_t *segs, unsigned int nsegs)
|
|
{
|
|
unsigned int sgl_flits, flits;
|
|
struct work_request_hdr *from;
|
|
struct sg_ent *sgp, sgl[TX_MAX_SEGS / 2 + 1];
|
|
struct tx_desc *d = &q->desc[pidx];
|
|
struct txq_state txqs;
|
|
|
|
if (immediate(m) && nsegs == 0) {
|
|
write_imm(d, m, m->m_len, gen);
|
|
return;
|
|
}
|
|
|
|
/* Only TX_DATA builds SGLs */
|
|
from = mtod(m, struct work_request_hdr *);
|
|
memcpy(&d->flit[1], &from[1], m->m_len - sizeof(*from));
|
|
|
|
flits = m->m_len / 8;
|
|
sgp = (ndesc == 1) ? (struct sg_ent *)&d->flit[flits] : sgl;
|
|
|
|
make_sgl(sgp, segs, nsegs);
|
|
sgl_flits = sgl_len(nsegs);
|
|
|
|
txqs.gen = gen;
|
|
txqs.pidx = pidx;
|
|
txqs.compl = 0;
|
|
|
|
write_wr_hdr_sgl(ndesc, d, &txqs, q, sgl, flits, sgl_flits,
|
|
from->wrh_hi, from->wrh_lo);
|
|
}
|
|
|
|
/**
|
|
* calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
|
|
* @m: the packet
|
|
*
|
|
* Returns the number of Tx descriptors needed for the given offload
|
|
* packet. These packets are already fully constructed.
|
|
*/
|
|
static __inline unsigned int
|
|
calc_tx_descs_ofld(struct mbuf *m, unsigned int nsegs)
|
|
{
|
|
unsigned int flits, cnt = 0;
|
|
int ndescs;
|
|
|
|
if (m->m_len <= WR_LEN && nsegs == 0)
|
|
return (1); /* packet fits as immediate data */
|
|
|
|
/*
|
|
* This needs to be re-visited for TOE
|
|
*/
|
|
|
|
cnt = nsegs;
|
|
|
|
/* headers */
|
|
flits = m->m_len / 8;
|
|
|
|
ndescs = flits_to_desc(flits + sgl_len(cnt));
|
|
|
|
return (ndescs);
|
|
}
|
|
|
|
/**
|
|
* ofld_xmit - send a packet through an offload queue
|
|
* @adap: the adapter
|
|
* @q: the Tx offload queue
|
|
* @m: the packet
|
|
*
|
|
* Send an offload packet through an SGE offload queue.
|
|
*/
|
|
static int
|
|
ofld_xmit(adapter_t *adap, struct sge_qset *qs, struct mbuf *m)
|
|
{
|
|
int ret, nsegs;
|
|
unsigned int ndesc;
|
|
unsigned int pidx, gen;
|
|
struct sge_txq *q = &qs->txq[TXQ_OFLD];
|
|
bus_dma_segment_t segs[TX_MAX_SEGS], *vsegs;
|
|
struct tx_sw_desc *stx;
|
|
|
|
nsegs = m_get_sgllen(m);
|
|
vsegs = m_get_sgl(m);
|
|
ndesc = calc_tx_descs_ofld(m, nsegs);
|
|
busdma_map_sgl(vsegs, segs, nsegs);
|
|
|
|
stx = &q->sdesc[q->pidx];
|
|
|
|
TXQ_LOCK(qs);
|
|
again: reclaim_completed_tx(qs, 16, TXQ_OFLD);
|
|
ret = check_desc_avail(adap, q, m, ndesc, TXQ_OFLD);
|
|
if (__predict_false(ret)) {
|
|
if (ret == 1) {
|
|
printf("no ofld desc avail\n");
|
|
|
|
m_set_priority(m, ndesc); /* save for restart */
|
|
TXQ_UNLOCK(qs);
|
|
return (EINTR);
|
|
}
|
|
goto again;
|
|
}
|
|
|
|
gen = q->gen;
|
|
q->in_use += ndesc;
|
|
pidx = q->pidx;
|
|
q->pidx += ndesc;
|
|
if (q->pidx >= q->size) {
|
|
q->pidx -= q->size;
|
|
q->gen ^= 1;
|
|
}
|
|
#ifdef T3_TRACE
|
|
T3_TRACE5(adap->tb[q->cntxt_id & 7],
|
|
"ofld_xmit: ndesc %u, pidx %u, len %u, main %u, frags %u",
|
|
ndesc, pidx, skb->len, skb->len - skb->data_len,
|
|
skb_shinfo(skb)->nr_frags);
|
|
#endif
|
|
TXQ_UNLOCK(qs);
|
|
|
|
write_ofld_wr(adap, m, q, pidx, gen, ndesc, segs, nsegs);
|
|
check_ring_tx_db(adap, q, 1);
|
|
return (0);
|
|
}
|
|
|
|
/**
|
|
* restart_offloadq - restart a suspended offload queue
|
|
* @qs: the queue set cotaining the offload queue
|
|
*
|
|
* Resumes transmission on a suspended Tx offload queue.
|
|
*/
|
|
static void
|
|
restart_offloadq(void *data, int npending)
|
|
{
|
|
struct mbuf *m;
|
|
struct sge_qset *qs = data;
|
|
struct sge_txq *q = &qs->txq[TXQ_OFLD];
|
|
adapter_t *adap = qs->port->adapter;
|
|
bus_dma_segment_t segs[TX_MAX_SEGS];
|
|
struct tx_sw_desc *stx = &q->sdesc[q->pidx];
|
|
int nsegs, cleaned;
|
|
|
|
TXQ_LOCK(qs);
|
|
again: cleaned = reclaim_completed_tx(qs, 16, TXQ_OFLD);
|
|
|
|
while ((m = mbufq_peek(&q->sendq)) != NULL) {
|
|
unsigned int gen, pidx;
|
|
unsigned int ndesc = m_get_priority(m);
|
|
|
|
if (__predict_false(q->size - q->in_use < ndesc)) {
|
|
setbit(&qs->txq_stopped, TXQ_OFLD);
|
|
if (should_restart_tx(q) &&
|
|
test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
|
|
goto again;
|
|
q->stops++;
|
|
break;
|
|
}
|
|
|
|
gen = q->gen;
|
|
q->in_use += ndesc;
|
|
pidx = q->pidx;
|
|
q->pidx += ndesc;
|
|
if (q->pidx >= q->size) {
|
|
q->pidx -= q->size;
|
|
q->gen ^= 1;
|
|
}
|
|
|
|
(void)mbufq_dequeue(&q->sendq);
|
|
busdma_map_mbufs(&m, q, stx, segs, &nsegs);
|
|
TXQ_UNLOCK(qs);
|
|
write_ofld_wr(adap, m, q, pidx, gen, ndesc, segs, nsegs);
|
|
TXQ_LOCK(qs);
|
|
}
|
|
#if USE_GTS
|
|
set_bit(TXQ_RUNNING, &q->flags);
|
|
set_bit(TXQ_LAST_PKT_DB, &q->flags);
|
|
#endif
|
|
TXQ_UNLOCK(qs);
|
|
wmb();
|
|
t3_write_reg(adap, A_SG_KDOORBELL,
|
|
F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
|
|
}
|
|
|
|
/**
|
|
* queue_set - return the queue set a packet should use
|
|
* @m: the packet
|
|
*
|
|
* Maps a packet to the SGE queue set it should use. The desired queue
|
|
* set is carried in bits 1-3 in the packet's priority.
|
|
*/
|
|
static __inline int
|
|
queue_set(const struct mbuf *m)
|
|
{
|
|
return m_get_priority(m) >> 1;
|
|
}
|
|
|
|
/**
|
|
* is_ctrl_pkt - return whether an offload packet is a control packet
|
|
* @m: the packet
|
|
*
|
|
* Determines whether an offload packet should use an OFLD or a CTRL
|
|
* Tx queue. This is indicated by bit 0 in the packet's priority.
|
|
*/
|
|
static __inline int
|
|
is_ctrl_pkt(const struct mbuf *m)
|
|
{
|
|
return m_get_priority(m) & 1;
|
|
}
|
|
|
|
/**
|
|
* t3_offload_tx - send an offload packet
|
|
* @tdev: the offload device to send to
|
|
* @m: the packet
|
|
*
|
|
* Sends an offload packet. We use the packet priority to select the
|
|
* appropriate Tx queue as follows: bit 0 indicates whether the packet
|
|
* should be sent as regular or control, bits 1-3 select the queue set.
|
|
*/
|
|
int
|
|
t3_offload_tx(struct t3cdev *tdev, struct mbuf *m)
|
|
{
|
|
adapter_t *adap = tdev2adap(tdev);
|
|
struct sge_qset *qs = &adap->sge.qs[queue_set(m)];
|
|
|
|
if (__predict_false(is_ctrl_pkt(m)))
|
|
return ctrl_xmit(adap, qs, m);
|
|
|
|
return ofld_xmit(adap, qs, m);
|
|
}
|
|
|
|
/**
|
|
* deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
|
|
* @tdev: the offload device that will be receiving the packets
|
|
* @q: the SGE response queue that assembled the bundle
|
|
* @m: the partial bundle
|
|
* @n: the number of packets in the bundle
|
|
*
|
|
* Delivers a (partial) bundle of Rx offload packets to an offload device.
|
|
*/
|
|
static __inline void
|
|
deliver_partial_bundle(struct t3cdev *tdev,
|
|
struct sge_rspq *q,
|
|
struct mbuf *mbufs[], int n)
|
|
{
|
|
if (n) {
|
|
q->offload_bundles++;
|
|
cxgb_ofld_recv(tdev, mbufs, n);
|
|
}
|
|
}
|
|
|
|
static __inline int
|
|
rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
|
|
struct mbuf *m, struct mbuf *rx_gather[],
|
|
unsigned int gather_idx)
|
|
{
|
|
|
|
rq->offload_pkts++;
|
|
m->m_pkthdr.header = mtod(m, void *);
|
|
rx_gather[gather_idx++] = m;
|
|
if (gather_idx == RX_BUNDLE_SIZE) {
|
|
cxgb_ofld_recv(tdev, rx_gather, RX_BUNDLE_SIZE);
|
|
gather_idx = 0;
|
|
rq->offload_bundles++;
|
|
}
|
|
return (gather_idx);
|
|
}
|
|
|
|
static void
|
|
restart_tx(struct sge_qset *qs)
|
|
{
|
|
struct adapter *sc = qs->port->adapter;
|
|
|
|
|
|
if (isset(&qs->txq_stopped, TXQ_OFLD) &&
|
|
should_restart_tx(&qs->txq[TXQ_OFLD]) &&
|
|
test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
|
|
qs->txq[TXQ_OFLD].restarts++;
|
|
DPRINTF("restarting TXQ_OFLD\n");
|
|
taskqueue_enqueue(sc->tq, &qs->txq[TXQ_OFLD].qresume_task);
|
|
}
|
|
DPRINTF("stopped=0x%x restart=%d processed=%d cleaned=%d in_use=%d\n",
|
|
qs->txq_stopped, should_restart_tx(&qs->txq[TXQ_CTRL]),
|
|
qs->txq[TXQ_CTRL].processed, qs->txq[TXQ_CTRL].cleaned,
|
|
qs->txq[TXQ_CTRL].in_use);
|
|
|
|
if (isset(&qs->txq_stopped, TXQ_CTRL) &&
|
|
should_restart_tx(&qs->txq[TXQ_CTRL]) &&
|
|
test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
|
|
qs->txq[TXQ_CTRL].restarts++;
|
|
DPRINTF("restarting TXQ_CTRL\n");
|
|
taskqueue_enqueue(sc->tq, &qs->txq[TXQ_CTRL].qresume_task);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_sge_alloc_qset - initialize an SGE queue set
|
|
* @sc: the controller softc
|
|
* @id: the queue set id
|
|
* @nports: how many Ethernet ports will be using this queue set
|
|
* @irq_vec_idx: the IRQ vector index for response queue interrupts
|
|
* @p: configuration parameters for this queue set
|
|
* @ntxq: number of Tx queues for the queue set
|
|
* @pi: port info for queue set
|
|
*
|
|
* Allocate resources and initialize an SGE queue set. A queue set
|
|
* comprises a response queue, two Rx free-buffer queues, and up to 3
|
|
* Tx queues. The Tx queues are assigned roles in the order Ethernet
|
|
* queue, offload queue, and control queue.
|
|
*/
|
|
int
|
|
t3_sge_alloc_qset(adapter_t *sc, u_int id, int nports, int irq_vec_idx,
|
|
const struct qset_params *p, int ntxq, struct port_info *pi)
|
|
{
|
|
struct sge_qset *q = &sc->sge.qs[id];
|
|
int i, ret = 0;
|
|
|
|
MTX_INIT(&q->lock, q->namebuf, NULL, MTX_DEF);
|
|
q->port = pi;
|
|
|
|
if ((q->txq[TXQ_ETH].txq_mr = buf_ring_alloc(cxgb_txq_buf_ring_size,
|
|
M_DEVBUF, M_WAITOK, &q->lock)) == NULL) {
|
|
device_printf(sc->dev, "failed to allocate mbuf ring\n");
|
|
goto err;
|
|
}
|
|
if ((q->txq[TXQ_ETH].txq_ifq = malloc(sizeof(struct ifaltq), M_DEVBUF,
|
|
M_NOWAIT | M_ZERO)) == NULL) {
|
|
device_printf(sc->dev, "failed to allocate ifq\n");
|
|
goto err;
|
|
}
|
|
ifq_init(q->txq[TXQ_ETH].txq_ifq, pi->ifp);
|
|
callout_init(&q->txq[TXQ_ETH].txq_timer, 1);
|
|
callout_init(&q->txq[TXQ_ETH].txq_watchdog, 1);
|
|
q->txq[TXQ_ETH].txq_timer.c_cpu = id % mp_ncpus;
|
|
q->txq[TXQ_ETH].txq_watchdog.c_cpu = id % mp_ncpus;
|
|
|
|
init_qset_cntxt(q, id);
|
|
q->idx = id;
|
|
if ((ret = alloc_ring(sc, p->fl_size, sizeof(struct rx_desc),
|
|
sizeof(struct rx_sw_desc), &q->fl[0].phys_addr,
|
|
&q->fl[0].desc, &q->fl[0].sdesc,
|
|
&q->fl[0].desc_tag, &q->fl[0].desc_map,
|
|
sc->rx_dmat, &q->fl[0].entry_tag)) != 0) {
|
|
printf("error %d from alloc ring fl0\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
if ((ret = alloc_ring(sc, p->jumbo_size, sizeof(struct rx_desc),
|
|
sizeof(struct rx_sw_desc), &q->fl[1].phys_addr,
|
|
&q->fl[1].desc, &q->fl[1].sdesc,
|
|
&q->fl[1].desc_tag, &q->fl[1].desc_map,
|
|
sc->rx_jumbo_dmat, &q->fl[1].entry_tag)) != 0) {
|
|
printf("error %d from alloc ring fl1\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
if ((ret = alloc_ring(sc, p->rspq_size, sizeof(struct rsp_desc), 0,
|
|
&q->rspq.phys_addr, &q->rspq.desc, NULL,
|
|
&q->rspq.desc_tag, &q->rspq.desc_map,
|
|
NULL, NULL)) != 0) {
|
|
printf("error %d from alloc ring rspq\n", ret);
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < ntxq; ++i) {
|
|
size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
|
|
|
|
if ((ret = alloc_ring(sc, p->txq_size[i],
|
|
sizeof(struct tx_desc), sz,
|
|
&q->txq[i].phys_addr, &q->txq[i].desc,
|
|
&q->txq[i].sdesc, &q->txq[i].desc_tag,
|
|
&q->txq[i].desc_map,
|
|
sc->tx_dmat, &q->txq[i].entry_tag)) != 0) {
|
|
printf("error %d from alloc ring tx %i\n", ret, i);
|
|
goto err;
|
|
}
|
|
mbufq_init(&q->txq[i].sendq);
|
|
q->txq[i].gen = 1;
|
|
q->txq[i].size = p->txq_size[i];
|
|
}
|
|
|
|
TASK_INIT(&q->txq[TXQ_OFLD].qresume_task, 0, restart_offloadq, q);
|
|
TASK_INIT(&q->txq[TXQ_CTRL].qresume_task, 0, restart_ctrlq, q);
|
|
TASK_INIT(&q->txq[TXQ_ETH].qreclaim_task, 0, sge_txq_reclaim_handler, q);
|
|
TASK_INIT(&q->txq[TXQ_OFLD].qreclaim_task, 0, sge_txq_reclaim_handler, q);
|
|
|
|
q->fl[0].gen = q->fl[1].gen = 1;
|
|
q->fl[0].size = p->fl_size;
|
|
q->fl[1].size = p->jumbo_size;
|
|
|
|
q->rspq.gen = 1;
|
|
q->rspq.cidx = 0;
|
|
q->rspq.size = p->rspq_size;
|
|
|
|
q->txq[TXQ_ETH].stop_thres = nports *
|
|
flits_to_desc(sgl_len(TX_MAX_SEGS + 1) + 3);
|
|
|
|
q->fl[0].buf_size = MCLBYTES;
|
|
q->fl[0].zone = zone_pack;
|
|
q->fl[0].type = EXT_PACKET;
|
|
|
|
if (p->jumbo_buf_size == MJUM16BYTES) {
|
|
q->fl[1].zone = zone_jumbo16;
|
|
q->fl[1].type = EXT_JUMBO16;
|
|
} else if (p->jumbo_buf_size == MJUM9BYTES) {
|
|
q->fl[1].zone = zone_jumbo9;
|
|
q->fl[1].type = EXT_JUMBO9;
|
|
} else if (p->jumbo_buf_size == MJUMPAGESIZE) {
|
|
q->fl[1].zone = zone_jumbop;
|
|
q->fl[1].type = EXT_JUMBOP;
|
|
} else {
|
|
KASSERT(0, ("can't deal with jumbo_buf_size %d.", p->jumbo_buf_size));
|
|
ret = EDOOFUS;
|
|
goto err;
|
|
}
|
|
q->fl[1].buf_size = p->jumbo_buf_size;
|
|
|
|
/* Allocate and setup the lro_ctrl structure */
|
|
q->lro.enabled = !!(pi->ifp->if_capenable & IFCAP_LRO);
|
|
#ifdef INET
|
|
ret = tcp_lro_init(&q->lro.ctrl);
|
|
if (ret) {
|
|
printf("error %d from tcp_lro_init\n", ret);
|
|
goto err;
|
|
}
|
|
#endif
|
|
q->lro.ctrl.ifp = pi->ifp;
|
|
|
|
mtx_lock_spin(&sc->sge.reg_lock);
|
|
ret = -t3_sge_init_rspcntxt(sc, q->rspq.cntxt_id, irq_vec_idx,
|
|
q->rspq.phys_addr, q->rspq.size,
|
|
q->fl[0].buf_size, 1, 0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_rspcntxt\n", ret);
|
|
goto err_unlock;
|
|
}
|
|
|
|
for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
|
|
ret = -t3_sge_init_flcntxt(sc, q->fl[i].cntxt_id, 0,
|
|
q->fl[i].phys_addr, q->fl[i].size,
|
|
q->fl[i].buf_size, p->cong_thres, 1,
|
|
0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_flcntxt for index i=%d\n", ret, i);
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
|
|
SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
|
|
q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
|
|
1, 0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_ecntxt\n", ret);
|
|
goto err_unlock;
|
|
}
|
|
|
|
if (ntxq > 1) {
|
|
ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_OFLD].cntxt_id,
|
|
USE_GTS, SGE_CNTXT_OFLD, id,
|
|
q->txq[TXQ_OFLD].phys_addr,
|
|
q->txq[TXQ_OFLD].size, 0, 1, 0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_ecntxt\n", ret);
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
if (ntxq > 2) {
|
|
ret = -t3_sge_init_ecntxt(sc, q->txq[TXQ_CTRL].cntxt_id, 0,
|
|
SGE_CNTXT_CTRL, id,
|
|
q->txq[TXQ_CTRL].phys_addr,
|
|
q->txq[TXQ_CTRL].size,
|
|
q->txq[TXQ_CTRL].token, 1, 0);
|
|
if (ret) {
|
|
printf("error %d from t3_sge_init_ecntxt\n", ret);
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
snprintf(q->rspq.lockbuf, RSPQ_NAME_LEN, "t3 rspq lock %d:%d",
|
|
device_get_unit(sc->dev), irq_vec_idx);
|
|
MTX_INIT(&q->rspq.lock, q->rspq.lockbuf, NULL, MTX_DEF);
|
|
|
|
mtx_unlock_spin(&sc->sge.reg_lock);
|
|
t3_update_qset_coalesce(q, p);
|
|
q->port = pi;
|
|
|
|
refill_fl(sc, &q->fl[0], q->fl[0].size);
|
|
refill_fl(sc, &q->fl[1], q->fl[1].size);
|
|
refill_rspq(sc, &q->rspq, q->rspq.size - 1);
|
|
|
|
t3_write_reg(sc, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
|
|
V_NEWTIMER(q->rspq.holdoff_tmr));
|
|
|
|
return (0);
|
|
|
|
err_unlock:
|
|
mtx_unlock_spin(&sc->sge.reg_lock);
|
|
err:
|
|
TXQ_LOCK(q);
|
|
t3_free_qset(sc, q);
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/*
|
|
* Remove CPL_RX_PKT headers from the mbuf and reduce it to a regular mbuf with
|
|
* ethernet data. Hardware assistance with various checksums and any vlan tag
|
|
* will also be taken into account here.
|
|
*/
|
|
void
|
|
t3_rx_eth(struct adapter *adap, struct sge_rspq *rq, struct mbuf *m, int ethpad)
|
|
{
|
|
struct cpl_rx_pkt *cpl = (struct cpl_rx_pkt *)(mtod(m, uint8_t *) + ethpad);
|
|
struct port_info *pi = &adap->port[adap->rxpkt_map[cpl->iff]];
|
|
struct ifnet *ifp = pi->ifp;
|
|
|
|
DPRINTF("rx_eth m=%p m->m_data=%p p->iff=%d\n", m, mtod(m, uint8_t *), cpl->iff);
|
|
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) && !cpl->fragment &&
|
|
cpl->csum_valid && cpl->csum == 0xffff) {
|
|
m->m_pkthdr.csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID);
|
|
rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
|
|
m->m_pkthdr.csum_flags = (CSUM_IP_CHECKED|CSUM_IP_VALID|CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
|
|
if (cpl->vlan_valid) {
|
|
m->m_pkthdr.ether_vtag = ntohs(cpl->vlan);
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.header = mtod(m, uint8_t *) + sizeof(*cpl) + ethpad;
|
|
/*
|
|
* adjust after conversion to mbuf chain
|
|
*/
|
|
m->m_pkthdr.len -= (sizeof(*cpl) + ethpad);
|
|
m->m_len -= (sizeof(*cpl) + ethpad);
|
|
m->m_data += (sizeof(*cpl) + ethpad);
|
|
}
|
|
|
|
/**
|
|
* get_packet - return the next ingress packet buffer from a free list
|
|
* @adap: the adapter that received the packet
|
|
* @drop_thres: # of remaining buffers before we start dropping packets
|
|
* @qs: the qset that the SGE free list holding the packet belongs to
|
|
* @mh: the mbuf header, contains a pointer to the head and tail of the mbuf chain
|
|
* @r: response descriptor
|
|
*
|
|
* Get the next packet from a free list and complete setup of the
|
|
* sk_buff. If the packet is small we make a copy and recycle the
|
|
* original buffer, otherwise we use the original buffer itself. If a
|
|
* positive drop threshold is supplied packets are dropped and their
|
|
* buffers recycled if (a) the number of remaining buffers is under the
|
|
* threshold and the packet is too big to copy, or (b) the packet should
|
|
* be copied but there is no memory for the copy.
|
|
*/
|
|
static int
|
|
get_packet(adapter_t *adap, unsigned int drop_thres, struct sge_qset *qs,
|
|
struct t3_mbuf_hdr *mh, struct rsp_desc *r)
|
|
{
|
|
|
|
unsigned int len_cq = ntohl(r->len_cq);
|
|
struct sge_fl *fl = (len_cq & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
|
|
int mask, cidx = fl->cidx;
|
|
struct rx_sw_desc *sd = &fl->sdesc[cidx];
|
|
uint32_t len = G_RSPD_LEN(len_cq);
|
|
uint32_t flags = M_EXT;
|
|
uint8_t sopeop = G_RSPD_SOP_EOP(ntohl(r->flags));
|
|
caddr_t cl;
|
|
struct mbuf *m;
|
|
int ret = 0;
|
|
|
|
mask = fl->size - 1;
|
|
prefetch(fl->sdesc[(cidx + 1) & mask].m);
|
|
prefetch(fl->sdesc[(cidx + 2) & mask].m);
|
|
prefetch(fl->sdesc[(cidx + 1) & mask].rxsd_cl);
|
|
prefetch(fl->sdesc[(cidx + 2) & mask].rxsd_cl);
|
|
|
|
fl->credits--;
|
|
bus_dmamap_sync(fl->entry_tag, sd->map, BUS_DMASYNC_POSTREAD);
|
|
|
|
if (recycle_enable && len <= SGE_RX_COPY_THRES &&
|
|
sopeop == RSPQ_SOP_EOP) {
|
|
if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
|
|
goto skip_recycle;
|
|
cl = mtod(m, void *);
|
|
memcpy(cl, sd->rxsd_cl, len);
|
|
recycle_rx_buf(adap, fl, fl->cidx);
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
m->m_flags = 0;
|
|
mh->mh_head = mh->mh_tail = m;
|
|
ret = 1;
|
|
goto done;
|
|
} else {
|
|
skip_recycle:
|
|
bus_dmamap_unload(fl->entry_tag, sd->map);
|
|
cl = sd->rxsd_cl;
|
|
m = sd->m;
|
|
|
|
if ((sopeop == RSPQ_SOP_EOP) ||
|
|
(sopeop == RSPQ_SOP))
|
|
flags |= M_PKTHDR;
|
|
m_init(m, fl->zone, fl->buf_size, M_NOWAIT, MT_DATA, flags);
|
|
if (fl->zone == zone_pack) {
|
|
/*
|
|
* restore clobbered data pointer
|
|
*/
|
|
m->m_data = m->m_ext.ext_buf;
|
|
} else {
|
|
m_cljset(m, cl, fl->type);
|
|
}
|
|
m->m_len = len;
|
|
}
|
|
switch(sopeop) {
|
|
case RSPQ_SOP_EOP:
|
|
ret = 1;
|
|
/* FALLTHROUGH */
|
|
case RSPQ_SOP:
|
|
mh->mh_head = mh->mh_tail = m;
|
|
m->m_pkthdr.len = len;
|
|
break;
|
|
case RSPQ_EOP:
|
|
ret = 1;
|
|
/* FALLTHROUGH */
|
|
case RSPQ_NSOP_NEOP:
|
|
if (mh->mh_tail == NULL) {
|
|
log(LOG_ERR, "discarding intermediate descriptor entry\n");
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
mh->mh_tail->m_next = m;
|
|
mh->mh_tail = m;
|
|
mh->mh_head->m_pkthdr.len += len;
|
|
break;
|
|
}
|
|
if (cxgb_debug)
|
|
printf("len=%d pktlen=%d\n", m->m_len, m->m_pkthdr.len);
|
|
done:
|
|
if (++fl->cidx == fl->size)
|
|
fl->cidx = 0;
|
|
|
|
return (ret);
|
|
}
|
|
|
|
/**
|
|
* handle_rsp_cntrl_info - handles control information in a response
|
|
* @qs: the queue set corresponding to the response
|
|
* @flags: the response control flags
|
|
*
|
|
* Handles the control information of an SGE response, such as GTS
|
|
* indications and completion credits for the queue set's Tx queues.
|
|
* HW coalesces credits, we don't do any extra SW coalescing.
|
|
*/
|
|
static __inline void
|
|
handle_rsp_cntrl_info(struct sge_qset *qs, uint32_t flags)
|
|
{
|
|
unsigned int credits;
|
|
|
|
#if USE_GTS
|
|
if (flags & F_RSPD_TXQ0_GTS)
|
|
clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
|
|
#endif
|
|
credits = G_RSPD_TXQ0_CR(flags);
|
|
if (credits)
|
|
qs->txq[TXQ_ETH].processed += credits;
|
|
|
|
credits = G_RSPD_TXQ2_CR(flags);
|
|
if (credits)
|
|
qs->txq[TXQ_CTRL].processed += credits;
|
|
|
|
# if USE_GTS
|
|
if (flags & F_RSPD_TXQ1_GTS)
|
|
clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
|
|
# endif
|
|
credits = G_RSPD_TXQ1_CR(flags);
|
|
if (credits)
|
|
qs->txq[TXQ_OFLD].processed += credits;
|
|
|
|
}
|
|
|
|
static void
|
|
check_ring_db(adapter_t *adap, struct sge_qset *qs,
|
|
unsigned int sleeping)
|
|
{
|
|
;
|
|
}
|
|
|
|
/**
|
|
* process_responses - process responses from an SGE response queue
|
|
* @adap: the adapter
|
|
* @qs: the queue set to which the response queue belongs
|
|
* @budget: how many responses can be processed in this round
|
|
*
|
|
* Process responses from an SGE response queue up to the supplied budget.
|
|
* Responses include received packets as well as credits and other events
|
|
* for the queues that belong to the response queue's queue set.
|
|
* A negative budget is effectively unlimited.
|
|
*
|
|
* Additionally choose the interrupt holdoff time for the next interrupt
|
|
* on this queue. If the system is under memory shortage use a fairly
|
|
* long delay to help recovery.
|
|
*/
|
|
static int
|
|
process_responses(adapter_t *adap, struct sge_qset *qs, int budget)
|
|
{
|
|
struct sge_rspq *rspq = &qs->rspq;
|
|
struct rsp_desc *r = &rspq->desc[rspq->cidx];
|
|
int budget_left = budget;
|
|
unsigned int sleeping = 0;
|
|
int lro_enabled = qs->lro.enabled;
|
|
int skip_lro;
|
|
struct lro_ctrl *lro_ctrl = &qs->lro.ctrl;
|
|
struct mbuf *offload_mbufs[RX_BUNDLE_SIZE];
|
|
int ngathered = 0;
|
|
struct t3_mbuf_hdr *mh = &rspq->rspq_mh;
|
|
#ifdef DEBUG
|
|
static int last_holdoff = 0;
|
|
if (cxgb_debug && rspq->holdoff_tmr != last_holdoff) {
|
|
printf("next_holdoff=%d\n", rspq->holdoff_tmr);
|
|
last_holdoff = rspq->holdoff_tmr;
|
|
}
|
|
#endif
|
|
rspq->next_holdoff = rspq->holdoff_tmr;
|
|
|
|
while (__predict_true(budget_left && is_new_response(r, rspq))) {
|
|
int eth, eop = 0, ethpad = 0;
|
|
uint32_t flags = ntohl(r->flags);
|
|
uint32_t rss_csum = *(const uint32_t *)r;
|
|
uint32_t rss_hash = be32toh(r->rss_hdr.rss_hash_val);
|
|
|
|
eth = (r->rss_hdr.opcode == CPL_RX_PKT);
|
|
|
|
if (__predict_false(flags & F_RSPD_ASYNC_NOTIF)) {
|
|
struct mbuf *m;
|
|
|
|
if (cxgb_debug)
|
|
printf("async notification\n");
|
|
|
|
if (mh->mh_head == NULL) {
|
|
mh->mh_head = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
m = mh->mh_head;
|
|
} else {
|
|
m = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
}
|
|
if (m == NULL)
|
|
goto no_mem;
|
|
|
|
memcpy(mtod(m, char *), r, AN_PKT_SIZE);
|
|
m->m_len = m->m_pkthdr.len = AN_PKT_SIZE;
|
|
*mtod(m, char *) = CPL_ASYNC_NOTIF;
|
|
rss_csum = htonl(CPL_ASYNC_NOTIF << 24);
|
|
eop = 1;
|
|
rspq->async_notif++;
|
|
goto skip;
|
|
} else if (flags & F_RSPD_IMM_DATA_VALID) {
|
|
struct mbuf *m = NULL;
|
|
|
|
DPRINTF("IMM DATA VALID opcode=0x%x rspq->cidx=%d\n",
|
|
r->rss_hdr.opcode, rspq->cidx);
|
|
if (mh->mh_head == NULL)
|
|
mh->mh_head = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
else
|
|
m = m_gethdr(M_DONTWAIT, MT_DATA);
|
|
|
|
if (mh->mh_head == NULL && m == NULL) {
|
|
no_mem:
|
|
rspq->next_holdoff = NOMEM_INTR_DELAY;
|
|
budget_left--;
|
|
break;
|
|
}
|
|
get_imm_packet(adap, r, mh->mh_head);
|
|
eop = 1;
|
|
rspq->imm_data++;
|
|
} else if (r->len_cq) {
|
|
int drop_thresh = eth ? SGE_RX_DROP_THRES : 0;
|
|
|
|
eop = get_packet(adap, drop_thresh, qs, mh, r);
|
|
if (eop) {
|
|
if (r->rss_hdr.hash_type && !adap->timestamp)
|
|
mh->mh_head->m_flags |= M_FLOWID;
|
|
mh->mh_head->m_pkthdr.flowid = rss_hash;
|
|
}
|
|
|
|
ethpad = 2;
|
|
} else {
|
|
rspq->pure_rsps++;
|
|
}
|
|
skip:
|
|
if (flags & RSPD_CTRL_MASK) {
|
|
sleeping |= flags & RSPD_GTS_MASK;
|
|
handle_rsp_cntrl_info(qs, flags);
|
|
}
|
|
|
|
r++;
|
|
if (__predict_false(++rspq->cidx == rspq->size)) {
|
|
rspq->cidx = 0;
|
|
rspq->gen ^= 1;
|
|
r = rspq->desc;
|
|
}
|
|
|
|
if (++rspq->credits >= 64) {
|
|
refill_rspq(adap, rspq, rspq->credits);
|
|
rspq->credits = 0;
|
|
}
|
|
if (!eth && eop) {
|
|
mh->mh_head->m_pkthdr.csum_data = rss_csum;
|
|
/*
|
|
* XXX size mismatch
|
|
*/
|
|
m_set_priority(mh->mh_head, rss_hash);
|
|
|
|
|
|
ngathered = rx_offload(&adap->tdev, rspq,
|
|
mh->mh_head, offload_mbufs, ngathered);
|
|
mh->mh_head = NULL;
|
|
DPRINTF("received offload packet\n");
|
|
|
|
} else if (eth && eop) {
|
|
struct mbuf *m = mh->mh_head;
|
|
|
|
t3_rx_eth(adap, rspq, m, ethpad);
|
|
|
|
/*
|
|
* The T304 sends incoming packets on any qset. If LRO
|
|
* is also enabled, we could end up sending packet up
|
|
* lro_ctrl->ifp's input. That is incorrect.
|
|
*
|
|
* The mbuf's rcvif was derived from the cpl header and
|
|
* is accurate. Skip LRO and just use that.
|
|
*/
|
|
skip_lro = __predict_false(qs->port->ifp != m->m_pkthdr.rcvif);
|
|
|
|
if (lro_enabled && lro_ctrl->lro_cnt && !skip_lro
|
|
#ifdef INET
|
|
&& (tcp_lro_rx(lro_ctrl, m, 0) == 0)
|
|
#endif
|
|
) {
|
|
/* successfully queue'd for LRO */
|
|
} else {
|
|
/*
|
|
* LRO not enabled, packet unsuitable for LRO,
|
|
* or unable to queue. Pass it up right now in
|
|
* either case.
|
|
*/
|
|
struct ifnet *ifp = m->m_pkthdr.rcvif;
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
mh->mh_head = NULL;
|
|
|
|
}
|
|
__refill_fl_lt(adap, &qs->fl[0], 32);
|
|
__refill_fl_lt(adap, &qs->fl[1], 32);
|
|
--budget_left;
|
|
}
|
|
|
|
deliver_partial_bundle(&adap->tdev, rspq, offload_mbufs, ngathered);
|
|
|
|
#ifdef INET
|
|
/* Flush LRO */
|
|
while (!SLIST_EMPTY(&lro_ctrl->lro_active)) {
|
|
struct lro_entry *queued = SLIST_FIRST(&lro_ctrl->lro_active);
|
|
SLIST_REMOVE_HEAD(&lro_ctrl->lro_active, next);
|
|
tcp_lro_flush(lro_ctrl, queued);
|
|
}
|
|
#endif
|
|
|
|
if (sleeping)
|
|
check_ring_db(adap, qs, sleeping);
|
|
|
|
mb(); /* commit Tx queue processed updates */
|
|
if (__predict_false(qs->txq_stopped > 1))
|
|
restart_tx(qs);
|
|
|
|
__refill_fl_lt(adap, &qs->fl[0], 512);
|
|
__refill_fl_lt(adap, &qs->fl[1], 512);
|
|
budget -= budget_left;
|
|
return (budget);
|
|
}
|
|
|
|
/*
|
|
* A helper function that processes responses and issues GTS.
|
|
*/
|
|
static __inline int
|
|
process_responses_gts(adapter_t *adap, struct sge_rspq *rq)
|
|
{
|
|
int work;
|
|
static int last_holdoff = 0;
|
|
|
|
work = process_responses(adap, rspq_to_qset(rq), -1);
|
|
|
|
if (cxgb_debug && (rq->next_holdoff != last_holdoff)) {
|
|
printf("next_holdoff=%d\n", rq->next_holdoff);
|
|
last_holdoff = rq->next_holdoff;
|
|
}
|
|
t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
|
|
V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
|
|
|
|
return (work);
|
|
}
|
|
|
|
|
|
/*
|
|
* Interrupt handler for legacy INTx interrupts for T3B-based cards.
|
|
* Handles data events from SGE response queues as well as error and other
|
|
* async events as they all use the same interrupt pin. We use one SGE
|
|
* response queue per port in this mode and protect all response queues with
|
|
* queue 0's lock.
|
|
*/
|
|
void
|
|
t3b_intr(void *data)
|
|
{
|
|
uint32_t i, map;
|
|
adapter_t *adap = data;
|
|
struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
|
|
|
|
t3_write_reg(adap, A_PL_CLI, 0);
|
|
map = t3_read_reg(adap, A_SG_DATA_INTR);
|
|
|
|
if (!map)
|
|
return;
|
|
|
|
if (__predict_false(map & F_ERRINTR))
|
|
taskqueue_enqueue(adap->tq, &adap->slow_intr_task);
|
|
|
|
mtx_lock(&q0->lock);
|
|
for_each_port(adap, i)
|
|
if (map & (1 << i))
|
|
process_responses_gts(adap, &adap->sge.qs[i].rspq);
|
|
mtx_unlock(&q0->lock);
|
|
}
|
|
|
|
/*
|
|
* The MSI interrupt handler. This needs to handle data events from SGE
|
|
* response queues as well as error and other async events as they all use
|
|
* the same MSI vector. We use one SGE response queue per port in this mode
|
|
* and protect all response queues with queue 0's lock.
|
|
*/
|
|
void
|
|
t3_intr_msi(void *data)
|
|
{
|
|
adapter_t *adap = data;
|
|
struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
|
|
int i, new_packets = 0;
|
|
|
|
mtx_lock(&q0->lock);
|
|
|
|
for_each_port(adap, i)
|
|
if (process_responses_gts(adap, &adap->sge.qs[i].rspq))
|
|
new_packets = 1;
|
|
mtx_unlock(&q0->lock);
|
|
if (new_packets == 0)
|
|
taskqueue_enqueue(adap->tq, &adap->slow_intr_task);
|
|
}
|
|
|
|
void
|
|
t3_intr_msix(void *data)
|
|
{
|
|
struct sge_qset *qs = data;
|
|
adapter_t *adap = qs->port->adapter;
|
|
struct sge_rspq *rspq = &qs->rspq;
|
|
|
|
if (process_responses_gts(adap, rspq) == 0)
|
|
rspq->unhandled_irqs++;
|
|
}
|
|
|
|
#define QDUMP_SBUF_SIZE 32 * 400
|
|
static int
|
|
t3_dump_rspq(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sge_rspq *rspq;
|
|
struct sge_qset *qs;
|
|
int i, err, dump_end, idx;
|
|
static int multiplier = 1;
|
|
struct sbuf *sb;
|
|
struct rsp_desc *rspd;
|
|
uint32_t data[4];
|
|
|
|
rspq = arg1;
|
|
qs = rspq_to_qset(rspq);
|
|
if (rspq->rspq_dump_count == 0)
|
|
return (0);
|
|
if (rspq->rspq_dump_count > RSPQ_Q_SIZE) {
|
|
log(LOG_WARNING,
|
|
"dump count is too large %d\n", rspq->rspq_dump_count);
|
|
rspq->rspq_dump_count = 0;
|
|
return (EINVAL);
|
|
}
|
|
if (rspq->rspq_dump_start > (RSPQ_Q_SIZE-1)) {
|
|
log(LOG_WARNING,
|
|
"dump start of %d is greater than queue size\n",
|
|
rspq->rspq_dump_start);
|
|
rspq->rspq_dump_start = 0;
|
|
return (EINVAL);
|
|
}
|
|
err = t3_sge_read_rspq(qs->port->adapter, rspq->cntxt_id, data);
|
|
if (err)
|
|
return (err);
|
|
retry_sbufops:
|
|
sb = sbuf_new(NULL, NULL, QDUMP_SBUF_SIZE*multiplier, SBUF_FIXEDLEN);
|
|
|
|
sbuf_printf(sb, " \n index=%u size=%u MSI-X/RspQ=%u intr enable=%u intr armed=%u\n",
|
|
(data[0] & 0xffff), data[0] >> 16, ((data[2] >> 20) & 0x3f),
|
|
((data[2] >> 26) & 1), ((data[2] >> 27) & 1));
|
|
sbuf_printf(sb, " generation=%u CQ mode=%u FL threshold=%u\n",
|
|
((data[2] >> 28) & 1), ((data[2] >> 31) & 1), data[3]);
|
|
|
|
sbuf_printf(sb, " start=%d -> end=%d\n", rspq->rspq_dump_start,
|
|
(rspq->rspq_dump_start + rspq->rspq_dump_count) & (RSPQ_Q_SIZE-1));
|
|
|
|
dump_end = rspq->rspq_dump_start + rspq->rspq_dump_count;
|
|
for (i = rspq->rspq_dump_start; i < dump_end; i++) {
|
|
idx = i & (RSPQ_Q_SIZE-1);
|
|
|
|
rspd = &rspq->desc[idx];
|
|
sbuf_printf(sb, "\tidx=%04d opcode=%02x cpu_idx=%x hash_type=%x cq_idx=%x\n",
|
|
idx, rspd->rss_hdr.opcode, rspd->rss_hdr.cpu_idx,
|
|
rspd->rss_hdr.hash_type, be16toh(rspd->rss_hdr.cq_idx));
|
|
sbuf_printf(sb, "\trss_hash_val=%x flags=%08x len_cq=%x intr_gen=%x\n",
|
|
rspd->rss_hdr.rss_hash_val, be32toh(rspd->flags),
|
|
be32toh(rspd->len_cq), rspd->intr_gen);
|
|
}
|
|
if (sbuf_overflowed(sb)) {
|
|
sbuf_delete(sb);
|
|
multiplier++;
|
|
goto retry_sbufops;
|
|
}
|
|
sbuf_finish(sb);
|
|
err = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
|
|
sbuf_delete(sb);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
t3_dump_txq_eth(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sge_txq *txq;
|
|
struct sge_qset *qs;
|
|
int i, j, err, dump_end;
|
|
static int multiplier = 1;
|
|
struct sbuf *sb;
|
|
struct tx_desc *txd;
|
|
uint32_t *WR, wr_hi, wr_lo, gen;
|
|
uint32_t data[4];
|
|
|
|
txq = arg1;
|
|
qs = txq_to_qset(txq, TXQ_ETH);
|
|
if (txq->txq_dump_count == 0) {
|
|
return (0);
|
|
}
|
|
if (txq->txq_dump_count > TX_ETH_Q_SIZE) {
|
|
log(LOG_WARNING,
|
|
"dump count is too large %d\n", txq->txq_dump_count);
|
|
txq->txq_dump_count = 1;
|
|
return (EINVAL);
|
|
}
|
|
if (txq->txq_dump_start > (TX_ETH_Q_SIZE-1)) {
|
|
log(LOG_WARNING,
|
|
"dump start of %d is greater than queue size\n",
|
|
txq->txq_dump_start);
|
|
txq->txq_dump_start = 0;
|
|
return (EINVAL);
|
|
}
|
|
err = t3_sge_read_ecntxt(qs->port->adapter, qs->rspq.cntxt_id, data);
|
|
if (err)
|
|
return (err);
|
|
|
|
|
|
retry_sbufops:
|
|
sb = sbuf_new(NULL, NULL, QDUMP_SBUF_SIZE*multiplier, SBUF_FIXEDLEN);
|
|
|
|
sbuf_printf(sb, " \n credits=%u GTS=%u index=%u size=%u rspq#=%u cmdq#=%u\n",
|
|
(data[0] & 0x7fff), ((data[0] >> 15) & 1), (data[0] >> 16),
|
|
(data[1] & 0xffff), ((data[3] >> 4) & 7), ((data[3] >> 7) & 1));
|
|
sbuf_printf(sb, " TUN=%u TOE=%u generation%u uP token=%u valid=%u\n",
|
|
((data[3] >> 8) & 1), ((data[3] >> 9) & 1), ((data[3] >> 10) & 1),
|
|
((data[3] >> 11) & 0xfffff), ((data[3] >> 31) & 1));
|
|
sbuf_printf(sb, " qid=%d start=%d -> end=%d\n", qs->idx,
|
|
txq->txq_dump_start,
|
|
(txq->txq_dump_start + txq->txq_dump_count) & (TX_ETH_Q_SIZE-1));
|
|
|
|
dump_end = txq->txq_dump_start + txq->txq_dump_count;
|
|
for (i = txq->txq_dump_start; i < dump_end; i++) {
|
|
txd = &txq->desc[i & (TX_ETH_Q_SIZE-1)];
|
|
WR = (uint32_t *)txd->flit;
|
|
wr_hi = ntohl(WR[0]);
|
|
wr_lo = ntohl(WR[1]);
|
|
gen = G_WR_GEN(wr_lo);
|
|
|
|
sbuf_printf(sb," wr_hi %08x wr_lo %08x gen %d\n",
|
|
wr_hi, wr_lo, gen);
|
|
for (j = 2; j < 30; j += 4)
|
|
sbuf_printf(sb, "\t%08x %08x %08x %08x \n",
|
|
WR[j], WR[j + 1], WR[j + 2], WR[j + 3]);
|
|
|
|
}
|
|
if (sbuf_overflowed(sb)) {
|
|
sbuf_delete(sb);
|
|
multiplier++;
|
|
goto retry_sbufops;
|
|
}
|
|
sbuf_finish(sb);
|
|
err = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
|
|
sbuf_delete(sb);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
t3_dump_txq_ctrl(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sge_txq *txq;
|
|
struct sge_qset *qs;
|
|
int i, j, err, dump_end;
|
|
static int multiplier = 1;
|
|
struct sbuf *sb;
|
|
struct tx_desc *txd;
|
|
uint32_t *WR, wr_hi, wr_lo, gen;
|
|
|
|
txq = arg1;
|
|
qs = txq_to_qset(txq, TXQ_CTRL);
|
|
if (txq->txq_dump_count == 0) {
|
|
return (0);
|
|
}
|
|
if (txq->txq_dump_count > 256) {
|
|
log(LOG_WARNING,
|
|
"dump count is too large %d\n", txq->txq_dump_count);
|
|
txq->txq_dump_count = 1;
|
|
return (EINVAL);
|
|
}
|
|
if (txq->txq_dump_start > 255) {
|
|
log(LOG_WARNING,
|
|
"dump start of %d is greater than queue size\n",
|
|
txq->txq_dump_start);
|
|
txq->txq_dump_start = 0;
|
|
return (EINVAL);
|
|
}
|
|
|
|
retry_sbufops:
|
|
sb = sbuf_new(NULL, NULL, QDUMP_SBUF_SIZE*multiplier, SBUF_FIXEDLEN);
|
|
sbuf_printf(sb, " qid=%d start=%d -> end=%d\n", qs->idx,
|
|
txq->txq_dump_start,
|
|
(txq->txq_dump_start + txq->txq_dump_count) & 255);
|
|
|
|
dump_end = txq->txq_dump_start + txq->txq_dump_count;
|
|
for (i = txq->txq_dump_start; i < dump_end; i++) {
|
|
txd = &txq->desc[i & (255)];
|
|
WR = (uint32_t *)txd->flit;
|
|
wr_hi = ntohl(WR[0]);
|
|
wr_lo = ntohl(WR[1]);
|
|
gen = G_WR_GEN(wr_lo);
|
|
|
|
sbuf_printf(sb," wr_hi %08x wr_lo %08x gen %d\n",
|
|
wr_hi, wr_lo, gen);
|
|
for (j = 2; j < 30; j += 4)
|
|
sbuf_printf(sb, "\t%08x %08x %08x %08x \n",
|
|
WR[j], WR[j + 1], WR[j + 2], WR[j + 3]);
|
|
|
|
}
|
|
if (sbuf_overflowed(sb)) {
|
|
sbuf_delete(sb);
|
|
multiplier++;
|
|
goto retry_sbufops;
|
|
}
|
|
sbuf_finish(sb);
|
|
err = SYSCTL_OUT(req, sbuf_data(sb), sbuf_len(sb) + 1);
|
|
sbuf_delete(sb);
|
|
return (err);
|
|
}
|
|
|
|
static int
|
|
t3_set_coalesce_usecs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
adapter_t *sc = arg1;
|
|
struct qset_params *qsp = &sc->params.sge.qset[0];
|
|
int coalesce_usecs;
|
|
struct sge_qset *qs;
|
|
int i, j, err, nqsets = 0;
|
|
struct mtx *lock;
|
|
|
|
if ((sc->flags & FULL_INIT_DONE) == 0)
|
|
return (ENXIO);
|
|
|
|
coalesce_usecs = qsp->coalesce_usecs;
|
|
err = sysctl_handle_int(oidp, &coalesce_usecs, arg2, req);
|
|
|
|
if (err != 0) {
|
|
return (err);
|
|
}
|
|
if (coalesce_usecs == qsp->coalesce_usecs)
|
|
return (0);
|
|
|
|
for (i = 0; i < sc->params.nports; i++)
|
|
for (j = 0; j < sc->port[i].nqsets; j++)
|
|
nqsets++;
|
|
|
|
coalesce_usecs = max(1, coalesce_usecs);
|
|
|
|
for (i = 0; i < nqsets; i++) {
|
|
qs = &sc->sge.qs[i];
|
|
qsp = &sc->params.sge.qset[i];
|
|
qsp->coalesce_usecs = coalesce_usecs;
|
|
|
|
lock = (sc->flags & USING_MSIX) ? &qs->rspq.lock :
|
|
&sc->sge.qs[0].rspq.lock;
|
|
|
|
mtx_lock(lock);
|
|
t3_update_qset_coalesce(qs, qsp);
|
|
t3_write_reg(sc, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
|
|
V_NEWTIMER(qs->rspq.holdoff_tmr));
|
|
mtx_unlock(lock);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
t3_pkt_timestamp(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
adapter_t *sc = arg1;
|
|
int rc, timestamp;
|
|
|
|
if ((sc->flags & FULL_INIT_DONE) == 0)
|
|
return (ENXIO);
|
|
|
|
timestamp = sc->timestamp;
|
|
rc = sysctl_handle_int(oidp, ×tamp, arg2, req);
|
|
|
|
if (rc != 0)
|
|
return (rc);
|
|
|
|
if (timestamp != sc->timestamp) {
|
|
t3_set_reg_field(sc, A_TP_PC_CONFIG2, F_ENABLERXPKTTMSTPRSS,
|
|
timestamp ? F_ENABLERXPKTTMSTPRSS : 0);
|
|
sc->timestamp = timestamp;
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
t3_add_attach_sysctls(adapter_t *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *children;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->dev);
|
|
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
|
|
|
|
/* random information */
|
|
SYSCTL_ADD_STRING(ctx, children, OID_AUTO,
|
|
"firmware_version",
|
|
CTLFLAG_RD, &sc->fw_version,
|
|
0, "firmware version");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"hw_revision",
|
|
CTLFLAG_RD, &sc->params.rev,
|
|
0, "chip model");
|
|
SYSCTL_ADD_STRING(ctx, children, OID_AUTO,
|
|
"port_types",
|
|
CTLFLAG_RD, &sc->port_types,
|
|
0, "type of ports");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"enable_debug",
|
|
CTLFLAG_RW, &cxgb_debug,
|
|
0, "enable verbose debugging output");
|
|
SYSCTL_ADD_QUAD(ctx, children, OID_AUTO, "tunq_coalesce",
|
|
CTLFLAG_RD, &sc->tunq_coalesce,
|
|
"#tunneled packets freed");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"txq_overrun",
|
|
CTLFLAG_RD, &txq_fills,
|
|
0, "#times txq overrun");
|
|
SYSCTL_ADD_INT(ctx, children, OID_AUTO,
|
|
"core_clock",
|
|
CTLFLAG_RD, &sc->params.vpd.cclk,
|
|
0, "core clock frequency (in KHz)");
|
|
}
|
|
|
|
|
|
static const char *rspq_name = "rspq";
|
|
static const char *txq_names[] =
|
|
{
|
|
"txq_eth",
|
|
"txq_ofld",
|
|
"txq_ctrl"
|
|
};
|
|
|
|
static int
|
|
sysctl_handle_macstat(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct port_info *p = arg1;
|
|
uint64_t *parg;
|
|
|
|
if (!p)
|
|
return (EINVAL);
|
|
|
|
parg = (uint64_t *) ((uint8_t *)&p->mac.stats + arg2);
|
|
PORT_LOCK(p);
|
|
t3_mac_update_stats(&p->mac);
|
|
PORT_UNLOCK(p);
|
|
|
|
return (sysctl_handle_quad(oidp, parg, 0, req));
|
|
}
|
|
|
|
void
|
|
t3_add_configured_sysctls(adapter_t *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *children;
|
|
int i, j;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->dev);
|
|
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
|
|
"intr_coal",
|
|
CTLTYPE_INT|CTLFLAG_RW, sc,
|
|
0, t3_set_coalesce_usecs,
|
|
"I", "interrupt coalescing timer (us)");
|
|
|
|
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
|
|
"pkt_timestamp",
|
|
CTLTYPE_INT | CTLFLAG_RW, sc,
|
|
0, t3_pkt_timestamp,
|
|
"I", "provide packet timestamp instead of connection hash");
|
|
|
|
for (i = 0; i < sc->params.nports; i++) {
|
|
struct port_info *pi = &sc->port[i];
|
|
struct sysctl_oid *poid;
|
|
struct sysctl_oid_list *poidlist;
|
|
struct mac_stats *mstats = &pi->mac.stats;
|
|
|
|
snprintf(pi->namebuf, PORT_NAME_LEN, "port%d", i);
|
|
poid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO,
|
|
pi->namebuf, CTLFLAG_RD, NULL, "port statistics");
|
|
poidlist = SYSCTL_CHILDREN(poid);
|
|
SYSCTL_ADD_INT(ctx, poidlist, OID_AUTO,
|
|
"nqsets", CTLFLAG_RD, &pi->nqsets,
|
|
0, "#queue sets");
|
|
|
|
for (j = 0; j < pi->nqsets; j++) {
|
|
struct sge_qset *qs = &sc->sge.qs[pi->first_qset + j];
|
|
struct sysctl_oid *qspoid, *rspqpoid, *txqpoid,
|
|
*ctrlqpoid, *lropoid;
|
|
struct sysctl_oid_list *qspoidlist, *rspqpoidlist,
|
|
*txqpoidlist, *ctrlqpoidlist,
|
|
*lropoidlist;
|
|
struct sge_txq *txq = &qs->txq[TXQ_ETH];
|
|
|
|
snprintf(qs->namebuf, QS_NAME_LEN, "qs%d", j);
|
|
|
|
qspoid = SYSCTL_ADD_NODE(ctx, poidlist, OID_AUTO,
|
|
qs->namebuf, CTLFLAG_RD, NULL, "qset statistics");
|
|
qspoidlist = SYSCTL_CHILDREN(qspoid);
|
|
|
|
SYSCTL_ADD_UINT(ctx, qspoidlist, OID_AUTO, "fl0_empty",
|
|
CTLFLAG_RD, &qs->fl[0].empty, 0,
|
|
"freelist #0 empty");
|
|
SYSCTL_ADD_UINT(ctx, qspoidlist, OID_AUTO, "fl1_empty",
|
|
CTLFLAG_RD, &qs->fl[1].empty, 0,
|
|
"freelist #1 empty");
|
|
|
|
rspqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
|
|
rspq_name, CTLFLAG_RD, NULL, "rspq statistics");
|
|
rspqpoidlist = SYSCTL_CHILDREN(rspqpoid);
|
|
|
|
txqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
|
|
txq_names[0], CTLFLAG_RD, NULL, "txq statistics");
|
|
txqpoidlist = SYSCTL_CHILDREN(txqpoid);
|
|
|
|
ctrlqpoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
|
|
txq_names[2], CTLFLAG_RD, NULL, "ctrlq statistics");
|
|
ctrlqpoidlist = SYSCTL_CHILDREN(ctrlqpoid);
|
|
|
|
lropoid = SYSCTL_ADD_NODE(ctx, qspoidlist, OID_AUTO,
|
|
"lro_stats", CTLFLAG_RD, NULL, "LRO statistics");
|
|
lropoidlist = SYSCTL_CHILDREN(lropoid);
|
|
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "size",
|
|
CTLFLAG_RD, &qs->rspq.size,
|
|
0, "#entries in response queue");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "cidx",
|
|
CTLFLAG_RD, &qs->rspq.cidx,
|
|
0, "consumer index");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "credits",
|
|
CTLFLAG_RD, &qs->rspq.credits,
|
|
0, "#credits");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "starved",
|
|
CTLFLAG_RD, &qs->rspq.starved,
|
|
0, "#times starved");
|
|
SYSCTL_ADD_XLONG(ctx, rspqpoidlist, OID_AUTO, "phys_addr",
|
|
CTLFLAG_RD, &qs->rspq.phys_addr,
|
|
"physical_address_of the queue");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "dump_start",
|
|
CTLFLAG_RW, &qs->rspq.rspq_dump_start,
|
|
0, "start rspq dump entry");
|
|
SYSCTL_ADD_UINT(ctx, rspqpoidlist, OID_AUTO, "dump_count",
|
|
CTLFLAG_RW, &qs->rspq.rspq_dump_count,
|
|
0, "#rspq entries to dump");
|
|
SYSCTL_ADD_PROC(ctx, rspqpoidlist, OID_AUTO, "qdump",
|
|
CTLTYPE_STRING | CTLFLAG_RD, &qs->rspq,
|
|
0, t3_dump_rspq, "A", "dump of the response queue");
|
|
|
|
SYSCTL_ADD_QUAD(ctx, txqpoidlist, OID_AUTO, "dropped",
|
|
CTLFLAG_RD, &qs->txq[TXQ_ETH].txq_mr->br_drops,
|
|
"#tunneled packets dropped");
|
|
SYSCTL_ADD_INT(ctx, txqpoidlist, OID_AUTO, "sendqlen",
|
|
CTLFLAG_RD, &qs->txq[TXQ_ETH].sendq.qlen,
|
|
0, "#tunneled packets waiting to be sent");
|
|
#if 0
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "queue_pidx",
|
|
CTLFLAG_RD, (uint32_t *)(uintptr_t)&qs->txq[TXQ_ETH].txq_mr.br_prod,
|
|
0, "#tunneled packets queue producer index");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "queue_cidx",
|
|
CTLFLAG_RD, (uint32_t *)(uintptr_t)&qs->txq[TXQ_ETH].txq_mr.br_cons,
|
|
0, "#tunneled packets queue consumer index");
|
|
#endif
|
|
SYSCTL_ADD_INT(ctx, txqpoidlist, OID_AUTO, "processed",
|
|
CTLFLAG_RD, &qs->txq[TXQ_ETH].processed,
|
|
0, "#tunneled packets processed by the card");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "cleaned",
|
|
CTLFLAG_RD, &txq->cleaned,
|
|
0, "#tunneled packets cleaned");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "in_use",
|
|
CTLFLAG_RD, &txq->in_use,
|
|
0, "#tunneled packet slots in use");
|
|
SYSCTL_ADD_ULONG(ctx, txqpoidlist, OID_AUTO, "frees",
|
|
CTLFLAG_RD, &txq->txq_frees,
|
|
"#tunneled packets freed");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "skipped",
|
|
CTLFLAG_RD, &txq->txq_skipped,
|
|
0, "#tunneled packet descriptors skipped");
|
|
SYSCTL_ADD_QUAD(ctx, txqpoidlist, OID_AUTO, "coalesced",
|
|
CTLFLAG_RD, &txq->txq_coalesced,
|
|
"#tunneled packets coalesced");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "enqueued",
|
|
CTLFLAG_RD, &txq->txq_enqueued,
|
|
0, "#tunneled packets enqueued to hardware");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "stopped_flags",
|
|
CTLFLAG_RD, &qs->txq_stopped,
|
|
0, "tx queues stopped");
|
|
SYSCTL_ADD_XLONG(ctx, txqpoidlist, OID_AUTO, "phys_addr",
|
|
CTLFLAG_RD, &txq->phys_addr,
|
|
"physical_address_of the queue");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "qgen",
|
|
CTLFLAG_RW, &qs->txq[TXQ_ETH].gen,
|
|
0, "txq generation");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "hw_cidx",
|
|
CTLFLAG_RD, &txq->cidx,
|
|
0, "hardware queue cidx");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "hw_pidx",
|
|
CTLFLAG_RD, &txq->pidx,
|
|
0, "hardware queue pidx");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "dump_start",
|
|
CTLFLAG_RW, &qs->txq[TXQ_ETH].txq_dump_start,
|
|
0, "txq start idx for dump");
|
|
SYSCTL_ADD_UINT(ctx, txqpoidlist, OID_AUTO, "dump_count",
|
|
CTLFLAG_RW, &qs->txq[TXQ_ETH].txq_dump_count,
|
|
0, "txq #entries to dump");
|
|
SYSCTL_ADD_PROC(ctx, txqpoidlist, OID_AUTO, "qdump",
|
|
CTLTYPE_STRING | CTLFLAG_RD, &qs->txq[TXQ_ETH],
|
|
0, t3_dump_txq_eth, "A", "dump of the transmit queue");
|
|
|
|
SYSCTL_ADD_UINT(ctx, ctrlqpoidlist, OID_AUTO, "dump_start",
|
|
CTLFLAG_RW, &qs->txq[TXQ_CTRL].txq_dump_start,
|
|
0, "ctrlq start idx for dump");
|
|
SYSCTL_ADD_UINT(ctx, ctrlqpoidlist, OID_AUTO, "dump_count",
|
|
CTLFLAG_RW, &qs->txq[TXQ_CTRL].txq_dump_count,
|
|
0, "ctrl #entries to dump");
|
|
SYSCTL_ADD_PROC(ctx, ctrlqpoidlist, OID_AUTO, "qdump",
|
|
CTLTYPE_STRING | CTLFLAG_RD, &qs->txq[TXQ_CTRL],
|
|
0, t3_dump_txq_ctrl, "A", "dump of the transmit queue");
|
|
|
|
SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_queued",
|
|
CTLFLAG_RD, &qs->lro.ctrl.lro_queued, 0, NULL);
|
|
SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_flushed",
|
|
CTLFLAG_RD, &qs->lro.ctrl.lro_flushed, 0, NULL);
|
|
SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_bad_csum",
|
|
CTLFLAG_RD, &qs->lro.ctrl.lro_bad_csum, 0, NULL);
|
|
SYSCTL_ADD_INT(ctx, lropoidlist, OID_AUTO, "lro_cnt",
|
|
CTLFLAG_RD, &qs->lro.ctrl.lro_cnt, 0, NULL);
|
|
}
|
|
|
|
/* Now add a node for mac stats. */
|
|
poid = SYSCTL_ADD_NODE(ctx, poidlist, OID_AUTO, "mac_stats",
|
|
CTLFLAG_RD, NULL, "MAC statistics");
|
|
poidlist = SYSCTL_CHILDREN(poid);
|
|
|
|
/*
|
|
* We (ab)use the length argument (arg2) to pass on the offset
|
|
* of the data that we are interested in. This is only required
|
|
* for the quad counters that are updated from the hardware (we
|
|
* make sure that we return the latest value).
|
|
* sysctl_handle_macstat first updates *all* the counters from
|
|
* the hardware, and then returns the latest value of the
|
|
* requested counter. Best would be to update only the
|
|
* requested counter from hardware, but t3_mac_update_stats()
|
|
* hides all the register details and we don't want to dive into
|
|
* all that here.
|
|
*/
|
|
#define CXGB_SYSCTL_ADD_QUAD(a) SYSCTL_ADD_OID(ctx, poidlist, OID_AUTO, #a, \
|
|
(CTLTYPE_QUAD | CTLFLAG_RD), pi, offsetof(struct mac_stats, a), \
|
|
sysctl_handle_macstat, "QU", 0)
|
|
CXGB_SYSCTL_ADD_QUAD(tx_octets);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_octets_bad);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_frames);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_mcast_frames);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_bcast_frames);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_pause);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_deferred);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_late_collisions);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_total_collisions);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_excess_collisions);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_underrun);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_len_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_mac_internal_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_excess_deferral);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_fcs_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_frames_64);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_frames_65_127);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_frames_128_255);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_frames_256_511);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_frames_512_1023);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_frames_1024_1518);
|
|
CXGB_SYSCTL_ADD_QUAD(tx_frames_1519_max);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_octets);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_octets_bad);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_frames);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_mcast_frames);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_bcast_frames);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_pause);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_fcs_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_align_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_symbol_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_data_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_sequence_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_runt);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_jabber);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_short);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_too_long);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_mac_internal_errs);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_cong_drops);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_frames_64);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_frames_65_127);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_frames_128_255);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_frames_256_511);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_frames_512_1023);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_frames_1024_1518);
|
|
CXGB_SYSCTL_ADD_QUAD(rx_frames_1519_max);
|
|
#undef CXGB_SYSCTL_ADD_QUAD
|
|
|
|
#define CXGB_SYSCTL_ADD_ULONG(a) SYSCTL_ADD_ULONG(ctx, poidlist, OID_AUTO, #a, \
|
|
CTLFLAG_RD, &mstats->a, 0)
|
|
CXGB_SYSCTL_ADD_ULONG(tx_fifo_parity_err);
|
|
CXGB_SYSCTL_ADD_ULONG(rx_fifo_parity_err);
|
|
CXGB_SYSCTL_ADD_ULONG(tx_fifo_urun);
|
|
CXGB_SYSCTL_ADD_ULONG(rx_fifo_ovfl);
|
|
CXGB_SYSCTL_ADD_ULONG(serdes_signal_loss);
|
|
CXGB_SYSCTL_ADD_ULONG(xaui_pcs_ctc_err);
|
|
CXGB_SYSCTL_ADD_ULONG(xaui_pcs_align_change);
|
|
CXGB_SYSCTL_ADD_ULONG(num_toggled);
|
|
CXGB_SYSCTL_ADD_ULONG(num_resets);
|
|
CXGB_SYSCTL_ADD_ULONG(link_faults);
|
|
#undef CXGB_SYSCTL_ADD_ULONG
|
|
}
|
|
}
|
|
|
|
/**
|
|
* t3_get_desc - dump an SGE descriptor for debugging purposes
|
|
* @qs: the queue set
|
|
* @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx)
|
|
* @idx: the descriptor index in the queue
|
|
* @data: where to dump the descriptor contents
|
|
*
|
|
* Dumps the contents of a HW descriptor of an SGE queue. Returns the
|
|
* size of the descriptor.
|
|
*/
|
|
int
|
|
t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx,
|
|
unsigned char *data)
|
|
{
|
|
if (qnum >= 6)
|
|
return (EINVAL);
|
|
|
|
if (qnum < 3) {
|
|
if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size)
|
|
return -EINVAL;
|
|
memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc));
|
|
return sizeof(struct tx_desc);
|
|
}
|
|
|
|
if (qnum == 3) {
|
|
if (!qs->rspq.desc || idx >= qs->rspq.size)
|
|
return (EINVAL);
|
|
memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc));
|
|
return sizeof(struct rsp_desc);
|
|
}
|
|
|
|
qnum -= 4;
|
|
if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size)
|
|
return (EINVAL);
|
|
memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc));
|
|
return sizeof(struct rx_desc);
|
|
}
|