freebsd-skq/sys/kern/subr_trap.c

803 lines
20 KiB
C

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the University of Utah, and William Jolitz.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)trap.c 7.4 (Berkeley) 5/13/91
* $Id: trap.c,v 1.15 1994/01/17 09:32:32 davidg Exp $
*/
/*
* 386 Trap and System call handleing
*/
#include "isa.h"
#include "npx.h"
#include "ddb.h"
#include "machine/cpu.h"
#include "machine/psl.h"
#include "machine/reg.h"
#include "machine/eflags.h"
#include "param.h"
#include "systm.h"
#include "proc.h"
#include "user.h"
#include "acct.h"
#include "kernel.h"
#ifdef KTRACE
#include "ktrace.h"
#endif
#include "vm/vm_param.h"
#include "vm/pmap.h"
#include "vm/vm_map.h"
#include "vm/vm_user.h"
#include "vm/vm_page.h"
#include "sys/vmmeter.h"
#include "machine/trap.h"
#ifdef __GNUC__
/*
* The "r" contraint could be "rm" except for fatal bugs in gas. As usual,
* we omit the size from the mov instruction to avoid nonfatal bugs in gas.
*/
#define read_gs() ({ u_short gs; __asm("mov %%gs,%0" : "=r" (gs)); gs; })
#define write_gs(newgs) __asm("mov %0,%%gs" : : "r" ((u_short) newgs))
#else /* not __GNUC__ */
u_short read_gs __P((void));
void write_gs __P((/* promoted u_short */ int gs));
#endif /* __GNUC__ */
struct sysent sysent[];
int nsysent;
extern short cpl;
extern short netmask, ttymask, biomask;
#define MAX_TRAP_MSG 27
char *trap_msg[] = {
"reserved addressing fault", /* 0 T_RESADFLT */
"privileged instruction fault", /* 1 T_PRIVINFLT */
"reserved operand fault", /* 2 T_RESOPFLT */
"breakpoint instruction fault", /* 3 T_BPTFLT */
"", /* 4 unused */
"system call trap", /* 5 T_SYSCALL */
"arithmetic trap", /* 6 T_ARITHTRAP */
"system forced exception", /* 7 T_ASTFLT */
"segmentation (limit) fault", /* 8 T_SEGFLT */
"protection fault", /* 9 T_PROTFLT */
"trace trap", /* 10 T_TRCTRAP */
"", /* 11 unused */
"page fault", /* 12 T_PAGEFLT */
"page table fault", /* 13 T_TABLEFLT */
"alignment fault", /* 14 T_ALIGNFLT */
"kernel stack pointer not valid", /* 15 T_KSPNOTVAL */
"bus error", /* 16 T_BUSERR */
"kernel debugger fault", /* 17 T_KDBTRAP */
"integer divide fault", /* 18 T_DIVIDE */
"non-maskable interrupt trap", /* 19 T_NMI */
"overflow trap", /* 20 T_OFLOW */
"FPU bounds check fault", /* 21 T_BOUND */
"FPU device not available", /* 22 T_DNA */
"double fault", /* 23 T_DOUBLEFLT */
"FPU operand fetch fault", /* 24 T_FPOPFLT */
"invalid TSS fault", /* 25 T_TSSFLT */
"segment not present fault", /* 26 T_SEGNPFLT */
"stack fault", /* 27 T_STKFLT */
};
#define pde_v(v) (PTD[((v)>>PD_SHIFT)&1023].pd_v)
/*
* trap(frame):
* Exception, fault, and trap interface to BSD kernel. This
* common code is called from assembly language IDT gate entry
* routines that prepare a suitable stack frame, and restore this
* frame after the exception has been processed. Note that the
* effect is as if the arguments were passed call by reference.
*/
/*ARGSUSED*/
void
trap(frame)
struct trapframe frame;
{
register int i;
register struct proc *p = curproc;
struct timeval syst;
int ucode, type, code, eva, fault_type;
frame.tf_eflags &= ~PSL_NT; /* clear nested trap XXX */
type = frame.tf_trapno;
#if NDDB > 0
if (curpcb && curpcb->pcb_onfault) {
if (frame.tf_trapno == T_BPTFLT
|| frame.tf_trapno == T_TRCTRAP)
if (kdb_trap (type, 0, &frame))
return;
}
#endif
if (curpcb == 0 || curproc == 0)
goto skiptoswitch;
if (curpcb->pcb_onfault && frame.tf_trapno != T_PAGEFLT) {
extern int _udatasel;
if (read_gs() != (u_short) _udatasel)
/*
* Some user has corrupted %gs but we depend on it in
* copyout() etc. Fix it up and retry.
*
* (We don't preserve %fs or %gs, so users can change
* them to either _ucodesel, _udatasel or a not-present
* selector, possibly ORed with 0 to 3, making them
* volatile for other users. Not preserving them saves
* time and doesn't lose functionality or open security
* holes.)
*/
write_gs(_udatasel);
else
copyfault:
frame.tf_eip = (int)curpcb->pcb_onfault;
return;
}
syst = p->p_stime;
if (ISPL(frame.tf_cs) == SEL_UPL) {
type |= T_USER;
p->p_regs = (int *)&frame;
}
skiptoswitch:
ucode=0;
eva = rcr2();
code = frame.tf_err;
if ((type & ~T_USER) == T_PAGEFLT)
goto pfault;
switch (type) {
case T_SEGNPFLT|T_USER:
case T_STKFLT|T_USER:
case T_PROTFLT|T_USER: /* protection fault */
ucode = code + BUS_SEGM_FAULT ;
i = SIGBUS;
break;
case T_PRIVINFLT|T_USER: /* privileged instruction fault */
case T_RESADFLT|T_USER: /* reserved addressing fault */
case T_RESOPFLT|T_USER: /* reserved operand fault */
case T_FPOPFLT|T_USER: /* coprocessor operand fault */
ucode = type &~ T_USER;
i = SIGILL;
break;
case T_ASTFLT|T_USER: /* Allow process switch */
astoff();
cnt.v_soft++;
if ((p->p_flag & SOWEUPC) && p->p_stats->p_prof.pr_scale) {
addupc(frame.tf_eip, &p->p_stats->p_prof, 1);
p->p_flag &= ~SOWEUPC;
}
goto out;
case T_DNA|T_USER:
#if NNPX > 0
/* if a transparent fault (due to context switch "late") */
if (npxdna()) return;
#endif /* NNPX > 0 */
#ifdef MATH_EMULATE
i = math_emulate(&frame);
if (i == 0) return;
#else /* MATH_EMULTATE */
panic("trap: math emulation necessary!");
#endif /* MATH_EMULTATE */
ucode = FPE_FPU_NP_TRAP;
break;
case T_BOUND|T_USER:
ucode = FPE_SUBRNG_TRAP;
i = SIGFPE;
break;
case T_OFLOW|T_USER:
ucode = FPE_INTOVF_TRAP;
i = SIGFPE;
break;
case T_DIVIDE|T_USER:
ucode = FPE_INTDIV_TRAP;
i = SIGFPE;
break;
case T_ARITHTRAP|T_USER:
ucode = code;
i = SIGFPE;
break;
case T_PAGEFLT: /* allow page faults in kernel mode */
#if 0
/* XXX - check only applies to 386's and 486's with WP off */
if (code & PGEX_P) goto we_re_toast;
#endif
pfault:
/* fall into */
case T_PAGEFLT|T_USER: /* page fault */
{
register vm_offset_t va;
register struct vmspace *vm;
register vm_map_t map;
int rv=0;
vm_prot_t ftype;
extern vm_map_t kernel_map;
unsigned nss,v;
int oldflags;
va = trunc_page((vm_offset_t)eva);
/*
* It is only a kernel address space fault iff:
* 1. (type & T_USER) == 0 and
* 2. pcb_onfault not set or
* 3. pcb_onfault set but supervisor space fault
* The last can occur during an exec() copyin where the
* argument space is lazy-allocated.
*/
if ((p == 0) || (type == T_PAGEFLT && va >= KERNBASE)) {
vm = 0;
map = kernel_map;
} else {
vm = p->p_vmspace;
map = &vm->vm_map;
}
if (code & PGEX_W)
ftype = VM_PROT_READ | VM_PROT_WRITE;
else
ftype = VM_PROT_READ;
/*
* keep swapout from messing with us during this
* critical time.
*/
oldflags = p->p_flag;
if (map != kernel_map) {
p->p_flag |= SLOCK;
}
/*
* XXX: rude hack to make stack limits "work"
*/
nss = 0;
if (map != kernel_map && (caddr_t)va >= vm->vm_maxsaddr
&& (caddr_t)va < (caddr_t)USRSTACK) {
caddr_t v;
nss = roundup(USRSTACK - (unsigned)va, PAGE_SIZE);
if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur) {
rv = KERN_FAILURE;
p->p_flag &= ~SLOCK;
p->p_flag |= (oldflags & SLOCK);
goto nogo;
}
if (vm->vm_ssize && roundup(vm->vm_ssize << PGSHIFT,
DFLSSIZ) < nss) {
int grow_amount;
/*
* If necessary, grow the VM that the stack occupies
* to allow for the rlimit. This allows us to not have
* to allocate all of the VM up-front in execve (which
* is expensive).
* Grow the VM by the amount requested rounded up to
* the nearest DFLSSIZ to provide for some hysteresis.
*/
grow_amount = roundup((nss - (vm->vm_ssize << PGSHIFT)), DFLSSIZ);
v = (char *)USRSTACK - roundup(vm->vm_ssize << PGSHIFT,
DFLSSIZ) - grow_amount;
/*
* If there isn't enough room to extend by DFLSSIZ, then
* just extend to the maximum size
*/
if (v < vm->vm_maxsaddr) {
v = vm->vm_maxsaddr;
grow_amount = MAXSSIZ - (vm->vm_ssize << PGSHIFT);
}
if (vm_allocate(&vm->vm_map, (vm_offset_t *)&v,
grow_amount, FALSE) !=
KERN_SUCCESS) {
p->p_flag &= ~SLOCK;
p->p_flag |= (oldflags & SLOCK);
goto nogo;
}
}
}
/* check if page table is mapped, if not, fault it first */
#define pde_v(v) (PTD[((v)>>PD_SHIFT)&1023].pd_v)
{
if (map != kernel_map) {
vm_offset_t pa;
vm_offset_t v = (vm_offset_t) vtopte(va);
/* Fault the pte only if needed: */
*(volatile char *)v += 0;
/* Get the physical address: */
pa = pmap_extract(vm_map_pmap(map), v);
/* And wire the pte page at system vm level: */
vm_page_wire(PHYS_TO_VM_PAGE(pa));
/* Fault in the user page: */
rv = vm_fault(map, va, ftype, FALSE);
/* Unwire the pte page: */
vm_page_unwire(PHYS_TO_VM_PAGE(pa));
} else {
/*
* Since we know that kernel virtual address addresses
* always have pte pages mapped, we just have to fault
* the page.
*/
rv = vm_fault(map, va, ftype, FALSE);
}
}
if (map != kernel_map) {
p->p_flag &= ~SLOCK;
p->p_flag |= (oldflags & SLOCK);
}
if (rv == KERN_SUCCESS) {
/*
* XXX: continuation of rude stack hack
*/
nss = nss >> PGSHIFT;
if (vm && nss > vm->vm_ssize) {
vm->vm_ssize = nss;
}
/*
* va could be a page table address, if the fault
*/
if (type == T_PAGEFLT)
return;
goto out;
}
nogo:
if (type == T_PAGEFLT) {
if (curpcb->pcb_onfault)
goto copyfault;
goto we_re_toast;
}
i = (rv == KERN_PROTECTION_FAILURE) ? SIGBUS : SIGSEGV;
/* kludge to pass faulting virtual address to sendsig */
ucode = type &~ T_USER;
frame.tf_err = eva;
break;
}
#if NDDB == 0
case T_TRCTRAP: /* trace trap -- someone single stepping lcall's */
frame.tf_eflags &= ~PSL_T;
/* Q: how do we turn it on again? */
return;
#endif
case T_BPTFLT|T_USER: /* bpt instruction fault */
case T_TRCTRAP|T_USER: /* trace trap */
frame.tf_eflags &= ~PSL_T;
i = SIGTRAP;
break;
#if NISA > 0
case T_NMI:
case T_NMI|T_USER:
#if NDDB > 0
/* NMI can be hooked up to a pushbutton for debugging */
printf ("NMI ... going to debugger\n");
if (kdb_trap (type, 0, &frame))
return;
#endif
/* machine/parity/power fail/"kitchen sink" faults */
if (isa_nmi(code) == 0) return;
/* FALL THROUGH */
#endif
default:
we_re_toast:
fault_type = type & ~T_USER;
if (fault_type <= MAX_TRAP_MSG)
printf("\n\nFatal trap %d: %s while in %s mode\n",
fault_type, trap_msg[fault_type],
ISPL(frame.tf_cs) == SEL_UPL ? "user" : "kernel");
if (fault_type == T_PAGEFLT) {
printf("fault virtual address = 0x%x\n", eva);
printf("fault code = %s %s, %s\n",
code & PGEX_U ? "user" : "supervisor",
code & PGEX_W ? "write" : "read",
code & PGEX_P ? "protection violation" : "page not present");
}
printf("instruction pointer = 0x%x\n", frame.tf_eip);
printf("processor eflags = ");
if (frame.tf_eflags & EFL_TF)
printf("trace/trap, ");
if (frame.tf_eflags & EFL_IF)
printf("interrupt enabled, ");
if (frame.tf_eflags & EFL_NT)
printf("nested task, ");
if (frame.tf_eflags & EFL_RF)
printf("resume, ");
if (frame.tf_eflags & EFL_VM)
printf("vm86, ");
printf("IOPL = %d\n", (frame.tf_eflags & EFL_IOPL) >> 12);
printf("current process = ");
if (curproc) {
printf("%d (%s)\n",
curproc->p_pid, curproc->p_comm ?
curproc->p_comm : "");
} else {
printf("Idle\n");
}
printf("interrupt mask = ");
if ((cpl & netmask) == netmask)
printf("net ");
if ((cpl & ttymask) == ttymask)
printf("tty ");
if ((cpl & biomask) == biomask)
printf("bio ");
if (cpl == 0)
printf("none");
printf("\n");
#ifdef KDB
if (kdb_trap(&psl))
return;
#endif
#if NDDB > 0
if (kdb_trap (type, 0, &frame))
return;
#endif
if (fault_type <= MAX_TRAP_MSG)
panic(trap_msg[fault_type]);
else
panic("unknown/reserved trap");
/* NOT REACHED */
}
trapsignal(p, i, ucode);
if ((type & T_USER) == 0)
return;
out:
while (i = CURSIG(p))
psig(i);
p->p_pri = p->p_usrpri;
if (want_resched) {
int s;
/*
* Since we are curproc, clock will normally just change
* our priority without moving us from one queue to another
* (since the running process is not on a queue.)
* If that happened after we setrq ourselves but before we
* swtch()'ed, we might not be on the queue indicated by
* our priority.
*/
s = splclock();
setrq(p);
p->p_stats->p_ru.ru_nivcsw++;
swtch();
splx(s);
while (i = CURSIG(p))
psig(i);
}
if (p->p_stats->p_prof.pr_scale) {
int ticks;
struct timeval *tv = &p->p_stime;
ticks = ((tv->tv_sec - syst.tv_sec) * 1000 +
(tv->tv_usec - syst.tv_usec) / 1000) / (tick / 1000);
if (ticks) {
#ifdef PROFTIMER
extern int profscale;
addupc(frame.tf_eip, &p->p_stats->p_prof,
ticks * profscale);
#else
addupc(frame.tf_eip, &p->p_stats->p_prof, ticks);
#endif
}
}
curpri = p->p_pri;
}
/*
* Compensate for 386 brain damage (missing URKR).
* This is a little simpler than the pagefault handler in trap() because
* it the page tables have already been faulted in and high addresses
* are thrown out early for other reasons.
*/
int trapwrite(addr)
unsigned addr;
{
unsigned nss;
struct proc *p;
vm_offset_t va;
struct vmspace *vm;
int oldflags;
int rv;
va = trunc_page((vm_offset_t)addr);
/*
* XXX - MAX is END. Changed > to >= for temp. fix.
*/
if (va >= VM_MAXUSER_ADDRESS)
return (1);
/*
* XXX: rude stack hack adapted from trap().
*/
nss = 0;
p = curproc;
vm = p->p_vmspace;
oldflags = p->p_flag;
p->p_flag |= SLOCK;
if ((caddr_t)va >= vm->vm_maxsaddr
&& (caddr_t)va < (caddr_t)USRSTACK) {
nss = roundup(((unsigned)USRSTACK - (unsigned)va), PAGE_SIZE);
if (nss > p->p_rlimit[RLIMIT_STACK].rlim_cur) {
p->p_flag &= ~SLOCK;
p->p_flag |= (oldflags & SLOCK);
return (1);
}
if (vm->vm_ssize && roundup(vm->vm_ssize << PGSHIFT,
DFLSSIZ) < nss) {
caddr_t v;
int grow_amount;
/*
* If necessary, grow the VM that the stack occupies
* to allow for the rlimit. This allows us to not have
* to allocate all of the VM up-front in execve (which
* is expensive).
* Grow the VM by the amount requested rounded up to
* the nearest DFLSSIZ to provide for some hysteresis.
*/
grow_amount = roundup((nss - (vm->vm_ssize << PGSHIFT)), DFLSSIZ);
v = (char *)USRSTACK - roundup(vm->vm_ssize << PGSHIFT, DFLSSIZ) -
grow_amount;
/*
* If there isn't enough room to extend by DFLSSIZ, then
* just extend to the maximum size
*/
if (v < vm->vm_maxsaddr) {
v = vm->vm_maxsaddr;
grow_amount = MAXSSIZ - (vm->vm_ssize << PGSHIFT);
}
if (vm_allocate(&vm->vm_map, (vm_offset_t *)&v,
grow_amount, FALSE)
!= KERN_SUCCESS) {
p->p_flag &= ~SLOCK;
p->p_flag |= (oldflags & SLOCK);
return(1);
}
printf("new stack growth: %lx, %d\n", v, grow_amount);
}
}
{
vm_offset_t v;
v = trunc_page(vtopte(va));
/*
* wire the pte page
*/
if (va < USRSTACK) {
vm_map_pageable(&vm->vm_map, v, round_page(v+1), FALSE);
}
/*
* fault the data page
*/
rv = vm_fault(&vm->vm_map, va, VM_PROT_READ|VM_PROT_WRITE, FALSE);
/*
* unwire the pte page
*/
if (va < USRSTACK) {
vm_map_pageable(&vm->vm_map, v, round_page(v+1), TRUE);
}
}
p->p_flag &= ~SLOCK;
p->p_flag |= (oldflags & SLOCK);
if (rv != KERN_SUCCESS)
return 1;
/*
* XXX: continuation of rude stack hack
*/
nss >>= PGSHIFT;
if (nss > vm->vm_ssize) {
vm->vm_ssize = nss;
}
return (0);
}
/*
* syscall(frame):
* System call request from POSIX system call gate interface to kernel.
* Like trap(), argument is call by reference.
*/
/*ARGSUSED*/
void
syscall(frame)
volatile struct trapframe frame;
{
register int *locr0 = ((int *)&frame);
register caddr_t params;
register int i;
register struct sysent *callp;
register struct proc *p = curproc;
struct timeval syst;
int error, opc;
int args[8], rval[2];
int code;
#ifdef lint
r0 = 0; r0 = r0; r1 = 0; r1 = r1;
#endif
syst = p->p_stime;
if (ISPL(frame.tf_cs) != SEL_UPL)
panic("syscall");
code = frame.tf_eax;
p->p_regs = (int *)&frame;
params = (caddr_t)frame.tf_esp + sizeof (int) ;
/*
* Reconstruct pc, assuming lcall $X,y is 7 bytes, as it is always.
*/
opc = frame.tf_eip - 7;
if (code == 0) {
code = fuword(params);
params += sizeof (int);
}
if (code < 0 || code >= nsysent)
callp = &sysent[0];
else
callp = &sysent[code];
if ((i = callp->sy_narg * sizeof (int)) &&
(error = copyin(params, (caddr_t)args, (u_int)i))) {
frame.tf_eax = error;
frame.tf_eflags |= PSL_C; /* carry bit */
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSCALL))
ktrsyscall(p->p_tracep, code, callp->sy_narg, args);
#endif
goto done;
}
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSCALL))
ktrsyscall(p->p_tracep, code, callp->sy_narg, args);
#endif
rval[0] = 0;
rval[1] = frame.tf_edx;
/*pg("%d. s %d\n", p->p_pid, code);*/
error = (*callp->sy_call)(p, args, rval);
if (error == ERESTART)
frame.tf_eip = opc;
else if (error != EJUSTRETURN) {
if (error) {
/*pg("error %d", error);*/
frame.tf_eax = error;
frame.tf_eflags |= PSL_C; /* carry bit */
} else {
frame.tf_eax = rval[0];
frame.tf_edx = rval[1];
frame.tf_eflags &= ~PSL_C; /* carry bit */
}
}
/* else if (error == EJUSTRETURN) */
/* nothing to do */
done:
/*
* Reinitialize proc pointer `p' as it may be different
* if this is a child returning from fork syscall.
*/
p = curproc;
while (i = CURSIG(p))
psig(i);
p->p_pri = p->p_usrpri;
if (want_resched) {
int s;
/*
* Since we are curproc, clock will normally just change
* our priority without moving us from one queue to another
* (since the running process is not on a queue.)
* If that happened after we setrq ourselves but before we
* swtch()'ed, we might not be on the queue indicated by
* our priority.
*/
s = splclock();
setrq(p);
p->p_stats->p_ru.ru_nivcsw++;
swtch();
splx(s);
while (i = CURSIG(p))
psig(i);
}
if (p->p_stats->p_prof.pr_scale) {
int ticks;
struct timeval *tv = &p->p_stime;
ticks = ((tv->tv_sec - syst.tv_sec) * 1000 +
(tv->tv_usec - syst.tv_usec) / 1000) / (tick / 1000);
if (ticks) {
#ifdef PROFTIMER
extern int profscale;
addupc(frame.tf_eip, &p->p_stats->p_prof,
ticks * profscale);
#else
addupc(frame.tf_eip, &p->p_stats->p_prof, ticks);
#endif
}
}
curpri = p->p_pri;
#ifdef KTRACE
if (KTRPOINT(p, KTR_SYSRET))
ktrsysret(p->p_tracep, code, error, rval[0]);
#endif
#ifdef DIAGNOSTICx
{ extern int _udatasel, _ucodesel;
if (frame.tf_ss != _udatasel)
printf("ss %x call %d\n", frame.tf_ss, code);
if ((frame.tf_cs&0xffff) != _ucodesel)
printf("cs %x call %d\n", frame.tf_cs, code);
if (frame.tf_eip > VM_MAXUSER_ADDRESS) {
printf("eip %x call %d\n", frame.tf_eip, code);
frame.tf_eip = 0;
}
}
#endif
}