497e80a371
of unnecessary path components that are relics of cvs2svn. (These are directory moves)
3010 lines
94 KiB
C
3010 lines
94 KiB
C
/* Handle initialization things in C++.
|
||
Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
|
||
1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
Contributed by Michael Tiemann (tiemann@cygnus.com)
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
GCC is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to
|
||
the Free Software Foundation, 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
/* High-level class interface. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "tree.h"
|
||
#include "rtl.h"
|
||
#include "expr.h"
|
||
#include "cp-tree.h"
|
||
#include "flags.h"
|
||
#include "output.h"
|
||
#include "except.h"
|
||
#include "toplev.h"
|
||
#include "target.h"
|
||
|
||
static bool begin_init_stmts (tree *, tree *);
|
||
static tree finish_init_stmts (bool, tree, tree);
|
||
static void construct_virtual_base (tree, tree);
|
||
static void expand_aggr_init_1 (tree, tree, tree, tree, int);
|
||
static void expand_default_init (tree, tree, tree, tree, int);
|
||
static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
|
||
static void perform_member_init (tree, tree);
|
||
static tree build_builtin_delete_call (tree);
|
||
static int member_init_ok_or_else (tree, tree, tree);
|
||
static void expand_virtual_init (tree, tree);
|
||
static tree sort_mem_initializers (tree, tree);
|
||
static tree initializing_context (tree);
|
||
static void expand_cleanup_for_base (tree, tree);
|
||
static tree get_temp_regvar (tree, tree);
|
||
static tree dfs_initialize_vtbl_ptrs (tree, void *);
|
||
static tree build_default_init (tree, tree);
|
||
static tree build_dtor_call (tree, special_function_kind, int);
|
||
static tree build_field_list (tree, tree, int *);
|
||
static tree build_vtbl_address (tree);
|
||
|
||
/* We are about to generate some complex initialization code.
|
||
Conceptually, it is all a single expression. However, we may want
|
||
to include conditionals, loops, and other such statement-level
|
||
constructs. Therefore, we build the initialization code inside a
|
||
statement-expression. This function starts such an expression.
|
||
STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
|
||
pass them back to finish_init_stmts when the expression is
|
||
complete. */
|
||
|
||
static bool
|
||
begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
|
||
{
|
||
bool is_global = !building_stmt_tree ();
|
||
|
||
*stmt_expr_p = begin_stmt_expr ();
|
||
*compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
|
||
|
||
return is_global;
|
||
}
|
||
|
||
/* Finish out the statement-expression begun by the previous call to
|
||
begin_init_stmts. Returns the statement-expression itself. */
|
||
|
||
static tree
|
||
finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
|
||
{
|
||
finish_compound_stmt (compound_stmt);
|
||
|
||
stmt_expr = finish_stmt_expr (stmt_expr, true);
|
||
|
||
gcc_assert (!building_stmt_tree () == is_global);
|
||
|
||
return stmt_expr;
|
||
}
|
||
|
||
/* Constructors */
|
||
|
||
/* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
|
||
which we want to initialize the vtable pointer for, DATA is
|
||
TREE_LIST whose TREE_VALUE is the this ptr expression. */
|
||
|
||
static tree
|
||
dfs_initialize_vtbl_ptrs (tree binfo, void *data)
|
||
{
|
||
if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
|
||
return dfs_skip_bases;
|
||
|
||
if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
|
||
{
|
||
tree base_ptr = TREE_VALUE ((tree) data);
|
||
|
||
base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
|
||
|
||
expand_virtual_init (binfo, base_ptr);
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Initialize all the vtable pointers in the object pointed to by
|
||
ADDR. */
|
||
|
||
void
|
||
initialize_vtbl_ptrs (tree addr)
|
||
{
|
||
tree list;
|
||
tree type;
|
||
|
||
type = TREE_TYPE (TREE_TYPE (addr));
|
||
list = build_tree_list (type, addr);
|
||
|
||
/* Walk through the hierarchy, initializing the vptr in each base
|
||
class. We do these in pre-order because we can't find the virtual
|
||
bases for a class until we've initialized the vtbl for that
|
||
class. */
|
||
dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
|
||
}
|
||
|
||
/* Return an expression for the zero-initialization of an object with
|
||
type T. This expression will either be a constant (in the case
|
||
that T is a scalar), or a CONSTRUCTOR (in the case that T is an
|
||
aggregate). In either case, the value can be used as DECL_INITIAL
|
||
for a decl of the indicated TYPE; it is a valid static initializer.
|
||
If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
|
||
number of elements in the array. If STATIC_STORAGE_P is TRUE,
|
||
initializers are only generated for entities for which
|
||
zero-initialization does not simply mean filling the storage with
|
||
zero bytes. */
|
||
|
||
tree
|
||
build_zero_init (tree type, tree nelts, bool static_storage_p)
|
||
{
|
||
tree init = NULL_TREE;
|
||
|
||
/* [dcl.init]
|
||
|
||
To zero-initialization storage for an object of type T means:
|
||
|
||
-- if T is a scalar type, the storage is set to the value of zero
|
||
converted to T.
|
||
|
||
-- if T is a non-union class type, the storage for each nonstatic
|
||
data member and each base-class subobject is zero-initialized.
|
||
|
||
-- if T is a union type, the storage for its first data member is
|
||
zero-initialized.
|
||
|
||
-- if T is an array type, the storage for each element is
|
||
zero-initialized.
|
||
|
||
-- if T is a reference type, no initialization is performed. */
|
||
|
||
gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
|
||
|
||
if (type == error_mark_node)
|
||
;
|
||
else if (static_storage_p && zero_init_p (type))
|
||
/* In order to save space, we do not explicitly build initializers
|
||
for items that do not need them. GCC's semantics are that
|
||
items with static storage duration that are not otherwise
|
||
initialized are initialized to zero. */
|
||
;
|
||
else if (SCALAR_TYPE_P (type))
|
||
init = convert (type, integer_zero_node);
|
||
else if (CLASS_TYPE_P (type))
|
||
{
|
||
tree field;
|
||
VEC(constructor_elt,gc) *v = NULL;
|
||
|
||
/* Iterate over the fields, building initializations. */
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
{
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
continue;
|
||
|
||
/* Note that for class types there will be FIELD_DECLs
|
||
corresponding to base classes as well. Thus, iterating
|
||
over TYPE_FIELDs will result in correct initialization of
|
||
all of the subobjects. */
|
||
if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
|
||
{
|
||
tree value = build_zero_init (TREE_TYPE (field),
|
||
/*nelts=*/NULL_TREE,
|
||
static_storage_p);
|
||
CONSTRUCTOR_APPEND_ELT(v, field, value);
|
||
}
|
||
|
||
/* For unions, only the first field is initialized. */
|
||
if (TREE_CODE (type) == UNION_TYPE)
|
||
break;
|
||
}
|
||
|
||
/* Build a constructor to contain the initializations. */
|
||
init = build_constructor (type, v);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
tree max_index;
|
||
VEC(constructor_elt,gc) *v = NULL;
|
||
|
||
/* Iterate over the array elements, building initializations. */
|
||
if (nelts)
|
||
max_index = fold_build2 (MINUS_EXPR, TREE_TYPE (nelts),
|
||
nelts, integer_one_node);
|
||
else
|
||
max_index = array_type_nelts (type);
|
||
|
||
/* If we have an error_mark here, we should just return error mark
|
||
as we don't know the size of the array yet. */
|
||
if (max_index == error_mark_node)
|
||
return error_mark_node;
|
||
gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
|
||
|
||
/* A zero-sized array, which is accepted as an extension, will
|
||
have an upper bound of -1. */
|
||
if (!tree_int_cst_equal (max_index, integer_minus_one_node))
|
||
{
|
||
constructor_elt *ce;
|
||
|
||
v = VEC_alloc (constructor_elt, gc, 1);
|
||
ce = VEC_quick_push (constructor_elt, v, NULL);
|
||
|
||
/* If this is a one element array, we just use a regular init. */
|
||
if (tree_int_cst_equal (size_zero_node, max_index))
|
||
ce->index = size_zero_node;
|
||
else
|
||
ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
|
||
max_index);
|
||
|
||
ce->value = build_zero_init (TREE_TYPE (type),
|
||
/*nelts=*/NULL_TREE,
|
||
static_storage_p);
|
||
}
|
||
|
||
/* Build a constructor to contain the initializations. */
|
||
init = build_constructor (type, v);
|
||
}
|
||
else if (TREE_CODE (type) == VECTOR_TYPE)
|
||
init = fold_convert (type, integer_zero_node);
|
||
else
|
||
gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
|
||
|
||
/* In all cases, the initializer is a constant. */
|
||
if (init)
|
||
{
|
||
TREE_CONSTANT (init) = 1;
|
||
TREE_INVARIANT (init) = 1;
|
||
}
|
||
|
||
return init;
|
||
}
|
||
|
||
/* Build an expression for the default-initialization of an object of
|
||
the indicated TYPE. If NELTS is non-NULL, and TYPE is an
|
||
ARRAY_TYPE, NELTS is the number of elements in the array. If
|
||
initialization of TYPE requires calling constructors, this function
|
||
returns NULL_TREE; the caller is responsible for arranging for the
|
||
constructors to be called. */
|
||
|
||
static tree
|
||
build_default_init (tree type, tree nelts)
|
||
{
|
||
/* [dcl.init]:
|
||
|
||
To default-initialize an object of type T means:
|
||
|
||
--if T is a non-POD class type (clause _class_), the default construc-
|
||
tor for T is called (and the initialization is ill-formed if T has
|
||
no accessible default constructor);
|
||
|
||
--if T is an array type, each element is default-initialized;
|
||
|
||
--otherwise, the storage for the object is zero-initialized.
|
||
|
||
A program that calls for default-initialization of an entity of refer-
|
||
ence type is ill-formed. */
|
||
|
||
/* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
|
||
performing the initialization. This is confusing in that some
|
||
non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
|
||
a class with a pointer-to-data member as a non-static data member
|
||
does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
|
||
passing non-PODs to build_zero_init below, which is contrary to
|
||
the semantics quoted above from [dcl.init].
|
||
|
||
It happens, however, that the behavior of the constructor the
|
||
standard says we should have generated would be precisely the
|
||
same as that obtained by calling build_zero_init below, so things
|
||
work out OK. */
|
||
if (TYPE_NEEDS_CONSTRUCTING (type)
|
||
|| (nelts && TREE_CODE (nelts) != INTEGER_CST))
|
||
return NULL_TREE;
|
||
|
||
/* At this point, TYPE is either a POD class type, an array of POD
|
||
classes, or something even more innocuous. */
|
||
return build_zero_init (type, nelts, /*static_storage_p=*/false);
|
||
}
|
||
|
||
/* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
|
||
arguments. If TREE_LIST is void_type_node, an empty initializer
|
||
list was given; if NULL_TREE no initializer was given. */
|
||
|
||
static void
|
||
perform_member_init (tree member, tree init)
|
||
{
|
||
tree decl;
|
||
tree type = TREE_TYPE (member);
|
||
bool explicit;
|
||
|
||
explicit = (init != NULL_TREE);
|
||
|
||
/* Effective C++ rule 12 requires that all data members be
|
||
initialized. */
|
||
if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
|
||
warning (OPT_Weffc__, "%J%qD should be initialized in the member initialization "
|
||
"list", current_function_decl, member);
|
||
|
||
if (init == void_type_node)
|
||
init = NULL_TREE;
|
||
|
||
/* Get an lvalue for the data member. */
|
||
decl = build_class_member_access_expr (current_class_ref, member,
|
||
/*access_path=*/NULL_TREE,
|
||
/*preserve_reference=*/true);
|
||
if (decl == error_mark_node)
|
||
return;
|
||
|
||
/* Deal with this here, as we will get confused if we try to call the
|
||
assignment op for an anonymous union. This can happen in a
|
||
synthesized copy constructor. */
|
||
if (ANON_AGGR_TYPE_P (type))
|
||
{
|
||
if (init)
|
||
{
|
||
init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
|
||
finish_expr_stmt (init);
|
||
}
|
||
}
|
||
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
||
{
|
||
if (explicit
|
||
&& TREE_CODE (type) == ARRAY_TYPE
|
||
&& init != NULL_TREE
|
||
&& TREE_CHAIN (init) == NULL_TREE
|
||
&& TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
|
||
{
|
||
/* Initialization of one array from another. */
|
||
finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
|
||
/*explicit_default_init_p=*/false,
|
||
/* from_array=*/1));
|
||
}
|
||
else
|
||
finish_expr_stmt (build_aggr_init (decl, init, 0));
|
||
}
|
||
else
|
||
{
|
||
if (init == NULL_TREE)
|
||
{
|
||
if (explicit)
|
||
{
|
||
init = build_default_init (type, /*nelts=*/NULL_TREE);
|
||
if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
warning (0, "%Jdefault-initialization of %q#D, "
|
||
"which has reference type",
|
||
current_function_decl, member);
|
||
}
|
||
/* member traversal: note it leaves init NULL */
|
||
else if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
pedwarn ("%Juninitialized reference member %qD",
|
||
current_function_decl, member);
|
||
else if (CP_TYPE_CONST_P (type))
|
||
pedwarn ("%Juninitialized member %qD with %<const%> type %qT",
|
||
current_function_decl, member, type);
|
||
}
|
||
else if (TREE_CODE (init) == TREE_LIST)
|
||
/* There was an explicit member initialization. Do some work
|
||
in that case. */
|
||
init = build_x_compound_expr_from_list (init, "member initializer");
|
||
|
||
if (init)
|
||
finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
|
||
}
|
||
|
||
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
|
||
{
|
||
tree expr;
|
||
|
||
expr = build_class_member_access_expr (current_class_ref, member,
|
||
/*access_path=*/NULL_TREE,
|
||
/*preserve_reference=*/false);
|
||
expr = build_delete (type, expr, sfk_complete_destructor,
|
||
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
|
||
|
||
if (expr != error_mark_node)
|
||
finish_eh_cleanup (expr);
|
||
}
|
||
}
|
||
|
||
/* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
|
||
the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
|
||
|
||
static tree
|
||
build_field_list (tree t, tree list, int *uses_unions_p)
|
||
{
|
||
tree fields;
|
||
|
||
*uses_unions_p = 0;
|
||
|
||
/* Note whether or not T is a union. */
|
||
if (TREE_CODE (t) == UNION_TYPE)
|
||
*uses_unions_p = 1;
|
||
|
||
for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
|
||
{
|
||
/* Skip CONST_DECLs for enumeration constants and so forth. */
|
||
if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
|
||
continue;
|
||
|
||
/* Keep track of whether or not any fields are unions. */
|
||
if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
|
||
*uses_unions_p = 1;
|
||
|
||
/* For an anonymous struct or union, we must recursively
|
||
consider the fields of the anonymous type. They can be
|
||
directly initialized from the constructor. */
|
||
if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
|
||
{
|
||
/* Add this field itself. Synthesized copy constructors
|
||
initialize the entire aggregate. */
|
||
list = tree_cons (fields, NULL_TREE, list);
|
||
/* And now add the fields in the anonymous aggregate. */
|
||
list = build_field_list (TREE_TYPE (fields), list,
|
||
uses_unions_p);
|
||
}
|
||
/* Add this field. */
|
||
else if (DECL_NAME (fields))
|
||
list = tree_cons (fields, NULL_TREE, list);
|
||
}
|
||
|
||
return list;
|
||
}
|
||
|
||
/* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
|
||
a FIELD_DECL or BINFO in T that needs initialization. The
|
||
TREE_VALUE gives the initializer, or list of initializer arguments.
|
||
|
||
Return a TREE_LIST containing all of the initializations required
|
||
for T, in the order in which they should be performed. The output
|
||
list has the same format as the input. */
|
||
|
||
static tree
|
||
sort_mem_initializers (tree t, tree mem_inits)
|
||
{
|
||
tree init;
|
||
tree base, binfo, base_binfo;
|
||
tree sorted_inits;
|
||
tree next_subobject;
|
||
VEC(tree,gc) *vbases;
|
||
int i;
|
||
int uses_unions_p;
|
||
|
||
/* Build up a list of initializations. The TREE_PURPOSE of entry
|
||
will be the subobject (a FIELD_DECL or BINFO) to initialize. The
|
||
TREE_VALUE will be the constructor arguments, or NULL if no
|
||
explicit initialization was provided. */
|
||
sorted_inits = NULL_TREE;
|
||
|
||
/* Process the virtual bases. */
|
||
for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
|
||
VEC_iterate (tree, vbases, i, base); i++)
|
||
sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
|
||
|
||
/* Process the direct bases. */
|
||
for (binfo = TYPE_BINFO (t), i = 0;
|
||
BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
|
||
if (!BINFO_VIRTUAL_P (base_binfo))
|
||
sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
|
||
|
||
/* Process the non-static data members. */
|
||
sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
|
||
/* Reverse the entire list of initializations, so that they are in
|
||
the order that they will actually be performed. */
|
||
sorted_inits = nreverse (sorted_inits);
|
||
|
||
/* If the user presented the initializers in an order different from
|
||
that in which they will actually occur, we issue a warning. Keep
|
||
track of the next subobject which can be explicitly initialized
|
||
without issuing a warning. */
|
||
next_subobject = sorted_inits;
|
||
|
||
/* Go through the explicit initializers, filling in TREE_PURPOSE in
|
||
the SORTED_INITS. */
|
||
for (init = mem_inits; init; init = TREE_CHAIN (init))
|
||
{
|
||
tree subobject;
|
||
tree subobject_init;
|
||
|
||
subobject = TREE_PURPOSE (init);
|
||
|
||
/* If the explicit initializers are in sorted order, then
|
||
SUBOBJECT will be NEXT_SUBOBJECT, or something following
|
||
it. */
|
||
for (subobject_init = next_subobject;
|
||
subobject_init;
|
||
subobject_init = TREE_CHAIN (subobject_init))
|
||
if (TREE_PURPOSE (subobject_init) == subobject)
|
||
break;
|
||
|
||
/* Issue a warning if the explicit initializer order does not
|
||
match that which will actually occur.
|
||
??? Are all these on the correct lines? */
|
||
if (warn_reorder && !subobject_init)
|
||
{
|
||
if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
|
||
warning (OPT_Wreorder, "%q+D will be initialized after",
|
||
TREE_PURPOSE (next_subobject));
|
||
else
|
||
warning (OPT_Wreorder, "base %qT will be initialized after",
|
||
TREE_PURPOSE (next_subobject));
|
||
if (TREE_CODE (subobject) == FIELD_DECL)
|
||
warning (OPT_Wreorder, " %q+#D", subobject);
|
||
else
|
||
warning (OPT_Wreorder, " base %qT", subobject);
|
||
warning (OPT_Wreorder, "%J when initialized here", current_function_decl);
|
||
}
|
||
|
||
/* Look again, from the beginning of the list. */
|
||
if (!subobject_init)
|
||
{
|
||
subobject_init = sorted_inits;
|
||
while (TREE_PURPOSE (subobject_init) != subobject)
|
||
subobject_init = TREE_CHAIN (subobject_init);
|
||
}
|
||
|
||
/* It is invalid to initialize the same subobject more than
|
||
once. */
|
||
if (TREE_VALUE (subobject_init))
|
||
{
|
||
if (TREE_CODE (subobject) == FIELD_DECL)
|
||
error ("%Jmultiple initializations given for %qD",
|
||
current_function_decl, subobject);
|
||
else
|
||
error ("%Jmultiple initializations given for base %qT",
|
||
current_function_decl, subobject);
|
||
}
|
||
|
||
/* Record the initialization. */
|
||
TREE_VALUE (subobject_init) = TREE_VALUE (init);
|
||
next_subobject = subobject_init;
|
||
}
|
||
|
||
/* [class.base.init]
|
||
|
||
If a ctor-initializer specifies more than one mem-initializer for
|
||
multiple members of the same union (including members of
|
||
anonymous unions), the ctor-initializer is ill-formed. */
|
||
if (uses_unions_p)
|
||
{
|
||
tree last_field = NULL_TREE;
|
||
for (init = sorted_inits; init; init = TREE_CHAIN (init))
|
||
{
|
||
tree field;
|
||
tree field_type;
|
||
int done;
|
||
|
||
/* Skip uninitialized members and base classes. */
|
||
if (!TREE_VALUE (init)
|
||
|| TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
|
||
continue;
|
||
/* See if this field is a member of a union, or a member of a
|
||
structure contained in a union, etc. */
|
||
field = TREE_PURPOSE (init);
|
||
for (field_type = DECL_CONTEXT (field);
|
||
!same_type_p (field_type, t);
|
||
field_type = TYPE_CONTEXT (field_type))
|
||
if (TREE_CODE (field_type) == UNION_TYPE)
|
||
break;
|
||
/* If this field is not a member of a union, skip it. */
|
||
if (TREE_CODE (field_type) != UNION_TYPE)
|
||
continue;
|
||
|
||
/* It's only an error if we have two initializers for the same
|
||
union type. */
|
||
if (!last_field)
|
||
{
|
||
last_field = field;
|
||
continue;
|
||
}
|
||
|
||
/* See if LAST_FIELD and the field initialized by INIT are
|
||
members of the same union. If so, there's a problem,
|
||
unless they're actually members of the same structure
|
||
which is itself a member of a union. For example, given:
|
||
|
||
union { struct { int i; int j; }; };
|
||
|
||
initializing both `i' and `j' makes sense. */
|
||
field_type = DECL_CONTEXT (field);
|
||
done = 0;
|
||
do
|
||
{
|
||
tree last_field_type;
|
||
|
||
last_field_type = DECL_CONTEXT (last_field);
|
||
while (1)
|
||
{
|
||
if (same_type_p (last_field_type, field_type))
|
||
{
|
||
if (TREE_CODE (field_type) == UNION_TYPE)
|
||
error ("%Jinitializations for multiple members of %qT",
|
||
current_function_decl, last_field_type);
|
||
done = 1;
|
||
break;
|
||
}
|
||
|
||
if (same_type_p (last_field_type, t))
|
||
break;
|
||
|
||
last_field_type = TYPE_CONTEXT (last_field_type);
|
||
}
|
||
|
||
/* If we've reached the outermost class, then we're
|
||
done. */
|
||
if (same_type_p (field_type, t))
|
||
break;
|
||
|
||
field_type = TYPE_CONTEXT (field_type);
|
||
}
|
||
while (!done);
|
||
|
||
last_field = field;
|
||
}
|
||
}
|
||
|
||
return sorted_inits;
|
||
}
|
||
|
||
/* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
|
||
is a TREE_LIST giving the explicit mem-initializer-list for the
|
||
constructor. The TREE_PURPOSE of each entry is a subobject (a
|
||
FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
|
||
is a TREE_LIST giving the arguments to the constructor or
|
||
void_type_node for an empty list of arguments. */
|
||
|
||
void
|
||
emit_mem_initializers (tree mem_inits)
|
||
{
|
||
/* We will already have issued an error message about the fact that
|
||
the type is incomplete. */
|
||
if (!COMPLETE_TYPE_P (current_class_type))
|
||
return;
|
||
|
||
/* Sort the mem-initializers into the order in which the
|
||
initializations should be performed. */
|
||
mem_inits = sort_mem_initializers (current_class_type, mem_inits);
|
||
|
||
in_base_initializer = 1;
|
||
|
||
/* Initialize base classes. */
|
||
while (mem_inits
|
||
&& TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
|
||
{
|
||
tree subobject = TREE_PURPOSE (mem_inits);
|
||
tree arguments = TREE_VALUE (mem_inits);
|
||
|
||
/* If these initializations are taking place in a copy
|
||
constructor, the base class should probably be explicitly
|
||
initialized. */
|
||
if (extra_warnings && !arguments
|
||
&& DECL_COPY_CONSTRUCTOR_P (current_function_decl)
|
||
&& TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
|
||
warning (OPT_Wextra, "%Jbase class %q#T should be explicitly initialized in the "
|
||
"copy constructor",
|
||
current_function_decl, BINFO_TYPE (subobject));
|
||
|
||
/* If an explicit -- but empty -- initializer list was present,
|
||
treat it just like default initialization at this point. */
|
||
if (arguments == void_type_node)
|
||
arguments = NULL_TREE;
|
||
|
||
/* Initialize the base. */
|
||
if (BINFO_VIRTUAL_P (subobject))
|
||
construct_virtual_base (subobject, arguments);
|
||
else
|
||
{
|
||
tree base_addr;
|
||
|
||
base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
|
||
subobject, 1);
|
||
expand_aggr_init_1 (subobject, NULL_TREE,
|
||
build_indirect_ref (base_addr, NULL),
|
||
arguments,
|
||
LOOKUP_NORMAL);
|
||
expand_cleanup_for_base (subobject, NULL_TREE);
|
||
}
|
||
|
||
mem_inits = TREE_CHAIN (mem_inits);
|
||
}
|
||
in_base_initializer = 0;
|
||
|
||
/* Initialize the vptrs. */
|
||
initialize_vtbl_ptrs (current_class_ptr);
|
||
|
||
/* Initialize the data members. */
|
||
while (mem_inits)
|
||
{
|
||
perform_member_init (TREE_PURPOSE (mem_inits),
|
||
TREE_VALUE (mem_inits));
|
||
mem_inits = TREE_CHAIN (mem_inits);
|
||
}
|
||
}
|
||
|
||
/* Returns the address of the vtable (i.e., the value that should be
|
||
assigned to the vptr) for BINFO. */
|
||
|
||
static tree
|
||
build_vtbl_address (tree binfo)
|
||
{
|
||
tree binfo_for = binfo;
|
||
tree vtbl;
|
||
|
||
if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
|
||
/* If this is a virtual primary base, then the vtable we want to store
|
||
is that for the base this is being used as the primary base of. We
|
||
can't simply skip the initialization, because we may be expanding the
|
||
inits of a subobject constructor where the virtual base layout
|
||
can be different. */
|
||
while (BINFO_PRIMARY_P (binfo_for))
|
||
binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
|
||
|
||
/* Figure out what vtable BINFO's vtable is based on, and mark it as
|
||
used. */
|
||
vtbl = get_vtbl_decl_for_binfo (binfo_for);
|
||
assemble_external (vtbl);
|
||
TREE_USED (vtbl) = 1;
|
||
|
||
/* Now compute the address to use when initializing the vptr. */
|
||
vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
|
||
if (TREE_CODE (vtbl) == VAR_DECL)
|
||
vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
|
||
|
||
return vtbl;
|
||
}
|
||
|
||
/* This code sets up the virtual function tables appropriate for
|
||
the pointer DECL. It is a one-ply initialization.
|
||
|
||
BINFO is the exact type that DECL is supposed to be. In
|
||
multiple inheritance, this might mean "C's A" if C : A, B. */
|
||
|
||
static void
|
||
expand_virtual_init (tree binfo, tree decl)
|
||
{
|
||
tree vtbl, vtbl_ptr;
|
||
tree vtt_index;
|
||
|
||
/* Compute the initializer for vptr. */
|
||
vtbl = build_vtbl_address (binfo);
|
||
|
||
/* We may get this vptr from a VTT, if this is a subobject
|
||
constructor or subobject destructor. */
|
||
vtt_index = BINFO_VPTR_INDEX (binfo);
|
||
if (vtt_index)
|
||
{
|
||
tree vtbl2;
|
||
tree vtt_parm;
|
||
|
||
/* Compute the value to use, when there's a VTT. */
|
||
vtt_parm = current_vtt_parm;
|
||
vtbl2 = build2 (PLUS_EXPR,
|
||
TREE_TYPE (vtt_parm),
|
||
vtt_parm,
|
||
vtt_index);
|
||
vtbl2 = build_indirect_ref (vtbl2, NULL);
|
||
vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
|
||
|
||
/* The actual initializer is the VTT value only in the subobject
|
||
constructor. In maybe_clone_body we'll substitute NULL for
|
||
the vtt_parm in the case of the non-subobject constructor. */
|
||
vtbl = build3 (COND_EXPR,
|
||
TREE_TYPE (vtbl),
|
||
build2 (EQ_EXPR, boolean_type_node,
|
||
current_in_charge_parm, integer_zero_node),
|
||
vtbl2,
|
||
vtbl);
|
||
}
|
||
|
||
/* Compute the location of the vtpr. */
|
||
vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
|
||
TREE_TYPE (binfo));
|
||
gcc_assert (vtbl_ptr != error_mark_node);
|
||
|
||
/* Assign the vtable to the vptr. */
|
||
vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
|
||
finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
|
||
}
|
||
|
||
/* If an exception is thrown in a constructor, those base classes already
|
||
constructed must be destroyed. This function creates the cleanup
|
||
for BINFO, which has just been constructed. If FLAG is non-NULL,
|
||
it is a DECL which is nonzero when this base needs to be
|
||
destroyed. */
|
||
|
||
static void
|
||
expand_cleanup_for_base (tree binfo, tree flag)
|
||
{
|
||
tree expr;
|
||
|
||
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
|
||
return;
|
||
|
||
/* Call the destructor. */
|
||
expr = build_special_member_call (current_class_ref,
|
||
base_dtor_identifier,
|
||
NULL_TREE,
|
||
binfo,
|
||
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
|
||
if (flag)
|
||
expr = fold_build3 (COND_EXPR, void_type_node,
|
||
c_common_truthvalue_conversion (flag),
|
||
expr, integer_zero_node);
|
||
|
||
finish_eh_cleanup (expr);
|
||
}
|
||
|
||
/* Construct the virtual base-class VBASE passing the ARGUMENTS to its
|
||
constructor. */
|
||
|
||
static void
|
||
construct_virtual_base (tree vbase, tree arguments)
|
||
{
|
||
tree inner_if_stmt;
|
||
tree exp;
|
||
tree flag;
|
||
|
||
/* If there are virtual base classes with destructors, we need to
|
||
emit cleanups to destroy them if an exception is thrown during
|
||
the construction process. These exception regions (i.e., the
|
||
period during which the cleanups must occur) begin from the time
|
||
the construction is complete to the end of the function. If we
|
||
create a conditional block in which to initialize the
|
||
base-classes, then the cleanup region for the virtual base begins
|
||
inside a block, and ends outside of that block. This situation
|
||
confuses the sjlj exception-handling code. Therefore, we do not
|
||
create a single conditional block, but one for each
|
||
initialization. (That way the cleanup regions always begin
|
||
in the outer block.) We trust the back-end to figure out
|
||
that the FLAG will not change across initializations, and
|
||
avoid doing multiple tests. */
|
||
flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
|
||
inner_if_stmt = begin_if_stmt ();
|
||
finish_if_stmt_cond (flag, inner_if_stmt);
|
||
|
||
/* Compute the location of the virtual base. If we're
|
||
constructing virtual bases, then we must be the most derived
|
||
class. Therefore, we don't have to look up the virtual base;
|
||
we already know where it is. */
|
||
exp = convert_to_base_statically (current_class_ref, vbase);
|
||
|
||
expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
|
||
LOOKUP_COMPLAIN);
|
||
finish_then_clause (inner_if_stmt);
|
||
finish_if_stmt (inner_if_stmt);
|
||
|
||
expand_cleanup_for_base (vbase, flag);
|
||
}
|
||
|
||
/* Find the context in which this FIELD can be initialized. */
|
||
|
||
static tree
|
||
initializing_context (tree field)
|
||
{
|
||
tree t = DECL_CONTEXT (field);
|
||
|
||
/* Anonymous union members can be initialized in the first enclosing
|
||
non-anonymous union context. */
|
||
while (t && ANON_AGGR_TYPE_P (t))
|
||
t = TYPE_CONTEXT (t);
|
||
return t;
|
||
}
|
||
|
||
/* Function to give error message if member initialization specification
|
||
is erroneous. FIELD is the member we decided to initialize.
|
||
TYPE is the type for which the initialization is being performed.
|
||
FIELD must be a member of TYPE.
|
||
|
||
MEMBER_NAME is the name of the member. */
|
||
|
||
static int
|
||
member_init_ok_or_else (tree field, tree type, tree member_name)
|
||
{
|
||
if (field == error_mark_node)
|
||
return 0;
|
||
if (!field)
|
||
{
|
||
error ("class %qT does not have any field named %qD", type,
|
||
member_name);
|
||
return 0;
|
||
}
|
||
if (TREE_CODE (field) == VAR_DECL)
|
||
{
|
||
error ("%q#D is a static data member; it can only be "
|
||
"initialized at its definition",
|
||
field);
|
||
return 0;
|
||
}
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
{
|
||
error ("%q#D is not a non-static data member of %qT",
|
||
field, type);
|
||
return 0;
|
||
}
|
||
if (initializing_context (field) != type)
|
||
{
|
||
error ("class %qT does not have any field named %qD", type,
|
||
member_name);
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
|
||
is a _TYPE node or TYPE_DECL which names a base for that type.
|
||
Check the validity of NAME, and return either the base _TYPE, base
|
||
binfo, or the FIELD_DECL of the member. If NAME is invalid, return
|
||
NULL_TREE and issue a diagnostic.
|
||
|
||
An old style unnamed direct single base construction is permitted,
|
||
where NAME is NULL. */
|
||
|
||
tree
|
||
expand_member_init (tree name)
|
||
{
|
||
tree basetype;
|
||
tree field;
|
||
|
||
if (!current_class_ref)
|
||
return NULL_TREE;
|
||
|
||
if (!name)
|
||
{
|
||
/* This is an obsolete unnamed base class initializer. The
|
||
parser will already have warned about its use. */
|
||
switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
|
||
{
|
||
case 0:
|
||
error ("unnamed initializer for %qT, which has no base classes",
|
||
current_class_type);
|
||
return NULL_TREE;
|
||
case 1:
|
||
basetype = BINFO_TYPE
|
||
(BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
|
||
break;
|
||
default:
|
||
error ("unnamed initializer for %qT, which uses multiple inheritance",
|
||
current_class_type);
|
||
return NULL_TREE;
|
||
}
|
||
}
|
||
else if (TYPE_P (name))
|
||
{
|
||
basetype = TYPE_MAIN_VARIANT (name);
|
||
name = TYPE_NAME (name);
|
||
}
|
||
else if (TREE_CODE (name) == TYPE_DECL)
|
||
basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
|
||
else
|
||
basetype = NULL_TREE;
|
||
|
||
if (basetype)
|
||
{
|
||
tree class_binfo;
|
||
tree direct_binfo;
|
||
tree virtual_binfo;
|
||
int i;
|
||
|
||
if (current_template_parms)
|
||
return basetype;
|
||
|
||
class_binfo = TYPE_BINFO (current_class_type);
|
||
direct_binfo = NULL_TREE;
|
||
virtual_binfo = NULL_TREE;
|
||
|
||
/* Look for a direct base. */
|
||
for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
|
||
if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
|
||
break;
|
||
|
||
/* Look for a virtual base -- unless the direct base is itself
|
||
virtual. */
|
||
if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
|
||
virtual_binfo = binfo_for_vbase (basetype, current_class_type);
|
||
|
||
/* [class.base.init]
|
||
|
||
If a mem-initializer-id is ambiguous because it designates
|
||
both a direct non-virtual base class and an inherited virtual
|
||
base class, the mem-initializer is ill-formed. */
|
||
if (direct_binfo && virtual_binfo)
|
||
{
|
||
error ("%qD is both a direct base and an indirect virtual base",
|
||
basetype);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (!direct_binfo && !virtual_binfo)
|
||
{
|
||
if (CLASSTYPE_VBASECLASSES (current_class_type))
|
||
error ("type %qT is not a direct or virtual base of %qT",
|
||
basetype, current_class_type);
|
||
else
|
||
error ("type %qT is not a direct base of %qT",
|
||
basetype, current_class_type);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
return direct_binfo ? direct_binfo : virtual_binfo;
|
||
}
|
||
else
|
||
{
|
||
if (TREE_CODE (name) == IDENTIFIER_NODE)
|
||
field = lookup_field (current_class_type, name, 1, false);
|
||
else
|
||
field = name;
|
||
|
||
if (member_init_ok_or_else (field, current_class_type, name))
|
||
return field;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* This is like `expand_member_init', only it stores one aggregate
|
||
value into another.
|
||
|
||
INIT comes in two flavors: it is either a value which
|
||
is to be stored in EXP, or it is a parameter list
|
||
to go to a constructor, which will operate on EXP.
|
||
If INIT is not a parameter list for a constructor, then set
|
||
LOOKUP_ONLYCONVERTING.
|
||
If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
|
||
the initializer, if FLAGS is 0, then it is the (init) form.
|
||
If `init' is a CONSTRUCTOR, then we emit a warning message,
|
||
explaining that such initializations are invalid.
|
||
|
||
If INIT resolves to a CALL_EXPR which happens to return
|
||
something of the type we are looking for, then we know
|
||
that we can safely use that call to perform the
|
||
initialization.
|
||
|
||
The virtual function table pointer cannot be set up here, because
|
||
we do not really know its type.
|
||
|
||
This never calls operator=().
|
||
|
||
When initializing, nothing is CONST.
|
||
|
||
A default copy constructor may have to be used to perform the
|
||
initialization.
|
||
|
||
A constructor or a conversion operator may have to be used to
|
||
perform the initialization, but not both, as it would be ambiguous. */
|
||
|
||
tree
|
||
build_aggr_init (tree exp, tree init, int flags)
|
||
{
|
||
tree stmt_expr;
|
||
tree compound_stmt;
|
||
int destroy_temps;
|
||
tree type = TREE_TYPE (exp);
|
||
int was_const = TREE_READONLY (exp);
|
||
int was_volatile = TREE_THIS_VOLATILE (exp);
|
||
int is_global;
|
||
|
||
if (init == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
TREE_READONLY (exp) = 0;
|
||
TREE_THIS_VOLATILE (exp) = 0;
|
||
|
||
if (init && TREE_CODE (init) != TREE_LIST)
|
||
flags |= LOOKUP_ONLYCONVERTING;
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
tree itype;
|
||
|
||
/* An array may not be initialized use the parenthesized
|
||
initialization form -- unless the initializer is "()". */
|
||
if (init && TREE_CODE (init) == TREE_LIST)
|
||
{
|
||
error ("bad array initializer");
|
||
return error_mark_node;
|
||
}
|
||
/* Must arrange to initialize each element of EXP
|
||
from elements of INIT. */
|
||
itype = init ? TREE_TYPE (init) : NULL_TREE;
|
||
if (cp_type_quals (type) != TYPE_UNQUALIFIED)
|
||
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
||
if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
|
||
itype = TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
|
||
stmt_expr = build_vec_init (exp, NULL_TREE, init,
|
||
/*explicit_default_init_p=*/false,
|
||
itype && same_type_p (itype,
|
||
TREE_TYPE (exp)));
|
||
TREE_READONLY (exp) = was_const;
|
||
TREE_THIS_VOLATILE (exp) = was_volatile;
|
||
TREE_TYPE (exp) = type;
|
||
if (init)
|
||
TREE_TYPE (init) = itype;
|
||
return stmt_expr;
|
||
}
|
||
|
||
if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
|
||
/* Just know that we've seen something for this node. */
|
||
TREE_USED (exp) = 1;
|
||
|
||
TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
|
||
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
|
||
destroy_temps = stmts_are_full_exprs_p ();
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
||
expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
|
||
init, LOOKUP_NORMAL|flags);
|
||
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
|
||
TREE_TYPE (exp) = type;
|
||
TREE_READONLY (exp) = was_const;
|
||
TREE_THIS_VOLATILE (exp) = was_volatile;
|
||
|
||
return stmt_expr;
|
||
}
|
||
|
||
static void
|
||
expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
tree ctor_name;
|
||
|
||
/* It fails because there may not be a constructor which takes
|
||
its own type as the first (or only parameter), but which does
|
||
take other types via a conversion. So, if the thing initializing
|
||
the expression is a unit element of type X, first try X(X&),
|
||
followed by initialization by X. If neither of these work
|
||
out, then look hard. */
|
||
tree rval;
|
||
tree parms;
|
||
|
||
if (init && TREE_CODE (init) != TREE_LIST
|
||
&& (flags & LOOKUP_ONLYCONVERTING))
|
||
{
|
||
/* Base subobjects should only get direct-initialization. */
|
||
gcc_assert (true_exp == exp);
|
||
|
||
if (flags & DIRECT_BIND)
|
||
/* Do nothing. We hit this in two cases: Reference initialization,
|
||
where we aren't initializing a real variable, so we don't want
|
||
to run a new constructor; and catching an exception, where we
|
||
have already built up the constructor call so we could wrap it
|
||
in an exception region. */;
|
||
else if (BRACE_ENCLOSED_INITIALIZER_P (init))
|
||
{
|
||
/* A brace-enclosed initializer for an aggregate. */
|
||
gcc_assert (CP_AGGREGATE_TYPE_P (type));
|
||
init = digest_init (type, init);
|
||
}
|
||
else
|
||
init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
|
||
|
||
if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
|
||
/* We need to protect the initialization of a catch parm with a
|
||
call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
|
||
around the TARGET_EXPR for the copy constructor. See
|
||
initialize_handler_parm. */
|
||
{
|
||
TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
|
||
TREE_OPERAND (init, 0));
|
||
TREE_TYPE (init) = void_type_node;
|
||
}
|
||
else
|
||
init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
|
||
TREE_SIDE_EFFECTS (init) = 1;
|
||
finish_expr_stmt (init);
|
||
return;
|
||
}
|
||
|
||
if (init == NULL_TREE
|
||
|| (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
|
||
{
|
||
parms = init;
|
||
if (parms)
|
||
init = TREE_VALUE (parms);
|
||
}
|
||
else
|
||
parms = build_tree_list (NULL_TREE, init);
|
||
|
||
if (true_exp == exp)
|
||
ctor_name = complete_ctor_identifier;
|
||
else
|
||
ctor_name = base_ctor_identifier;
|
||
|
||
rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
|
||
if (TREE_SIDE_EFFECTS (rval))
|
||
finish_expr_stmt (convert_to_void (rval, NULL));
|
||
}
|
||
|
||
/* This function is responsible for initializing EXP with INIT
|
||
(if any).
|
||
|
||
BINFO is the binfo of the type for who we are performing the
|
||
initialization. For example, if W is a virtual base class of A and B,
|
||
and C : A, B.
|
||
If we are initializing B, then W must contain B's W vtable, whereas
|
||
were we initializing C, W must contain C's W vtable.
|
||
|
||
TRUE_EXP is nonzero if it is the true expression being initialized.
|
||
In this case, it may be EXP, or may just contain EXP. The reason we
|
||
need this is because if EXP is a base element of TRUE_EXP, we
|
||
don't necessarily know by looking at EXP where its virtual
|
||
baseclass fields should really be pointing. But we do know
|
||
from TRUE_EXP. In constructors, we don't know anything about
|
||
the value being initialized.
|
||
|
||
FLAGS is just passed to `build_new_method_call'. See that function
|
||
for its description. */
|
||
|
||
static void
|
||
expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
|
||
{
|
||
tree type = TREE_TYPE (exp);
|
||
|
||
gcc_assert (init != error_mark_node && type != error_mark_node);
|
||
gcc_assert (building_stmt_tree ());
|
||
|
||
/* Use a function returning the desired type to initialize EXP for us.
|
||
If the function is a constructor, and its first argument is
|
||
NULL_TREE, know that it was meant for us--just slide exp on
|
||
in and expand the constructor. Constructors now come
|
||
as TARGET_EXPRs. */
|
||
|
||
if (init && TREE_CODE (exp) == VAR_DECL
|
||
&& COMPOUND_LITERAL_P (init))
|
||
{
|
||
/* If store_init_value returns NULL_TREE, the INIT has been
|
||
recorded as the DECL_INITIAL for EXP. That means there's
|
||
nothing more we have to do. */
|
||
init = store_init_value (exp, init);
|
||
if (init)
|
||
finish_expr_stmt (init);
|
||
return;
|
||
}
|
||
|
||
/* We know that expand_default_init can handle everything we want
|
||
at this point. */
|
||
expand_default_init (binfo, true_exp, exp, init, flags);
|
||
}
|
||
|
||
/* Report an error if TYPE is not a user-defined, aggregate type. If
|
||
OR_ELSE is nonzero, give an error message. */
|
||
|
||
int
|
||
is_aggr_type (tree type, int or_else)
|
||
{
|
||
if (type == error_mark_node)
|
||
return 0;
|
||
|
||
if (! IS_AGGR_TYPE (type)
|
||
&& TREE_CODE (type) != TEMPLATE_TYPE_PARM
|
||
&& TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
|
||
{
|
||
if (or_else)
|
||
error ("%qT is not an aggregate type", type);
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
tree
|
||
get_type_value (tree name)
|
||
{
|
||
if (name == error_mark_node)
|
||
return NULL_TREE;
|
||
|
||
if (IDENTIFIER_HAS_TYPE_VALUE (name))
|
||
return IDENTIFIER_TYPE_VALUE (name);
|
||
else
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Build a reference to a member of an aggregate. This is not a C++
|
||
`&', but really something which can have its address taken, and
|
||
then act as a pointer to member, for example TYPE :: FIELD can have
|
||
its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
|
||
this expression is the operand of "&".
|
||
|
||
@@ Prints out lousy diagnostics for operator <typename>
|
||
@@ fields.
|
||
|
||
@@ This function should be rewritten and placed in search.c. */
|
||
|
||
tree
|
||
build_offset_ref (tree type, tree member, bool address_p)
|
||
{
|
||
tree decl;
|
||
tree basebinfo = NULL_TREE;
|
||
|
||
/* class templates can come in as TEMPLATE_DECLs here. */
|
||
if (TREE_CODE (member) == TEMPLATE_DECL)
|
||
return member;
|
||
|
||
if (dependent_type_p (type) || type_dependent_expression_p (member))
|
||
return build_qualified_name (NULL_TREE, type, member,
|
||
/*template_p=*/false);
|
||
|
||
gcc_assert (TYPE_P (type));
|
||
if (! is_aggr_type (type, 1))
|
||
return error_mark_node;
|
||
|
||
gcc_assert (DECL_P (member) || BASELINK_P (member));
|
||
/* Callers should call mark_used before this point. */
|
||
gcc_assert (!DECL_P (member) || TREE_USED (member));
|
||
|
||
if (!COMPLETE_TYPE_P (complete_type (type))
|
||
&& !TYPE_BEING_DEFINED (type))
|
||
{
|
||
error ("incomplete type %qT does not have member %qD", type, member);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Entities other than non-static members need no further
|
||
processing. */
|
||
if (TREE_CODE (member) == TYPE_DECL)
|
||
return member;
|
||
if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
|
||
return convert_from_reference (member);
|
||
|
||
if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
|
||
{
|
||
error ("invalid pointer to bit-field %qD", member);
|
||
return error_mark_node;
|
||
}
|
||
|
||
/* Set up BASEBINFO for member lookup. */
|
||
decl = maybe_dummy_object (type, &basebinfo);
|
||
|
||
/* A lot of this logic is now handled in lookup_member. */
|
||
if (BASELINK_P (member))
|
||
{
|
||
/* Go from the TREE_BASELINK to the member function info. */
|
||
tree t = BASELINK_FUNCTIONS (member);
|
||
|
||
if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
|
||
{
|
||
/* Get rid of a potential OVERLOAD around it. */
|
||
t = OVL_CURRENT (t);
|
||
|
||
/* Unique functions are handled easily. */
|
||
|
||
/* For non-static member of base class, we need a special rule
|
||
for access checking [class.protected]:
|
||
|
||
If the access is to form a pointer to member, the
|
||
nested-name-specifier shall name the derived class
|
||
(or any class derived from that class). */
|
||
if (address_p && DECL_P (t)
|
||
&& DECL_NONSTATIC_MEMBER_P (t))
|
||
perform_or_defer_access_check (TYPE_BINFO (type), t, t);
|
||
else
|
||
perform_or_defer_access_check (basebinfo, t, t);
|
||
|
||
if (DECL_STATIC_FUNCTION_P (t))
|
||
return t;
|
||
member = t;
|
||
}
|
||
else
|
||
TREE_TYPE (member) = unknown_type_node;
|
||
}
|
||
else if (address_p && TREE_CODE (member) == FIELD_DECL)
|
||
/* We need additional test besides the one in
|
||
check_accessibility_of_qualified_id in case it is
|
||
a pointer to non-static member. */
|
||
perform_or_defer_access_check (TYPE_BINFO (type), member, member);
|
||
|
||
if (!address_p)
|
||
{
|
||
/* If MEMBER is non-static, then the program has fallen afoul of
|
||
[expr.prim]:
|
||
|
||
An id-expression that denotes a nonstatic data member or
|
||
nonstatic member function of a class can only be used:
|
||
|
||
-- as part of a class member access (_expr.ref_) in which the
|
||
object-expression refers to the member's class or a class
|
||
derived from that class, or
|
||
|
||
-- to form a pointer to member (_expr.unary.op_), or
|
||
|
||
-- in the body of a nonstatic member function of that class or
|
||
of a class derived from that class (_class.mfct.nonstatic_), or
|
||
|
||
-- in a mem-initializer for a constructor for that class or for
|
||
a class derived from that class (_class.base.init_). */
|
||
if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
|
||
{
|
||
/* Build a representation of a the qualified name suitable
|
||
for use as the operand to "&" -- even though the "&" is
|
||
not actually present. */
|
||
member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
|
||
/* In Microsoft mode, treat a non-static member function as if
|
||
it were a pointer-to-member. */
|
||
if (flag_ms_extensions)
|
||
{
|
||
PTRMEM_OK_P (member) = 1;
|
||
return build_unary_op (ADDR_EXPR, member, 0);
|
||
}
|
||
error ("invalid use of non-static member function %qD",
|
||
TREE_OPERAND (member, 1));
|
||
return error_mark_node;
|
||
}
|
||
else if (TREE_CODE (member) == FIELD_DECL)
|
||
{
|
||
error ("invalid use of non-static data member %qD", member);
|
||
return error_mark_node;
|
||
}
|
||
return member;
|
||
}
|
||
|
||
member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
|
||
PTRMEM_OK_P (member) = 1;
|
||
return member;
|
||
}
|
||
|
||
/* If DECL is a scalar enumeration constant or variable with a
|
||
constant initializer, return the initializer (or, its initializers,
|
||
recursively); otherwise, return DECL. If INTEGRAL_P, the
|
||
initializer is only returned if DECL is an integral
|
||
constant-expression. */
|
||
|
||
static tree
|
||
constant_value_1 (tree decl, bool integral_p)
|
||
{
|
||
while (TREE_CODE (decl) == CONST_DECL
|
||
|| (integral_p
|
||
? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
|
||
: (TREE_CODE (decl) == VAR_DECL
|
||
&& CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
|
||
{
|
||
tree init;
|
||
/* Static data members in template classes may have
|
||
non-dependent initializers. References to such non-static
|
||
data members are not value-dependent, so we must retrieve the
|
||
initializer here. The DECL_INITIAL will have the right type,
|
||
but will not have been folded because that would prevent us
|
||
from performing all appropriate semantic checks at
|
||
instantiation time. */
|
||
if (DECL_CLASS_SCOPE_P (decl)
|
||
&& CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
|
||
&& uses_template_parms (CLASSTYPE_TI_ARGS
|
||
(DECL_CONTEXT (decl))))
|
||
{
|
||
++processing_template_decl;
|
||
init = fold_non_dependent_expr (DECL_INITIAL (decl));
|
||
--processing_template_decl;
|
||
}
|
||
else
|
||
{
|
||
/* If DECL is a static data member in a template
|
||
specialization, we must instantiate it here. The
|
||
initializer for the static data member is not processed
|
||
until needed; we need it now. */
|
||
mark_used (decl);
|
||
init = DECL_INITIAL (decl);
|
||
}
|
||
if (init == error_mark_node)
|
||
return decl;
|
||
if (!init
|
||
|| !TREE_TYPE (init)
|
||
|| (integral_p
|
||
? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
|
||
: (!TREE_CONSTANT (init)
|
||
/* Do not return an aggregate constant (of which
|
||
string literals are a special case), as we do not
|
||
want to make inadvertent copies of such entities,
|
||
and we must be sure that their addresses are the
|
||
same everywhere. */
|
||
|| TREE_CODE (init) == CONSTRUCTOR
|
||
|| TREE_CODE (init) == STRING_CST)))
|
||
break;
|
||
decl = unshare_expr (init);
|
||
}
|
||
return decl;
|
||
}
|
||
|
||
/* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
|
||
constant of integral or enumeration type, then return that value.
|
||
These are those variables permitted in constant expressions by
|
||
[5.19/1]. */
|
||
|
||
tree
|
||
integral_constant_value (tree decl)
|
||
{
|
||
return constant_value_1 (decl, /*integral_p=*/true);
|
||
}
|
||
|
||
/* A more relaxed version of integral_constant_value, used by the
|
||
common C/C++ code and by the C++ front-end for optimization
|
||
purposes. */
|
||
|
||
tree
|
||
decl_constant_value (tree decl)
|
||
{
|
||
return constant_value_1 (decl,
|
||
/*integral_p=*/processing_template_decl);
|
||
}
|
||
|
||
/* Common subroutines of build_new and build_vec_delete. */
|
||
|
||
/* Call the global __builtin_delete to delete ADDR. */
|
||
|
||
static tree
|
||
build_builtin_delete_call (tree addr)
|
||
{
|
||
mark_used (global_delete_fndecl);
|
||
return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
|
||
}
|
||
|
||
/* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
|
||
the type of the object being allocated; otherwise, it's just TYPE.
|
||
INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
|
||
user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
|
||
the TREE_LIST of arguments to be provided as arguments to a
|
||
placement new operator. This routine performs no semantic checks;
|
||
it just creates and returns a NEW_EXPR. */
|
||
|
||
static tree
|
||
build_raw_new_expr (tree placement, tree type, tree nelts, tree init,
|
||
int use_global_new)
|
||
{
|
||
tree new_expr;
|
||
|
||
new_expr = build4 (NEW_EXPR, build_pointer_type (type), placement, type,
|
||
nelts, init);
|
||
NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
|
||
TREE_SIDE_EFFECTS (new_expr) = 1;
|
||
|
||
return new_expr;
|
||
}
|
||
|
||
/* Generate code for a new-expression, including calling the "operator
|
||
new" function, initializing the object, and, if an exception occurs
|
||
during construction, cleaning up. The arguments are as for
|
||
build_raw_new_expr. */
|
||
|
||
static tree
|
||
build_new_1 (tree placement, tree type, tree nelts, tree init,
|
||
bool globally_qualified_p)
|
||
{
|
||
tree size, rval;
|
||
/* True iff this is a call to "operator new[]" instead of just
|
||
"operator new". */
|
||
bool array_p = false;
|
||
/* True iff ARRAY_P is true and the bound of the array type is
|
||
not necessarily a compile time constant. For example, VLA_P is
|
||
true for "new int[f()]". */
|
||
bool vla_p = false;
|
||
/* The type being allocated. If ARRAY_P is true, this will be an
|
||
ARRAY_TYPE. */
|
||
tree full_type;
|
||
/* If ARRAY_P is true, the element type of the array. This is an
|
||
never ARRAY_TYPE; for something like "new int[3][4]", the
|
||
ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
|
||
FULL_TYPE. */
|
||
tree elt_type;
|
||
/* The type of the new-expression. (This type is always a pointer
|
||
type.) */
|
||
tree pointer_type;
|
||
/* A pointer type pointing to the FULL_TYPE. */
|
||
tree full_pointer_type;
|
||
tree outer_nelts = NULL_TREE;
|
||
tree alloc_call, alloc_expr;
|
||
/* The address returned by the call to "operator new". This node is
|
||
a VAR_DECL and is therefore reusable. */
|
||
tree alloc_node;
|
||
tree alloc_fn;
|
||
tree cookie_expr, init_expr;
|
||
int nothrow, check_new;
|
||
int use_java_new = 0;
|
||
/* If non-NULL, the number of extra bytes to allocate at the
|
||
beginning of the storage allocated for an array-new expression in
|
||
order to store the number of elements. */
|
||
tree cookie_size = NULL_TREE;
|
||
/* True if the function we are calling is a placement allocation
|
||
function. */
|
||
bool placement_allocation_fn_p;
|
||
tree args = NULL_TREE;
|
||
/* True if the storage must be initialized, either by a constructor
|
||
or due to an explicit new-initializer. */
|
||
bool is_initialized;
|
||
/* The address of the thing allocated, not including any cookie. In
|
||
particular, if an array cookie is in use, DATA_ADDR is the
|
||
address of the first array element. This node is a VAR_DECL, and
|
||
is therefore reusable. */
|
||
tree data_addr;
|
||
tree init_preeval_expr = NULL_TREE;
|
||
|
||
if (nelts)
|
||
{
|
||
tree index;
|
||
|
||
outer_nelts = nelts;
|
||
array_p = true;
|
||
|
||
/* ??? The middle-end will error on us for building a VLA outside a
|
||
function context. Methinks that's not it's purvey. So we'll do
|
||
our own VLA layout later. */
|
||
vla_p = true;
|
||
index = convert (sizetype, nelts);
|
||
index = size_binop (MINUS_EXPR, index, size_one_node);
|
||
index = build_index_type (index);
|
||
full_type = build_cplus_array_type (type, NULL_TREE);
|
||
/* We need a copy of the type as build_array_type will return a shared copy
|
||
of the incomplete array type. */
|
||
full_type = build_distinct_type_copy (full_type);
|
||
TYPE_DOMAIN (full_type) = index;
|
||
}
|
||
else
|
||
{
|
||
full_type = type;
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
array_p = true;
|
||
nelts = array_type_nelts_top (type);
|
||
outer_nelts = nelts;
|
||
type = TREE_TYPE (type);
|
||
}
|
||
}
|
||
|
||
if (!complete_type_or_else (type, NULL_TREE))
|
||
return error_mark_node;
|
||
|
||
/* If our base type is an array, then make sure we know how many elements
|
||
it has. */
|
||
for (elt_type = type;
|
||
TREE_CODE (elt_type) == ARRAY_TYPE;
|
||
elt_type = TREE_TYPE (elt_type))
|
||
nelts = cp_build_binary_op (MULT_EXPR, nelts,
|
||
array_type_nelts_top (elt_type));
|
||
|
||
if (TREE_CODE (elt_type) == VOID_TYPE)
|
||
{
|
||
error ("invalid type %<void%> for new");
|
||
return error_mark_node;
|
||
}
|
||
|
||
if (abstract_virtuals_error (NULL_TREE, elt_type))
|
||
return error_mark_node;
|
||
|
||
is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || init);
|
||
if (CP_TYPE_CONST_P (elt_type) && !is_initialized)
|
||
{
|
||
error ("uninitialized const in %<new%> of %q#T", elt_type);
|
||
return error_mark_node;
|
||
}
|
||
|
||
size = size_in_bytes (elt_type);
|
||
if (array_p)
|
||
{
|
||
size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
|
||
if (vla_p)
|
||
{
|
||
tree n, bitsize;
|
||
|
||
/* Do our own VLA layout. Setting TYPE_SIZE/_UNIT is
|
||
necessary in order for the <INIT_EXPR <*foo> <CONSTRUCTOR
|
||
...>> to be valid. */
|
||
TYPE_SIZE_UNIT (full_type) = size;
|
||
n = convert (bitsizetype, nelts);
|
||
bitsize = size_binop (MULT_EXPR, TYPE_SIZE (elt_type), n);
|
||
TYPE_SIZE (full_type) = bitsize;
|
||
}
|
||
}
|
||
|
||
alloc_fn = NULL_TREE;
|
||
|
||
/* Allocate the object. */
|
||
if (! placement && TYPE_FOR_JAVA (elt_type))
|
||
{
|
||
tree class_addr;
|
||
tree class_decl = build_java_class_ref (elt_type);
|
||
static const char alloc_name[] = "_Jv_AllocObject";
|
||
|
||
if (class_decl == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
use_java_new = 1;
|
||
if (!get_global_value_if_present (get_identifier (alloc_name),
|
||
&alloc_fn))
|
||
{
|
||
error ("call to Java constructor with %qs undefined", alloc_name);
|
||
return error_mark_node;
|
||
}
|
||
else if (really_overloaded_fn (alloc_fn))
|
||
{
|
||
error ("%qD should never be overloaded", alloc_fn);
|
||
return error_mark_node;
|
||
}
|
||
alloc_fn = OVL_CURRENT (alloc_fn);
|
||
class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
|
||
alloc_call = (build_function_call
|
||
(alloc_fn,
|
||
build_tree_list (NULL_TREE, class_addr)));
|
||
}
|
||
else
|
||
{
|
||
tree fnname;
|
||
tree fns;
|
||
|
||
fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
|
||
|
||
if (!globally_qualified_p
|
||
&& CLASS_TYPE_P (elt_type)
|
||
&& (array_p
|
||
? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
|
||
: TYPE_HAS_NEW_OPERATOR (elt_type)))
|
||
{
|
||
/* Use a class-specific operator new. */
|
||
/* If a cookie is required, add some extra space. */
|
||
if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
|
||
{
|
||
cookie_size = targetm.cxx.get_cookie_size (elt_type);
|
||
size = size_binop (PLUS_EXPR, size, cookie_size);
|
||
}
|
||
/* Create the argument list. */
|
||
args = tree_cons (NULL_TREE, size, placement);
|
||
/* Do name-lookup to find the appropriate operator. */
|
||
fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
|
||
if (fns == NULL_TREE)
|
||
{
|
||
error ("no suitable %qD found in class %qT", fnname, elt_type);
|
||
return error_mark_node;
|
||
}
|
||
if (TREE_CODE (fns) == TREE_LIST)
|
||
{
|
||
error ("request for member %qD is ambiguous", fnname);
|
||
print_candidates (fns);
|
||
return error_mark_node;
|
||
}
|
||
alloc_call = build_new_method_call (build_dummy_object (elt_type),
|
||
fns, args,
|
||
/*conversion_path=*/NULL_TREE,
|
||
LOOKUP_NORMAL,
|
||
&alloc_fn);
|
||
}
|
||
else
|
||
{
|
||
/* Use a global operator new. */
|
||
/* See if a cookie might be required. */
|
||
if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
|
||
cookie_size = targetm.cxx.get_cookie_size (elt_type);
|
||
else
|
||
cookie_size = NULL_TREE;
|
||
|
||
alloc_call = build_operator_new_call (fnname, placement,
|
||
&size, &cookie_size,
|
||
&alloc_fn);
|
||
}
|
||
}
|
||
|
||
if (alloc_call == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
gcc_assert (alloc_fn != NULL_TREE);
|
||
|
||
/* In the simple case, we can stop now. */
|
||
pointer_type = build_pointer_type (type);
|
||
if (!cookie_size && !is_initialized)
|
||
return build_nop (pointer_type, alloc_call);
|
||
|
||
/* While we're working, use a pointer to the type we've actually
|
||
allocated. Store the result of the call in a variable so that we
|
||
can use it more than once. */
|
||
full_pointer_type = build_pointer_type (full_type);
|
||
alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
|
||
alloc_node = TARGET_EXPR_SLOT (alloc_expr);
|
||
|
||
/* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
|
||
while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
|
||
alloc_call = TREE_OPERAND (alloc_call, 1);
|
||
|
||
/* Now, check to see if this function is actually a placement
|
||
allocation function. This can happen even when PLACEMENT is NULL
|
||
because we might have something like:
|
||
|
||
struct S { void* operator new (size_t, int i = 0); };
|
||
|
||
A call to `new S' will get this allocation function, even though
|
||
there is no explicit placement argument. If there is more than
|
||
one argument, or there are variable arguments, then this is a
|
||
placement allocation function. */
|
||
placement_allocation_fn_p
|
||
= (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
|
||
|| varargs_function_p (alloc_fn));
|
||
|
||
/* Preevaluate the placement args so that we don't reevaluate them for a
|
||
placement delete. */
|
||
if (placement_allocation_fn_p)
|
||
{
|
||
tree inits;
|
||
stabilize_call (alloc_call, &inits);
|
||
if (inits)
|
||
alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
|
||
alloc_expr);
|
||
}
|
||
|
||
/* unless an allocation function is declared with an empty excep-
|
||
tion-specification (_except.spec_), throw(), it indicates failure to
|
||
allocate storage by throwing a bad_alloc exception (clause _except_,
|
||
_lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
|
||
cation function is declared with an empty exception-specification,
|
||
throw(), it returns null to indicate failure to allocate storage and a
|
||
non-null pointer otherwise.
|
||
|
||
So check for a null exception spec on the op new we just called. */
|
||
|
||
nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
|
||
check_new = (flag_check_new || nothrow) && ! use_java_new;
|
||
|
||
if (cookie_size)
|
||
{
|
||
tree cookie;
|
||
tree cookie_ptr;
|
||
|
||
/* Adjust so we're pointing to the start of the object. */
|
||
data_addr = get_target_expr (build2 (PLUS_EXPR, full_pointer_type,
|
||
alloc_node, cookie_size));
|
||
|
||
/* Store the number of bytes allocated so that we can know how
|
||
many elements to destroy later. We use the last sizeof
|
||
(size_t) bytes to store the number of elements. */
|
||
cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
|
||
data_addr, size_in_bytes (sizetype));
|
||
cookie = build_indirect_ref (cookie_ptr, NULL);
|
||
|
||
cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
|
||
|
||
if (targetm.cxx.cookie_has_size ())
|
||
{
|
||
/* Also store the element size. */
|
||
cookie_ptr = build2 (MINUS_EXPR, build_pointer_type (sizetype),
|
||
cookie_ptr, size_in_bytes (sizetype));
|
||
cookie = build_indirect_ref (cookie_ptr, NULL);
|
||
cookie = build2 (MODIFY_EXPR, sizetype, cookie,
|
||
size_in_bytes(elt_type));
|
||
cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
|
||
cookie, cookie_expr);
|
||
}
|
||
data_addr = TARGET_EXPR_SLOT (data_addr);
|
||
}
|
||
else
|
||
{
|
||
cookie_expr = NULL_TREE;
|
||
data_addr = alloc_node;
|
||
}
|
||
|
||
/* Now initialize the allocated object. Note that we preevaluate the
|
||
initialization expression, apart from the actual constructor call or
|
||
assignment--we do this because we want to delay the allocation as long
|
||
as possible in order to minimize the size of the exception region for
|
||
placement delete. */
|
||
if (is_initialized)
|
||
{
|
||
bool stable;
|
||
|
||
init_expr = build_indirect_ref (data_addr, NULL);
|
||
|
||
if (array_p)
|
||
{
|
||
bool explicit_default_init_p = false;
|
||
|
||
if (init == void_zero_node)
|
||
{
|
||
init = NULL_TREE;
|
||
explicit_default_init_p = true;
|
||
}
|
||
else if (init)
|
||
pedwarn ("ISO C++ forbids initialization in array new");
|
||
|
||
init_expr
|
||
= build_vec_init (init_expr,
|
||
cp_build_binary_op (MINUS_EXPR, outer_nelts,
|
||
integer_one_node),
|
||
init,
|
||
explicit_default_init_p,
|
||
/*from_array=*/0);
|
||
|
||
/* An array initialization is stable because the initialization
|
||
of each element is a full-expression, so the temporaries don't
|
||
leak out. */
|
||
stable = true;
|
||
}
|
||
else
|
||
{
|
||
if (init == void_zero_node)
|
||
init = build_default_init (full_type, nelts);
|
||
|
||
if (TYPE_NEEDS_CONSTRUCTING (type))
|
||
{
|
||
init_expr = build_special_member_call (init_expr,
|
||
complete_ctor_identifier,
|
||
init, elt_type,
|
||
LOOKUP_NORMAL);
|
||
stable = stabilize_init (init_expr, &init_preeval_expr);
|
||
}
|
||
else
|
||
{
|
||
/* We are processing something like `new int (10)', which
|
||
means allocate an int, and initialize it with 10. */
|
||
|
||
if (TREE_CODE (init) == TREE_LIST)
|
||
init = build_x_compound_expr_from_list (init,
|
||
"new initializer");
|
||
else
|
||
gcc_assert (TREE_CODE (init) != CONSTRUCTOR
|
||
|| TREE_TYPE (init) != NULL_TREE);
|
||
|
||
init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
|
||
stable = stabilize_init (init_expr, &init_preeval_expr);
|
||
}
|
||
}
|
||
|
||
if (init_expr == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* If any part of the object initialization terminates by throwing an
|
||
exception and a suitable deallocation function can be found, the
|
||
deallocation function is called to free the memory in which the
|
||
object was being constructed, after which the exception continues
|
||
to propagate in the context of the new-expression. If no
|
||
unambiguous matching deallocation function can be found,
|
||
propagating the exception does not cause the object's memory to be
|
||
freed. */
|
||
if (flag_exceptions && ! use_java_new)
|
||
{
|
||
enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
|
||
tree cleanup;
|
||
|
||
/* The Standard is unclear here, but the right thing to do
|
||
is to use the same method for finding deallocation
|
||
functions that we use for finding allocation functions. */
|
||
cleanup = build_op_delete_call (dcode, alloc_node, size,
|
||
globally_qualified_p,
|
||
(placement_allocation_fn_p
|
||
? alloc_call : NULL_TREE),
|
||
alloc_fn);
|
||
|
||
if (!cleanup)
|
||
/* We're done. */;
|
||
else if (stable)
|
||
/* This is much simpler if we were able to preevaluate all of
|
||
the arguments to the constructor call. */
|
||
init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
|
||
init_expr, cleanup);
|
||
else
|
||
/* Ack! First we allocate the memory. Then we set our sentry
|
||
variable to true, and expand a cleanup that deletes the
|
||
memory if sentry is true. Then we run the constructor, and
|
||
finally clear the sentry.
|
||
|
||
We need to do this because we allocate the space first, so
|
||
if there are any temporaries with cleanups in the
|
||
constructor args and we weren't able to preevaluate them, we
|
||
need this EH region to extend until end of full-expression
|
||
to preserve nesting. */
|
||
{
|
||
tree end, sentry, begin;
|
||
|
||
begin = get_target_expr (boolean_true_node);
|
||
CLEANUP_EH_ONLY (begin) = 1;
|
||
|
||
sentry = TARGET_EXPR_SLOT (begin);
|
||
|
||
TARGET_EXPR_CLEANUP (begin)
|
||
= build3 (COND_EXPR, void_type_node, sentry,
|
||
cleanup, void_zero_node);
|
||
|
||
end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
|
||
sentry, boolean_false_node);
|
||
|
||
init_expr
|
||
= build2 (COMPOUND_EXPR, void_type_node, begin,
|
||
build2 (COMPOUND_EXPR, void_type_node, init_expr,
|
||
end));
|
||
}
|
||
|
||
}
|
||
}
|
||
else
|
||
init_expr = NULL_TREE;
|
||
|
||
/* Now build up the return value in reverse order. */
|
||
|
||
rval = data_addr;
|
||
|
||
if (init_expr)
|
||
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
|
||
if (cookie_expr)
|
||
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
|
||
|
||
if (rval == alloc_node)
|
||
/* If we don't have an initializer or a cookie, strip the TARGET_EXPR
|
||
and return the call (which doesn't need to be adjusted). */
|
||
rval = TARGET_EXPR_INITIAL (alloc_expr);
|
||
else
|
||
{
|
||
if (check_new)
|
||
{
|
||
tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
|
||
integer_zero_node);
|
||
rval = build_conditional_expr (ifexp, rval, alloc_node);
|
||
}
|
||
|
||
/* Perform the allocation before anything else, so that ALLOC_NODE
|
||
has been initialized before we start using it. */
|
||
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
|
||
}
|
||
|
||
if (init_preeval_expr)
|
||
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
|
||
|
||
/* Convert to the final type. */
|
||
rval = build_nop (pointer_type, rval);
|
||
|
||
/* A new-expression is never an lvalue. */
|
||
gcc_assert (!lvalue_p (rval));
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* Generate a representation for a C++ "new" expression. PLACEMENT is
|
||
a TREE_LIST of placement-new arguments (or NULL_TREE if none). If
|
||
NELTS is NULL, TYPE is the type of the storage to be allocated. If
|
||
NELTS is not NULL, then this is an array-new allocation; TYPE is
|
||
the type of the elements in the array and NELTS is the number of
|
||
elements in the array. INIT, if non-NULL, is the initializer for
|
||
the new object, or void_zero_node to indicate an initializer of
|
||
"()". If USE_GLOBAL_NEW is true, then the user explicitly wrote
|
||
"::new" rather than just "new". */
|
||
|
||
tree
|
||
build_new (tree placement, tree type, tree nelts, tree init,
|
||
int use_global_new)
|
||
{
|
||
tree rval;
|
||
tree orig_placement;
|
||
tree orig_nelts;
|
||
tree orig_init;
|
||
|
||
if (placement == error_mark_node || type == error_mark_node
|
||
|| init == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
orig_placement = placement;
|
||
orig_nelts = nelts;
|
||
orig_init = init;
|
||
|
||
if (processing_template_decl)
|
||
{
|
||
if (dependent_type_p (type)
|
||
|| any_type_dependent_arguments_p (placement)
|
||
|| (nelts && type_dependent_expression_p (nelts))
|
||
|| (init != void_zero_node
|
||
&& any_type_dependent_arguments_p (init)))
|
||
return build_raw_new_expr (placement, type, nelts, init,
|
||
use_global_new);
|
||
placement = build_non_dependent_args (placement);
|
||
if (nelts)
|
||
nelts = build_non_dependent_expr (nelts);
|
||
if (init != void_zero_node)
|
||
init = build_non_dependent_args (init);
|
||
}
|
||
|
||
if (nelts)
|
||
{
|
||
if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
|
||
pedwarn ("size in array new must have integral type");
|
||
nelts = cp_save_expr (cp_convert (sizetype, nelts));
|
||
/* It is valid to allocate a zero-element array:
|
||
|
||
[expr.new]
|
||
|
||
When the value of the expression in a direct-new-declarator
|
||
is zero, the allocation function is called to allocate an
|
||
array with no elements. The pointer returned by the
|
||
new-expression is non-null. [Note: If the library allocation
|
||
function is called, the pointer returned is distinct from the
|
||
pointer to any other object.]
|
||
|
||
However, that is not generally useful, so we issue a
|
||
warning. */
|
||
if (integer_zerop (nelts))
|
||
warning (0, "allocating zero-element array");
|
||
}
|
||
|
||
/* ``A reference cannot be created by the new operator. A reference
|
||
is not an object (8.2.2, 8.4.3), so a pointer to it could not be
|
||
returned by new.'' ARM 5.3.3 */
|
||
if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
{
|
||
error ("new cannot be applied to a reference type");
|
||
type = TREE_TYPE (type);
|
||
}
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
error ("new cannot be applied to a function type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
rval = build_new_1 (placement, type, nelts, init, use_global_new);
|
||
if (rval == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (processing_template_decl)
|
||
return build_raw_new_expr (orig_placement, type, orig_nelts, orig_init,
|
||
use_global_new);
|
||
|
||
/* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
|
||
rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
|
||
TREE_NO_WARNING (rval) = 1;
|
||
|
||
return rval;
|
||
}
|
||
|
||
/* Given a Java class, return a decl for the corresponding java.lang.Class. */
|
||
|
||
tree
|
||
build_java_class_ref (tree type)
|
||
{
|
||
tree name = NULL_TREE, class_decl;
|
||
static tree CL_suffix = NULL_TREE;
|
||
if (CL_suffix == NULL_TREE)
|
||
CL_suffix = get_identifier("class$");
|
||
if (jclass_node == NULL_TREE)
|
||
{
|
||
jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
|
||
if (jclass_node == NULL_TREE)
|
||
{
|
||
error ("call to Java constructor, while %<jclass%> undefined");
|
||
return error_mark_node;
|
||
}
|
||
jclass_node = TREE_TYPE (jclass_node);
|
||
}
|
||
|
||
/* Mangle the class$ field. */
|
||
{
|
||
tree field;
|
||
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
|
||
if (DECL_NAME (field) == CL_suffix)
|
||
{
|
||
mangle_decl (field);
|
||
name = DECL_ASSEMBLER_NAME (field);
|
||
break;
|
||
}
|
||
if (!field)
|
||
{
|
||
error ("can't find %<class$%> in %qT", type);
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
class_decl = IDENTIFIER_GLOBAL_VALUE (name);
|
||
if (class_decl == NULL_TREE)
|
||
{
|
||
class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
|
||
TREE_STATIC (class_decl) = 1;
|
||
DECL_EXTERNAL (class_decl) = 1;
|
||
TREE_PUBLIC (class_decl) = 1;
|
||
DECL_ARTIFICIAL (class_decl) = 1;
|
||
DECL_IGNORED_P (class_decl) = 1;
|
||
pushdecl_top_level (class_decl);
|
||
make_decl_rtl (class_decl);
|
||
}
|
||
return class_decl;
|
||
}
|
||
|
||
static tree
|
||
build_vec_delete_1 (tree base, tree maxindex, tree type,
|
||
special_function_kind auto_delete_vec, int use_global_delete)
|
||
{
|
||
tree virtual_size;
|
||
tree ptype = build_pointer_type (type = complete_type (type));
|
||
tree size_exp = size_in_bytes (type);
|
||
|
||
/* Temporary variables used by the loop. */
|
||
tree tbase, tbase_init;
|
||
|
||
/* This is the body of the loop that implements the deletion of a
|
||
single element, and moves temp variables to next elements. */
|
||
tree body;
|
||
|
||
/* This is the LOOP_EXPR that governs the deletion of the elements. */
|
||
tree loop = 0;
|
||
|
||
/* This is the thing that governs what to do after the loop has run. */
|
||
tree deallocate_expr = 0;
|
||
|
||
/* This is the BIND_EXPR which holds the outermost iterator of the
|
||
loop. It is convenient to set this variable up and test it before
|
||
executing any other code in the loop.
|
||
This is also the containing expression returned by this function. */
|
||
tree controller = NULL_TREE;
|
||
|
||
/* We should only have 1-D arrays here. */
|
||
gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
|
||
|
||
if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
|
||
goto no_destructor;
|
||
|
||
/* The below is short by the cookie size. */
|
||
virtual_size = size_binop (MULT_EXPR, size_exp,
|
||
convert (sizetype, maxindex));
|
||
|
||
tbase = create_temporary_var (ptype);
|
||
tbase_init = build_modify_expr (tbase, NOP_EXPR,
|
||
fold_build2 (PLUS_EXPR, ptype,
|
||
base,
|
||
virtual_size));
|
||
DECL_REGISTER (tbase) = 1;
|
||
controller = build3 (BIND_EXPR, void_type_node, tbase,
|
||
NULL_TREE, NULL_TREE);
|
||
TREE_SIDE_EFFECTS (controller) = 1;
|
||
|
||
body = build1 (EXIT_EXPR, void_type_node,
|
||
build2 (EQ_EXPR, boolean_type_node, tbase,
|
||
fold_convert (ptype, base)));
|
||
body = build_compound_expr
|
||
(body, build_modify_expr (tbase, NOP_EXPR,
|
||
build2 (MINUS_EXPR, ptype, tbase, size_exp)));
|
||
body = build_compound_expr
|
||
(body, build_delete (ptype, tbase, sfk_complete_destructor,
|
||
LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
|
||
|
||
loop = build1 (LOOP_EXPR, void_type_node, body);
|
||
loop = build_compound_expr (tbase_init, loop);
|
||
|
||
no_destructor:
|
||
/* If the delete flag is one, or anything else with the low bit set,
|
||
delete the storage. */
|
||
if (auto_delete_vec != sfk_base_destructor)
|
||
{
|
||
tree base_tbd;
|
||
|
||
/* The below is short by the cookie size. */
|
||
virtual_size = size_binop (MULT_EXPR, size_exp,
|
||
convert (sizetype, maxindex));
|
||
|
||
if (! TYPE_VEC_NEW_USES_COOKIE (type))
|
||
/* no header */
|
||
base_tbd = base;
|
||
else
|
||
{
|
||
tree cookie_size;
|
||
|
||
cookie_size = targetm.cxx.get_cookie_size (type);
|
||
base_tbd
|
||
= cp_convert (ptype,
|
||
cp_build_binary_op (MINUS_EXPR,
|
||
cp_convert (string_type_node,
|
||
base),
|
||
cookie_size));
|
||
/* True size with header. */
|
||
virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
|
||
}
|
||
|
||
if (auto_delete_vec == sfk_deleting_destructor)
|
||
deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
|
||
base_tbd, virtual_size,
|
||
use_global_delete & 1,
|
||
/*placement=*/NULL_TREE,
|
||
/*alloc_fn=*/NULL_TREE);
|
||
}
|
||
|
||
body = loop;
|
||
if (!deallocate_expr)
|
||
;
|
||
else if (!body)
|
||
body = deallocate_expr;
|
||
else
|
||
body = build_compound_expr (body, deallocate_expr);
|
||
|
||
if (!body)
|
||
body = integer_zero_node;
|
||
|
||
/* Outermost wrapper: If pointer is null, punt. */
|
||
body = fold_build3 (COND_EXPR, void_type_node,
|
||
fold_build2 (NE_EXPR, boolean_type_node, base,
|
||
convert (TREE_TYPE (base),
|
||
integer_zero_node)),
|
||
body, integer_zero_node);
|
||
body = build1 (NOP_EXPR, void_type_node, body);
|
||
|
||
if (controller)
|
||
{
|
||
TREE_OPERAND (controller, 1) = body;
|
||
body = controller;
|
||
}
|
||
|
||
if (TREE_CODE (base) == SAVE_EXPR)
|
||
/* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
|
||
body = build2 (COMPOUND_EXPR, void_type_node, base, body);
|
||
|
||
return convert_to_void (body, /*implicit=*/NULL);
|
||
}
|
||
|
||
/* Create an unnamed variable of the indicated TYPE. */
|
||
|
||
tree
|
||
create_temporary_var (tree type)
|
||
{
|
||
tree decl;
|
||
|
||
decl = build_decl (VAR_DECL, NULL_TREE, type);
|
||
TREE_USED (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
DECL_IGNORED_P (decl) = 1;
|
||
DECL_SOURCE_LOCATION (decl) = input_location;
|
||
DECL_CONTEXT (decl) = current_function_decl;
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* Create a new temporary variable of the indicated TYPE, initialized
|
||
to INIT.
|
||
|
||
It is not entered into current_binding_level, because that breaks
|
||
things when it comes time to do final cleanups (which take place
|
||
"outside" the binding contour of the function). */
|
||
|
||
static tree
|
||
get_temp_regvar (tree type, tree init)
|
||
{
|
||
tree decl;
|
||
|
||
decl = create_temporary_var (type);
|
||
add_decl_expr (decl);
|
||
|
||
finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
|
||
|
||
return decl;
|
||
}
|
||
|
||
/* `build_vec_init' returns tree structure that performs
|
||
initialization of a vector of aggregate types.
|
||
|
||
BASE is a reference to the vector, of ARRAY_TYPE.
|
||
MAXINDEX is the maximum index of the array (one less than the
|
||
number of elements). It is only used if
|
||
TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
|
||
|
||
INIT is the (possibly NULL) initializer.
|
||
|
||
If EXPLICIT_DEFAULT_INIT_P is true, then INIT must be NULL. All
|
||
elements in the array are default-initialized.
|
||
|
||
FROM_ARRAY is 0 if we should init everything with INIT
|
||
(i.e., every element initialized from INIT).
|
||
FROM_ARRAY is 1 if we should index into INIT in parallel
|
||
with initialization of DECL.
|
||
FROM_ARRAY is 2 if we should index into INIT in parallel,
|
||
but use assignment instead of initialization. */
|
||
|
||
tree
|
||
build_vec_init (tree base, tree maxindex, tree init,
|
||
bool explicit_default_init_p,
|
||
int from_array)
|
||
{
|
||
tree rval;
|
||
tree base2 = NULL_TREE;
|
||
tree size;
|
||
tree itype = NULL_TREE;
|
||
tree iterator;
|
||
/* The type of the array. */
|
||
tree atype = TREE_TYPE (base);
|
||
/* The type of an element in the array. */
|
||
tree type = TREE_TYPE (atype);
|
||
/* The element type reached after removing all outer array
|
||
types. */
|
||
tree inner_elt_type;
|
||
/* The type of a pointer to an element in the array. */
|
||
tree ptype;
|
||
tree stmt_expr;
|
||
tree compound_stmt;
|
||
int destroy_temps;
|
||
tree try_block = NULL_TREE;
|
||
int num_initialized_elts = 0;
|
||
bool is_global;
|
||
|
||
if (TYPE_DOMAIN (atype))
|
||
maxindex = array_type_nelts (atype);
|
||
|
||
if (maxindex == NULL_TREE || maxindex == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
if (explicit_default_init_p)
|
||
gcc_assert (!init);
|
||
|
||
inner_elt_type = strip_array_types (atype);
|
||
if (init
|
||
&& (from_array == 2
|
||
? (!CLASS_TYPE_P (inner_elt_type)
|
||
|| !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
|
||
: !TYPE_NEEDS_CONSTRUCTING (type))
|
||
&& ((TREE_CODE (init) == CONSTRUCTOR
|
||
/* Don't do this if the CONSTRUCTOR might contain something
|
||
that might throw and require us to clean up. */
|
||
&& (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
|
||
|| ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
|
||
|| from_array))
|
||
{
|
||
/* Do non-default initialization of POD arrays resulting from
|
||
brace-enclosed initializers. In this case, digest_init and
|
||
store_constructor will handle the semantics for us. */
|
||
|
||
stmt_expr = build2 (INIT_EXPR, atype, base, init);
|
||
return stmt_expr;
|
||
}
|
||
|
||
maxindex = cp_convert (ptrdiff_type_node, maxindex);
|
||
ptype = build_pointer_type (type);
|
||
size = size_in_bytes (type);
|
||
if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
|
||
base = cp_convert (ptype, decay_conversion (base));
|
||
|
||
/* The code we are generating looks like:
|
||
({
|
||
T* t1 = (T*) base;
|
||
T* rval = t1;
|
||
ptrdiff_t iterator = maxindex;
|
||
try {
|
||
for (; iterator != -1; --iterator) {
|
||
... initialize *t1 ...
|
||
++t1;
|
||
}
|
||
} catch (...) {
|
||
... destroy elements that were constructed ...
|
||
}
|
||
rval;
|
||
})
|
||
|
||
We can omit the try and catch blocks if we know that the
|
||
initialization will never throw an exception, or if the array
|
||
elements do not have destructors. We can omit the loop completely if
|
||
the elements of the array do not have constructors.
|
||
|
||
We actually wrap the entire body of the above in a STMT_EXPR, for
|
||
tidiness.
|
||
|
||
When copying from array to another, when the array elements have
|
||
only trivial copy constructors, we should use __builtin_memcpy
|
||
rather than generating a loop. That way, we could take advantage
|
||
of whatever cleverness the back-end has for dealing with copies
|
||
of blocks of memory. */
|
||
|
||
is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
|
||
destroy_temps = stmts_are_full_exprs_p ();
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
||
rval = get_temp_regvar (ptype, base);
|
||
base = get_temp_regvar (ptype, rval);
|
||
iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
|
||
|
||
/* Protect the entire array initialization so that we can destroy
|
||
the partially constructed array if an exception is thrown.
|
||
But don't do this if we're assigning. */
|
||
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
||
&& from_array != 2)
|
||
{
|
||
try_block = begin_try_block ();
|
||
}
|
||
|
||
if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
|
||
{
|
||
/* Do non-default initialization of non-POD arrays resulting from
|
||
brace-enclosed initializers. */
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree elt;
|
||
from_array = 0;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
|
||
{
|
||
tree baseref = build1 (INDIRECT_REF, type, base);
|
||
|
||
num_initialized_elts++;
|
||
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
||
if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
|
||
finish_expr_stmt (build_aggr_init (baseref, elt, 0));
|
||
else
|
||
finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
|
||
elt));
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
||
|
||
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
|
||
finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
|
||
}
|
||
|
||
/* Clear out INIT so that we don't get confused below. */
|
||
init = NULL_TREE;
|
||
}
|
||
else if (from_array)
|
||
{
|
||
/* If initializing one array from another, initialize element by
|
||
element. We rely upon the below calls the do argument
|
||
checking. */
|
||
if (init)
|
||
{
|
||
base2 = decay_conversion (init);
|
||
itype = TREE_TYPE (base2);
|
||
base2 = get_temp_regvar (itype, base2);
|
||
itype = TREE_TYPE (itype);
|
||
}
|
||
else if (TYPE_LANG_SPECIFIC (type)
|
||
&& TYPE_NEEDS_CONSTRUCTING (type)
|
||
&& ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
|
||
{
|
||
error ("initializer ends prematurely");
|
||
return error_mark_node;
|
||
}
|
||
}
|
||
|
||
/* Now, default-initialize any remaining elements. We don't need to
|
||
do that if a) the type does not need constructing, or b) we've
|
||
already initialized all the elements.
|
||
|
||
We do need to keep going if we're copying an array. */
|
||
|
||
if (from_array
|
||
|| ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_default_init_p)
|
||
&& ! (host_integerp (maxindex, 0)
|
||
&& (num_initialized_elts
|
||
== tree_low_cst (maxindex, 0) + 1))))
|
||
{
|
||
/* If the ITERATOR is equal to -1, then we don't have to loop;
|
||
we've already initialized all the elements. */
|
||
tree for_stmt;
|
||
tree elt_init;
|
||
tree to;
|
||
|
||
for_stmt = begin_for_stmt ();
|
||
finish_for_init_stmt (for_stmt);
|
||
finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
|
||
build_int_cst (TREE_TYPE (iterator), -1)),
|
||
for_stmt);
|
||
finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
|
||
for_stmt);
|
||
|
||
to = build1 (INDIRECT_REF, type, base);
|
||
|
||
if (from_array)
|
||
{
|
||
tree from;
|
||
|
||
if (base2)
|
||
from = build1 (INDIRECT_REF, itype, base2);
|
||
else
|
||
from = NULL_TREE;
|
||
|
||
if (from_array == 2)
|
||
elt_init = build_modify_expr (to, NOP_EXPR, from);
|
||
else if (TYPE_NEEDS_CONSTRUCTING (type))
|
||
elt_init = build_aggr_init (to, from, 0);
|
||
else if (from)
|
||
elt_init = build_modify_expr (to, NOP_EXPR, from);
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
if (init != 0)
|
||
sorry
|
||
("cannot initialize multi-dimensional array with initializer");
|
||
elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
|
||
0, 0,
|
||
/*explicit_default_init_p=*/false,
|
||
0);
|
||
}
|
||
else if (!TYPE_NEEDS_CONSTRUCTING (type))
|
||
elt_init = (build_modify_expr
|
||
(to, INIT_EXPR,
|
||
build_zero_init (type, size_one_node,
|
||
/*static_storage_p=*/false)));
|
||
else
|
||
elt_init = build_aggr_init (to, init, 0);
|
||
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 1;
|
||
finish_expr_stmt (elt_init);
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = 0;
|
||
|
||
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
|
||
if (base2)
|
||
finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
|
||
|
||
finish_for_stmt (for_stmt);
|
||
}
|
||
|
||
/* Make sure to cleanup any partially constructed elements. */
|
||
if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
|
||
&& from_array != 2)
|
||
{
|
||
tree e;
|
||
tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
|
||
|
||
/* Flatten multi-dimensional array since build_vec_delete only
|
||
expects one-dimensional array. */
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
m = cp_build_binary_op (MULT_EXPR, m,
|
||
array_type_nelts_total (type));
|
||
|
||
finish_cleanup_try_block (try_block);
|
||
e = build_vec_delete_1 (rval, m,
|
||
inner_elt_type, sfk_base_destructor,
|
||
/*use_global_delete=*/0);
|
||
finish_cleanup (e, try_block);
|
||
}
|
||
|
||
/* The value of the array initialization is the array itself, RVAL
|
||
is a pointer to the first element. */
|
||
finish_stmt_expr_expr (rval, stmt_expr);
|
||
|
||
stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
|
||
|
||
/* Now convert make the result have the correct type. */
|
||
atype = build_pointer_type (atype);
|
||
stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
|
||
stmt_expr = build_indirect_ref (stmt_expr, NULL);
|
||
|
||
current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
|
||
return stmt_expr;
|
||
}
|
||
|
||
/* Call the DTOR_KIND destructor for EXP. FLAGS are as for
|
||
build_delete. */
|
||
|
||
static tree
|
||
build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
|
||
{
|
||
tree name;
|
||
tree fn;
|
||
switch (dtor_kind)
|
||
{
|
||
case sfk_complete_destructor:
|
||
name = complete_dtor_identifier;
|
||
break;
|
||
|
||
case sfk_base_destructor:
|
||
name = base_dtor_identifier;
|
||
break;
|
||
|
||
case sfk_deleting_destructor:
|
||
name = deleting_dtor_identifier;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
|
||
return build_new_method_call (exp, fn,
|
||
/*args=*/NULL_TREE,
|
||
/*conversion_path=*/NULL_TREE,
|
||
flags,
|
||
/*fn_p=*/NULL);
|
||
}
|
||
|
||
/* Generate a call to a destructor. TYPE is the type to cast ADDR to.
|
||
ADDR is an expression which yields the store to be destroyed.
|
||
AUTO_DELETE is the name of the destructor to call, i.e., either
|
||
sfk_complete_destructor, sfk_base_destructor, or
|
||
sfk_deleting_destructor.
|
||
|
||
FLAGS is the logical disjunction of zero or more LOOKUP_
|
||
flags. See cp-tree.h for more info. */
|
||
|
||
tree
|
||
build_delete (tree type, tree addr, special_function_kind auto_delete,
|
||
int flags, int use_global_delete)
|
||
{
|
||
tree expr;
|
||
|
||
if (addr == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
|
||
set to `error_mark_node' before it gets properly cleaned up. */
|
||
if (type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
bool complete_p = true;
|
||
|
||
type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
goto handle_array;
|
||
|
||
/* We don't want to warn about delete of void*, only other
|
||
incomplete types. Deleting other incomplete types
|
||
invokes undefined behavior, but it is not ill-formed, so
|
||
compile to something that would even do The Right Thing
|
||
(TM) should the type have a trivial dtor and no delete
|
||
operator. */
|
||
if (!VOID_TYPE_P (type))
|
||
{
|
||
complete_type (type);
|
||
if (!COMPLETE_TYPE_P (type))
|
||
{
|
||
warning (0, "possible problem detected in invocation of "
|
||
"delete operator:");
|
||
cxx_incomplete_type_diagnostic (addr, type, 1);
|
||
inform ("neither the destructor nor the class-specific "
|
||
"operator delete will be called, even if they are "
|
||
"declared when the class is defined.");
|
||
complete_p = false;
|
||
}
|
||
}
|
||
if (VOID_TYPE_P (type) || !complete_p || !IS_AGGR_TYPE (type))
|
||
/* Call the builtin operator delete. */
|
||
return build_builtin_delete_call (addr);
|
||
if (TREE_SIDE_EFFECTS (addr))
|
||
addr = save_expr (addr);
|
||
|
||
/* Throw away const and volatile on target type of addr. */
|
||
addr = convert_force (build_pointer_type (type), addr, 0);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
handle_array:
|
||
|
||
if (TYPE_DOMAIN (type) == NULL_TREE)
|
||
{
|
||
error ("unknown array size in delete");
|
||
return error_mark_node;
|
||
}
|
||
return build_vec_delete (addr, array_type_nelts (type),
|
||
auto_delete, use_global_delete);
|
||
}
|
||
else
|
||
{
|
||
/* Don't check PROTECT here; leave that decision to the
|
||
destructor. If the destructor is accessible, call it,
|
||
else report error. */
|
||
addr = build_unary_op (ADDR_EXPR, addr, 0);
|
||
if (TREE_SIDE_EFFECTS (addr))
|
||
addr = save_expr (addr);
|
||
|
||
addr = convert_force (build_pointer_type (type), addr, 0);
|
||
}
|
||
|
||
gcc_assert (IS_AGGR_TYPE (type));
|
||
|
||
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
|
||
{
|
||
if (auto_delete != sfk_deleting_destructor)
|
||
return void_zero_node;
|
||
|
||
return build_op_delete_call (DELETE_EXPR, addr,
|
||
cxx_sizeof_nowarn (type),
|
||
use_global_delete,
|
||
/*placement=*/NULL_TREE,
|
||
/*alloc_fn=*/NULL_TREE);
|
||
}
|
||
else
|
||
{
|
||
tree do_delete = NULL_TREE;
|
||
tree ifexp;
|
||
|
||
if (CLASSTYPE_LAZY_DESTRUCTOR (type))
|
||
lazily_declare_fn (sfk_destructor, type);
|
||
|
||
/* For `::delete x', we must not use the deleting destructor
|
||
since then we would not be sure to get the global `operator
|
||
delete'. */
|
||
if (use_global_delete && auto_delete == sfk_deleting_destructor)
|
||
{
|
||
/* We will use ADDR multiple times so we must save it. */
|
||
addr = save_expr (addr);
|
||
/* Delete the object. */
|
||
do_delete = build_builtin_delete_call (addr);
|
||
/* Otherwise, treat this like a complete object destructor
|
||
call. */
|
||
auto_delete = sfk_complete_destructor;
|
||
}
|
||
/* If the destructor is non-virtual, there is no deleting
|
||
variant. Instead, we must explicitly call the appropriate
|
||
`operator delete' here. */
|
||
else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
|
||
&& auto_delete == sfk_deleting_destructor)
|
||
{
|
||
/* We will use ADDR multiple times so we must save it. */
|
||
addr = save_expr (addr);
|
||
/* Build the call. */
|
||
do_delete = build_op_delete_call (DELETE_EXPR,
|
||
addr,
|
||
cxx_sizeof_nowarn (type),
|
||
/*global_p=*/false,
|
||
/*placement=*/NULL_TREE,
|
||
/*alloc_fn=*/NULL_TREE);
|
||
/* Call the complete object destructor. */
|
||
auto_delete = sfk_complete_destructor;
|
||
}
|
||
else if (auto_delete == sfk_deleting_destructor
|
||
&& TYPE_GETS_REG_DELETE (type))
|
||
{
|
||
/* Make sure we have access to the member op delete, even though
|
||
we'll actually be calling it from the destructor. */
|
||
build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
|
||
/*global_p=*/false,
|
||
/*placement=*/NULL_TREE,
|
||
/*alloc_fn=*/NULL_TREE);
|
||
}
|
||
|
||
expr = build_dtor_call (build_indirect_ref (addr, NULL),
|
||
auto_delete, flags);
|
||
if (do_delete)
|
||
expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
|
||
|
||
if (flags & LOOKUP_DESTRUCTOR)
|
||
/* Explicit destructor call; don't check for null pointer. */
|
||
ifexp = integer_one_node;
|
||
else
|
||
/* Handle deleting a null pointer. */
|
||
ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
|
||
|
||
if (ifexp != integer_one_node)
|
||
expr = build3 (COND_EXPR, void_type_node,
|
||
ifexp, expr, void_zero_node);
|
||
|
||
return expr;
|
||
}
|
||
}
|
||
|
||
/* At the beginning of a destructor, push cleanups that will call the
|
||
destructors for our base classes and members.
|
||
|
||
Called from begin_destructor_body. */
|
||
|
||
void
|
||
push_base_cleanups (void)
|
||
{
|
||
tree binfo, base_binfo;
|
||
int i;
|
||
tree member;
|
||
tree expr;
|
||
VEC(tree,gc) *vbases;
|
||
|
||
/* Run destructors for all virtual baseclasses. */
|
||
if (CLASSTYPE_VBASECLASSES (current_class_type))
|
||
{
|
||
tree cond = (condition_conversion
|
||
(build2 (BIT_AND_EXPR, integer_type_node,
|
||
current_in_charge_parm,
|
||
integer_two_node)));
|
||
|
||
/* The CLASSTYPE_VBASECLASSES vector is in initialization
|
||
order, which is also the right order for pushing cleanups. */
|
||
for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
|
||
VEC_iterate (tree, vbases, i, base_binfo); i++)
|
||
{
|
||
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
|
||
{
|
||
expr = build_special_member_call (current_class_ref,
|
||
base_dtor_identifier,
|
||
NULL_TREE,
|
||
base_binfo,
|
||
(LOOKUP_NORMAL
|
||
| LOOKUP_NONVIRTUAL));
|
||
expr = build3 (COND_EXPR, void_type_node, cond,
|
||
expr, void_zero_node);
|
||
finish_decl_cleanup (NULL_TREE, expr);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Take care of the remaining baseclasses. */
|
||
for (binfo = TYPE_BINFO (current_class_type), i = 0;
|
||
BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
||
{
|
||
if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
|
||
|| BINFO_VIRTUAL_P (base_binfo))
|
||
continue;
|
||
|
||
expr = build_special_member_call (current_class_ref,
|
||
base_dtor_identifier,
|
||
NULL_TREE, base_binfo,
|
||
LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
|
||
finish_decl_cleanup (NULL_TREE, expr);
|
||
}
|
||
|
||
for (member = TYPE_FIELDS (current_class_type); member;
|
||
member = TREE_CHAIN (member))
|
||
{
|
||
if (TREE_TYPE (member) == error_mark_node
|
||
|| TREE_CODE (member) != FIELD_DECL
|
||
|| DECL_ARTIFICIAL (member))
|
||
continue;
|
||
if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
|
||
{
|
||
tree this_member = (build_class_member_access_expr
|
||
(current_class_ref, member,
|
||
/*access_path=*/NULL_TREE,
|
||
/*preserve_reference=*/false));
|
||
tree this_type = TREE_TYPE (member);
|
||
expr = build_delete (this_type, this_member,
|
||
sfk_complete_destructor,
|
||
LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
|
||
0);
|
||
finish_decl_cleanup (NULL_TREE, expr);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Build a C++ vector delete expression.
|
||
MAXINDEX is the number of elements to be deleted.
|
||
ELT_SIZE is the nominal size of each element in the vector.
|
||
BASE is the expression that should yield the store to be deleted.
|
||
This function expands (or synthesizes) these calls itself.
|
||
AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
|
||
|
||
This also calls delete for virtual baseclasses of elements of the vector.
|
||
|
||
Update: MAXINDEX is no longer needed. The size can be extracted from the
|
||
start of the vector for pointers, and from the type for arrays. We still
|
||
use MAXINDEX for arrays because it happens to already have one of the
|
||
values we'd have to extract. (We could use MAXINDEX with pointers to
|
||
confirm the size, and trap if the numbers differ; not clear that it'd
|
||
be worth bothering.) */
|
||
|
||
tree
|
||
build_vec_delete (tree base, tree maxindex,
|
||
special_function_kind auto_delete_vec, int use_global_delete)
|
||
{
|
||
tree type;
|
||
tree rval;
|
||
tree base_init = NULL_TREE;
|
||
|
||
type = TREE_TYPE (base);
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
/* Step back one from start of vector, and read dimension. */
|
||
tree cookie_addr;
|
||
|
||
if (TREE_SIDE_EFFECTS (base))
|
||
{
|
||
base_init = get_target_expr (base);
|
||
base = TARGET_EXPR_SLOT (base_init);
|
||
}
|
||
type = strip_array_types (TREE_TYPE (type));
|
||
cookie_addr = build2 (MINUS_EXPR,
|
||
build_pointer_type (sizetype),
|
||
base,
|
||
TYPE_SIZE_UNIT (sizetype));
|
||
maxindex = build_indirect_ref (cookie_addr, NULL);
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
/* Get the total number of things in the array, maxindex is a
|
||
bad name. */
|
||
maxindex = array_type_nelts_total (type);
|
||
type = strip_array_types (type);
|
||
base = build_unary_op (ADDR_EXPR, base, 1);
|
||
if (TREE_SIDE_EFFECTS (base))
|
||
{
|
||
base_init = get_target_expr (base);
|
||
base = TARGET_EXPR_SLOT (base_init);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (base != error_mark_node)
|
||
error ("type to vector delete is neither pointer or array type");
|
||
return error_mark_node;
|
||
}
|
||
|
||
rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
|
||
use_global_delete);
|
||
if (base_init)
|
||
rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
|
||
|
||
return rval;
|
||
}
|